JP2003050193A - Fabrication method of probe for near-field microscope - Google Patents

Fabrication method of probe for near-field microscope

Info

Publication number
JP2003050193A
JP2003050193A JP2001239296A JP2001239296A JP2003050193A JP 2003050193 A JP2003050193 A JP 2003050193A JP 2001239296 A JP2001239296 A JP 2001239296A JP 2001239296 A JP2001239296 A JP 2001239296A JP 2003050193 A JP2003050193 A JP 2003050193A
Authority
JP
Japan
Prior art keywords
tip
pipette
diameter
glass
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001239296A
Other languages
Japanese (ja)
Other versions
JP3751863B2 (en
Inventor
Yoshimasa Kawada
善正 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001239296A priority Critical patent/JP3751863B2/en
Publication of JP2003050193A publication Critical patent/JP2003050193A/en
Application granted granted Critical
Publication of JP3751863B2 publication Critical patent/JP3751863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To fabricate a pipet(p) where one minute ball 3754/24}b), that is suitable as a probe for near-field microscopes adheres to the tip opening. SOLUTION: Heating/melting are conducted, while both the ends of a glass tube(g) that becomes a pipet material are restricted; tension is applied, so that the glass tube(g) is pulled apart to two glass pipets whose tip diameter has been narrowed; the tip section having a thin diameter in the glass pipet is dipped into dispersion liquid where the minute ball(b) is suspended; the minute ball(b) is sucked by the tip section having a thin diameter due to a capillary phenomenon, thus preparing the pipet(p), having a tip diameter according to the size of the minute ball(b) to be struck; and hence easily preparing a scattering type minute ball probe, where a function according to purposes, such as fluorescent characteristics and light function properties, is given.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ニアフィールド顕微鏡
用プローブ、特に散乱型微小球プローブの作製方法に関
する。 【0002】 【従来技術及び問題点】ニアフィールド顕微鏡は、試料
表面に局在するプローブ等で散乱させ、微小領域の光学
的情報を取り出せるため、従来の顕微鏡を大きく超えた
分解能で試料を観察できる。また、プローブの先端径に
分解能が依存することから、先端径をより微細化するこ
とにより、分解能の更なる向上が期待できる。 【0003】ニアフィールド顕微鏡用プローブは、光触
媒を用いた化学反応を利用する方法,電場印加で生じる
静電気を利用する方法等によって先端径をより微細化し
ている。また、EL法で作製した単分子膜をニアフィー
ルド顕微鏡用の回折素子に使用することも、特開平11
−014811号公報に報告されている。何れの方法に
よる場合でも、設備の割には目的に叶ったサイズのプロ
ーブを作製することが困難である。そのため、目標サイ
ズの先端径をもつプローブのより容易な作製方法が望ま
れている。 【0004】 【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、ガラスピペット
の毛細管現象を利用してピペット先端に金属微粒子をつ
けることにより、金属微粒子の材質選択に応じて蛍光,
光機能性等が付与され、高分解能のニアフィールド顕微
鏡に適したプローブを得ることを目的とする。 【0005】本発明のプローブ作製方法は、その目的を
達成するため、ピペット素材となるガラス管の両端を拘
束して張力を加えながら加熱溶融することにより、先端
径が細くなった2本のガラスピペットに引き離し、微小
球を懸濁させた分散液に前記ガラスピペットの細径先端
部を浸し、毛細管現象によって微小球を細径先端部に吸
い上げ付着させることを特徴とする。 【0006】 【実施の形態】本発明では、ガラスピペットプラーを用
いてガラス管を先鋭化することにより、先端径が細くな
ったガラスピペットを作製する。プローブの先端径が小
さくなるほど分解能が向上し、より高精度のプラーを使
用することによって先端径を数十nm程度にまで細くで
きる。常用のガラスピペットプラーによる場合でも数百
nm程度までガラス管を先鋭化できる。該ガラスピペッ
トの先端を微小球含有分散液に浸漬するとき、毛細管現
象によって微小球がピペット内に吸い上げられ、ピペッ
ト先端に微小球を付着させたニアフィールド顕微鏡用プ
ローブが得られる。作製されたニアフィールド顕微鏡用
プローブは、プローブ先端のみで光を散乱させる散乱型
であって、逆光の発生なく効率よく光を検出できるた
め、S/N比の高い顕微鏡観察を可能にする。 【0007】ガラスピペットの作製には、たとえば図1
に示すガラスピペットプラー(成茂科学機械研究所製)
が使用される。ピペット素材であるガラス管gをホルダ
ー1から送り出して白金板2に挿通させ、ガラス管gの
先端をクランパ3で保持する。クランパ3は、操作部4
の操作によって図1で左右方向に移動可能なスライド機
構5に連結されている。白金板2は、ガラス管gが挿通
される孔部が穿設され、ヒータ6で加熱される。ガラス
管gの先端をクランパ3で保持した後、ヒータ6によっ
て白金板2を1000℃近くまで加熱しながらスライド
機構5の左方向移動によってガラス管gに約1Nの張力
を加える。ガラス管gは、白金板2を介した加熱によっ
て徐々に溶け始めるが、張力によって左右に引き離され
る。 【0008】引き離されたガラス管gは、先端が細くな
ったシャンク部をもつピペットとなる。必要に応じてサ
ブマグネット7を調節することにより、シャンク部の長
さを変えることができる。シャンク部の長さを変えても
先端径の大きさが変化しないので、目標径のガラスピペ
ットが容易に作製される。ピペットpの先端径は、ガラ
ス管gの加熱温度及び張力を調整することによって、広
い範囲で変化する。そのため、目的に応じて粒径が選択
された微粒子に適合する先端径をもつピペットpを用意
できる。 【0009】ピペット先端に微小球を付着させるに際し
ては、ガラスピペットを粗動マイクロマニピュレータに
セットする。粗動マイクロマニピュレータとしては、た
とえば光学顕微鏡に設置された図2の粗動マイクロマニ
ピュレータ(成茂科学機器研究所製)が使用される。顕
微鏡11の試料台にスライドガラス13を配置し、微小
球bを懸濁させた分散液lをスライドガラス13上に滴
下する。そして、顕微鏡11を覗きながらガラスピペッ
トpの先端をスライドガラス13上の分散液lに浸し、
マニピュレータ14を操作しながらピペットpの他端に
取り付けたスポイトsに分散液lを吸い上げ、微小球b
をピペットpの先端に付着させる。 【0010】これにより、ピペットpの先端径に応じた
サイズの微小球bを付着させることが可能となる。微小
球bとしては、金属球(Duke Scientific),蛍光色素
を内部に含むポリスチレン球(PL球)等があり、たと
えば直径200nmの金微粒子などが使用される。微小
球bを付着させるためには、芯ありガラス管(毛細管現
象が起こりやすくするため、内部側壁に細い棒状突起を
つけたガラス管)よりも芯なしガラス管をピペット素材
に使用することが好ましい。 【0011】芯なしガラス管は、芯ありガラス管に比較
して毛細管現象を引き起こす可能性が低く、1個の微小
球bをピペットpの先端に付着させることができる。そ
の結果、光の場を乱すことなく光検出が可能なプローブ
が得られる。これに対し、芯ありガラス管から作製され
たピペットpでは、先端の微小開口近傍に相当数の微小
球bが付着しやすい。複数の微小球bが付着したプロー
ブでは、複数の微小球bからの散乱が発生する結果とし
て径の大きな微小球が付着したプローブと等価になり、
十分な分解能が得られない。 【0012】 【実施例】内径0.6mm,外径1.0mmの芯なしガ
ラス管をピペット素材に使用し、図1のホルダー1及び
クランパ3で両端を拘束した。芯なしガラス管を種々の
温度で加熱しながら張力を加え、軟化溶融させることに
よって二つのピペットpに引き離した。 【0013】得られたピペットpは、先端が細径になっ
ていた。細径先端部の径は、ガラス管の加熱温度及び張
力に応じ、図3に示すように異なっていた。すなわち、
ガラス管gの加熱温度が与える影響が大きく、最適温度
に維持することによって初めて先端径の小さなピペット
pが得られることが判る。具体的には、ガラス管gの加
熱温度が410℃,引張り力が0.5Nのとき最小の先
端径が得られた。 【0014】以上の作製実験から、先端径100nmの
ガラスピペットまで作製可能なことが確認できた。ま
た、サブマグネット7を用いてガラス管gを引張る力を
微調整することにより、ピペットpのシャンク長さを自
由に変えることができた。ただし、先端径が微小になる
ほど芯が孔を塞ぐ割合が大きくなるので、3μm以下の
微小球bを付着させるピペットpを作製する場合には、
芯なしガラス管をピペット素材に使用することが好まし
い。 【0015】次いで、先端径200nmのガラスピペッ
トpを用い、次の手順で微小球を細径先端部に付着させ
た。微小球bを懸濁させた分散液lとしては、直径3μ
mのポリスチレン微小球,直径500nmの金微粒子,
直径200nmの金微粒子をそれぞれ懸濁させた3種類
の分散液を用意した。顕微鏡11の試料台12に設けた
スライドガラス13上に分散液lを滴下し、顕微鏡11
で観察しながらピペットpの細径先端部をスライドガラ
ス13上の分散液lに浸した(図2)。この状態で、ピ
ペットpの他端に装着したスポイトsを操作し、分散液
lをピペットpに吸い上げた。分散液lの吸引に伴っ
て、分散液lに懸濁している微小球bもピペットpに流
入し先端開口部に付着した。微小球bが付着したピペッ
トpの先端開口部をSEM観察した結果を図4に示す。
何れの微小球bも、ピペットpの先端開口に1個だけ付
着していることが図4(a)〜(c)から判る。 【0016】作製したプローブをニアフィールド顕微鏡
に使用する場合、プローブを三次元駆動可能なステージ
に取り付け、数十nmの微小間隙で試料表面に接近させ
る。そして、レーザ光等によって試料表面を照射し、試
料近傍の光を微小球で散乱させ、光検出器を用いて散乱
光の強度を測定する。測定値から試料の表面近傍に形成
された光強度分布が求められる。したがって、プローブ
を二次元的に走査するとき、試料の二次元観察像が得ら
れる。ここで、先端に微小球bとして金属球を付着させ
たプローブを使用する場合、ガラスに比較して金属の散
乱効率が格段に大きいので、先端以外のガラス部分から
の散乱光を無視でき、検出光を金属微粒子による散乱光
として扱える。この点、全体が金属で形成されたプロー
ブでは、先端以外からも大きな散乱光が生じるため迷光
が多く、分解能が制限される。 【0017】試料に対する照射光は何れの方向からも入
射可能であるが、透明な試料や十分に薄い試料を対象に
する場合、プリズムの上に置いた試料にプリズム下部か
ら全反射角以上の角度で照射光を入射させてもよい。こ
の入射方式によるとき、プリズム上面で入射光が全反射
するので不要な伝播光が発生せず、ガラス部分からの迷
光がより減少し、高精度の測定が可能となる。蛍光分子
を含む微小球bを先端に付着させたプローブを使用する
場合、微小球bで発生した蛍光が検出される。蛍光微粒
子から発生した蛍光は、照明光の波長と異なるので、干
渉フィルタ、色ガラスフィルタ等によって照明光をほぼ
完全にカットできる。 【0018】 【発明の効果】以上に説明したように、本発明において
は、先端が細径になったピペットに毛細管現象を利用し
て微小球を付着させているので、簡単な操作によってニ
アフィールド顕微鏡用プローブが得られる。しかも、ピ
ペットの先端径はガラス管(ピペット素材)の加熱温度
及び張力に応じて自在に変えることができ、細径になっ
た先端開口に微小球を確実に1個だけ付着させることが
できるため、極めて高い分解能をもつニアフィールド顕
微鏡が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for a near-field microscope, and more particularly to a method for producing a scattering type microsphere probe. 2. Description of the Related Art A near-field microscope is capable of observing a sample with a resolution far exceeding that of a conventional microscope because a near-field microscope can scatter light with a probe or the like localized on the sample surface and take out optical information in a minute area. . Further, since the resolution depends on the tip diameter of the probe, further improvement in resolution can be expected by making the tip diameter finer. The diameter of a probe for a near-field microscope is further reduced by a method using a chemical reaction using a photocatalyst, a method using static electricity generated by applying an electric field, or the like. Further, the use of a monomolecular film produced by the EL method for a diffraction element for a near-field microscope is disclosed in
No. 014811. Regardless of the method used, it is difficult to produce a probe having a size suitable for the purpose for the equipment. Therefore, there is a demand for an easier method of manufacturing a probe having a tip diameter of a target size. SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem. The present invention uses a capillary phenomenon of a glass pipette to attach fine metal particles to the tip of a pipette. Fluorescence according to the material selection of metal fine particles,
It is an object of the present invention to obtain a probe having optical functionality and the like and suitable for a high-resolution near-field microscope. In order to attain the object, the probe manufacturing method of the present invention restrains both ends of a glass tube serving as a pipette material and heats and melts the glass tube while applying tension, thereby forming two glass tubes having thinner tip diameters. The method is characterized in that the small diameter tip of the glass pipette is immersed in a dispersion liquid in which the microspheres are suspended by being separated from the pipette, and the microsphere is sucked up and adhered to the small diameter tip by capillary action. DETAILED DESCRIPTION OF THE INVENTION In the present invention, a glass pipette having a small tip diameter is manufactured by sharpening a glass tube using a glass pipette puller. As the tip diameter of the probe becomes smaller, the resolution improves, and the tip diameter can be reduced to about several tens nm by using a more accurate puller. Even with a conventional glass pipette puller, the glass tube can be sharpened to about several hundred nm. When the tip of the glass pipette is immersed in the microsphere-containing dispersion, the microsphere is sucked up into the pipette by capillary action, and a probe for a near-field microscope having the microsphere attached to the tip of the pipette is obtained. The manufactured near-field microscope probe is of a scattering type in which light is scattered only at the tip of the probe and can efficiently detect light without occurrence of backlight, thereby enabling microscope observation with a high S / N ratio. For manufacturing a glass pipette, for example, FIG.
Glass pipette puller (shown by Narimo Scientific Machinery Laboratory)
Is used. A glass tube g, which is a pipette material, is sent out from the holder 1 and inserted through the platinum plate 2, and the tip of the glass tube g is held by the clamper 3. The clamper 3 includes an operation unit 4
Is connected to a slide mechanism 5 which can be moved in the left-right direction in FIG. The platinum plate 2 is provided with a hole through which the glass tube g is inserted, and is heated by the heater 6. After holding the tip of the glass tube g with the clamper 3, the heater 6 heats the platinum plate 2 to near 1000 ° C., and applies a tension of about 1N to the glass tube g by moving the slide mechanism 5 to the left. The glass tube g gradually begins to melt by heating through the platinum plate 2, but is pulled apart left and right by tension. The separated glass tube g becomes a pipette having a shank portion with a thinned tip. The length of the shank portion can be changed by adjusting the sub magnet 7 as necessary. Since the size of the tip diameter does not change even if the length of the shank portion is changed, a glass pipette having a target diameter can be easily manufactured. The diameter of the tip of the pipette p varies in a wide range by adjusting the heating temperature and the tension of the glass tube g. Therefore, it is possible to prepare a pipette p having a tip diameter suitable for the fine particles whose particle diameter is selected according to the purpose. When attaching microspheres to the tip of a pipette, a glass pipette is set on a coarse micromanipulator. As the coarse moving micromanipulator, for example, a coarse moving micromanipulator (manufactured by Narimo Scientific Instruments Laboratory) shown in FIG. 2 installed in an optical microscope is used. A slide glass 13 is placed on a sample stage of a microscope 11, and a dispersion 1 in which microspheres b are suspended is dropped on the slide glass 13. Then, while looking through the microscope 11, the tip of the glass pipette p is immersed in the dispersion 1 on the slide glass 13,
While operating the manipulator 14, the dispersion 1 is sucked up into the dropper s attached to the other end of the pipette p, and the microsphere b
Is attached to the tip of the pipette p. Thus, it becomes possible to attach the microspheres b having a size corresponding to the diameter of the tip of the pipette p. Examples of the microsphere b include a metal sphere (Duke Scientific) and a polystyrene sphere (PL sphere) containing a fluorescent dye therein. For example, fine gold particles having a diameter of 200 nm are used. In order to attach the microspheres b, it is preferable to use a glass tube without a core as a pipette material, rather than a glass tube with a core (a glass tube having a thin rod-like projection on the inner side wall to facilitate the capillary phenomenon). . The glass tube without a core has a lower possibility of causing a capillary phenomenon than the glass tube with a core, and one microsphere b can be attached to the tip of the pipette p. As a result, a probe capable of detecting light without disturbing the light field is obtained. On the other hand, in a pipette p made of a glass tube with a core, a considerable number of microspheres b tend to adhere near the micro opening at the tip. In a probe to which a plurality of microspheres b are attached, scattering from the plurality of microspheres b occurs, and as a result, the probe becomes equivalent to a probe to which a large diameter microsphere is attached,
Sufficient resolution cannot be obtained. EXAMPLE A coreless glass tube having an inner diameter of 0.6 mm and an outer diameter of 1.0 mm was used as a pipette material, and both ends were restrained by a holder 1 and a clamper 3 shown in FIG. The coreless glass tube was tensioned while being heated at various temperatures, and softened and melted to separate the two pipettes p. The obtained pipette p had a small diameter at the tip. The diameter of the small diameter tip portion was different depending on the heating temperature and tension of the glass tube as shown in FIG. That is,
It can be seen that the heating temperature of the glass tube g has a large effect, and a pipette p with a small tip diameter can be obtained only by maintaining the temperature at the optimum temperature. Specifically, when the heating temperature of the glass tube g was 410 ° C. and the tensile force was 0.5 N, the minimum tip diameter was obtained. From the above manufacturing experiments, it was confirmed that a glass pipette having a tip diameter of 100 nm can be manufactured. Further, by finely adjusting the pulling force of the glass tube g using the sub magnet 7, the shank length of the pipette p could be freely changed. However, as the tip diameter becomes smaller, the ratio of the core closing the hole becomes larger. Therefore, when manufacturing a pipette p for attaching microspheres b of 3 μm or less,
It is preferred to use a coreless glass tube for the pipette material. Next, using a glass pipette p having a tip diameter of 200 nm, microspheres were adhered to the small-diameter tip portion in the following procedure. The dispersion 1 in which the microspheres b are suspended has a diameter of 3 μm.
m polystyrene microspheres, 500 nm diameter gold microparticles,
Three types of dispersions in which gold fine particles having a diameter of 200 nm were respectively suspended were prepared. The dispersion liquid 1 is dropped on a slide glass 13 provided on a sample stage 12 of the microscope 11, and the microscope 11
While observing with, the small-diameter tip of the pipette p was immersed in the dispersion 1 on the slide glass 13 (FIG. 2). In this state, the dropper s attached to the other end of the pipette p was operated, and the dispersion 1 was sucked into the pipette p. With the suction of the dispersion liquid 1, the microspheres b suspended in the dispersion liquid 1 also flowed into the pipette p and adhered to the tip opening. FIG. 4 shows the result of SEM observation of the tip opening of the pipette p to which the microspheres b have adhered.
It can be seen from FIGS. 4A to 4C that only one microsphere b adheres to the tip opening of the pipette p. When the produced probe is used for a near-field microscope, the probe is mounted on a stage that can be driven three-dimensionally, and is brought close to the sample surface with a small gap of several tens of nm. Then, the surface of the sample is irradiated with laser light or the like, the light near the sample is scattered by the microspheres, and the intensity of the scattered light is measured using a photodetector. From the measured values, the light intensity distribution formed near the surface of the sample is determined. Therefore, when the probe is two-dimensionally scanned, a two-dimensional observation image of the sample is obtained. Here, when a probe having a metal sphere attached to the tip as a microsphere b is used, the scattering efficiency of the metal is much higher than that of glass, so that the scattered light from the glass part other than the tip can be ignored and detected. Light can be treated as scattered light by metal fine particles. In this regard, in a probe made entirely of metal, large scattered light is generated from other than the tip, so that there is much stray light and the resolution is limited. Irradiation light to the sample can be incident from any direction. However, when targeting a transparent sample or a sufficiently thin sample, the sample placed on the prism should be placed at an angle greater than the total reflection angle from the lower part of the prism. The irradiation light may be made incident. In the case of this incidence method, since the incident light is totally reflected on the upper surface of the prism, unnecessary propagation light is not generated, stray light from the glass portion is further reduced, and highly accurate measurement is possible. When a probe having a microsphere b containing a fluorescent molecule attached to the tip is used, the fluorescence generated from the microsphere b is detected. Since the fluorescence generated from the fluorescent fine particles is different from the wavelength of the illumination light, the illumination light can be almost completely cut by an interference filter, a color glass filter, or the like. As described above, according to the present invention, microspheres are attached to a pipette having a small-diameter tip using capillary action, so that a near-field can be obtained by a simple operation. A microscope probe is obtained. In addition, the tip diameter of the pipette can be freely changed according to the heating temperature and tension of the glass tube (pipette material), and only one microsphere can be securely attached to the small-diameter tip opening. Thus, a near-field microscope having an extremely high resolution can be obtained.

【図面の簡単な説明】 【図1】 ガラス管からピペットを作製する装置の概略
図 【図2】 ピペットの先端開口に微小球を付着させる装
置の概略図 【図3】 ガラス管(ピペット素材)の加熱温度及び張
力がピペットの先端径に及ぼす影響を表したグラフ 【図4】 直径3μmのPL球(a),直径500nm
の金微粒子(b),直径200nmの金微粒子(c)を
先端開口に付着させたピペットのSEM像 【符号の説明】 1:ホルダー 2:白金板 3:クランパ 4:操
作部 5:スライド機構 6:ヒータ 7:サブ
マグネット 11:顕微鏡 12:試料台 13:スライドガラス g:ガラス管(ピペット素材) b:微小球 l:
分散液 p:ピペット s:スポイト
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a device for producing a pipette from a glass tube. FIG. 2 is a schematic diagram of a device for attaching microspheres to a tip opening of a pipette. FIG. 3 is a glass tube (pipette material). FIG. 4 is a graph showing the effect of heating temperature and tension on the tip diameter of a pipette. FIG. 4 shows a PL sphere (a) having a diameter of 3 μm, and a diameter of 500 nm.
SEM image of pipette with gold fine particles (b) and gold fine particles (c) having a diameter of 200 nm adhered to the tip opening [Explanation of symbols] 1: Holder 2: Platinum plate 3: Clamper 4: Operation unit 5: Slide mechanism 6 : Heater 7: Sub magnet 11: Microscope 12: Sample table 13: Slide glass g: Glass tube (Pipette material) b: Microsphere l: Microsphere
Dispersion p: Pipette s: Dropper

Claims (1)

【特許請求の範囲】 【請求項1】 ピペット素材となるガラス管の両端を拘
束して張力を加えながら加熱溶融することにより、先端
径が細くなった2本のガラスピペットに引き離し、微小
球を懸濁させた分散液に前記ガラスピペットの細径先端
部を浸し、毛細管現象によって微小球を前記細径先端部
に吸い上げ付着させることを特徴とするニアフィールド
顕微鏡用プローブの作製方法。
Claims: 1. A glass tube serving as a pipette material is heated and melted while restraining both ends of the glass tube while applying tension, thereby separating the glass tube into two glass pipettes each having a small tip diameter, and separating the microspheres. A method for producing a probe for a near-field microscope, wherein a small-diameter tip of the glass pipette is immersed in the suspended dispersion, and microspheres are sucked up and adhered to the small-diameter tip by capillary action.
JP2001239296A 2001-08-07 2001-08-07 Preparation method for near-field microscope probe Expired - Fee Related JP3751863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239296A JP3751863B2 (en) 2001-08-07 2001-08-07 Preparation method for near-field microscope probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239296A JP3751863B2 (en) 2001-08-07 2001-08-07 Preparation method for near-field microscope probe

Publications (2)

Publication Number Publication Date
JP2003050193A true JP2003050193A (en) 2003-02-21
JP3751863B2 JP3751863B2 (en) 2006-03-01

Family

ID=19070068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239296A Expired - Fee Related JP3751863B2 (en) 2001-08-07 2001-08-07 Preparation method for near-field microscope probe

Country Status (1)

Country Link
JP (1) JP3751863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256288A (en) * 2006-03-24 2007-10-04 Furukawa Electric North America Inc Microsphere probe for optical surface microscopy and its usage
US8334524B2 (en) 1998-12-07 2012-12-18 Meridian Research And Development Radiation detectable and protective articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334524B2 (en) 1998-12-07 2012-12-18 Meridian Research And Development Radiation detectable and protective articles
JP2007256288A (en) * 2006-03-24 2007-10-04 Furukawa Electric North America Inc Microsphere probe for optical surface microscopy and its usage

Also Published As

Publication number Publication date
JP3751863B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US20100245816A1 (en) Near-field Raman spectroscopy
US7697808B2 (en) Multi-tipped optical component
Paiva et al. Optical fiber tips for biological applications: from light confinement, biosensing to bioparticles manipulation
US20060098927A1 (en) Integrated sensor with electrical and optical single molecule sensitivity
Lewis et al. The optical near field and analytical chemistry
WO2018089022A1 (en) Enhancing optical signals with probe tips optimized for chemical potential and optical characteristics
Kopelman et al. Near-field optical microscopy, spectroscopy, and chemical sensors
JP2009115533A (en) Method for manufacturing colloid probe cantilever for atomic force microscope and its manufacturing device
CN110057751B (en) Apparatus and method for fabricating optical particle probe
Bek et al. Tip enhanced Raman scattering with adiabatic plasmon focusing tips
Taylor et al. Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe
JP3751863B2 (en) Preparation method for near-field microscope probe
Zhang et al. Remote chemical sensing by SERS with self-assembly plasmonic nanoparticle arrays on a fiber
Dragnea et al. Advances in submicron infrared vibrational band chemical imaging
CN108279450A (en) A kind of optical coupling material and its preparation method and application
JP4778616B2 (en) Optical fiber and unique micropipette with lens with subwavelength aperture
McCulloch et al. A simple reproducible technique for producing sub-micrometre fibre-optic probes for near-field optical microscopy and chemical sensors
Li et al. Fibre-optic trapping and manipulation at the nanoscale
CN112897458A (en) Assembling and fixing method of medium nano particles based on optical tweezers system
JP4153089B2 (en) Optical fiber probe and manufacturing method thereof
JP2000186993A (en) Probe-sharpening method, and probe
CN109520991A (en) A kind of preparation method of functionization coffee ring pattern optical fiber SERS probe
JP2005091353A (en) Sample-measuring apparatus and sample-measuring method
Li Study of Nano-Transfer Technology for Additive Nanomanufacturing and Surface Enhanced Raman Scattering
JP4035598B2 (en) Fabrication method of minute region scattering probe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees