JP2003050297A - Radioactive waste treating method - Google Patents

Radioactive waste treating method

Info

Publication number
JP2003050297A
JP2003050297A JP2001237879A JP2001237879A JP2003050297A JP 2003050297 A JP2003050297 A JP 2003050297A JP 2001237879 A JP2001237879 A JP 2001237879A JP 2001237879 A JP2001237879 A JP 2001237879A JP 2003050297 A JP2003050297 A JP 2003050297A
Authority
JP
Japan
Prior art keywords
iodine
radioactive waste
pbo
glass
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001237879A
Other languages
Japanese (ja)
Other versions
JP4623697B2 (en
Inventor
Takayuki Amaya
隆之 雨夜
Mamoru Shibuya
守 渋谷
Hiroshi Kodama
博志 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
National Institute for Materials Science
Original Assignee
JGC Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, National Institute for Materials Science filed Critical JGC Corp
Priority to JP2001237879A priority Critical patent/JP4623697B2/en
Publication of JP2003050297A publication Critical patent/JP2003050297A/en
Application granted granted Critical
Publication of JP4623697B2 publication Critical patent/JP4623697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/14Waste material, e.g. to be disposed of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive waste treating method capable of fixing stably radioactive iodine-including waste by a simple and inexpensive method. SOLUTION: The radioactive waste is mixed with glass frit to form a mixture, and the mixture is heated and fused, to thereby perform glassification treatment, and hereby the radioactive waste is fixed as a glassified body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放射性廃棄物処理
方法に関し、特に、放射性廃棄物を安定に固定する放射
性廃棄物処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radioactive waste treatment method, and more particularly to a radioactive waste treatment method for stably fixing radioactive waste.

【0002】[0002]

【従来の技術】核燃料の燃焼によって発生する放射性ヨ
ウ素129は、半減期1.57×10 年のβ核種であ
り、その有害性は長期間に渡って持続する。また、地層
処分環境下においてヨウ素は、岩石等に吸着され難く、
移動しやすい性質を持っている。
2. Description of the Related Art Radioactive emissions generated by the burning of nuclear fuel
Arsenic 129 has a half-life of 1.57 × 10 7Beta nuclide of the year
And its harm persists over a long period of time. Also the strata
In the disposal environment, iodine is hard to be adsorbed on rocks,
It has the property of being easy to move.

【0003】このため、放射性廃棄物処分場の安全評価
では、ヨウ素129を含有している廃棄物の影響が極め
て高く、当該廃棄物を高度に安定に処理処分することが
必要である。
[0003] Therefore, in the safety evaluation of the radioactive waste disposal site, the waste containing iodine 129 is extremely affected, and it is necessary to dispose of the waste in a highly stable manner.

【0004】現在、放射性ヨウ素129は、銀系の吸着
材に吸着させて保管されており、処理方法については研
究段階にある。
At present, radioactive iodine 129 is stored by being adsorbed on a silver-based adsorbent, and its treatment method is in a research stage.

【0005】研究中の処理方法としては、吸着材を直接
セメント固化する方法、吸着したヨウ素を溶離させ安定
なヨウ素酸化合物(例えば、Ca(IO)、Ba(I
) など)に調整後セメント固化する方法、ソーダ
ライト等の鉱物に変換する方法があげられ、また、吸着
材ごと高温高圧下で反応させてHIP(hot iso
static pressing)固化体を作成する方
法が提案されている。
As a treatment method under research, an adsorbent is directly used.
Cement solidification method, adsorbed iodine is eluted and stable
Iodic acid compound (for example, Ca (IOThree)Two, Ba (I
OThree) TwoEtc.) method of solidifying cement after adjustment, soda
There is a method of converting to minerals such as light, and also adsorption
HIP (hot iso)
static pressing) How to create a solidified body
A law has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかし、ヨウ素酸化合
物をセメント固化する方法では、ヨウ素の酸化処理工程
が必要であり、ソーダライト結晶への固定やHIP固化
では、圧力を加える工程が必要であるなど、これらの処
理方法では処理工程が煩雑であった。
However, in the method of cement-solidifying an iodic acid compound, an oxidation treatment step of iodine is required, and in fixing to sodalite crystals or HIP solidification, a step of applying pressure is required. For example, these processing methods have complicated processing steps.

【0007】また、吸着材を直接セメント固化する方法
では、その後のヨウ素の移動が比較的早いことから、移
動抑制を図るために処分場の規模を大型化するなどの必
要があり、建設コストの増大をもたらしていた。
Further, in the method of directly cementing the adsorbent, since the subsequent migration of iodine is relatively fast, it is necessary to enlarge the scale of the disposal site in order to suppress the migration, which leads to a construction cost increase. Was causing an increase.

【0008】そこで本発明では、簡単で廉価な方法によ
り、放射性ヨウ素を安定に固定することが可能な放射性
廃棄物処理方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a radioactive waste treatment method capable of stably fixing radioactive iodine by a simple and inexpensive method.

【0009】[0009]

【課題を解決するための手段】放射性ヨウ素129の廃
棄物は、廃銀吸着材(使用済みの銀ゼオライトや銀シリ
カなど)やAgIの形態で発生するのが一般的である。
また、廃銀吸着材に吸着したヨウ素は前処理を施すこと
により、BiPbOI又はAgIの形態にすることが
できる。従って、殆どの放射性ヨウ素を、BiPbO
IまたはAgIの形態に調整することができる。
The waste of radioactive iodine 129 is generally generated in the form of waste silver adsorbent (used silver zeolite, silver silica, etc.) or AgI.
Further, the iodine adsorbed on the waste silver adsorbent can be converted to the form of BiPbO 2 I or AgI by performing a pretreatment. Therefore, most of the radioactive iodine is converted to BiPbO 2
It can be adjusted to the I or AgI form.

【0010】本発明の放射性廃棄物の処理方法では、比
較的低温で溶融する低温溶融ガラスと共にBiPbO
I又はAgIを混合して固化させ、放射性ヨウ素129
を安定に固定する。
In the radioactive waste treatment method of the present invention, BiPbO 2 is used together with low-temperature molten glass that melts at a relatively low temperature.
I or AgI is mixed and solidified, and radioactive iodine 129
To be fixed stably.

【0011】[0011]

【発明の実施の形態】図1は、本発明における放射性廃
棄物の処理方法の構成を示すブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the structure of a method for treating radioactive waste according to the present invention.

【0012】図1に示すように、本発明における放射性
廃棄物の処理方法では、放射性ヨウ素129をヨウ素化
合物(BiPbOI又はAgI)12の形態でガラス
フリット11と混合し、熱を加える。そして、ヨウ素化
合物とガラスフリットとの混合物を溶融20させ、ヨウ
素含有ガラス固化体30を形成する。
As shown in FIG. 1, in the method for treating radioactive waste according to the present invention, radioactive iodine 129 is mixed with glass frit 11 in the form of iodine compound (BiPbO 2 I or AgI) 12 and heat is applied. Then, the mixture of the iodine compound and the glass frit is melted 20 to form the iodine-containing vitrified body 30.

【0013】なお、ヨウ素化合物と熱を加えて溶融した
ガラスフリットとを混合してヨウ素含有ガラス固化体3
0を形成することもできる。
The iodine-containing vitrified body 3 is prepared by mixing the iodine compound and the glass frit melted by applying heat.
It is also possible to form 0.

【0014】このように本発明では、放射性廃棄物であ
るヨウ素129をヨウ素化合物の形態でガラス固化処理
を施し、安定なヨウ素含有ガラス固化体に固定すること
によって処理を行う。
As described above, according to the present invention, the radioactive waste iodine 129 is subjected to vitrification treatment in the form of an iodine compound and fixed to a stable iodine-containing vitrified body.

【0015】以下、実施例を用いて、本発明に係わる放
射性廃棄物処理方法について詳細に説明する。
The method for treating radioactive waste according to the present invention will be described in detail below with reference to examples.

【0016】[0016]

【実施例1】実施例1では、ガラスフリットを形成する
低温溶融ガラスについて、PbO−B−ZnO系
のガラスとPbO−B−SiO系のガラスを用
いて説明する。
In Example 1 Example 1, the low melting glass forming the glass frit is described using PbO-B 2 O 3 -ZnO based glass and PbO-B 2 O 3 -SiO 2 based glass of.

【0017】ここで、PbO−B−ZnO系のガ
ラスが550℃以下で溶融した際の組成比を図2(a)
に、PbO−B−SiO系のガラスが550℃
以下で溶融した際の組成比を図2(b)に示す。
[0017] Here, FIG composition ratio when PbO-B 2 O 3 -ZnO based glass is melted at 550 ° C. or less 2 (a)
To, PbO-B 2 O 3 -SiO 2 based glass of 550 ° C.
The composition ratio when melted below is shown in FIG.

【0018】PbO−B−ZnO系のガラスで
は、図2(a)に示すように、PbOが50〜70mo
l%、Bが25mol%以上の組成比のときに5
50℃以下で溶融する。
In the PbO-B 2 O 3 -ZnO-based glass, as shown in FIG. 2A, PbO is 50 to 70 mo.
5% when the composition ratio of 1% and B 2 O 3 is 25 mol% or more.
Melts below 50 ° C.

【0019】また、PbO−B−SiO系のガ
ラスでは、図2(b)に示すように、PbOが45〜6
5mol%の組成比のときに、550℃以下で溶融す
る。
Further, in the PbO-B 2 O 3 -SiO 2 type glass, as shown in FIG.
It melts at 550 ° C. or lower when the composition ratio is 5 mol%.

【0020】このように、PbO−B−ZnO系
のガラス又はPbO−B−SiO系のガラスを
上記組成比で用いることにより、低温で溶融できるガラ
スフリットを形成することが可能となる。
[0020] Thus, by using a PbO-B 2 O 3 -ZnO based glass or PbO-B 2 O 3 -SiO 2 based glass of the above composition ratio, to form a glass frit that can be melted at a low temperature Is possible.

【0021】なお、ガラスフリットを形成するPbOを
45〜75mol%含有する低温溶融ガラスは、上記の
ガラスに限られるものではない。
The low temperature melting glass containing 45 to 75 mol% of PbO forming the glass frit is not limited to the above glass.

【0022】[0022]

【実施例2】次に実施例2では、AgI又はBiPbO
Iとガラスフリットとの混合物を加熱した際の加熱温
度とヨウ素の揮発との関係について説明する。
Second Embodiment Next, in a second embodiment, AgI or BiPbO is used.
The relationship between the heating temperature and the volatilization of iodine when the mixture of 2 I and glass frit is heated will be described.

【0023】PbO、B、ZnOをそれぞれ6
4.7mol%、30.3mol%、5mol%含有する
PbO−B−ZnO系のガラスとBiPbO
とを95.4重量%、4.6重量%の割合で混合し、この
混合物に対して熱重量分析(TG)及び示差熱分析(D
TA)を行った。このTG−DTA分析結果を図3に示
す。
PbO, B 2 O 3 , and ZnO are each added to 6
4.7mol%, 30.3mol%, glass PbO-B 2 O 3 -ZnO system containing 5 mol% and BiPbO 2 I
And 95.6% by weight and 4.6% by weight, and the mixture was subjected to thermogravimetric analysis (TG) and differential thermal analysis (D).
TA). The results of this TG-DTA analysis are shown in FIG.

【0024】TG曲線には、混合物の重量が560℃近
傍から減少し始めることが示されており、この結果か
ら、ヨウ素がこの付近の温度以上で揮発することが分か
る。従って、溶融条件を560℃以下とすることによ
り、ヨウ素を揮発させずにBiPbOIをガラス固化
することが可能となる。
The TG curve shows that the weight of the mixture begins to decrease from around 560 ° C., and the results show that iodine volatilizes above this temperature. Therefore, by setting the melting condition to 560 ° C. or lower, it becomes possible to vitrify BiPbO 2 I without volatilizing iodine.

【0025】また、BiPbOIに代えてAgIを用
いた点を除き、同様の条件で混合物を作成し、熱重量分
析及び示差熱分析を行なった。図示はしていないが、B
iPbOIを用いた場合と同様に560℃近傍で重量
が減少し始めるといった分析結果を得た。
Further, a mixture was prepared under the same conditions except that AgI was used instead of BiPbO 2 I, and thermogravimetric analysis and differential thermal analysis were performed. Although not shown, B
Similar to the case of using iPbO 2 I, the analysis result was obtained such that the weight started to decrease near 560 ° C.

【0026】従って、溶融条件を560℃以下とするこ
とにより、BiPbOIと同様にヨウ素を揮発させず
にAgIをガラス固化することが可能となる。
Therefore, by setting the melting condition to 560 ° C. or less, AgI can be vitrified without volatilizing iodine as in BiPbO 2 I.

【0027】[0027]

【実施例3】実施例3では、ガラス固化処理中のヨウ素
の熱に対する安定性について説明する。
Example 3 In Example 3, the stability of iodine against heat during the vitrification treatment will be described.

【0028】表1に示す各組成のガラスフリット(G4
Z00、G4Z05、G4Z10、S9)とBiPbO
Iとをそれぞれ95.4重量%、4.6重量%の割合
(ヨウ素の重量割合=1重量%相当)で混合し、520
℃に加熱、溶融させて、ヨウ素含有率が1重量%のヨウ
素含有ガラス固化体のブロックを9mm×9mm×20
mm程度の直方体の形状で作成した。そして、このヨウ
素含有ガラス固化体(各々、G4Z00I01、G4Z
05I01、G4Z10I01、S9I01と記載す
る)を一部採取し、900度に加熱した後、ガラスに含
まれているヨウ素の含有率を測定した。この測定結果を
表1に示す。
Glass frit (G4) having each composition shown in Table 1
Z00, G4Z05, G4Z10, S9) and BiPbO
2 I and 9 I were mixed at a ratio of 95.4% by weight and 4.6% by weight (weight ratio of iodine = 1% by weight), respectively, and 520
A block of the iodine-containing vitrified body having an iodine content of 1% by weight is heated to be melted by heating to 9 ° C × 9 mm × 20
It was created in the shape of a rectangular parallelepiped of about mm. And this iodine-containing vitrified body (G4Z00I01, G4Z, respectively)
05I01, G4Z10I01, and S9I01) were partially collected and heated to 900 ° C., and then the content rate of iodine contained in the glass was measured. The results of this measurement are shown in Table 1.

【0029】[0029]

【表1】 このように、G4Z00I01、G4Z05I01、G
4Z10I01、S9I01のいずれの種類のヨウ素含
有ガラス固化体でもヨウ素含有率の減少は見らず、固化
処理を行う際の熱によるヨウ素の揮発が殆どないことが
示されている。従って、ヨウ素は固化処理時の熱によっ
て揮発することなく安定に固定されている。
[Table 1] In this way, G4Z00I01, G4Z05I01, G4
4D10I01 and S9I01 both types of vitrified vitreous solids showed no decrease in the iodine content, indicating that there is almost no volatilization of iodine due to heat during the solidification treatment. Therefore, iodine is stably fixed without evaporating due to heat during the solidification process.

【0030】[0030]

【実施例4】実施例4では、ガラス固化処理されたヨウ
素の浸出に対する安定性について説明する。
Example 4 In Example 4, the stability of glass-solidified iodine against leaching will be described.

【0031】9mm×9mm×20mm程度の直方体の
サイズにヨウ素含有ガラスを成形し、このガラス固化体
を海水系地下水(組成:0.55M・NaCl+0.05
M・NaHCO+0.003M・NaS)に浸し、
常温で2ヶ月経過後、浸した地下水を測定した。この測
定結果を表2に示す。
Iodine-containing glass was molded into a rectangular parallelepiped size of about 9 mm × 9 mm × 20 mm, and this vitrified body was treated with seawater-based groundwater (composition: 0.55 M NaCl + 0.05).
M ・ NaHCO 3 + 0.003M ・ Na 2 S),
After 2 months at room temperature, the immersed groundwater was measured. The measurement results are shown in Table 2.

【0032】[0032]

【表2】 このように、ヨウ素等の溶出は非常に少なく、ヨウ素含
有ガラス固化体の化学的耐久性が高いことを示してい
る。
[Table 2] As described above, the elution of iodine and the like is extremely small, which indicates that the iodine-containing vitrified material has high chemical durability.

【0033】本発明にかかる放射性廃棄物処理方法で
は、溶融温度を550℃以下の低温とすることが可能な
ため、溶融炉材料選定に制約が少なく、ハンドリングも
容易であり、オフガス系の処理が簡単である。
In the radioactive waste treatment method according to the present invention, since the melting temperature can be set to a low temperature of 550 ° C. or less, there are few restrictions on selection of melting furnace material, easy handling, and off-gas type treatment. It's easy.

【0034】また、固化処理を行う際のヨウ素の揮発率
が低く、若干の揮発分もスクラバ液中で吸着材(BiP
bONO)と反応させてBiPbOIに転換する
ことにより、容易に固化処理を行う溶融炉に投入可能な
形態で回収可能である。
Further, the volatilization rate of iodine during the solidification treatment is low, and some volatile matter is adsorbed in the scrubber liquid (BiP).
By converting it into BiPbO 2 I by reacting it with bO 2 NO 3 ), it can be recovered in a form that can be put into a melting furnace where solidification treatment is easily performed.

【0035】加えて、形成されたヨウ素含有ガラスの固
化体からのヨウ素の浸出率が低く、TRU(トランスウ
ラニュム元素)処分場など、放射性廃棄物処分場や貯蔵
施設の建設コスト、管理コストなどを低減をすることが
できる。
In addition, the leaching rate of iodine from the formed solidified body of iodine-containing glass is low, and construction costs, management costs, etc. of radioactive waste disposal sites and storage facilities such as TRU (transuranium element) disposal sites, etc. Can be reduced.

【0036】[0036]

【発明の効果】本発明では、放射性ヨウ素を簡便、廉価
なプロセスで安全にガラス固化し、安定に固定すること
ができる。
INDUSTRIAL APPLICABILITY According to the present invention, radioactive iodine can be safely vitrified and stably fixed by a simple and inexpensive process.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明における放射性廃棄物の処理方法の構
成を示すブロック図
FIG. 1 is a block diagram showing the configuration of a method for treating radioactive waste according to the present invention.

【図2】 実施例1におけるガラスの組成比と融点との
関係を示すグラフ
FIG. 2 is a graph showing the relationship between the composition ratio of glass and the melting point in Example 1.

【図3】 実施例2におけるTG−DTA分析の結果を
示すグラフ
FIG. 3 is a graph showing the results of TG-DTA analysis in Example 2.

【符号の説明】[Explanation of symbols]

11…ガラスフリット 12…ヨウ素化合物 20…溶融 30…ヨウ素含有ガラス固化体 11 ... Glass frit 12 ... Iodine compound 20 ... Melting 30 ... Iodine-containing vitrified body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渋谷 守 茨城県東茨城郡大洗町成田町2205 日揮株 式会社技術研究所内 (72)発明者 小玉 博志 茨城県土浦市中村南6丁目9番12号 Fターム(参考) 4G062 AA01 BB04 BB08 CC04 DA01 DB01 DC04 DC05 DC06 DC07 DD01 DE01 DE02 DE03 DE04 DF05 DF06 EA01 EB01 EC01 ED01 EE01 EF01 EG01 FA01 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM01 MM40 NN34 NN35   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mamoru Shibuya             2205 NGC, Narita, Oarai, Higashiibaraki, Ibaraki             Shikisha Research Institute (72) Inventor Hiroshi Kodama             6-9-12 Nakamuraminami, Tsuchiura City, Ibaraki Prefecture F term (reference) 4G062 AA01 BB04 BB08 CC04 DA01                       DB01 DC04 DC05 DC06 DC07                       DD01 DE01 DE02 DE03 DE04                       DF05 DF06 EA01 EB01 EC01                       ED01 EE01 EF01 EG01 FA01                       FB01 FC01 FD01 FE01 FF01                       FG01 FH01 FJ01 FK01 FL01                       GA01 GA10 GB01 GC01 GD01                       GE01 HH01 HH03 HH05 HH07                       HH09 HH11 HH13 HH15 HH17                       HH20 JJ01 JJ03 JJ05 JJ07                       JJ10 KK01 KK03 KK05 KK07                       KK10 MM01 MM40 NN34 NN35

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 PbO−B系、PbO−B
−ZnO系又はPbO−B−SiO系のガラス
を用いて放射性廃棄物を固化し、ガラス固化体を形成す
ることを特徴とする放射性廃棄物処理方法。
1. A PbO-B 2 O 3 -based, PbO-B 2 O 3
-ZnO system or solidified radioactive wastes by using a PbO-B 2 O 3 -SiO 2 system glass, radioactive waste treatment method characterized by forming a vitrified.
【請求項2】 前記放射性廃棄物は、AgI又はBiP
bOIであることを特徴とする請求項1記載の放射性
廃棄物処理方法。
2. The radioactive waste is AgI or BiP.
radioactive waste processing method according to claim 1, characterized in that the bO 2 I.
【請求項3】 前記ガラス固化体は、前記ガラスを55
0℃以下で溶融させて形成することを特徴とする請求項
1又は請求項2記載の放射性廃棄物処理方法。
3. The vitrified body is formed from 55 of the glass.
The method for treating radioactive waste according to claim 1 or 2, wherein the method is formed by melting at 0 ° C or lower.
【請求項4】 前記PbO−B−ZnO系のガラ
スの組成は、45<PbO<75(mol%)、20<
(mol%)であることを特徴とする請求項1
記載の放射性廃棄物の処理方法。
4. The composition of the PbO—B 2 O 3 —ZnO-based glass is 45 <PbO <75 (mol%), 20 <
Claim 1, which is a B 2 O 3 (mol%)
Disposal method of radioactive waste described.
【請求項5】 前記PbO−B−SiO系のガ
ラスの組成は、40<PbO<70(mol%)である
ことを特徴とする請求項1記載の放射性廃棄物の処理方
法。
5. The method for treating radioactive waste according to claim 1, wherein the composition of the PbO—B 2 O 3 —SiO 2 -based glass is 40 <PbO <70 (mol%).
JP2001237879A 2001-08-06 2001-08-06 Radioactive waste treatment method Expired - Fee Related JP4623697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237879A JP4623697B2 (en) 2001-08-06 2001-08-06 Radioactive waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237879A JP4623697B2 (en) 2001-08-06 2001-08-06 Radioactive waste treatment method

Publications (2)

Publication Number Publication Date
JP2003050297A true JP2003050297A (en) 2003-02-21
JP4623697B2 JP4623697B2 (en) 2011-02-02

Family

ID=19068888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237879A Expired - Fee Related JP4623697B2 (en) 2001-08-06 2001-08-06 Radioactive waste treatment method

Country Status (1)

Country Link
JP (1) JP4623697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120922B2 (en) 2016-06-23 2021-09-14 Nippon Chemical Industrial Co., Ltd. Method for producing solidified radioactive waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124500A (en) * 1985-11-25 1987-06-05 株式会社日立製作所 Method of solidifying and processing solid waste containing radioactive iodine
JPH11295487A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Method for treating radioactive waste and vitrified solid thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120922B2 (en) 2016-06-23 2021-09-14 Nippon Chemical Industrial Co., Ltd. Method for producing solidified radioactive waste

Also Published As

Publication number Publication date
JP4623697B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
Plodinec Borosilicate glasses for nuclear waste imobilisation
JP2009526967A (en) Process and composition for immobilizing radioactive and hazardous waste in borosilicate glass
JP5002002B2 (en) Process and composition for immobilizing highly alkaline radioactive waste and hazardous waste in silicate glass
US5434333A (en) Method for treating materials for solidification
CA1171266A (en) Nuclear waste encapsulation in borosilicate glass by chemical polymerization
WO1999057730A2 (en) Low melting high lithia glass compositions and methods
US5662579A (en) Vitrification of organics-containing wastes
KR20110099785A (en) Alumino-borosilicate glass for confining radioactive liquid effluents, and method for processing radioactive effluents
WO2005084756A1 (en) Process and composition for immobilization wastes in borosilicate glass
Langowski et al. Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing
EP0577119A2 (en) Process for vitrifying incinerator ash
JP2607836B2 (en) Selenium containment composition for the production of colored glass
JP2003050297A (en) Radioactive waste treating method
Spence et al. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout
JPS58184598A (en) Method of solidifying radioactive liquid waste
JP3735218B2 (en) Method for treating waste containing radioactive iodine
Gombert et al. Vitrification of high-level ICPP calcined wastes
EP1412950B1 (en) Encapsulation of waste
RU2701869C1 (en) Aluminum phosphate glass for immobilisation of radioactive wastes
Cole et al. Properties of vitrified ICPP zirconia calcine
GB2157675A (en) Glass containing radioactive nuclear waste
RU2097854C1 (en) Method for recovery of radioactive ash residue
Waste SEPA Handbook
Feng et al. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes
Jantzen et al. Vitrification of hazardous and mixed wastes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4623697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees