JP2003049273A - Plasma cvd device and film deposition method by plasma cvd - Google Patents

Plasma cvd device and film deposition method by plasma cvd

Info

Publication number
JP2003049273A
JP2003049273A JP2001240714A JP2001240714A JP2003049273A JP 2003049273 A JP2003049273 A JP 2003049273A JP 2001240714 A JP2001240714 A JP 2001240714A JP 2001240714 A JP2001240714 A JP 2001240714A JP 2003049273 A JP2003049273 A JP 2003049273A
Authority
JP
Japan
Prior art keywords
plasma
plasma cvd
processed
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001240714A
Other languages
Japanese (ja)
Inventor
Kiyotaka Ishibashi
清隆 石橋
Toshihiro Kugimiya
敏洋 釘宮
Takayuki Hirano
貴之 平野
Kazuyuki Hayashi
和志 林
Yasushi Goto
裕史 後藤
Akira Kobayashi
明 小林
Akimitsu Nakagami
明光 中上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001240714A priority Critical patent/JP2003049273A/en
Publication of JP2003049273A publication Critical patent/JP2003049273A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma CVD device capable of preventing deposition of a deposition precursor of a raw gas which is dissociated and formed in plasma on high frequency application electrodes, reducing the quantity of the deposition precursor to be exhausted outside as much as possible, and improving the productivity of the film deposition together with the effective use of the raw gas. SOLUTION: In the plasma CVD device for performing the film deposition on a work by using plasma, a pair of high frequency application electrodes 2 and 3, and carrying means 6a-6d for transferring works 7 and 8 while facing each other between the pair of high frequency application electrodes 2 and 3 are provided in a film deposition chamber 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマCVD装
置及びプラズマCVDによる成膜方法に関し、特に長尺
の樹脂フィルムの成膜や、建材ガラスやフラットパネル
ディスプレイの製造ラインで用いられるガラス基板の成
膜に、最適なプラズマCVD装置及びプラズマCVDに
よる成膜方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma CVD apparatus and a film formation method by plasma CVD, and particularly to the formation of a long resin film and the formation of a glass substrate used in a manufacturing line for building glass and flat panel displays. The present invention relates to an optimum plasma CVD apparatus and a film forming method by plasma CVD for a film.

【0002】[0002]

【従来の技術】現在、高機能樹脂フィルム、フラットパ
ネルディスプレイ、建材ガラスの製造において、高品質
な膜を形成できるプラズマCVD装置は、重要な役割を
担っている。そのプラズマCVD装置としては、排気系
やガス導入系が接続され、内部に1対の電極を備える成
膜室内に、被処理材(基板)を1枚ずつ搬入、搬出して
成膜処理する装置、或いは特開昭59−34668号公
報や特公平6−58885号公報等に提案されているよ
うに、成膜室の前後に巻戻し機と巻取り機を備え、長尺
な被処理材を巻戻して成膜室内を通過させて巻取ること
で連続して成膜処理する装置など、これまでに色々と提
案されたものがある。
2. Description of the Related Art At present, a plasma CVD apparatus capable of forming a high quality film plays an important role in the production of high-performance resin films, flat panel displays, and building glass. As the plasma CVD apparatus, an apparatus for carrying out film formation processing by loading and unloading processing target materials (substrates) one by one into a film deposition chamber that is connected to an exhaust system and a gas introduction system and has a pair of electrodes inside. Alternatively, as proposed in Japanese Patent Application Laid-Open No. 59-34668 and Japanese Patent Publication No. 6-58885, a rewinding machine and a winding machine are provided in front of and behind the film forming chamber to provide a long material to be processed. There have been various proposals up to now, such as an apparatus for continuously performing film formation by rewinding, passing through a film formation chamber, and winding up.

【0003】上記長尺被処理材を成膜処理するプラズマ
CVD装置における成膜室の基本構造は、同公報に示さ
れた通りであるが、その概要を図5に例示して説明する
と、図示省略する排気系やガス導入系が接続された成膜
室41内部に、高周波印加電極42と、この高周波印加
電極42と対を成すとともに被処理材43のガイドを兼
ねたローラ状の接地電極(接地ローラ)44と、被処理
材43を適切にガイドするガイドローラ45、46とを
備えて構成され、高周波印加電極42は高周波電源47
に接続され、接地ローラ44はアース48されている。
The basic structure of the film forming chamber in the plasma CVD apparatus for forming a film on the above-mentioned long material is as shown in the publication, but the outline is illustrated in FIG. A high-frequency applying electrode 42 and a roller-shaped ground electrode that is paired with the high-frequency applying electrode 42 and that also serves as a guide for the material 43 to be processed are provided inside the film forming chamber 41 to which an exhaust system or a gas introducing system which is omitted is connected. Grounding roller) 44, and guide rollers 45 and 46 that appropriately guide the material 43 to be processed. The high frequency applying electrode 42 is a high frequency power source 47.
The ground roller 44 is grounded.

【0004】上記の構成において、被処理材43は、図
示省略する巻戻し機から巻戻され、必要に応じて配置さ
れる前処理室を経由して成膜室41内に送られる。成膜
室41内ではガイドローラ45、46により接地ローラ
44に移送されて成膜される。また、成膜室41を出た
後は、図示省略するが、必要に応じて配置される後処理
室を経由して図示省略する巻取り機に巻取られる。この
成膜処理の際、成膜室41内は、排気系やガス導入系に
設けられている雰囲気制御手段により雰囲気制御がなさ
れている。また、高周波印加電極42には、高周波電源
47から図示省略する整合器を経由して高周波電位が供
給されており、これにより高周波印加電極42と被処理
材43との空間にプラズマ49を発現する。また、高周
波印加電極42には、図示省略する原料ガス供給孔群が
形成されており、この原料ガス供給孔群から成膜に必要
な原料ガスが前記プラズマ49に供給される。
In the above structure, the material 43 to be processed is rewound from a rewinding machine (not shown) and sent into the film forming chamber 41 via a pretreatment chamber which is arranged as necessary. In the film forming chamber 41, the guide rollers 45 and 46 transfer the film to the ground roller 44 for film formation. Further, after leaving the film forming chamber 41, although not shown, the film is taken up by a take-up machine (not shown) via a post-treatment chamber arranged as necessary. At the time of this film forming process, the atmosphere inside the film forming chamber 41 is controlled by the atmosphere control means provided in the exhaust system or the gas introduction system. Further, a high-frequency potential is supplied to the high-frequency applying electrode 42 from a high-frequency power source 47 via a matching device (not shown), so that plasma 49 is developed in the space between the high-frequency applying electrode 42 and the material 43 to be processed. . A source gas supply hole group (not shown) is formed in the high-frequency applying electrode 42, and a source gas required for film formation is supplied to the plasma 49 through the source gas supply hole group.

【0005】[0005]

【発明が解決しようとする課題】上述した従来のプラズ
マCVD装置における成膜室においては、一般に、プラ
ズマに面した被処理材の表面には膜が堆積する。従っ
て、高周波電源から高周波印加電極を経由して高周波電
力が供給され、プラズマ中に解離して生成された原料ガ
スの堆積前駆体は主として、一部は高周波印加電極に堆
積し、一部は排気され、残りが被処理材の成膜に寄与す
る。このことは、次の二つの観点から生産性向上のため
の大きな障壁になっている。
In the film forming chamber of the above-mentioned conventional plasma CVD apparatus, a film is generally deposited on the surface of the material to be processed facing the plasma. Therefore, the high-frequency power is supplied from the high-frequency power source through the high-frequency applying electrode, and the deposition precursor of the source gas generated by dissociating in the plasma is mainly deposited in part on the high-frequency applying electrode and partially exhausted. And the rest contributes to the film formation of the material to be processed. This is a major barrier to productivity improvement from the following two perspectives.

【0006】すなわち、一つは、従来のプラズマCVD
装置では高周波電力や原料ガスの半分以上はロスしてい
るという欠点がある(ただし、ロスの割合は装置構成や
プロセス条件によっても異なる)。このことは、成膜速
度の制約をもたらしている主要因の一つでもある。
That is, one is the conventional plasma CVD
There is a drawback that more than half of the high frequency power and raw material gas is lost in the equipment (however, the loss rate depends on the equipment configuration and process conditions). This is also one of the main factors causing the limitation of the film formation rate.

【0007】もう一つは、高周波印加電極に堆積した膜
は、数百μm程度に厚くなると剥離してパーティクルと
なり、被処理材の成膜面に付着し、膜質を劣化させるな
どの原因となる。このため、通常は定期的に成膜室内を
クリーニングする。このクリーニングは一般に成膜室内
を大気に開放して、手作業でクリーニングがなされる。
その際は、堆積膜が特に厚いところだけをクリーニング
すればよいという訳にはいかない。たとえ堆積膜の厚み
が薄い部品であろうと、ネジ1本から全て堆積膜をふき
取らなければならない。これは、一旦大気開放すれば、
堆積膜の厚みが薄くても温度変動により剥がれやすくな
り、また外気を取り込んでしまう可能性があるからであ
る。結局、クリーニングには多大な労力を要することに
なる。
On the other hand, when the film deposited on the high frequency applying electrode becomes thicker to several hundreds of μm, it peels off to become particles, which adhere to the film-forming surface of the material to be treated and cause deterioration of the film quality. . Therefore, normally, the film forming chamber is regularly cleaned. This cleaning is generally performed manually by opening the film forming chamber to the atmosphere.
In that case, it cannot be said that it is necessary to clean only the portion where the deposited film is particularly thick. Even if the deposited film is thin in thickness, all the deposited film must be wiped off from one screw. Once this is released to the atmosphere,
This is because even if the thickness of the deposited film is small, the deposited film is likely to be peeled off due to temperature fluctuations and there is a possibility of taking in outside air. After all, cleaning requires a lot of labor.

【0008】本発明は、上記の問題点を解消するために
なしたものであって、その目的は、プラズマ中に解離し
て形成された原料ガスの堆積前駆体が高周波印加電極に
堆積したり、外部に排気される量を極力少なくし、原料
ガスの有効利用と共に成膜処理の生産性を向上し得るプ
ラズマCVD装置及びプラズマCVDによる成膜方法を
提供するものである。
The present invention has been made to solve the above problems, and its purpose is to deposit a precursor of a source gas formed by dissociating in plasma on a high frequency applying electrode. The present invention provides a plasma CVD apparatus and a film formation method by plasma CVD that can reduce the amount of gas exhausted to the outside as much as possible and improve the productivity of the film formation process while effectively using the raw material gas.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明(請求項1)に係るプラズマCVD装置
は、プラズマを用いて、被処理材の成膜処理をおこなう
プラズマCVD装置において、成膜室内に、一対の高周
波印加電極と、この一対の高周波印加電極の間に被処理
材を対向させて移送させる搬送手段とを備えてなるもの
である。
In order to achieve the above object, a plasma CVD apparatus according to the present invention (Claim 1) is a plasma CVD apparatus for forming a film on a material to be processed by using plasma. In the film forming chamber, there are provided a pair of high frequency applying electrodes, and a transporting means for transferring the material to be processed so as to face the pair of high frequency applying electrodes.

【0010】上記のように構成することにより、成膜の
際、プラズマは一対の高周波印加電極の間の対向する被
処理材の内側に発生するので、そのプラズマ中に流れ込
む原料ガスが解離して生成される原料ガスの堆積前駆体
は、その大部分が対向して移送される双方の被処理材面
のうちどちらかに堆積するため、高周波電力効率とガス
使用効率が倍近く改善される。また、プラズマを発生さ
せるための一対の高周波印加電極はプラズマ発生領域に
直接曝されることはないので、電極表面に膜が堆積する
割合は極端に少なくなり、電極を含む成膜室内のクリー
ニング頻度を大幅に少なくでき、結果として、成膜に要
するランニングコストを大幅に低減できる。
With the above-described structure, during film formation, plasma is generated inside the material to be processed between the pair of high-frequency applying electrodes, so that the source gas flowing into the plasma is dissociated. Most of the generated deposition precursor of the source gas is deposited on one of the two surfaces of the material to be processed which are transferred in opposition to each other, so that the high frequency power efficiency and the gas usage efficiency are improved nearly twice. In addition, since the pair of high-frequency applying electrodes for generating plasma are not directly exposed to the plasma generation region, the rate of film deposition on the electrode surface is extremely reduced, and the cleaning frequency in the deposition chamber including the electrodes is extremely low. Can be significantly reduced, and as a result, the running cost required for film formation can be significantly reduced.

【0011】そして、上記プラズマCVD装置において
は、一対の高周波印加電極間を対向して移送される被処
理材の間に、移送方向と同方向又は逆方向に原料ガスの
流れを形成する原料ガス供給手段を備えてあってもよい
(請求項2)。このように構成することで、上記作用効
果に加えて、原料ガスを積極的に且つ確実にプラズマ中
に流し込むことができるので、原料ガスの堆積前駆体の
生成と相俟って成膜処理効率の向上が期待でき、更に原
料ガスを、被処理材の移送方向と同方向又は逆方向から
流し込むので、側方等から流し込むよりも、被処理材の
幅方向に均一な成膜処理が期待できる。
In the plasma CVD apparatus, a source gas for forming a flow of source gas in the same direction or in the opposite direction to the transfer direction between the materials to be processed which are transferred between the pair of high frequency applying electrodes facing each other. A supply means may be provided (Claim 2). With such a configuration, in addition to the above-described effects, the source gas can be positively and surely flowed into the plasma, so that the film formation processing efficiency can be improved in combination with the generation of the deposition precursor of the source gas. In addition, since the raw material gas is flown in the same direction as the transfer direction of the material to be processed or in the opposite direction, a uniform film forming process can be expected in the width direction of the material to be processed, rather than from the side. .

【0012】また、上記請求項2に係るプラズマCVD
装置においては、原料ガス供給手段が、相対的にプラズ
マ着火性の高いガスを混合するプラズマ着火性ガス供給
手段を含み、一方、対向して移送される被処理材の外側
に、相対的にプラズマ着火性の劣るガスを供給する雰囲
気ガス供給手段を備えてあってもよい(請求項3)。こ
のように構成することにより、プラズマ中に流す原料ガ
スに相対的にプラズマ着火性が良いガスを混合して流
し、高周波印加電極と被処理材の間隙に相対的にプラズ
マ着火性が悪いガスを充満させることができることか
ら、対向する被処理材の被処理面間内でのプラズマ着火
性を相対的に良くすることができ、これにより当該被処
理面間以外でのプラズマ発生をより一層抑制することが
できる。
Further, the plasma CVD according to claim 2
In the apparatus, the source gas supply means includes a plasma ignitable gas supply means for mixing a gas having a relatively high plasma ignitability, while the plasma is relatively provided outside the material to be processed which is transferred in the opposite direction. An atmosphere gas supply means for supplying a gas having poor ignitability may be provided (Claim 3). With such a configuration, a gas having relatively good plasma ignitability is mixed with the source gas to be flowed in the plasma, and the gas having relatively poor plasma ignitability is introduced into the gap between the high frequency applying electrode and the material to be treated. Since it can be filled, it is possible to relatively improve the plasma ignitability between the surfaces to be processed of the material to be processed, which further suppresses the generation of plasma other than between the surfaces to be processed. be able to.

【0013】また、上述した請求項1乃至3に係るプラ
ズマCVD装置においては、一対の高周波印加電極とそ
れぞれの電極に沿う被処理材との間に生じる空間的ギャ
ップが、実質ゼロ、又は一対の高周波印加電極間を対向
して移送される被処理材の間の空間的ギャップよりも小
さく形成されてあってもよい(請求項4)。このように
一対の高周波印加電極とそれぞれの電極に沿う被処理材
との間に生じる空間的ギャップをゼロにするかなるべく
狭くすることで、対向する被処理材の被処理面間内での
プラズマ着火性を相対的に良くすることができ、これに
より当該被処理面間以外でのプラズマ発生をより一層抑
制することができる。なお、空間的ギャップを実質ゼロ
とするには、例えば電極の表面をテフロン(登録商標)
などの滑りの良い材料で覆うことで達成できる。
Further, in the plasma CVD apparatus according to the above-mentioned claims 1 to 3, the spatial gap generated between the pair of high-frequency applying electrodes and the material to be processed along each of the electrodes is substantially zero or a pair of them. It may be formed to be smaller than the spatial gap between the materials to be processed which are transferred between the high frequency applying electrodes in opposition to each other (claim 4). In this way, by making the spatial gap between the pair of high-frequency applying electrodes and the material to be processed along each electrode zero or making it as narrow as possible, the plasma between the surfaces to be processed of the opposing material to be processed is reduced. The ignitability can be relatively improved, and thereby plasma generation other than between the surfaces to be processed can be further suppressed. In addition, in order to make the spatial gap substantially zero, for example, the surface of the electrode is teflon (registered trademark).
It can be achieved by covering with a material with good sliding properties.

【0014】上記の目的を達成するために、本発明(請
求項5)に係るプラズマCVDによる成膜方法は、所定
の雰囲気に制御された成膜室内に配置された一対の高周
波印加電極の間に、被処理材をそれぞれの電極に沿わせ
対向させて移送させながら、対向する被処理材の間にプ
ラズマを発生させるとともに、そのプラズマを横切る方
向に原料ガスを流し、対向する被処理材の2面を同時に
成膜するものである。
In order to achieve the above-mentioned object, a film forming method by plasma CVD according to the present invention (claim 5) is provided between a pair of high frequency applying electrodes arranged in a film forming chamber controlled to a predetermined atmosphere. While the target material is transferred along the respective electrodes while facing each other, plasma is generated between the target materials that face each other, and a source gas is caused to flow in a direction that traverses the plasma so that the target material Two surfaces are formed simultaneously.

【0015】上記のように構成することにより、成膜
中、プラズマは一対の高周波印加電極の間の対向する被
処理材の内側に発生し、そのプラズマ中に原料ガスが確
実に流し込まれるので、原料ガスを解離させて堆積前駆
体に効率良く変えることができるとともに、その原料ガ
スの堆積前駆体の大部分を、対向して移送される双方の
被処理材面のうちどちらかに堆積させることができる。
このようにして成膜処理がなされるため、高周波電力効
率とガス使用効率が倍近く改善される。また、プラズマ
を発生させるための一対の高周波印加電極はプラズマ発
生領域に直接曝されることはないので、電極表面に膜が
堆積する割合は極端に少なくなり、電極を含む成膜室内
のクリーニング頻度を大幅に少なくでき、結果として、
成膜に要するランニングコストを大幅に低減できる。
With the above-mentioned structure, during film formation, plasma is generated inside the facing material between the pair of high-frequency applying electrodes, and the source gas is surely poured into the plasma. The source gas can be dissociated and efficiently converted into a deposition precursor, and most of the deposition precursor of the source gas is deposited on either of the two surfaces of the material to be processed which are transferred in opposition. You can
Since the film forming process is performed in this manner, the high frequency power efficiency and the gas use efficiency are improved almost twice. In addition, since the pair of high-frequency applying electrodes for generating plasma are not directly exposed to the plasma generation region, the rate of film deposition on the electrode surface is extremely reduced, and the cleaning frequency in the deposition chamber including the electrodes is extremely low. Can be significantly reduced, and as a result,
The running cost required for film formation can be significantly reduced.

【0016】なお、上記請求項5に係るプラズマCVD
による成膜方法において、特に限定するものではない
が、成膜室内の雰囲気圧力は数百Pa〜十数万Paの範
囲に制御されることが好ましい。この範囲の圧力に制御
することで、対向する被処理材の被処理面間以外でのプ
ラズマ発生をより一層抑制させることができ、不要な放
電を避けることができるとともに、上記の作用効果をよ
り効果的に得ることができる。
The plasma CVD according to the above-mentioned claim 5
In the film forming method according to (1), although not particularly limited, the atmospheric pressure in the film forming chamber is preferably controlled in the range of several hundred Pa to hundreds of thousands of Pa. By controlling the pressure within this range, it is possible to further suppress the generation of plasma other than between the surfaces to be processed of the opposed material to be processed, it is possible to avoid unnecessary discharge, and to further improve the above-mentioned effects. It can be effectively obtained.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明に係るプラズマCV
D装置の説明図であって、発明の要部である成膜室内を
図示したものである。図において、1は成膜室、2、3
はローラ電極、4は原料ガス供給部材、5は排気部材、
6a〜6dはガイドローラである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a plasma CV according to the present invention.
It is an explanatory view of the D device, and illustrates the film forming chamber which is the main part of the invention. In the figure, 1 is a film forming chamber, 2 and 3
Is a roller electrode, 4 is a source gas supply member, 5 is an exhaust member,
6a to 6d are guide rollers.

【0018】成膜室1には、被処理材7、8の導入口
(図示せず)と導出口(図示せず)が設けられるととも
に、図示省略する排気系やガス導入系が接続され、成膜
室1内の雰囲気制御が従来同様に可能になっている。
The film forming chamber 1 is provided with inlets (not shown) and outlets (not shown) for the materials 7 and 8 to be processed, and is connected with an exhaust system and a gas introducing system not shown. The atmosphere in the film forming chamber 1 can be controlled as in the conventional case.

【0019】ローラ電極2、3は、高周波印加電極であ
って、本例では同形状の対のローラ状に形成され、それ
ぞれ回転可能に且つ上下方向に間隔調整可能に設置され
るとともに、制御装置9を介して高周波電源10に接続
されている。
The roller electrodes 2 and 3 are high-frequency applying electrodes, and in this example, they are formed in the shape of a pair of rollers having the same shape, and are installed so as to be rotatable and adjustable in the vertical direction. It is connected to the high frequency power source 10 via 9.

【0020】原料ガス供給部材4は管で形成され、その
開口11をローラ電極2と3の間に望ませて設置され、
他端は成膜室1のガス導入系を介して原料ガス供給源
(図示せず)に接続されている。
The source gas supply member 4 is formed of a tube, and its opening 11 is installed between the roller electrodes 2 and 3 as desired.
The other end is connected to a source gas supply source (not shown) via a gas introduction system of the film forming chamber 1.

【0021】排気部材5は、上記原料ガス供給部材4の
開口11の開口面積より大きい面積の開口12を有する
管で形成され、その開口12を、原料ガス供給部材4の
開口11に対向させローラ電極2と3の間に望ませて設
置し、他端は成膜室1の排気系(図示せず)に接続され
ている。
The exhaust member 5 is formed of a tube having an opening 12 having an area larger than the opening area of the opening 11 of the raw material gas supply member 4, and the opening 12 is opposed to the opening 11 of the raw material gas supply member 4. It is optionally installed between the electrodes 2 and 3, and the other end is connected to an exhaust system (not shown) of the film forming chamber 1.

【0022】ガイドローラ6a、6bは被処理材7をロ
ーラ電極2に、ガイドローラ6c、6dは被処理材8を
ローラ電極3にそれぞれ案内するガイドローラである。
The guide rollers 6a and 6b are guide rollers for guiding the material 7 to be processed to the roller electrode 2, and the guide rollers 6c and 6d are guide rollers to guide the material 8 to be processed to the roller electrode 3, respectively.

【0023】上記構成のプラズマCVD装置において、
2系統の被処理材7、8は、それぞれに対応して、図示
省略する巻戻し機や、必要に応じて配置される前処理室
を経由して成膜室1内に送られる。成膜室1内において
は、被処理材7はガイドローラ6a、ローラ電極2、ガ
イドローラ6bの順に移送され、また被処理材8はガイ
ドローラ6c、ローラ電極3、ガイドローラ6dの順に
移送されて成膜処理される。その後、必要に応じて配置
される後処理室を経由して図示省略する巻取り機に巻取
られる。
In the plasma CVD apparatus having the above structure,
The materials 7 and 8 to be processed in the two systems are sent into the film forming chamber 1 via a rewinding machine (not shown) and a pretreatment chamber arranged as necessary, correspondingly. In the film forming chamber 1, the processed material 7 is transferred in the order of the guide roller 6a, the roller electrode 2, and the guide roller 6b, and the processed material 8 is transferred in the order of the guide roller 6c, the roller electrode 3, and the guide roller 6d. And a film is formed. After that, the film is taken up by a winder (not shown) via a post-treatment chamber arranged as necessary.

【0024】上記成膜処理の際、成膜室1内は、排気系
やガス導入系に設けられている雰囲気制御手段(図示せ
ず)により雰囲気制御がなされている。また、一対のロ
ーラ電極2、3の双方に、同じ周波数で位相が互いに1
80度ずれた高周波電位が供給されるか、もしくは、片
側のみに供給されている。ただし、高周波電位が片側の
みに供給される場合には、もう一方は接地される。この
結果、プラズマ13が被処理材7と8の間に形成され
る。また、原料ガス供給部材4の開口11からはプラズ
マ13内に原料ガスが供給され、成膜に寄与しなかった
未処理のガス等は排気部材5の開口12より吸引されて
外部へ排気される。なお、矢印14は原料ガスの流れ、
15は未処理のガス等の流れを示す。
At the time of the film forming process, the atmosphere inside the film forming chamber 1 is controlled by an atmosphere controlling means (not shown) provided in an exhaust system or a gas introducing system. Further, both the pair of roller electrodes 2 and 3 have the same frequency and a phase of 1
The high-frequency potential shifted by 80 degrees is supplied, or is supplied to only one side. However, when the high frequency potential is supplied to only one side, the other side is grounded. As a result, the plasma 13 is formed between the processed materials 7 and 8. Further, the source gas is supplied into the plasma 13 through the opening 11 of the source gas supply member 4, and unprocessed gas or the like that has not contributed to film formation is sucked through the opening 12 of the exhaust member 5 and exhausted to the outside. . The arrow 14 indicates the flow of the source gas,
Reference numeral 15 indicates a flow of untreated gas or the like.

【0025】従って、プラズマ13は、一対のローラ電
極2と3の間の対向する被処理材7と8の内側に発生す
るので、そのプラズマ13中に流れ込む原料ガスが解離
して生成される原料ガスの堆積前駆体は、その大部分が
対向して移送される被処理材7、8の対向面のうちどち
らかに堆積するため、高周波電力効率とガス使用効率が
大きく改善される。また、プラズマ13を発生させるた
めの一対のローラ電極2と3は被処理材7と8がそれぞ
れ介在するためプラズマ発生領域に直接曝されることは
ないので、電極表面に膜が堆積する割合は極端に少なく
なり、ローラ電極2、3を含む成膜室1内のクリーニン
グ頻度を大幅に少なくでき、結果として、成膜に要する
ランニングコストを大幅に低減できる。
Therefore, since the plasma 13 is generated inside the facing materials 7 and 8 between the pair of roller electrodes 2 and 3, the raw material gas flowing into the plasma 13 is dissociated to generate the raw material. Most of the gas deposition precursor is deposited on one of the facing surfaces of the processed materials 7 and 8 that are transferred in opposition to each other, so that the high frequency power efficiency and the gas use efficiency are greatly improved. Further, since the pair of roller electrodes 2 and 3 for generating the plasma 13 are not directly exposed to the plasma generation region because the processed materials 7 and 8 are respectively interposed, the ratio of the film deposited on the electrode surface is The number of cleanings in the film forming chamber 1 including the roller electrodes 2 and 3 can be significantly reduced, and as a result, the running cost required for film formation can be significantly reduced.

【0026】図2は、本発明に係るプラズマCVD装置
の別の実施形態を示す説明図であって、成膜室1内にガ
イドローラ6eと6fを設けた以外の基本構成は、上記
図1に示した装置と同じ構成のものである。
FIG. 2 is an explanatory view showing another embodiment of the plasma CVD apparatus according to the present invention. The basic structure except that the guide rollers 6e and 6f are provided in the film forming chamber 1 is the same as that shown in FIG. It has the same structure as the device shown in FIG.

【0027】上記構成の装置では、被処理材7と8のい
ずれか一方のみが成膜室1内に導入され、例えば図示の
例では被処理材8が図示省略する巻戻し機や、必要に応
じて配置される前処理室を経由して成膜室1内に送ら
れ、ガイドローラ6dまで移送された後、ガイドローラ
6f、6eを経て反転され、更にガイドローラ6b、ロ
ーラ電極2、ガイドローラ6aの順に移送されて成膜処
理される。その後、必要に応じて配置される後処理室を
経由して図示省略する巻取り機に巻取られる。
In the apparatus having the above structure, only one of the materials 7 and 8 to be processed is introduced into the film forming chamber 1. For example, in the illustrated example, the material 8 to be processed is a rewinding machine (not shown), or if necessary. It is sent into the film forming chamber 1 via the pretreatment chamber arranged accordingly, is transferred to the guide roller 6d, is inverted via the guide rollers 6f and 6e, and is further guided to the guide roller 6b, the roller electrode 2, and the guide. The rollers 6a are transferred in this order for film formation. After that, the film is taken up by a winder (not shown) via a post-treatment chamber arranged as necessary.

【0028】上記の成膜処理では、被処理材8(又は
7)は、一旦一方のローラ電極3上で成膜された後、ガ
イドローラ6f、6eによって反転され、もう一方のロ
ーラ電極2に移送されて再度成膜されるが、この装置に
よる作用効果は、上記図1の例の場合と実質的に同じで
ある。
In the above film forming process, the material 8 (or 7) to be processed is once formed on one of the roller electrodes 3 and then inverted by the guide rollers 6f and 6e to be formed on the other roller electrode 2. Although transferred and film-formed again, the operation and effect of this apparatus are substantially the same as in the case of the example of FIG.

【0029】図3は、本発明に係るプラズマCVD装置
の別の実施形態を示す説明図であって、図1に示す装置
の成膜室1内のローラ電極2、3を固定の平面(もしく
は、曲率の大きい面)を有する高周波印加電極16、1
7に代えた以外の基本構成は、上記図1に示した装置と
同じ構成のものである。
FIG. 3 is an explanatory view showing another embodiment of the plasma CVD apparatus according to the present invention, in which the roller electrodes 2 and 3 in the film forming chamber 1 of the apparatus shown in FIG. , A high-frequency applying electrode 16 having a surface with a large curvature)
The basic configuration is the same as that of the device shown in FIG.

【0030】上記構成の装置であっても、上述した図1
に示した装置の場合と同様の要領の成膜処理が行えると
ともに、同様の作用効果を享受することができる。
Even in the apparatus having the above-mentioned structure, the above-mentioned FIG.
It is possible to perform the same film forming process as in the case of the device shown in FIG.

【0031】なお、上述した実施形態では、好ましい例
として原料ガス供給部材4と排気部材5を配置した例を
説明したが、本発明はこの例に限定されるものではな
く、排気部材5を配置せずに、従来より設けられている
雰囲気制御手段の排気系から排気するようにしてもよ
い。また、原料ガス供給部材4と排気部材5を配置せず
に、従来より設けられている雰囲気制御手段のガス導入
系より原料ガスを供給すると共に排気系から排気するよ
うにしてもよい。
In the above embodiment, the source gas supply member 4 and the exhaust member 5 are arranged as a preferable example, but the present invention is not limited to this example and the exhaust member 5 is arranged. Instead, the air may be exhausted from the exhaust system of the atmosphere control means that is conventionally provided. Alternatively, the raw material gas supply member 4 and the exhaust member 5 may not be arranged, and the raw material gas may be supplied from the gas introduction system of the atmosphere control means that is conventionally provided and exhausted from the exhaust system.

【0032】また、上述した実施形態において、ローラ
電極2、3あるいは高周波印加電極16、17の表面を
テフロン(登録商標)などの滑りの良い材料で覆うよう
にして被処理材7、8との間の空間的ギャップを実質ゼ
ロにしたり、又は/及び、ローラ電極2、3あるいは高
周波印加電極16、17の背面と被処理材7、8との間
に、従来より設けられている雰囲気制御手段のガス導入
系よりプラズマ着火性の劣るガスを供給するようにし
て、その間でのプラズマ発生を抑制するようにしてもよ
い。
In addition, in the above-described embodiment, the surfaces of the roller electrodes 2 and 3 or the high frequency applying electrodes 16 and 17 are covered with a slippery material such as Teflon (registered trademark) and the materials to be treated 7 and 8. Atmospheric control means conventionally provided between the back surface of the roller electrodes 2 and 3 or the high frequency applying electrodes 16 and 17 and the material to be processed 7 and 8 and / or the spatial gap therebetween is substantially zero. A gas having a plasma ignition property lower than that of the gas introduction system may be supplied to suppress the generation of plasma during that period.

【0033】図4は、本発明に係るプラズマCVD装置
の別の実施形態を示す上方から見た平面断面図であっ
て、本実施形態は、被処理材として矩形のガラス基板を
対象としたものである。図において、18は成膜室、1
9、20は高周波印加電極、21は原料ガス供給部材、
22は排気部材、23はガラス基板24、25の搬送手
段である。
FIG. 4 is a plan sectional view of another embodiment of the plasma CVD apparatus according to the present invention seen from above. This embodiment is directed to a rectangular glass substrate as a material to be processed. Is. In the figure, 18 is a film forming chamber, 1
9 and 20 are high-frequency applying electrodes, 21 is a source gas supply member,
Reference numeral 22 is an exhaust member, and 23 is a conveying means for the glass substrates 24 and 25.

【0034】成膜室18には、被処理材24、25の導
入口26と導出口27が設けられるとともに、図示省略
するガス導入系が接続される雰囲気ガス供給口28及び
図示省略する排気系が接続される排気口29がそれぞれ
設けられ、このガス導入系と排気系により成膜室18内
の雰囲気制御が従来同様に可能になっている。
The film forming chamber 18 is provided with an inlet 26 and an outlet 27 for the materials to be processed 24, 25, an atmosphere gas supply port 28 to which a gas introduction system (not shown) is connected, and an exhaust system (not shown). An exhaust port 29 connected to each is provided, and the atmosphere introduction in the film forming chamber 18 can be performed in the same manner as in the conventional case by the gas introduction system and the exhaust system.

【0035】高周波印加電極19、20は、成膜室18
内に左右に対向させて且つ間隔調整可能に立設されると
ともに、制御装置30を介して高周波電源31に接続さ
れている。
The high frequency applying electrodes 19 and 20 are provided in the film forming chamber 18
They are erected so as to be opposed to each other in the left and right and have a space adjustable, and are connected to a high frequency power supply 31 via a control device 30.

【0036】原料ガス供給部材21は管で形成され、そ
の開口32を高周波印加電極19と20の間に望ませて
設置され、他端は成膜室18のガス導入系を介して原料
ガス供給源に接続されている。
The raw material gas supply member 21 is formed of a tube, and its opening 32 is desirably installed between the high frequency applying electrodes 19 and 20, and the other end is supplied with the raw material gas through the gas introduction system of the film forming chamber 18. Connected to the source.

【0037】排気部材22は管で形成され、その開口3
3を、原料ガス供給部材21の開口32に対向させ高周
波印加電極19と20の間に望ませて設置し、他端は成
膜室18の排気系に接続されている。
The exhaust member 22 is formed of a tube and has an opening 3
3 is placed between the high-frequency applying electrodes 19 and 20 so as to face the opening 32 of the source gas supply member 21, and the other end is connected to the exhaust system of the film forming chamber 18.

【0038】搬送手段23は、ガラス基板24と25と
を所望間隔で対向状態で搬送するための装置であって、
搬送用駆動ローラ34とガイドローラ35と吸引装置3
6とで構成されている。搬送用駆動ローラ34は、ガラ
ス基板24、25を所望間隔で対向させ、立てた状態で
下側部を受けて搬送するもので、成膜室18内の下部に
水平に複数本(図では6本)が列設されている。また、
ガイドローラ35は、吸引装置36と共にガラス基板2
4、25を立てた状態に保持する一方、搬送を案内する
もので、成膜室18内に、間隔調整可能な左右を1対と
して複数対(図では6対)が立設されている。また、吸
引装置36は、ガラス基板24、25を立てた状態に保
持するもので、成膜室18内に、間隔調整可能な左右を
1対として高周波印加電極19、20の搬送方向前後の
ガイドローラ35の間に立設されている。
The transport means 23 is a device for transporting the glass substrates 24 and 25 at a desired interval so as to face each other.
Transport drive roller 34, guide roller 35, and suction device 3
6 and 6. The transport driving roller 34 transports the glass substrates 24 and 25 facing each other at a desired interval and receiving the lower portion in an upright state. Books) are lined up. Also,
The guide roller 35 and the suction device 36 together with the glass substrate 2
4 and 25 are held in an upright state while guiding conveyance, and a plurality of pairs (6 pairs in the figure) are erected in the film forming chamber 18 with one pair of left and right adjustable intervals. The suction device 36 holds the glass substrates 24 and 25 in an upright state, and guides the high-frequency applying electrodes 19 and 20 in the film-forming chamber 18 before and after the high-frequency applying electrodes 19 and 20 with a pair of left and right adjustable gaps. It is erected between the rollers 35.

【0039】上記構成のプラズマCVD装置において、
2列のガラス基板24、25は、図示省略する搬送装置
により、必要に応じて配置される前処理室を経由して導
入口26より成膜室18内に送られる。成膜室18内に
おいては、ガラス基板24と25は、左右(搬送方向に
直行する方向)の間隔が調整された搬送手段23により
搬送され高周波印加電極19と20の間を送通すること
で成膜処理される。その後、図示省略する搬送装置によ
り、導出口27より、必要に応じて配置される後処理室
を経由して外部へ取出される。
In the plasma CVD apparatus having the above structure,
The two rows of glass substrates 24 and 25 are sent from the inlet 26 into the film forming chamber 18 via a pretreatment chamber which is arranged as needed by a transport device (not shown). In the film forming chamber 18, the glass substrates 24 and 25 are transported by the transporting means 23 in which the distance between the right and left (direction orthogonal to the transport direction) is adjusted, and the glass substrates 24 and 25 are transported between the high frequency applying electrodes 19 and 20. A film forming process is performed. After that, the sheet is taken out from the outlet 27 by a carrying device (not shown) via a post-treatment chamber arranged as necessary.

【0040】上記成膜処理の際、成膜室18内は、雰囲
気ガス供給口28に接続されたガス導入系や排気口29
に接続された排気系に設けられている雰囲気制御手段
(図示せず)により雰囲気制御がなされている。また、
一対の高周波印加電極19、20の双方に、同じ周波数
で位相が互いに180度ずれた高周波電位が供給される
か、もしくは、片側のみに供給されている。ただし、高
周波電位が片側のみに供給される場合には、もう一方は
接地される。この結果、プラズマ37がガラス基板24
と25の間に形成される。また、原料ガス供給部材21
の開口32からはプラズマ37内に原料ガスが供給さ
れ、成膜に寄与しなかった未処理のガス等は排気部材2
2の開口33より吸引されて外部へ排気される。なお、
矢印38は原料ガスの流れ、39は未処理のガス等の流
れを示す。
During the film forming process, the inside of the film forming chamber 18 has a gas introduction system connected to the atmosphere gas supply port 28 and an exhaust port 29.
The atmosphere is controlled by an atmosphere control means (not shown) provided in the exhaust system connected to. Also,
Both the pair of high-frequency applying electrodes 19 and 20 are supplied with high-frequency potentials having the same frequency and 180 degrees out of phase with each other, or are supplied to only one side. However, when the high frequency potential is supplied to only one side, the other side is grounded. As a result, the plasma 37 is transferred to the glass substrate 24.
And 25. In addition, the raw material gas supply member 21
The raw material gas is supplied into the plasma 37 from the opening 32 of the exhaust gas, and the unprocessed gas or the like that has not contributed to the film formation is exhausted from the exhaust member 2.
It is sucked from the second opening 33 and exhausted to the outside. In addition,
The arrow 38 shows the flow of the raw material gas, and 39 shows the flow of the untreated gas or the like.

【0041】従って、プラズマ37は、一対の高周波印
加電極19と20の間の対向するガラス基板24と25
の内側に発生するので、そのプラズマ37中に流れ込む
原料ガスが解離して生成される原料ガスの堆積前駆体
は、その大部分が対向して搬送されるガラス基板24、
25の対向面のうちどちらかに堆積するため、高周波電
力効率とガス使用効率が大きく改善される。また、プラ
ズマ37を発生させるための一対の高周波印加電極19
と20は、ガラス基板24と25が間欠的ではあるがそ
れぞれ介在するためプラズマ発生領域に直接曝される頻
度が減少するので、電極表面に膜が堆積する割合は極端
に少なくなり、高周波印加電極19、20を含む成膜室
18内のクリーニング頻度を大幅に少なくでき、結果と
して、成膜に要するランニングコストを大幅に低減でき
る。
Therefore, the plasma 37 is generated by the glass substrates 24 and 25 facing each other between the pair of high frequency applying electrodes 19 and 20.
Of the deposition precursor of the source gas that is generated by dissociating the source gas flowing into the plasma 37, most of the deposition precursor is transported to face the glass substrate 24,
Since it is deposited on either of the 25 facing surfaces, the high frequency power efficiency and the gas use efficiency are greatly improved. In addition, a pair of high frequency applying electrodes 19 for generating plasma 37.
Since the glass substrates 24 and 25 are respectively interposed, the frequency of being directly exposed to the plasma generation region is reduced, so that the rate of deposition of the film on the electrode surface is extremely reduced and the high frequency application electrodes The cleaning frequency in the film forming chamber 18 including 19 and 20 can be significantly reduced, and as a result, the running cost required for film formation can be significantly reduced.

【0042】なお、上述した図4の実施形態における成
膜に際しては、雰囲気ガス供給口28からは、流量を制
御されたArガスなどの比較的放電がしにくいガス(プ
ラズマ抑制ガス)が用途に応じて供給され、原料ガス供
給部材21の開口32から供給される原料ガスには、流
量を制御されたHeガスなどの比較的放電がし易いガス
(プラズマ安定化ガス)が混合されるとよい。また、ガ
ラス基板24、25の反り対策として、吸引装置36に
よる吸引力を調整してガイドローラ35に適切に引き付
けることで反りを矯正することができる。この吸引装置
36としては、例えば静電チャック方式、あるいは室内
ガス圧が高ければ吸引方式などが使用し得る。
During the film formation in the embodiment of FIG. 4 described above, a gas (plasma suppressing gas) which is relatively hard to discharge, such as Ar gas whose flow rate is controlled, is used from the atmosphere gas supply port 28. The raw material gas that is supplied accordingly and is supplied from the opening 32 of the raw material gas supply member 21 is preferably mixed with a gas (plasma stabilizing gas) that is relatively easy to discharge, such as He gas whose flow rate is controlled. . Further, as a measure against the warp of the glass substrates 24 and 25, the warp can be corrected by adjusting the suction force by the suction device 36 and appropriately attracting the guide roller 35. As the suction device 36, for example, an electrostatic chuck method or a suction method if the room gas pressure is high can be used.

【0043】高周波印加電極19、20とガラス基板2
4、25との距離は0.5mm以下となるように調整し
た。また、ガラス基板24と25間の距離は10〜30mm
の範囲で調整できるようにしている。ただし、これは本
例では原料ガス供給部材21と排気部材22をガラス基
板24と25の間に配置しているためである。また、プ
ロセスによっては、本例において雰囲気ガス供給口28
から原料ガスとプラズマ安定化ガスを供給して、排気口
29から排出しても、ガラス基板24と25の間に一方
向に原料ガスを流すことができる。この場合には原料ガ
ス供給部材21と排気部材22は不要となるので、ガラ
ス基板24、25間距離は1mm程度まで短くすること
もできる。プラズマ抑制ガスは必ずしも必要とはしない
が、高周波印加電極19、20とガラス基板24、25
との間隙で異常放電が発生するようなプロセス条件で
は、その間隙に局所的にプラズマ抑制ガスを供給してそ
の異常放電を抑制する方がよい。
High frequency applying electrodes 19 and 20 and glass substrate 2
The distances to 4 and 25 were adjusted to be 0.5 mm or less. The distance between the glass substrates 24 and 25 is 10 to 30 mm.
The range can be adjusted. However, this is because the source gas supply member 21 and the exhaust member 22 are arranged between the glass substrates 24 and 25 in this example. Also, depending on the process, in this example, the atmospheric gas supply port 28
Even if the raw material gas and the plasma stabilizing gas are supplied from the above and exhausted from the exhaust port 29, the raw material gas can flow between the glass substrates 24 and 25 in one direction. In this case, the raw material gas supply member 21 and the exhaust member 22 are not necessary, so the distance between the glass substrates 24 and 25 can be shortened to about 1 mm. The plasma suppressing gas is not always necessary, but the high frequency applying electrodes 19 and 20 and the glass substrates 24 and 25
Under process conditions in which an abnormal discharge occurs in the gap between and, it is better to locally supply the plasma suppressing gas to the gap to suppress the abnormal discharge.

【0044】また、上述した本発明で用いる高周波の周
波数は、グロー放電を形成する周波数が望ましい。従っ
て、周波数は数MHz以上が望ましい。数百Hz以下で
は無声放電が生じるため、膜に影響を及ぼす可能性もあ
り、用途によっては不適となる。そこで本発明では13.5
6MHzの高周波を想定している。13.56MHzとする理
由は、それ以上の高周波たとえば100〜200MHzを用い
ても同等以上の効果が得られるが、13.56MHzの方が
電源コストを低くできるからである。
Further, the frequency of the high frequency used in the present invention described above is preferably a frequency for forming glow discharge. Therefore, the frequency is preferably several MHz or higher. Silent discharge occurs at a frequency of several hundreds Hz or less, which may affect the film, which is not suitable for some applications. Therefore, in the present invention, 13.5
A high frequency of 6 MHz is assumed. The reason why the frequency is set to 13.56 MHz is that even if a higher frequency such as 100 to 200 MHz is used, the same or higher effect can be obtained, but 13.56 MHz can lower the power supply cost.

【0045】また、成膜室内の雰囲気のガス圧について
も、プロセスによって最適に決めるものではあるが、数
百Pa〜十数万Paに制御されることが好ましく、具体
的には665Pa〜110000Paを想定している。
この範囲のガス圧であれば、対向する被処理材の被処理
面間以外でのプラズマ発生をより一層抑制させることが
でき、不要な放電を避けることができる。ガス圧が66
5Pa未満では一般に放電間距離が大きくなるほど放電
開始電圧が低くなるので、被処理材の被処理面間以外で
の放電が発生し易くなり、プラズマの広がりが懸念され
る。またガス圧が110000Pa超では異常放電が懸
念されるので、この異常放電を起こさないようにするた
めである。また、電極やガイドローラ等搬送手段などの
基板温度を左右する部材の温度は制御することが望まし
い。
Also, the gas pressure of the atmosphere in the film forming chamber is optimally determined by the process, but it is preferably controlled to several hundred Pa to several hundreds of thousands of Pa, specifically, 665 Pa to 110000 Pa. I am assuming.
If the gas pressure is within this range, plasma generation other than between the surfaces to be processed of the opposed material to be processed can be further suppressed, and unnecessary discharge can be avoided. Gas pressure is 66
If the distance is less than 5 Pa, the discharge start voltage generally decreases as the distance between discharges increases, so that discharge is likely to occur in areas other than the surface to be processed of the material to be processed, and there is concern that the plasma may spread. Further, if the gas pressure exceeds 110000 Pa, abnormal discharge may occur, so this abnormal discharge is prevented. Further, it is desirable to control the temperature of a member such as an electrode or a guide roller that influences the temperature of the substrate.

【0046】[0046]

【発明の効果】以上説明したように、本発明に係るプラ
ズマCVD装置及びプラズマCVDによる成膜方法によ
れば、成膜中に周辺部材に堆積する膜の堆積速度を極端
に低減でき、クリーニングに要するランニングコストを
低減できる。たとえば、長尺の樹脂フィルムの成膜や、
建材ガラスやフラットパネルディスプレイ製造ラインで
用いられるガラス基板の成膜に、最適な装置構成及び成
膜方法となっている。
As described above, according to the plasma CVD apparatus and the method for forming a film by the plasma CVD according to the present invention, the deposition rate of the film deposited on the peripheral member during the film formation can be extremely reduced, and the cleaning can be performed. The running cost required can be reduced. For example, forming a long resin film,
It has an optimal device configuration and film forming method for forming glass on building materials glass and glass substrates used in flat panel display production lines.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るプラズマCVD装置の説明図であ
って、発明の要部である成膜室内を図示したものであ
る。
FIG. 1 is an explanatory view of a plasma CVD apparatus according to the present invention, showing a film forming chamber which is a main part of the invention.

【図2】本発明に係るプラズマCVD装置の別の実施形
態を示す説明図である。
FIG. 2 is an explanatory view showing another embodiment of the plasma CVD apparatus according to the present invention.

【図3】本発明に係るプラズマCVD装置の別の実施形
態を示す説明図である。
FIG. 3 is an explanatory view showing another embodiment of the plasma CVD apparatus according to the present invention.

【図4】本発明に係るプラズマCVD装置の別の実施形
態を示す上方から見た平面断面図である。
FIG. 4 is a plan sectional view showing another embodiment of the plasma CVD apparatus according to the present invention as seen from above.

【図5】従来のプラズマCVD装置の説明図であって、
発明の要部である成膜室内を図示したものである。
FIG. 5 is an explanatory view of a conventional plasma CVD apparatus,
1 is a view showing a film forming chamber which is a main part of the invention.

【符号の説明】[Explanation of symbols]

1:成膜室 2、3:ローラ電極
4:原料ガス供給部材 5:排気部材 6a〜6d:ガイドローラ 7、8:被処理材 9:制御装置 1
0:高周波電源 11、12:開口 13:プラズマ 1
4:原料ガスの流れ 15:未処理のガス等の流れ 6e、6
f:ガイドローラ 16、17:高周波印加電極 1
8:成膜室 19、20:高周波印加電極 2
1:原料ガス供給部材 22:排気部材 23:搬送手段 2
4、25:ガラス基板 26:導入口 27:導出口 2
8:雰囲気ガス供給口 29:排気口 30:制御装置 3
1:高周波電源 32、33:開口 34:搬送用駆動ローラ 3
5:ガイドローラ 37:吸引装置 38:原料ガスの流れ 39:未処理のガス等の流れ
1: Film forming chamber 2, 3: Roller electrode
4: Raw material gas supply member 5: Exhaust member 6a to 6d: Guide rollers 7, 8: Processed material 9: Control device 1
0: High frequency power supply 11, 12: Opening 13: Plasma 1
4: Flow of raw material gas 15: Flow of untreated gas, etc. 6e, 6
f: guide rollers 16 and 17: high frequency applying electrode 1
8: Film forming chambers 19 and 20: High frequency applying electrode 2
1: Raw material gas supply member 22: Exhaust member 23: Conveying means 2
4, 25: Glass substrate 26: Inlet port 27: Outlet port 2
8: Atmosphere gas supply port 29: Exhaust port 30: Control device 3
1: High-frequency power sources 32, 33: Opening 34: Transport drive roller 3
5: Guide roller 37: Suction device 38: Flow of raw material gas 39: Flow of untreated gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 貴之 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 林 和志 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 後藤 裕史 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 小林 明 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 中上 明光 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4K030 CA06 CA07 FA01 GA12 GA14 JA03 KA30 LA18 LA24 5F045 AA08 AF07 BB08 BB10 DP11 DP22 EF20 EH04 EH07 EH12 EH19 EN04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Hirano             1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture             Kobe Steel Co., Ltd.Kobe Research Institute (72) Inventor Kazushi Hayashi             1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture             Kobe Steel Co., Ltd.Kobe Research Institute (72) Inventor Hiroshi Goto             1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture             Kobe Steel Co., Ltd.Kobe Research Institute (72) Inventor Akira Kobayashi             1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture             Kobe Steel Co., Ltd.Kobe Research Institute (72) Inventor Akemi Nakagami             1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture             Kobe Steel Co., Ltd.Kobe Research Institute F-term (reference) 4K030 CA06 CA07 FA01 GA12 GA14                       JA03 KA30 LA18 LA24                 5F045 AA08 AF07 BB08 BB10 DP11                       DP22 EF20 EH04 EH07 EH12                       EH19 EN04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プラズマを用いて、被処理材の成膜処理
をおこなうプラズマCVD装置において、成膜室内に、
一対の高周波印加電極と、この一対の高周波印加電極の
間に被処理材を対向させて移送させる搬送手段とを備え
てなることを特徴とするプラズマCVD装置。
1. A plasma CVD apparatus for forming a film on a material to be processed using plasma, in a film forming chamber,
A plasma CVD apparatus comprising: a pair of high-frequency applying electrodes, and a transporting unit that conveys a material to be processed while facing it between the pair of high-frequency applying electrodes.
【請求項2】 一対の高周波印加電極間を対向して移送
される被処理材の間に、移送方向と同方向又は逆方向に
原料ガスの流れを形成する原料ガス供給手段を備えてな
る請求項1に記載のプラズマCVD装置。
2. A raw material gas supply means for forming a flow of a raw material gas in the same direction or in the opposite direction to the transfer direction between the material to be processed which is transferred between the pair of high frequency applying electrodes facing each other. Item 2. A plasma CVD apparatus according to Item 1.
【請求項3】 請求項2に記載のプラズマCVD装置に
おいて、原料ガス供給手段が、相対的にプラズマ着火性
の高いガスを混合するプラズマ着火性ガス供給手段を含
み、一方、対向して移送される被処理材の外側に、相対
的にプラズマ着火性の劣るガスを供給する雰囲気ガス供
給手段を備えてなるプラズマCVD装置。
3. The plasma CVD apparatus according to claim 2, wherein the source gas supply means includes a plasma ignitable gas supply means for mixing a gas having a relatively high plasma ignitability, and the source gas supply means are opposed to each other. A plasma CVD apparatus comprising an atmosphere gas supply means for supplying a gas having a relatively poor plasma ignitability to the outside of the material to be processed.
【請求項4】 一対の高周波印加電極とそれぞれの電極
に沿う被処理材との間に生じる空間的ギャップが、実質
ゼロ、又は一対の高周波印加電極間を対向して移送され
る被処理材の間の空間的ギャップよりも小さく形成され
てなる請求項1乃至3のいずれかのプラズマCVD装
置。
4. A material to be processed which has a spatial gap between the pair of high frequency applying electrodes and the material to be processed along each electrode being substantially zero, or which is transported between the pair of high frequency applying electrodes facing each other. The plasma CVD apparatus according to any one of claims 1 to 3, wherein the plasma CVD apparatus is formed so as to have a size smaller than a spatial gap therebetween.
【請求項5】 所定の雰囲気に制御された成膜室内に配
置された一対の高周波印加電極の間に、被処理材をそれ
ぞれの電極に沿わせ対向させて移送させながら、対向す
る被処理材の間にプラズマを発生させるとともに、その
プラズマを横切る方向に原料ガスを流し、対向する被処
理材の2面を同時に成膜することを特徴とするプラズマ
CVDによる成膜方法。
5. A material to be treated which opposes a pair of high-frequency applying electrodes arranged in a film forming chamber controlled to have a predetermined atmosphere while the material to be treated is transferred along the respective electrodes so as to face each other. A plasma CVD film-forming method, characterized in that plasma is generated between the two, and a source gas is flowed in a direction that traverses the plasma to simultaneously form a film on two surfaces of a material to be treated that face each other.
JP2001240714A 2001-08-08 2001-08-08 Plasma cvd device and film deposition method by plasma cvd Withdrawn JP2003049273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001240714A JP2003049273A (en) 2001-08-08 2001-08-08 Plasma cvd device and film deposition method by plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001240714A JP2003049273A (en) 2001-08-08 2001-08-08 Plasma cvd device and film deposition method by plasma cvd

Publications (1)

Publication Number Publication Date
JP2003049273A true JP2003049273A (en) 2003-02-21

Family

ID=19071279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001240714A Withdrawn JP2003049273A (en) 2001-08-08 2001-08-08 Plasma cvd device and film deposition method by plasma cvd

Country Status (1)

Country Link
JP (1) JP2003049273A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087991A1 (en) 2003-03-31 2004-10-14 Konica Minolta Holdings, Inc. Thin film forming apparatus and method for forming thin film
WO2008001723A1 (en) * 2006-06-28 2008-01-03 Konica Minolta Holdings, Inc. Thin film forming apparatus and thin film forming method
WO2008065861A1 (en) * 2006-11-27 2008-06-05 Konica Minolta Business Technologies, Inc. Atmospheric plasma processing apparatus and atmospheric plasma processing method
WO2008099630A1 (en) * 2007-02-13 2008-08-21 Kabushiki Kaisha Kobe Seiko Sho Continuous film forming apparatus
JP2009035724A (en) * 2007-07-12 2009-02-19 Sekisui Chem Co Ltd Method and apparatus for plasma treatment
JP2010043319A (en) * 2008-08-12 2010-02-25 Konica Minolta Holdings Inc Plasma-discharge treatment apparatus
JP2011514265A (en) * 2008-02-08 2011-05-06 フジフィルム マニュファクチュアリング ヨーロッパ ビー.ヴィ. Method for manufacturing multilayer stack structure with improved WVTR barrier property
JPWO2010052846A1 (en) * 2008-11-05 2012-04-05 株式会社アルバック Winding type vacuum processing equipment
WO2012046778A1 (en) * 2010-10-08 2012-04-12 住友化学株式会社 Method for producing laminate by forming film by means of plasma cvd
JP2014037637A (en) * 2013-11-25 2014-02-27 Kobe Steel Ltd Cvd film deposition device
EP2653586A4 (en) * 2010-12-16 2015-05-27 Kobe Steel Ltd Plasma cvd apparatus
JP2016056390A (en) * 2014-09-05 2016-04-21 積水化学工業株式会社 Film surface processing method and device
CN106449342A (en) * 2015-08-06 2017-02-22 财团法人工业技术研究院 Electrode antifouling device and coating system
WO2018173505A1 (en) * 2017-03-22 2018-09-27 コニカミノルタ株式会社 Plasma cvd film formation device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1609884A1 (en) * 2003-03-31 2005-12-28 Konica Minolta Holdings, Inc. Thin film forming apparatus and method for forming thin film
EP1609884A4 (en) * 2003-03-31 2008-09-03 Konica Minolta Holdings Inc Thin film forming apparatus and method for forming thin film
WO2004087991A1 (en) 2003-03-31 2004-10-14 Konica Minolta Holdings, Inc. Thin film forming apparatus and method for forming thin film
US7647887B2 (en) 2003-03-31 2010-01-19 Konica Minolta Holdings, Inc. Thin film forming apparatus
US20100159156A1 (en) * 2006-06-28 2010-06-24 Konica Minolta Holdings, Inc. Thin film forming apparatus and thin film forming method
WO2008001723A1 (en) * 2006-06-28 2008-01-03 Konica Minolta Holdings, Inc. Thin film forming apparatus and thin film forming method
US8980007B2 (en) 2006-06-28 2015-03-17 Konica Minolta Holdings, Inc. Thin film forming apparatus and thin film forming method
JP4883085B2 (en) * 2006-06-28 2012-02-22 コニカミノルタホールディングス株式会社 Thin film forming apparatus and thin film forming method
WO2008065861A1 (en) * 2006-11-27 2008-06-05 Konica Minolta Business Technologies, Inc. Atmospheric plasma processing apparatus and atmospheric plasma processing method
JP5262723B2 (en) * 2006-11-27 2013-08-14 コニカミノルタビジネステクノロジーズ株式会社 Atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing method
EP2119811A4 (en) * 2007-02-13 2014-05-07 Kobe Steel Ltd Continuous film forming apparatus
WO2008099630A1 (en) * 2007-02-13 2008-08-21 Kabushiki Kaisha Kobe Seiko Sho Continuous film forming apparatus
KR101148760B1 (en) * 2007-02-13 2012-05-24 가부시키가이샤 고베 세이코쇼 Plasma cvd apparatus
US8303714B2 (en) 2007-02-13 2012-11-06 Kobe Steel, Ltd. Continuous film forming apparatus
EP2119811A1 (en) * 2007-02-13 2009-11-18 Kabushiki Kaisha Kobe Seiko Sho Continuous film forming apparatus
JP2009035724A (en) * 2007-07-12 2009-02-19 Sekisui Chem Co Ltd Method and apparatus for plasma treatment
JP2011514265A (en) * 2008-02-08 2011-05-06 フジフィルム マニュファクチュアリング ヨーロッパ ビー.ヴィ. Method for manufacturing multilayer stack structure with improved WVTR barrier property
JP2010043319A (en) * 2008-08-12 2010-02-25 Konica Minolta Holdings Inc Plasma-discharge treatment apparatus
JPWO2010052846A1 (en) * 2008-11-05 2012-04-05 株式会社アルバック Winding type vacuum processing equipment
JP5324596B2 (en) * 2008-11-05 2013-10-23 株式会社アルバック Winding type vacuum processing equipment
US8673078B2 (en) 2008-11-05 2014-03-18 Ulvac, Inc. Take-up vacuum processing apparatus
WO2012046778A1 (en) * 2010-10-08 2012-04-12 住友化学株式会社 Method for producing laminate by forming film by means of plasma cvd
EP2653586A4 (en) * 2010-12-16 2015-05-27 Kobe Steel Ltd Plasma cvd apparatus
KR101533902B1 (en) * 2010-12-16 2015-07-03 가부시키가이샤 고베 세이코쇼 Plasma cvd apparatus
JP2014037637A (en) * 2013-11-25 2014-02-27 Kobe Steel Ltd Cvd film deposition device
JP2016056390A (en) * 2014-09-05 2016-04-21 積水化学工業株式会社 Film surface processing method and device
CN106449342A (en) * 2015-08-06 2017-02-22 财团法人工业技术研究院 Electrode antifouling device and coating system
WO2018173505A1 (en) * 2017-03-22 2018-09-27 コニカミノルタ株式会社 Plasma cvd film formation device

Similar Documents

Publication Publication Date Title
JP2003049273A (en) Plasma cvd device and film deposition method by plasma cvd
US20080139003A1 (en) Barrier coating deposition for thin film devices using plasma enhanced chemical vapor deposition process
US9133547B2 (en) Plasma CVD apparatus
EP2298956B1 (en) Film deposition method
JP5542488B2 (en) Deposition equipment
KR20110020745A (en) Film deposition device
US8999062B2 (en) Film depositing apparatus
JP2009280873A (en) Method of manufacturing gas barrier film
JP5562723B2 (en) Film forming method, film forming apparatus, and gas barrier film manufacturing method
JP2011184738A (en) Method for producing gas barrier film
US20100071722A1 (en) Film roll, and cleaning method for film depositing apparatus
JP2006164683A (en) Inline type plasma processing device
JP2009174001A (en) Film deposition apparatus and film deposition method
JP4870615B2 (en) Plasma CVD film forming apparatus and plasma CVD film forming method
JP2006257503A (en) Plasma discharge treatment apparatus
JP2001518686A (en) Dual-face showerhead electrode for magnetron plasma generator
JP2011179084A (en) Atmospheric plasma apparatus
KR101728765B1 (en) Layer-forming device and layer-forming method
JP2009161782A (en) Atmospheric plasma processing apparatus
JP2009052098A (en) Film deposition system
JP2002231642A (en) Plasma processor, plasma-processing machine and plasma- processing method
JP7286477B2 (en) Thin film forming equipment
JP2009052103A (en) Film deposition system
JP5095087B2 (en) Film forming apparatus and film forming method
JP2009074154A (en) Film deposition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061003