JP2003054926A - Method for producing charcoal for adsorption - Google Patents

Method for producing charcoal for adsorption

Info

Publication number
JP2003054926A
JP2003054926A JP2001251336A JP2001251336A JP2003054926A JP 2003054926 A JP2003054926 A JP 2003054926A JP 2001251336 A JP2001251336 A JP 2001251336A JP 2001251336 A JP2001251336 A JP 2001251336A JP 2003054926 A JP2003054926 A JP 2003054926A
Authority
JP
Japan
Prior art keywords
charcoal
wood
carbonization
carbon dioxide
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001251336A
Other languages
Japanese (ja)
Other versions
JP4065935B2 (en
Inventor
Hisahiro Kitamura
寿宏 北村
Hiroyuki Katayama
裕之 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2001251336A priority Critical patent/JP4065935B2/en
Publication of JP2003054926A publication Critical patent/JP2003054926A/en
Application granted granted Critical
Publication of JP4065935B2 publication Critical patent/JP4065935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce charcoal which has a large specific surface area by using carbon dioxide as a reaction gas in an inert gas and simultaneously progressing carbonization and activation. SOLUTION: By volume, 1 to 10% carbon dioxide as a reaction gas is fed into an atmosphere of an inert gas. The carbonization temperature of wood is controlled within the temperature range of 700 to 1,000 deg.C, and the wood is carbonized, and simultaneously, the reaction of C+CO2 →2CO is caused, and activation is performed, so that its specific surface area is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は,廃木材等の木材
から吸着性の大きい木炭を製造する吸着用木炭の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing charcoal for adsorption, which produces charcoal having high adsorptivity from waste wood or the like.

【0002】[0002]

【従来の技術】従来,吸着剤としては活性炭が広く利用
されてきた。活性炭は,椰子殻等の特殊の植物系材料を
原料として一度炭化した後に,これを再度加熱し,水蒸
気や二酸化炭素等を含む特定の雰囲気中で賦活を行い製
造されている。この場合,原料が特定の原料に限定さ
れ,しかも,製造に炭化と賦活の2段階のプロセスを必
要とする等の要因があり,木炭の歩留まりが低く,価格
が高いものになっている。即ち,活性炭の製造方法は,
一般的に,炭化と比表面積を大きくする処理の賦活から
成る2段のプロセスで製造しているものである。
2. Description of the Related Art Conventionally, activated carbon has been widely used as an adsorbent. Activated carbon is manufactured by once carbonizing a special plant material such as coconut shell as a raw material, then heating it again and activating it in a specific atmosphere containing water vapor, carbon dioxide and the like. In this case, the raw material is limited to a specific raw material, and further, there are factors such as the need for a two-step process of carbonization and activation, so that the yield of charcoal is low and the price is high. That is, the method of manufacturing activated carbon is
Generally, it is manufactured by a two-step process consisting of carbonization and activation of treatment for increasing the specific surface area.

【0003】また,特開平9−241014号公報に開
示された活性炭の製造方法は,植物系又は鉱物系原料か
ら一段焼成するだけで活性炭を製造するものであり,
0.5〜5容量%の酸素を含むガスとの接触の下で,植
物系原料を400℃以上で焼成するものであり,また,
鉱物系原料を500℃以上で焼成するものである。
The method for producing activated carbon disclosed in Japanese Patent Laid-Open No. 9-214014 is to produce activated carbon from a plant-based or mineral-based raw material only by one-step firing.
A plant-based raw material is fired at a temperature of 400 ° C. or higher in contact with a gas containing 0.5 to 5% by volume of oxygen, and
This is a method of firing a mineral-based material at 500 ° C. or higher.

【0004】[0004]

【発明が解決しようとする課題】前掲特開平9−241
014号公報に開示された活性炭の製造方法は,酸素と
原料との反応が複雑になり,活性炭の歩留まりが必要以
上に低下するという間題があり,該公報の明細書中で
は,炭酸ガスが使用されることが記載されているが,炭
酸ガスが不活性ガスとして使用されるものである。上記
活性炭の製造方法は,炭化処理する雰囲気が不活性ガス
と酸素とからなる雰囲気で,木材の炭化処理が行われて
いるものである。
[Problems to be Solved by the Invention] Japanese Patent Laid-Open No. 9-241
The method for producing activated carbon disclosed in Japanese Patent Publication No. 014 has a problem that the reaction between oxygen and a raw material is complicated and the yield of activated carbon is unnecessarily lowered. Although described as being used, carbon dioxide gas is used as the inert gas. In the above-described method for producing activated carbon, the carbonization treatment is performed in an atmosphere in which the atmosphere for carbonization is composed of an inert gas and oxygen.

【0005】[0005]

【課題を解決するための手段】この発明の目的は,上記
の課題を解決することであり,酸素を含有させずに不活
性ガスに反応ガスとしての二酸化炭素を供給し,焼成温
度を制御して比表面積を増大させることができる吸着用
木炭の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems by supplying carbon dioxide as a reaction gas to an inert gas without containing oxygen to control the firing temperature. To provide a method for producing charcoal for adsorption which can increase the specific surface area.

【0006】この発明は,窒素ガス等の不活性ガスの雰
囲気中に,酸素を供給することなく,反応ガスとしての
二酸化炭素を供給して木材を予め決められて炭化温度に
制御し,前記木材を炭化させると同時に,CとCO2
による2COの反応を生じさせて賦活を行わせ,比表面
積を増大させることから成る吸着用木炭の製造方法に関
する。
According to the present invention, carbon dioxide is supplied as a reaction gas into an atmosphere of an inert gas such as nitrogen gas without supplying oxygen to control the wood to a predetermined carbonization temperature. The present invention relates to a method for producing charcoal for adsorption, which comprises simultaneously carbonizing carbon dioxide and at the same time causing a reaction of 2CO with C and CO 2 for activation to increase the specific surface area.

【0007】この吸着用木炭の製造方法は,前記木材の
炭化温度を700〜1000℃の範囲内に温度調整して
比表面積を増大させる制御を行うものである。
In this method for producing charcoal for adsorption, the carbonization temperature of the wood is adjusted within the range of 700 to 1000 ° C. so as to increase the specific surface area.

【0008】この吸着用木炭の製造方法は,前記不活性
ガスとして窒素ガスを使用し,前記窒素ガスに供給され
る前記反応ガスの前記二酸化炭素の供給量は,1〜10
容量%に制御して前記二酸化炭素を炭化炉内に流通させ
るものである。
In this method for producing charcoal for adsorption, nitrogen gas is used as the inert gas, and the supply amount of the carbon dioxide of the reaction gas supplied to the nitrogen gas is 1-10.
The carbon dioxide is allowed to flow in the carbonization furnace while being controlled to a volume%.

【0009】この吸着用木炭の製造方法は,製鋼炉,ス
クラップ溶解炉,精錬炉,焼却炉,溶融炉等の炉からの
排ガスを木材炭化炉へ導き,その熱エネルギーによって
前記木材の炭化処理を行うものである。
In this method for producing charcoal for adsorption, exhaust gas from a furnace such as a steelmaking furnace, a scrap melting furnace, a refining furnace, an incinerator, and a melting furnace is introduced into a wood carbonization furnace, and the heat energy thereof is used for carbonizing the wood. It is something to do.

【0010】この吸着用木炭の製造方法は,前記木材と
して間伐材,端材等の廃木材をサイジングし,前記木材
の炭化処理を行って前記木炭及び木酢液を製造するもの
である。
In this method of producing charcoal for adsorption, waste wood such as thinned wood and scrap wood is sized as the wood, and the wood is carbonized to produce the charcoal and wood vinegar.

【0011】この吸着用木炭の製造方法は,上記のよう
に構成されているので,窒素ガス等の不活性ガスの雰囲
気に反応ガスとしての二酸化炭素を混合し,炭化と賦活
を同時に行ったので,活性炭並みの比表面積を持つ木炭
を製造することができる。また,この吸着用木炭の製造
方法は,木炭の収率を制御することにより,比表面積を
制御することが可能である。また,廃木材の有効利用と
製鉄炉や焼却炉での排ガス浄化を同時に行うことを着眼
し,排ガス吸着用の木炭を廃木材から安価に効率的に製
造することが可能になった。その結果,二酸化炭素を利
用して炭化を行うことで,吸着用に利用できる比表面積
の大きな木炭を製造することができるようになった。
Since this method for producing charcoal for adsorption is constituted as described above, carbon dioxide as a reaction gas is mixed in an atmosphere of an inert gas such as nitrogen gas to carry out carbonization and activation at the same time. , It is possible to manufacture charcoal with a specific surface area similar to activated carbon. Further, in this method for producing charcoal for adsorption, it is possible to control the specific surface area by controlling the yield of charcoal. In addition, it has become possible to produce charcoal for exhaust gas adsorption from waste wood efficiently at low cost by focusing on effective utilization of waste wood and purification of exhaust gas in iron making furnaces and incinerators at the same time. As a result, it has become possible to produce charcoal with a large specific surface area that can be used for adsorption by carbonizing using carbon dioxide.

【0012】[0012]

【発明の実施の形態】以下,図面を参照して,この発明
による吸着用木炭の製造方法の実施例を説明する。この
発明による吸着用木炭の製造方法は,木材を炭化して木
炭を製造し,その木炭を吸着剤として活用するものであ
る。この吸着用木炭の製造方法は,特に,従来の炭化処
理と異なって不活性ガスの雰囲気に二酸化炭素を供給し
て炭化と賦活とを同時に行うという一段階のプロセスで
製造することを特徴としています。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for producing charcoal for adsorption according to the present invention will be described below with reference to the drawings. The method for producing charcoal for adsorption according to the present invention is to charcoal wood to produce charcoal and utilize the charcoal as an adsorbent. This method of producing charcoal for adsorption is characterized in that, unlike the conventional carbonization treatment, carbon dioxide is supplied to an atmosphere of an inert gas to perform carbonization and activation at the same time in a one-step process. I will.

【0013】この吸着用木炭の製造方法では,スギ材を
用いて炭化実験を行い,木炭の比表面積について調査を
行ったところ,図3に示すように,木炭の比表面積は,
700−900℃の炭化温度では,木炭の歩留まりと比
表面積が一次の正の相関関係になることが分かった。ま
た,この吸着用木炭の製造方法は,作製した木炭につい
て,従来の活性炭の製造時の3%程度の歩留まりと比較
すると,同程度の比表面積を持つ木炭が歩留まり良く製
造でき,また,比表面積が木炭の歩留まりで制御するこ
とが可能であることが分かった。
In this method for producing charcoal for adsorption, a carbonization experiment was conducted using cedar wood, and the specific surface area of charcoal was investigated. As shown in FIG. 3, the specific surface area of charcoal was
It was found that the yield and specific surface area of charcoal have a first-order positive correlation at a carbonization temperature of 700 to 900 ° C. In addition, this method for producing charcoal for adsorption can produce a charcoal having the same specific surface area as that of the conventional activated carbon with a yield of about 3% in comparison with the conventional activated charcoal with a good yield. It has been found that can be controlled by the charcoal yield.

【0014】この吸着用木炭の製造方法は,主として,
窒素ガス等の不活性ガスの雰囲気中に,反応ガスとして
の二酸化炭素を供給して木材を予め決められて炭化温度
に制御し,前記木材を炭化させると同時に,CとCO2
とによる2COの反応を生じさせて賦活を行わせ,比表
面積を増大させるものである。不活性ガスとしては,窒
素ガスのほかに,アルゴンガス,ヘリウムガス,水素ガ
ス,一酸化炭素ガスやこれらの混合したガスを利用する
ことができる。また,反応ガスとしては,二酸化炭素の
ほかに,水蒸気(スチーム)や二酸化炭素と水蒸気を混
合したガスを利用することができる。水蒸気の場合,水
蒸気(H2 O)と木炭中の炭素CとによりH2 とCOが
生成する反応が進行し,木炭の賦活が進行する。さら
に,焼却炉の燃焼排ガスや金属精錬炉からの排ガスを利
用することもできる。
The method for producing this charcoal for adsorption mainly comprises:
Carbon dioxide is supplied as a reaction gas into an atmosphere of an inert gas such as nitrogen gas to control wood to a predetermined carbonization temperature to carbonize the wood, and at the same time, to remove C and CO 2
The 2CO reaction is caused by the activation to activate the carbon dioxide and increase the specific surface area. As the inert gas, in addition to nitrogen gas, argon gas, helium gas, hydrogen gas, carbon monoxide gas, or a mixed gas thereof can be used. In addition to carbon dioxide, steam (steam) or a mixture of carbon dioxide and steam can be used as the reaction gas. In the case of water vapor, the reaction of producing H 2 and CO proceeds due to the water vapor (H 2 O) and carbon C in the charcoal, thus activating the charcoal. Furthermore, the combustion exhaust gas from the incinerator and the exhaust gas from the metal refining furnace can also be used.

【0015】この吸着用木炭の製造方法について,吸着
性能の目安として比表面積に着目して,木炭の比表面積
に及ぼす二酸化炭素の影響を明らかにするため,スギ材
を原料とし窒素+二酸化炭素の混合ガス気流中で炭化を
行い,木炭の比表面積と細孔径分布に及ぼす炭化温度と
二酸化炭素濃度の影響について調査した。その結果,木
炭の比表面積は,400〜700℃の炭化温度では小さ
く,炭化温度や雰囲気中酸素濃度の影響をほとんど受け
ないが,炭化温度が700℃を超えると,木炭の比表面
積は,炭化温度の上昇と共に増大し,900℃で最大と
なり,1000℃では減少した。さらに,図3に示すよ
うにこの吸着用木炭の製造方法では,700〜900℃
の温度範囲内では,木炭の歩留まりと比表面積とは同一
の良好な一次の負の相関関係があり,回帰直線の傾きの
絶対値は1000℃の炭化で低下することが分かった。
そこで,これを熱力学的な検討から,木炭の比表面積の
増大には,C+CO2 =2COの反応が関与していると
推定されたので,この吸着用木炭の製造方法では,木材
の炭化温度を700〜1000℃の範囲内に温度調整し
て比表面積を増大させる制御を行うことにした。
Regarding the method for producing this charcoal for adsorption, focusing on the specific surface area as an index of the adsorption performance, and clarifying the effect of carbon dioxide on the specific surface area of the charcoal, in order to clarify the effect of carbon dioxide on the cedar wood as a raw material, Carbonization was carried out in a mixed gas stream, and the effects of carbonization temperature and carbon dioxide concentration on the specific surface area and pore size distribution of charcoal were investigated. As a result, the specific surface area of charcoal is small at the carbonization temperature of 400 to 700 ° C and is hardly affected by the carbonization temperature and the oxygen concentration in the atmosphere, but when the carbonization temperature exceeds 700 ° C, the specific surface area of charcoal is It increased with increasing temperature, reaching a maximum at 900 ° C and decreasing at 1000 ° C. Further, as shown in FIG. 3, in the method for producing the charcoal for adsorption, 700 to 900 ° C.
It was found that the yield of charcoal and the specific surface area have the same good first-order negative correlation within the temperature range of, and the absolute value of the slope of the regression line decreases at 1000 ° C carbonization.
Therefore, from the thermodynamic study, it was estimated that the reaction of C + CO 2 = 2CO was involved in the increase of the specific surface area of charcoal. Was adjusted to a temperature within the range of 700 to 1000 ° C. to increase the specific surface area.

【0016】また,この吸着用木炭の製造方法は,具体
的には,木材として廃木材を使用し,不活性ガスとして
窒素ガスが使用し,窒素ガスに供給される二酸化炭素の
供給量を1〜10容量%に制御して二酸化炭素を炭化炉
内に流通させることが有効であった。製鉄炉からの排ガ
スの熱によって木材の炭化処理を行うことができること
も分かった。
Further, in this method for producing charcoal for adsorption, specifically, waste wood is used as wood, nitrogen gas is used as an inert gas, and the supply amount of carbon dioxide supplied to the nitrogen gas is 1 It was effective to control carbon dioxide to 10% by volume and to flow carbon dioxide in the carbonization furnace. It has also been found that the heat of the exhaust gas from the iron-making furnace can be used to carbonize the wood.

【0017】この吸着用木炭の製造方法を確立するため
に,次のようなデータを得た。この吸着用木炭の製造方
法によって,木材としてスギ材を使用し,炭化と賦活を
同時に行って木炭を製造したところ,窒素と二酸化炭素
の混合ガス気流中でスギ材の炭化では,木炭の比表面積
に及ぼす炭化温度と二酸化炭素の影響について調査した
結果,以下のことが明らかになった。
The following data were obtained in order to establish the method for producing this charcoal for adsorption. According to this method of producing charcoal for adsorption, a charcoal was produced by using cedar wood as wood and simultaneously carbonizing and activating the charcoal. When charcoaling the cedar wood in a mixed gas stream of nitrogen and carbon dioxide, the specific surface area of charcoal was increased. As a result of investigating the effects of carbonization temperature and carbon dioxide on carbon dioxide, the following facts were revealed.

【0018】この吸着用木炭の製造方法で作製した木炭
の比表面積は,図2示すように,700〜900℃の温
度範囲では温度の上昇と共に増大し,炭化温度が900
℃から1000℃に上昇すると減少する。この傾向は,
二酸化炭素の濃度が高いほど顕著であった。また,図3
に示すように,700〜900℃の温度範囲と,100
0℃の温度での炭化の場合に,木炭の歩留まりが低下す
るほど,比表面積が増大するという負の相関関係がある
ことが分かった。700〜900℃の温度範囲で得られ
た回帰直線の傾きの絶対値は,窒素と酸素雰囲気での炭
化で得られた回帰直線の傾きの絶対値より大きい。木炭
の増大には,酸素よりも二酸化炭素が有効である。ま
た,炭化温度700〜900℃の温度範囲での木材の炭
化では,図3に示すグラフを参照すると,木炭の比表面
積は,炭化温度,二酸化炭素の濃度や保持時間の影響を
受けず,木炭の歩留まりのみで決定されることが分かっ
た。
As shown in FIG. 2, the specific surface area of the charcoal produced by this method for producing charcoal for adsorption increases with an increase in temperature in the temperature range of 700 to 900 ° C., and the carbonization temperature is 900.
It decreases when the temperature rises from 1000C to 1000C. This trend is
It was more remarkable as the concentration of carbon dioxide was higher. Moreover, FIG.
As shown in, the temperature range of 700-900 ℃, 100
It was found that there is a negative correlation that the specific surface area increases as the yield of charcoal decreases in the case of carbonization at a temperature of 0 ° C. The absolute value of the slope of the regression line obtained in the temperature range of 700 to 900 ° C. is larger than the absolute value of the slope of the regression line obtained by carbonization in a nitrogen and oxygen atmosphere. Carbon dioxide is more effective than oxygen for increasing charcoal. Further, in the carbonization of wood in the temperature range of 700 to 900 ° C., referring to the graph shown in FIG. 3, the specific surface area of charcoal is not affected by the carbonization temperature, the concentration of carbon dioxide and the holding time, It turns out that it is decided only by the yield of.

【0019】図1には,この発明による吸着用木炭の製
造方法の一実施例を達成する木炭利用排ガス浄化システ
ムのブロック図が示されている。この木炭利用排ガス浄
化システム1は,製鋼炉,スクラップ溶解炉,精錬炉,
焼却炉,溶融炉等の炉5の廃熱を利用し,間伐材,端材
等の廃木材3を利用するので,極めて安価に木炭を製造
し,副産物として木酢液を製造するものである。また,
製造された木炭や木酢液は,工業,林業や農業等に利用
されるものであり,例えば,木炭は,ガス吸着剤,汚水
浄化材等の吸着剤,土壌改良剤等に利用され,また,木
酢液は,土壌改良剤,有機農業利用,消毒剤等に利用さ
れ,発生した灰は肥料等に利用することができる。
FIG. 1 is a block diagram of a charcoal-use exhaust gas purification system which achieves an embodiment of a method for producing adsorption charcoal according to the present invention. This charcoal-use exhaust gas purification system 1 is used for steelmaking furnaces, scrap melting furnaces, refining furnaces,
The waste heat of the furnace 5 such as an incinerator and a melting furnace is used, and the waste wood 3 such as thinned wood and mill ends is used. Therefore, charcoal is manufactured at an extremely low cost, and wood vinegar liquid is manufactured as a by-product. Also,
The produced charcoal or wood vinegar is used for industry, forestry, agriculture, etc. For example, charcoal is used for gas adsorbents, adsorbents such as wastewater purification materials, soil conditioners, etc. The wood vinegar is used as a soil conditioner, organic agricultural use, disinfectant, etc. The generated ash can be used as fertilizer etc.

【0020】この木炭利用排ガス浄化システム1は,例
えば,廃木材3をサイジング4の処理をし,炉5からの
排ガス熱をダスト分離機6等を通して木材炭化炉2へ導
き,その熱エネルギーによって木材の炭化処理を行って
木炭を製造するものであり,副産物として木酢液が製造
される。木材炭化炉2からのガスは,ガス冷却・ダスト
分離機7を通して木炭吸着塔8へ導き,木炭吸着塔8で
ダイオキシン,硫化物等の有害物を木炭で吸着浄化処理
し,クリーンな排ガスとして煙突等の放出手段9から外
部へ排出する。炉5には.スクラップ等の原料10が投
入され,炉5によって溶鋼11に生成され,発生したス
ラグ12やダスト13は,廃棄又は種々の処理が行わ
れ,含まれている重金属等は回収される。
In this exhaust gas purification system 1 using charcoal, for example, waste wood 3 is treated by sizing 4, and exhaust gas heat from a furnace 5 is guided to a wood carbonization furnace 2 through a dust separator 6 and the like, and the heat energy is used to heat the wood. Charcoal is manufactured by performing carbonization treatment of the above, and wood vinegar is manufactured as a by-product. The gas from the wood carbonization furnace 2 is guided to the charcoal adsorption tower 8 through the gas cooling / dust separator 7, and the charcoal adsorption tower 8 adsorbs and purifies harmful substances such as dioxins and sulfides with charcoal and produces chimney as clean exhaust gas. And the like is discharged from the discharging means 9 to the outside. In the furnace 5. The raw material 10 such as scrap is put into the molten steel 11 by the furnace 5, and the generated slag 12 and dust 13 are discarded or subjected to various treatments, and the contained heavy metals and the like are recovered.

【0021】この吸着用木炭の製造方法によって木材を
炭化して木炭を作製するにあたって,木炭炭化炉に窒素
と二酸化炭素とのガス気流を作り,コントローラで温度
と雰囲気を制御しながら,大容量型の熱天秤装置を用い
て木材の重量変化を連続的に測定した。木材としては,
十分に乾燥させた市販のスギの心材から一辺が約10m
mの角材を切り出し,炭化用の試料にした。木材の含水
率を試験毎に測定した結果11.0〜13.6%の範囲
であり,試験毎の大きな変化はなかった。主な試験の結
果を,表1と表2に示す。この時の炭化温度は400〜
1000℃とし,雰囲気中の二酸化炭素濃度は1〜10
%とした。
When carbonizing wood by this method for producing charcoal for adsorption to produce charcoal, a gas flow of nitrogen and carbon dioxide is created in the charcoal-charging furnace, and a controller is used to control the temperature and the atmosphere, and the large-capacity type The weight change of wood was continuously measured using the thermobalance device of No. For wood,
Approximately 10m on a side from a fully dried commercial cedar heartwood
A square piece of m was cut out and used as a sample for carbonization. The water content of wood was measured in each test, and the result was in the range of 11.0 to 13.6%, and there was no significant change in each test. The results of the main tests are shown in Tables 1 and 2. The carbonization temperature at this time is 400-
1000 ℃, carbon dioxide concentration in the atmosphere is 1-10
%.

【表1】 [Table 1]

【表2】 [Table 2]

【0022】試料の重量を測定した後,試料をアルミナ
製のルツボに入れ,内容積が約900cm3 の木炭炭化
炉内でルツボを天秤で吊るし,外気と遮断した。木炭炭
化炉内の雰囲気を一定に保つため,反応によって消費さ
れる二酸化炭素を,所定の濃度に保つために木炭炭化炉
内に流通した。ガスを流通したまま,100℃/min
の速度で所定の温度まで加熱昇温して所定の時間保持し
た後,急冷した。この間の試料の重量変化を温度と共に
連続的に記録した。また,ガス流量は,炭化が木材中の
水分や熱分解物の影響を受けないように1000cm3
/minに設定した。所定の二酸化炭素濃度のガスは,
窒素ガスおよび二酸化炭素ガスを,流量計を用いて所定
の割合で流通させ,流量計の出口で混合し,調製した。
用いた窒素ガス,二酸化炭素ガスとも,主要な成分の純
度が99.99%以上であり,露点は−70℃以下であ
る。窒素ガスは,酸素含有量が10ppm以下の純度を
有する。また,試験後に得られた木炭の重量を,水分等
の吸着,吸収を受けないように冷却後,直ちに測定し
た。
After measuring the weight of the sample, the sample was placed in an alumina crucible, and the crucible was hung by a balance in a charcoal carbonization furnace having an internal volume of about 900 cm 3 to shut off from the outside air. In order to keep the atmosphere in the charcoal carbonization furnace constant, the carbon dioxide consumed by the reaction was circulated in the charcoal carbonization furnace in order to maintain a predetermined concentration. 100 ° C / min with gas flowing
The temperature was raised to a predetermined temperature at a rate of 1, the temperature was maintained for a predetermined time, and then rapidly cooled. The weight change of the sample during this time was recorded continuously with temperature. The gas flow rate is 1000 cm 3 so that carbonization is not affected by moisture in wood and pyrolyzed products.
/ Min. A gas with a predetermined carbon dioxide concentration is
Nitrogen gas and carbon dioxide gas were circulated at a predetermined ratio using a flow meter, and mixed and prepared at the outlet of the flow meter.
Both of the nitrogen gas and the carbon dioxide gas used have a purity of major components of 99.99% or more and a dew point of -70 ° C or less. Nitrogen gas has a purity with an oxygen content of 10 ppm or less. In addition, the weight of the charcoal obtained after the test was measured immediately after cooling so as not to be adsorbed or absorbed by water.

【0023】また,炭化前試料の重量W0 (g),含水
率μ(%)と木炭の重量W0 (g)から,下記の式に従
って木炭の歩留まりY(%)を算出した。 Y=Wc/{W0 ・(1−μ/100)}×100 得られた木炭について,比表面積及び細孔径分布,細孔
容積の測定を行なった。木炭をカッターにて3mm以下
に粗粉砕した後,これを相対圧0.294で比表面積を
測定した。測定した木炭の比表面積と細孔容積の結果
と.上記の式から算出した木炭の歩留まりを表1と表2
に示した。
From the weight W 0 (g) of the sample before carbonization, the water content μ (%) and the weight W 0 (g) of charcoal, the yield Y (%) of charcoal was calculated according to the following formula. Y = Wc / {W 0. (1-μ / 100)} × 100 The specific surface area, pore size distribution, and pore volume of the obtained charcoal were measured. The charcoal was roughly crushed to 3 mm or less with a cutter, and then the specific surface area was measured at a relative pressure of 0.294. Results of measured specific surface area and pore volume of charcoal. Table 1 and Table 2 show the yield of charcoal calculated from the above formula.
It was shown to.

【0024】表1と表2から分かるように,木炭の歩留
まりは,窒素ガスと二酸化炭素との混合ガス雰囲気中で
の炭化では炭化温度が高くなるほど低下する傾向がある
ことが分かる。また,木炭の歩留まりは,主に,木材の
熱分解による揮発分の放出と,炭化雰囲気中の二酸化炭
素と木炭との反応による木炭中の炭素の消費とにより決
定される。炭化温度の上昇に伴う木炭の歩留まりの低下
は,木炭と二酸化炭素との反応の進行に伴う炭素の消費
が主な原因と考えられる。
As can be seen from Tables 1 and 2, the yield of charcoal tends to decrease as the carbonization temperature rises in carbonization in a mixed gas atmosphere of nitrogen gas and carbon dioxide. Further, the yield of charcoal is mainly determined by the release of volatile matter due to the thermal decomposition of wood and the consumption of carbon in charcoal by the reaction between carbon dioxide and charcoal in a carbonizing atmosphere. The decrease in charcoal yield due to the increase in carbonization temperature is thought to be mainly due to carbon consumption as the reaction between charcoal and carbon dioxide proceeds.

【0025】窒素と二酸化炭素の混合ガス雰囲気中で炭
化した木炭の比表面積に及ぼす炭化温度の影響は,窒素
雰囲気中で炭化した木炭と比較して図2に示す。図2に
示すように,400〜600℃の温度範囲で炭化した場
合には,得られた木炭の比表面積は小さく,また,温度
や雰囲気中の二酸化炭素濃度に依存しない傾向が見られ
た。更に,700〜1000℃の温度範囲での炭化で
は,木炭の比表面積は,炭化温度の上昇と共に増大し9
00℃で最大となり,1000℃で減少する傾向が見ら
れた。この傾向は,二酸化炭素濃度が高くなるほど顕著
になる。一方,窒素雰囲気での炭化では,炭化温度の上
昇に伴い木炭の比表面積が増大する傾向は見られない。
The effect of the carbonization temperature on the specific surface area of charcoal carbonized in a mixed gas atmosphere of nitrogen and carbon dioxide is shown in FIG. 2 in comparison with charcoal carbonized in a nitrogen atmosphere. As shown in FIG. 2, when carbonized in the temperature range of 400 to 600 ° C., the specific surface area of the obtained charcoal was small and there was a tendency not to depend on the temperature or the carbon dioxide concentration in the atmosphere. Further, in carbonization in the temperature range of 700 to 1000 ° C, the specific surface area of charcoal increases with the increase of carbonization temperature.
The maximum was observed at 00 ° C, and the tendency was decreased at 1000 ° C. This tendency becomes more remarkable as the carbon dioxide concentration increases. On the other hand, in carbonization in a nitrogen atmosphere, the specific surface area of charcoal does not tend to increase as the carbonization temperature rises.

【0026】木炭の比表面積を増大できる炭化条件を,
700〜1000℃の温度範囲での炭化の場合について
検討する。木炭の比表面積と木炭の歩留まり(木炭と雰
囲気中の酸素との反応量)との間に相関関係があり,相
関関係が炭化温度で異なることが明らかになった。炭化
温度において得られた木炭の比表面積と木炭の歩留まり
との関係を図3に示した。図3には,窒素と5%二酸化
炭素との雰囲気中で,700℃で300分炭化を行った
木炭の比表面積の結果も併せて示した。図3に示すよう
に,木炭の歩留まりと比表面積の間には相関関係がある
ことが分かる。特に,700〜900℃での炭化では,
炭化濃度,雰囲気中の二酸化炭素濃度,保持時間に依存
せず,木炭の歩留まりと比表面積とは良好な相関関係が
あることが分かる。そこで,700〜900℃の温度範
囲の炭化と1000℃での炭化結果を分けて,最小二乗
法によって求めた回帰直線を図示した。この時の相関係
数は,700〜900℃での炭化の結果では−0.9
2,1000℃での炭化の結果では−0.82の値であ
り,木炭の歩留まりと比表面積とは高い負の相関関係が
ある。従って,700〜900℃の温度範囲の炭化で
は,木炭の比表面積は,炭化温度,雰囲気中の二酸化炭
素濃度,保持時間に依存せず,炭化温度と木炭の歩留ま
り(木炭と雰囲気中の二酸化炭素との反応量)とで決定
されることが分かる。
Carbonization conditions that can increase the specific surface area of charcoal are:
Consider the case of carbonization in the temperature range of 700-1000 ° C. It was revealed that there is a correlation between the specific surface area of charcoal and the yield of charcoal (amount of reaction between charcoal and oxygen in the atmosphere), and the correlation differs depending on the carbonization temperature. The relationship between the specific surface area of charcoal obtained at the carbonization temperature and the yield of charcoal is shown in FIG. FIG. 3 also shows the results of specific surface area of charcoal carbonized at 700 ° C. for 300 minutes in an atmosphere of nitrogen and 5% carbon dioxide. As shown in FIG. 3, it can be seen that there is a correlation between the yield of charcoal and the specific surface area. Especially in carbonization at 700-900 ° C,
It can be seen that there is a good correlation between the yield of charcoal and the specific surface area regardless of the carbonization concentration, carbon dioxide concentration in the atmosphere, and holding time. Therefore, the carbonization result in the temperature range of 700 to 900 ° C. and the carbonization result at 1000 ° C. are divided and the regression line obtained by the least square method is illustrated. The correlation coefficient at this time is -0.9 in the result of carbonization at 700 to 900 ° C.
The carbonization result at 2,1000 ° C. has a value of −0.82, and there is a high negative correlation between the yield of charcoal and the specific surface area. Therefore, in the carbonization in the temperature range of 700 to 900 ° C., the specific surface area of charcoal does not depend on the carbonization temperature, the carbon dioxide concentration in the atmosphere and the holding time, and the carbonization temperature and the yield of charcoal (carbon dioxide in the charcoal and the atmosphere) It can be seen that it is determined by the reaction amount with and).

【0027】表1と表2に示すように,同一の炭化温度
では,二酸化炭素濃度が高いほど木炭の歩留まりが低下
する傾向がある。また,図3に示すように,同一の炭化
温度では,木炭の歩留まりと比表面積とは高い負の相関
関係にあることが認められた。以上の結果から,図2に
示した,700〜1000℃の温度範囲での炭化におい
て,木炭の比表面積が炭化温度の上昇と共に増大し,9
00℃で最大となり,1273Kで減少する傾向が見ら
れ,この傾向が二酸化炭素濃度が高くなるほど顕著にな
るという結果は,雰囲気中の二酸化炭素濃度そのものの
影響ではなく,二酸化炭素と木炭との反応量による影響
であることが分かる。言い換えると,同一の炭化温度で
は雰囲気中の二酸化炭素濃度が高いほど,二酸化炭素と
木炭との反応速度が速く,保持時間内での反応量が増大
(木炭の歩留まりが減少)し,比表面積が大きくなった
とことが分かる。
As shown in Table 1 and Table 2, at the same carbonization temperature, the higher the carbon dioxide concentration, the lower the yield of charcoal tends to be. Further, as shown in FIG. 3, it was found that the yield of charcoal and the specific surface area have a high negative correlation at the same carbonization temperature. From the above results, in the carbonization in the temperature range of 700 to 1000 ° C. shown in FIG. 2, the specific surface area of charcoal increases with the increase of the carbonization temperature.
The maximum tendency at 00 ° C and the tendency to decrease at 1273K are seen, and the result that this tendency becomes more remarkable as the carbon dioxide concentration becomes higher is not the effect of the carbon dioxide concentration itself in the atmosphere, but the reaction between carbon dioxide and charcoal. It can be seen that this is due to the amount. In other words, at the same carbonization temperature, the higher the concentration of carbon dioxide in the atmosphere, the faster the reaction rate of carbon dioxide and charcoal, the greater the amount of reaction within the retention time (reduction of charcoal yield), and the greater the specific surface area. You can see that it has grown.

【0028】図3に示すように,木炭の歩留まりと比表
面積は,負の相関関係を持ち,回帰直線の傾きの絶対値
は,炭化温度700〜900℃での炭化に比べ,100
0℃では大幅に小さくなる。従って,スギ材を原料にし
て大きな比表面積を持つ木炭を製造するためには,70
0〜900℃での炭化が有効であり,900℃以上の高
い温度での炭化を避ける温度制御が必要であることが分
かる。
As shown in FIG. 3, the yield of the charcoal and the specific surface area have a negative correlation, and the absolute value of the slope of the regression line is 100 as compared with the carbonization at the carbonization temperature of 700 to 900 ° C.
It becomes significantly smaller at 0 ° C. Therefore, in order to manufacture charcoal with a large specific surface area from cedar wood,
It can be seen that carbonization at 0 to 900 ° C is effective, and temperature control to avoid carbonization at a high temperature of 900 ° C or higher is necessary.

【0029】次に,木炭の比表面積に及ぼす炭化雰囲気
の影響を考察すると次のとおりである。ここで,窒素と
酸素雰囲気中で炭化を行った場合を参考にするため,図
3に,窒素と酸素との雰囲気中で,900℃で炭化を行
った場合の結果を示している。また,窒素と二酸化炭素
との雰囲気中で700〜900℃の温度範囲での炭化で
は,木炭の歩留まりと比表面積との相関関係は,炭化温
度の影響を受けない。また,木炭の歩留まりと比表面積
との相関関係を示す回帰直線の傾きの絶対値は,窒素と
酸素との雰囲気での炭化の結果と比較すると,窒素と二
酸化炭素との雰囲気での炭化の場合の方が大きいことが
分かる。従って,木炭の比表面積を増大させるために
は,窒素と二酸化炭素との雰囲気中での炭化が有効であ
ると言える。
Next, the effect of the carbonizing atmosphere on the specific surface area of charcoal will be considered as follows. Here, in order to refer to the case where carbonization is performed in a nitrogen and oxygen atmosphere, FIG. 3 shows the result when carbonization is performed at 900 ° C. in an atmosphere of nitrogen and oxygen. Further, in the carbonization in the temperature range of 700 to 900 ° C. in the atmosphere of nitrogen and carbon dioxide, the correlation between the yield of charcoal and the specific surface area is not affected by the carbonization temperature. In addition, the absolute value of the slope of the regression line showing the correlation between the yield of charcoal and the specific surface area, in the case of carbonization in the atmosphere of nitrogen and carbon dioxide, is compared with the result of the carbonization in the atmosphere of nitrogen and oxygen. It turns out that is bigger. Therefore, it can be said that carbonization in an atmosphere of nitrogen and carbon dioxide is effective in increasing the specific surface area of charcoal.

【0030】また,木炭の細孔分布と細孔容積に及ぼす
炭化温度の影響を考察すると次のとおりである。木炭の
細孔容積に及ぼす炭化温度の影響を図4に示す。図4に
示すように,細孔容積は炭化温度の上昇と共に緩やかに
増大し,700℃で最大となり,温度の上昇と共に緩や
かに低下し,1000℃で急激に低下する傾向が見られ
る。また,窒素と5%二酸化炭素との雰囲気中で炭化し
た木炭の細孔径分布を図5に示す。全ての条件において
0.5〜3μmの細孔が発達していることがわかる。4
00〜800℃の範囲での炭化では,細孔径分布に及ぼ
す炭化温度の明確な影響は見られない。900℃の炭化
では1〜2μmでのピークが低下し,10〜20μmの
ピークが増大する傾向がある。また,1000℃での炭
化では,両方のピークが低下し,10〜20μmのピー
クが径の小さい方向に移行していることが分かる。10
00℃の炭化では,細孔分布が径の小さい方向に移行
し,細孔容積が急激に低下することから,木炭の熱収縮
が生じていると考えられる。一方,400℃の炭化での
細孔容積の低下の原因は,表1と表2に示すように,高
温での炭化に比べ木炭の歩留まりが高く未炭化物が残留
したためと考えられる。
The influence of the carbonization temperature on the pore distribution and the pore volume of charcoal is considered as follows. The effect of carbonization temperature on the pore volume of charcoal is shown in FIG. As shown in FIG. 4, the pore volume tends to gradually increase with increasing carbonization temperature, reach a maximum at 700 ° C., gradually decrease with increasing temperature, and rapidly decrease with 1000 ° C. Fig. 5 shows the pore size distribution of charcoal carbonized in an atmosphere of nitrogen and 5% carbon dioxide. It can be seen that 0.5 to 3 μm pores are developed under all conditions. Four
In the carbonization in the range of 00 to 800 ° C, no clear effect of the carbonization temperature on the pore size distribution is seen. The carbonization at 900 ° C. tends to decrease the peak at 1 to 2 μm and increase the peak at 10 to 20 μm. Further, it can be seen that in carbonization at 1000 ° C., both peaks decrease and the peak at 10 to 20 μm shifts to the direction of smaller diameter. 10
At carbonization at 00 ° C, the pore distribution shifts to the smaller diameter direction, and the pore volume sharply decreases, so it is considered that the heat shrinkage of the charcoal occurs. On the other hand, it is considered that the cause of the decrease in the pore volume at 400 ° C carbonization is that the charcoal has a higher yield than carbonization at high temperatures and uncarbonized materials remain, as shown in Tables 1 and 2.

【0031】この吸着用木炭の製造方法について,上記
の試験より次のことが分かった。 1.400〜600℃の温度範囲では,木炭の比表面積
は小さく,また,炭化温度や雰囲気中の二酸化炭素濃度
に依存しない傾向が見られる。 2.木炭の比表面積は,700〜900℃の温度範囲で
は温度の上昇と共に増大し,炭化温度が900℃から1
000℃に上昇すると減少する。この傾向は,二酸化炭
素濃度が高いほど顕著である。 3.700〜900℃の温度範囲で,及び,1000℃
の温度での炭化の場合,それぞれ,木炭の歩留まりが低
下するほど比表面積が増大するという負の相関関係があ
る。700〜900℃の温度範囲で得られた回帰直線の
傾きの絶対値は,窒素と酸素との雰囲気での炭化の結果
と比較すると,窒素と二酸化炭素との雰囲気での炭化結
果の方が大きい。即ち,木炭の比表面積の増大には,酸
素よりも二酸化炭素が有効である。 4.700〜900℃の温度範囲での炭化では,木炭の
比表面積は,炭化温度,二酸化炭素濃度,保持時間の影
響を受けず,木炭の歩留まりのみで決定される。 5.1000℃での炭化では,木炭の歩留まりと比表面
積の相関関係において,回帰直線の傾きの絶対値が小さ
くなる傾向が見られる。これは,細孔容積や細孔径分布
の結果から,炭化温度の上昇により木炭の熱収縮が生
じ,比表面積が低下したことによると考えられる。 6.炭化温度が700℃を境にして木炭の比表面積が増
大する主な原因は,熱力学的な検討から,700℃より
高い温度ではC+CO2 =2COの反応が進行し細孔の
生成に関与していることである。
Regarding the method for producing this charcoal for adsorption, the following was found from the above test. 1. In the temperature range of 400 to 600 ° C., the specific surface area of charcoal is small, and it tends to be independent of the carbonization temperature and the carbon dioxide concentration in the atmosphere. 2. The specific surface area of charcoal increases with increasing temperature in the temperature range of 700 to 900 ℃, and the carbonization temperature is from 900 ℃ to 1 ℃.
It decreases when the temperature rises to 000 ° C. This tendency is more remarkable as the carbon dioxide concentration is higher. 3. In the temperature range of 700 to 900 ° C, and 1000 ° C
In the case of carbonization at each temperature, there is a negative correlation that the specific surface area increases as the yield of charcoal decreases. The absolute value of the slope of the regression line obtained in the temperature range of 700 to 900 ° C. is larger in the carbonization result in the nitrogen and carbon dioxide atmosphere than in the carbonization result in the nitrogen and oxygen atmosphere. . That is, carbon dioxide is more effective than oxygen for increasing the specific surface area of charcoal. 4. In carbonization in the temperature range of 700 to 900 ° C, the specific surface area of charcoal is not affected by the carbonization temperature, carbon dioxide concentration and holding time, and is determined only by the yield of charcoal. 5. In carbonization at 1000 ° C, the absolute value of the slope of the regression line tends to decrease in the correlation between the yield of charcoal and the specific surface area. It is considered that this is because the charcoal heat contracted due to the increase in the carbonization temperature and the specific surface area decreased, based on the results of the pore volume and pore size distribution. 6. The main cause of the increase in the specific surface area of charcoal at a carbonization temperature of 700 ° C is that thermodynamic studies show that the reaction of C + CO 2 = 2CO proceeds at temperatures higher than 700 ° C and is involved in the formation of pores. It is that.

【0032】この発明による吸着用木炭の製造方法によ
って作製した木炭による吸着性能を試験するため,木炭
によるブタンガスの吸着性能を試験したところ,図6に
示す結果を得た。図6から分かるように,この吸着用木
炭の製造方法で製造した木炭は,活性炭のブタンガスの
吸着より優れていることが分かる。また,窒素ガスと二
酸化炭素とから成る炭化雰囲気は,二酸化炭素が1〜1
0%の含有で十分であることが分かる。
In order to test the adsorption performance of the charcoal produced by the method for producing an adsorption charcoal according to the present invention, the butane gas adsorption performance of the charcoal was tested, and the results shown in FIG. 6 were obtained. As can be seen from FIG. 6, the charcoal produced by this method for producing adsorption charcoal is superior to the adsorption of butane gas on activated carbon. Further, the carbonization atmosphere consisting of nitrogen gas and carbon dioxide contains 1 to 1 carbon dioxide.
It can be seen that a content of 0% is sufficient.

【0033】[0033]

【発明の効果】この発明による吸着用木炭の製造方法
は,上記のように構成されているので,木材の炭化処理
において,炭化温度を700℃〜900℃の温度範囲に
制御すれば,二酸化炭素(CO2 )と木材(C)とによ
って一酸化炭素(2CO)への反応が生じて比表面積の
大きい木炭が製造される。
EFFECTS OF THE INVENTION Since the method for producing charcoal for adsorption according to the present invention is constructed as described above, carbonization of wood is controlled by controlling the carbonization temperature in the temperature range of 700 ° C to 900 ° C. (CO 2 ) and wood (C) react with carbon monoxide (2CO) to produce charcoal having a large specific surface area.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による吸着用木炭の製造方法の一実施
例を達成する木炭利用排ガス浄化システムを説明するブ
ロック図である。
FIG. 1 is a block diagram illustrating a charcoal-use exhaust gas purification system that achieves an embodiment of a method for producing adsorption charcoal according to the present invention.

【図2】木炭の比表面積と炭化温度との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the specific surface area of charcoal and the carbonization temperature.

【図3】木炭の比表面積と歩留りとの関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the specific surface area of charcoal and the yield.

【図4】炭化温度とポア容積との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between carbonization temperature and pore volume.

【図5】木炭の細孔径分布図である。FIG. 5 is a pore size distribution chart of charcoal.

【図6】炭化雰囲気における二酸化炭素の濃度と比表面
積及び吸着量との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the concentration of carbon dioxide in a carbonized atmosphere, the specific surface area, and the adsorption amount.

【符号の説明】[Explanation of symbols]

1 木炭利用排ガス浄化システム 2 木材炭化炉 3 廃木材 4 サイジング 5 製鋼炉,スクラップ溶解炉等の炉 6 ダスト分離機 7 ガス冷却・ダスト分離機 8 木炭吸着塔 9 クリーン排ガス放出手段 10 スクラップ原料 11 溶鋼 12 スラグ 13 ダスト 1 Charcoal use exhaust gas purification system 2 wood carbonization furnace 3 waste wood 4 sizing 5 Steelmaking furnaces, scrap melting furnaces, etc. 6 dust separator 7 Gas cooling / dust separator 8 Charcoal adsorption tower 9 Clean exhaust gas discharge means 10 scrap raw materials 11 Molten Steel 12 slugs 13 dust

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 HA02 HB02 HB05 HC10 4G066 AA04B AA06D AA10D AA14D AA43D AC02A BA23 BA24 BA25 BA26 BA36 CA51 DA01 DA08 FA18 FA22 FA34 FA37 4H012 JA02 JA13    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G046 HA02 HB02 HB05 HC10                 4G066 AA04B AA06D AA10D AA14D                       AA43D AC02A BA23 BA24                       BA25 BA26 BA36 CA51 DA01                       DA08 FA18 FA22 FA34 FA37                 4H012 JA02 JA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 窒素ガス等の不活性ガスの雰囲気中に,
反応ガスとしての二酸化炭素を供給して木材を予め決め
られた炭化温度に制御し,前記木材を炭化させると同時
に,CとCO2 とによる2COの反応を生じさせて賦活
を行わせ,比表面積を増大させることから成る吸着用木
炭の製造方法。
1. An atmosphere of an inert gas such as nitrogen gas,
Carbon dioxide is supplied as a reaction gas to control the wood to a predetermined carbonization temperature to carbonize the wood and at the same time cause a reaction of 2CO between C and CO 2 to activate the wood, thereby activating the specific surface area. A method for producing charcoal for adsorption comprising increasing the amount of charcoal.
【請求項2】 前記木材の炭化温度を700〜1000
℃の範囲内に温度調整して比表面積を増大させる制御を
行うことから成る請求項1に記載の吸着用木炭の製造方
法。
2. The carbonization temperature of the wood is 700 to 1000.
The method for producing adsorption charcoal according to claim 1, which comprises controlling the temperature within a range of ° C to increase the specific surface area.
【請求項3】 前記不活性ガスとして窒素ガスを使用
し,前記窒素ガスに供給される前記反応ガスの前記二酸
化炭素の供給量は,1〜10容量%に制御して前記二酸
化炭素を炭化炉内に流通させることから成る請求項1又
は2に記載の吸着用木炭の製造方法。
3. A nitrogen gas is used as the inert gas, and the supply amount of the carbon dioxide of the reaction gas supplied to the nitrogen gas is controlled to 1 to 10% by volume to carbonize the carbon dioxide. The method for producing charcoal for adsorption according to claim 1 or 2, which comprises circulating the charcoal in the interior.
【請求項4】 製鋼炉,スクラップ溶解炉,精錬炉,焼
却炉,溶融炉等の炉からの排ガスを木材炭化炉へ導き,
その熱エネルギーによって前記木材の炭化処理を行うこ
とから成る請求項1〜3のいずれか1項に記載の吸着用
木炭の製造方法。
4. The exhaust gas from a furnace such as a steelmaking furnace, a scrap melting furnace, a refining furnace, an incinerator, and a melting furnace is led to a wood carbonization furnace,
The method for producing an adsorption charcoal according to any one of claims 1 to 3, which comprises carbonizing the wood with the thermal energy.
【請求項5】 前記木材として間伐材,端材等の廃木材
をサイジングし,前記木材の炭化処理を行って前記木炭
及び木酢液を製造することから成る請求項1〜4のいず
れか1項に記載の吸着用木炭の製造方法。
5. The charcoal and the wood vinegar solution are produced by sizing waste wood such as thinned wood and scrap wood as the wood, and carbonizing the wood to produce the charcoal and wood vinegar. A method for producing the charcoal for adsorption according to.
JP2001251336A 2001-08-22 2001-08-22 Method for producing charcoal for adsorption Expired - Lifetime JP4065935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251336A JP4065935B2 (en) 2001-08-22 2001-08-22 Method for producing charcoal for adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251336A JP4065935B2 (en) 2001-08-22 2001-08-22 Method for producing charcoal for adsorption

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007271826A Division JP4677535B2 (en) 2007-10-18 2007-10-18 Method for producing charcoal for adsorption

Publications (2)

Publication Number Publication Date
JP2003054926A true JP2003054926A (en) 2003-02-26
JP4065935B2 JP4065935B2 (en) 2008-03-26

Family

ID=19079997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251336A Expired - Lifetime JP4065935B2 (en) 2001-08-22 2001-08-22 Method for producing charcoal for adsorption

Country Status (1)

Country Link
JP (1) JP4065935B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015256A (en) * 2004-07-01 2006-01-19 Masashi Yoshioka Water clarification method utilizing charcoal particle
JP2009226401A (en) * 2008-02-28 2009-10-08 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2012211026A (en) * 2011-03-30 2012-11-01 Shimizu Corp Activated carbon and method of using the same
JP2013000635A (en) * 2011-06-14 2013-01-07 G&M Corp Adsorbing/removing material for influenza virus
JP2013136478A (en) * 2011-12-28 2013-07-11 Shinshu Univ Activated carbon and manufacturing method therefor
CN103521194A (en) * 2013-08-30 2014-01-22 蚌埠德美过滤技术有限公司 Surface polymer modified wood charcoal adsorbing agent and preparation method thereof
CN104826389A (en) * 2015-04-21 2015-08-12 安徽凤凰滤清器股份有限公司 Adsorbing and filtering agent special for high-strength dirt catcher and making method of adsorption filtering agent

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015256A (en) * 2004-07-01 2006-01-19 Masashi Yoshioka Water clarification method utilizing charcoal particle
JP4526312B2 (en) * 2004-07-01 2010-08-18 株式会社まさなみ鉄工 Water purification method using charcoal grains
JP2009226401A (en) * 2008-02-28 2009-10-08 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2012211026A (en) * 2011-03-30 2012-11-01 Shimizu Corp Activated carbon and method of using the same
JP2013000635A (en) * 2011-06-14 2013-01-07 G&M Corp Adsorbing/removing material for influenza virus
JP2013136478A (en) * 2011-12-28 2013-07-11 Shinshu Univ Activated carbon and manufacturing method therefor
CN103521194A (en) * 2013-08-30 2014-01-22 蚌埠德美过滤技术有限公司 Surface polymer modified wood charcoal adsorbing agent and preparation method thereof
CN104826389A (en) * 2015-04-21 2015-08-12 安徽凤凰滤清器股份有限公司 Adsorbing and filtering agent special for high-strength dirt catcher and making method of adsorption filtering agent

Also Published As

Publication number Publication date
JP4065935B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
Lee et al. Carbon-based novel sorbent for removing gas-phase mercury
Kumar et al. Influence of carbonization conditions on the gasification of acacia and eucalyptus wood chars by carbon dioxide
CA2765431C (en) Carbon heat-treatment process
CA2650156A1 (en) Process for the manufacture of carbonaceous mercury sorbent from coal
JP2006225483A (en) Method for carbonizing biomass
US8133304B2 (en) Process for the production of carbonaceous adsorption agents doped with elementary sulfur and a process for waste gas cleaning using such adsorption agents
KR960003235B1 (en) Activated carbon, the production thereof and its use for absorption
CA2115791A1 (en) Activated carbon and production thereof
JP4065935B2 (en) Method for producing charcoal for adsorption
Girón et al. Adsorbents/catalysts from forest biomass fly ash. Influence of alkaline activating agent
JP2003192407A (en) Method of producing cement for reducing mercury in raw material
Rafsanjani et al. Study on pore and surface development of activated carbon produced from Iranian coal in a rotary kiln reactor
JP4292243B2 (en) Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method
JPH0371165B2 (en)
JP4677535B2 (en) Method for producing charcoal for adsorption
KR102478521B1 (en) Composite adsorbent containing coffee beans and iron hydroxide
JP2002102689A (en) Carbonaceous adsorbent
Lu Effect of pre-drying on the pore structure development of sewage sludge during pyrolysis
JP2810024B2 (en) Process gas purification method
US20190247829A1 (en) Method of producing highly porous adsorbents
JPH11199215A (en) Production of activated carbon from refuse-derived fuel
JP4651014B2 (en) Material gasification system and material gasification method
KR20220028494A (en) Method of preparing biochar using pine sawdust and paper mill sludge, and method of adsorbing carbon dioxide using the same prepared thereby
AU6163100A (en) Method and apparatus for reducing greenhouse gases
Yang et al. Induced synthesis of SO2-promoting and H2O-tolerant sorbents for elemental mercury removal from flue gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Ref document number: 4065935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term