JP2003045434A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2003045434A
JP2003045434A JP2001230837A JP2001230837A JP2003045434A JP 2003045434 A JP2003045434 A JP 2003045434A JP 2001230837 A JP2001230837 A JP 2001230837A JP 2001230837 A JP2001230837 A JP 2001230837A JP 2003045434 A JP2003045434 A JP 2003045434A
Authority
JP
Japan
Prior art keywords
boron
graphite
carbon
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001230837A
Other languages
Japanese (ja)
Inventor
Yuichi Takatsuka
祐一 高塚
Katsunori Suzuki
克典 鈴木
Kenji Hara
賢二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001230837A priority Critical patent/JP2003045434A/en
Publication of JP2003045434A publication Critical patent/JP2003045434A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery with high output and long life characteristics. SOLUTION: A nonaqueous electrolyte secondary battery has a positive electrode containing lithium manganate and carbon black or graphite; and a negative electrode containing amorphous carbon and acetylene black or graphite. Boron of 0.08-3 wt.% is contained in at least one of the carbon black or graphite of the positive electrode and the amorphous carbon and acetylene black or graphite of the negative electrode. Reaction of electrons with lithium ions on the surface of the positive electrode is made smooth, and local resistance is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に係り、特に、リチウム遷移金属複合酸化物及び炭素材
を含む正極と、リチウムイオンを脱挿入可能な炭素材及
び選択的に炭素質導電材を含む負極とを備えたリチウム
二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode containing a lithium transition metal composite oxide and a carbon material, a carbon material capable of deintercalating lithium ions, and a selectively carbonaceous conductive material. And a negative electrode including a material.

【0002】[0002]

【従来の技術】従来の民生用携帯機器で使用されるリチ
ウム二次電池の大電流放電は、2〜3C程度の高率放電
特性を満足すれば良かった。しかし、電気自動車(E
V)用、特にエンジンとモータとの両方を持つハイブリ
ット車(HEV)などのモータ駆動に利用される電池
は、数秒から数十秒の短時間に10〜30Cの大電流を
供給することが要求され、従来にはない短時間での高出
力特性を必要とされている。
2. Description of the Related Art A large current discharge of a lithium secondary battery used in a conventional portable device for consumer use has only to satisfy a high rate discharge characteristic of about 2 to 3C. However, electric vehicles (E
V), in particular, a battery used for driving a motor of a hybrid vehicle (HEV) having both an engine and a motor is required to supply a large current of 10 to 30 C in a short time of several seconds to several tens of seconds. Therefore, it is required to have a high output characteristic in a short time, which has never been seen before.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、大電流
で放電する際、リチウムイオンが正極の表面に集中し
て、電子を受け取り内部拡散していく過程において抵抗
成分が発生する。抵抗成分の影響で電圧の低下を生じ、
電池の出力が低下するため、正極の表面での抵抗を減少
させることが、高出力の電池を得るために有効かつ重要
である。また、抵抗成分を小さくすることで、局部的な
正極材の構造破壊や電解液の劣化も抑制できると考えら
れる。
However, when a large current is discharged, lithium ions are concentrated on the surface of the positive electrode and a resistance component is generated in the process of receiving electrons and internally diffusing. The voltage drop occurs due to the effect of the resistance component,
Since the output of the battery decreases, it is effective and important to reduce the resistance on the surface of the positive electrode in order to obtain a high output battery. Further, it is considered that by reducing the resistance component, local structural destruction of the positive electrode material and deterioration of the electrolytic solution can be suppressed.

【0004】本発明は、上記事案に鑑み、高出力かつ寿
命特性に優れたリチウム二次電池を提供することを課題
とする。
In view of the above problems, it is an object of the present invention to provide a lithium secondary battery having high output and excellent life characteristics.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、リチウム遷移金属複合酸化物及び炭素材
を含む正極と、リチウムイオンを脱挿入可能な炭素材及
び選択的に炭素質導電材を含む負極とを備えたリチウム
二次電池において、前記正負極の炭素材及び前記炭素質
導電材の少なくともいずれかにホウ素を所定量含有する
ことを特徴とする。
In order to solve the above problems, the present invention provides a positive electrode containing a lithium transition metal composite oxide and a carbon material, a carbon material capable of deintercalating lithium ions, and a carbonaceous material selectively. In a lithium secondary battery including a negative electrode containing a conductive material, a predetermined amount of boron is contained in at least one of the carbon material of the positive and negative electrodes and the carbonaceous conductive material.

【0006】本発明では、正極に炭素材、負極にリチウ
ムイオンを脱挿入可能な炭素材及び選択的に炭素質導電
材を含んでおり、正負極の炭素材及び炭素質導電材の少
なくともいずれかにホウ素を含有させたため、瞬間的な
大電流放電時に必要な電子を供給できるので、正極の表
面の電子とリチウムイオンとの反応を円滑にし抵抗を低
減でき高出力を得ることができると共に、局部的な抵抗
を小さくできるので、正極のストレスも緩和され寿命を
向上させることができる。
In the present invention, the positive electrode contains a carbon material, the negative electrode contains a carbon material capable of deintercalating lithium ions, and optionally a carbonaceous conductive material, and at least one of the positive and negative electrode carbon materials and the carbonaceous conductive material. Since boron is contained in the cathode, necessary electrons can be supplied during momentary high-current discharge, so that the reaction between the electrons on the surface of the positive electrode and lithium ions can be made smooth and the resistance can be reduced to obtain a high output. Since the effective resistance can be reduced, the stress of the positive electrode can be relieved and the life can be improved.

【0007】この場合において、正負極の炭素材及び炭
素質導電材の少なくともいずれかに対しホウ素が0.0
8重量%以上3重量%以下含有されていることが好まし
い。また、この場合において、正極の炭素材及び炭素質
導電材はカーボンブラック又は黒鉛であることが好まし
い。更に、正極にカーボンブラック及び黒鉛を含有し、
カーボンブラック及び黒鉛の少なくともカーボンブラッ
クにホウ素を含有し、該ホウ素がカーボンブラック及び
黒鉛中に3重量%以下の割合で含有されていることがよ
り好ましい。
[0007] In this case, boron is 0.0
It is preferable that the content is 8% by weight or more and 3% by weight or less. Further, in this case, the carbon material and the carbonaceous conductive material of the positive electrode are preferably carbon black or graphite. Furthermore, the positive electrode contains carbon black and graphite,
It is more preferable that at least carbon black of carbon black and graphite contains boron, and the boron is contained in carbon black and graphite at a ratio of 3% by weight or less.

【0008】[0008]

【発明の実施の形態】以下、本発明をHEV用の非水電
解液リチウム二次電池に適用した実施の形態について説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments in which the present invention is applied to a non-aqueous electrolyte lithium secondary battery for HEV will be described below.

【0009】(正極)平均粒径20μmのリチウム遷移
金属複合酸化物(正極活物質)としてのマンガン酸リチ
ウムと、炭素材としてのカーボンブラック、黒鉛と、結
着剤としてポリフッ化ビニリデン(PVDF)とを、後
述する所定割合(以下、配合割合Rという。)で配合
し、正極合剤とした。正極合剤に分散溶媒としてN−メ
チルピロリドンを添加し、混練したスラリを、厚さ20
μmのアルミニウム箔の両面に均一に塗布し、乾燥させ
た後、プレスすることで正極を得た。
(Cathode) Lithium manganate as a lithium-transition metal composite oxide (cathode active material) having an average particle size of 20 μm, carbon black and graphite as a carbon material, and polyvinylidene fluoride (PVDF) as a binder. Was mixed at a predetermined ratio described below (hereinafter, referred to as a mixing ratio R p ) to obtain a positive electrode mixture. N-methylpyrrolidone was added as a dispersion solvent to the positive electrode mixture, and the kneaded slurry was adjusted to a thickness of 20.
A positive electrode was obtained by uniformly coating both sides of a μm aluminum foil, drying and pressing.

【0010】(負極)平均粒径10μmの炭素材として
の非晶質炭素と、選択的に配合する炭素質導電材として
のアセチレンブラック、黒鉛と、結着剤としてポリフッ
化ビニリデンとを、後述する所定割合(以下、配合割合
という。)で配合し負極合剤とした。負極合剤に分
散溶媒としてN−メチルピロリドンを添加し、混練した
スラリを、厚さ10μmの圧延銅箔の両面に塗布し、乾
燥させた後、プレスすることで負極を得た。
(Negative electrode) Amorphous carbon as a carbon material having an average particle size of 10 μm, acetylene black and graphite as a carbonaceous conductive material to be selectively mixed, and polyvinylidene fluoride as a binder will be described later. predetermined ratio was compounded negative electrode mixture (hereinafter, referred to. compounding ratio R n). N-methylpyrrolidone was added as a dispersion solvent to the negative electrode mixture, and the kneaded slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 μm, dried and then pressed to obtain a negative electrode.

【0011】(ホウ素含有材)正極のカーボンブラック
(以下、CBと略称する。)又は黒鉛(以下、Gと略
称する。)、負極の非晶質炭素(以下、負極活物質と略
称する。)、アセチレンブラック(以下、ABと略称す
る。)又は黒鉛(以下、Gと略称する。)の少なくと
もいずれかにホウ素を含有させた。G又はGにホウ
素を含有させたホウ素含有黒鉛は、天然黒鉛とボロン化
合物とを所定量で混合し、2000゜Cで焼成したり、
又はGを繊維状に合成する過程でホウ酸トリメチ
ルを加熱し、気相中に流し込むことで得た。また、負極
活物質にホウ素を含有させたホウ素含有負極活物質は、
前駆体に所定量のホウ酸を混合してから焼成して得た。
更に、CBにホウ素を含有させたホウ素含有カーボンブ
ラックは、アセチレンガスとホウ酸トリメチルを予め所
定量で混合し、約2000゜Cの反応層に噴霧すること
で得た。また、ABにホウ素を含有させたホウ素含有ア
セチレンブラックもホウ素含有カーボンブラックと同様
に得た。CB、AB、G、Gに対するホウ素の割合
(以下、ホウ素含有割合Bという。)を0.08重量
%〜3重量%とした。
(Boron-containing material) Carbon black (hereinafter abbreviated as CB) or graphite (hereinafter abbreviated as GP ) of the positive electrode, amorphous carbon of the negative electrode (hereinafter abbreviated as negative electrode active material). ), Acetylene black (hereinafter abbreviated as AB) or graphite (hereinafter abbreviated as Gn ) at least one of which contains boron. The boron-containing graphite containing boron in G P or G n is a mixture of natural graphite and a boron compound in a predetermined amount, followed by firing at 2000 ° C.
It was obtained by heating trimethyl borate in the process of synthesizing G P or G n into a fibrous state and pouring it into the gas phase. Further, the boron-containing negative electrode active material obtained by containing boron in the negative electrode active material,
It was obtained by mixing a predetermined amount of boric acid with the precursor and then firing it.
Further, the boron-containing carbon black in which CB contains boron was obtained by previously mixing a predetermined amount of acetylene gas and trimethyl borate and spraying the mixture onto a reaction layer at about 2000 ° C. Further, boron-containing acetylene black obtained by containing AB in boron was also obtained in the same manner as the boron-containing carbon black. CB, AB, G P, the proportion of boron for G n (hereinafter, referred to as boron-containing fraction B r.) Was 0.08 wt% to 3 wt%.

【0012】(電池の作製)以上のように作製した正極
及び負極を、厚さ40μmのポリオレフィン系セパレー
タを介して捲回し電極群とし、この電極群を直径40m
m、高さ80mmの円筒状のステンレス製有底電池缶内
に挿入し、エチレンカーボネートとジメチルカーボネー
トの混合有機溶媒に、6フッ化リン酸リチウム(LiP
)を1モル/リットル溶解した非水電解液を注液し
て上蓋をカシメ封口して非水電解液リチウム二次電池を
作製した。
(Production of Battery) The positive electrode and the negative electrode produced as described above are wound with a 40 μm-thick polyolefin separator as an electrode group to form an electrode group having a diameter of 40 m.
m, a height of 80 mm, and inserted into a cylindrical stainless steel bottomed battery can, and mixed with a mixed organic solvent of ethylene carbonate and dimethyl carbonate, lithium hexafluorophosphate (LiP
A non-aqueous electrolyte solution in which F 6 ) was dissolved at 1 mol / liter was injected, and the upper lid was caulked to form a non-aqueous electrolyte lithium secondary battery.

【0013】[0013]

【実施例】次に、上述した本実施形態に従って作製した
実施例の非水電解液リチウム二次電池について説明す
る。比較のために作製した比較例の電池についても併記
する。なお、これら実施例及び比較例の電池の容量は
5.0Ahとした。
EXAMPLE Next, a non-aqueous electrolyte lithium secondary battery of an example produced according to the above-described embodiment will be described. The batteries of Comparative Examples prepared for comparison are also shown. The capacities of the batteries of these examples and comparative examples were 5.0 Ah.

【0014】(実施例1)下表1に示すように、実施例
1では、正極活物質:CB:G:PVDFの配合割合
を、90:5:0:5(重量%)とし、CB中のホ
ウ素含有割合Bを0.08重量%とした。また、下表
2に示すように、負極活物質:AB:G:PVDFの
配合割合Rを、90:0:0:10(重量%)とし、
AB及びG にはホウ素を含有しないものを用いた。
(Example 1) As shown in Table 1 below, examples
1, the positive electrode active material: CB: GP: PVDF blending ratio
RPTo 90: 5: 0: 5 (% by weight),
Arsenic content ratio BrWas 0.08% by weight. Also, the table below
2, the negative electrode active material: AB: Gn: PVDF
Mixing ratio RnTo 90: 0: 0: 10 (wt%),
AB and G nThe material used did not contain boron.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例2〜4)表1に示すように、実施
例2〜4では、CB中のホウ素含有割合Bをそれぞれ
0.1、1.0、3.0重量%とした以外は実施例1と
同様に電池を作製した。
[0016] As shown in (Example 2-4) Table 1, in Examples 2-4, except that the boron content B r in CB respectively 0.1,1.0,3.0 wt% A battery was manufactured in the same manner as in Example 1.

【0017】(実施例5〜8)表1に示すように、実施
例5〜8では、配合割合Rを、85:0:10:5と
し、G中のホウ素含有割合Bをそれぞれ0.08、
0.1、1.0、3.0重量%とした以外は実施例1と
同様に電池を作製した。
As shown in (Example 5-8) Table 1, in Examples 5-8, the proportion R P, 85: 0: 10 : and 5, respectively boron content B r in G p 0.08,
A battery was produced in the same manner as in Example 1 except that the amounts were 0.1, 1.0 and 3.0% by weight.

【0018】(実施例9)表1に示すように、実施例9
では、配合割合Rを、85:2:8:5とし、CB中
のホウ素含有割合Bを1.0重量%とした以外は実施
例1と同様に電池を作製した。
(Example 9) As shown in Table 1, Example 9
In the mixing ratio R P, 85: 2: 8 : and 5, was prepared in the same manner as the battery of Example 1 except that the 1.0 wt% boron content B r in CB.

【0019】(実施例10)表1に示すように、実施例
10では、配合割合Rを、85:2:8:5とし、C
B及びG中のホウ素含有割合Bをそれぞれ1.0重
量%とした以外は実施例1と同様に電池を作製した。
(Example 10) As shown in Table 1, in Example 10, the compounding ratio R P was 85: 2: 8: 5, and C
A battery was produced in the same manner as in Example 1 except that the boron content ratios B r in B and G p were each 1.0 wt%.

【0020】(比較例1〜3)表1に示すように、比較
例1〜3では、正極のCB及びGにはホウ素を含有せ
ず、配合割合Rを、それぞれ90:5:0:5、8
5:0:10:5、85:2:8:5とした以外は実施
例1と同様に電池を作製した。
(Comparative Examples 1 to 3) As shown in Table 1, in Comparative Examples 1 to 3, CB and G p of the positive electrode did not contain boron and the compounding ratio R P was 90: 5: 0, respectively. : 5, 8
A battery was made in the same manner as in Example 1 except that the time was 5: 0: 10: 5 and 85: 2: 8: 5.

【0021】(実施例11)表2に示すように、実施例
11では、配合割合Rを、90:0:0:10とし、
負極活物質中のホウ素含有割合Bを0.08重量%と
した。配合割合Rを、90:5:0:5とし、CB及
びGにはホウ素を含有しないものを用いた。
(Example 11) As shown in Table 2, in Example 11, the compounding ratio R n was set to 90: 0: 0: 10,
Boron content B r of the negative electrode active material was 0.08 wt%. The compounding ratio R p was 90: 5: 0: 5, and CB and G n did not contain boron.

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例12〜14)表2に示すように、
実施例12〜14では、負極活物質中のホウ素含有割合
をそれぞれ0.1、1.0、3.0重量%とした以
外は実施例11と同様に電池を作製した。
(Examples 12 to 14) As shown in Table 2,
In Examples 12 to 14, the boron content in the negative electrode active material
B rBelow 0.1, 1.0 and 3.0% by weight respectively.
A battery was produced in the same manner as in Example 11 except for the above.

【0024】(実施例15〜18)表2に示すように、
実施例15〜18では、配合割合Rを、88:2:
0:10とし、AB中のホウ素含有割合Bをそれぞれ
0.08、0.1、1.0、3.0重量%とした以外は
実施例11と同様に電池を作製した。
(Examples 15 to 18) As shown in Table 2,
In Examples 15 to 18, the compounding ratio R n was 88: 2 :.
And 0:10, except that the boron content B r in AB respectively 0.08,0.1,1.0,3.0 wt% was prepared in the same manner as the battery of Example 11.

【0025】(実施例19〜22)表2に示すように、
実施例19〜22では、配合割合Rを、85:0:
5:10とし、G中のホウ素含有割合Bをそれぞれ
0.08、0.1、1.0、3.0重量%とした以外は
実施例11と同様に電池を作製した。
(Examples 19 to 22) As shown in Table 2,
In Examples 19 to 22, the blending ratio R n was set to 85: 0:
A battery was produced in the same manner as in Example 11 except that the boron content ratio B r in G n was set to 5:10 and 0.08, 0.1, 1.0, and 3.0% by weight, respectively.

【0026】(実施例23〜27)表2に示すように、
実施例23〜27では、負極活物質とABとの割合をそ
れぞれ89.2:0.8、89:1、85:5、80:
10、79:11とし、AB中のホウ素含有割合B
1.0重量%とした以外は実施例11と同様に電池を作
製した。
(Examples 23 to 27) As shown in Table 2,
In Examples 23 to 27, the ratios of the negative electrode active material and AB were 89.2: 0.8, 89: 1, 85: 5 and 80 :, respectively.
10,79: 11 and then, except that the 1.0 wt% boron content B r in AB was prepared in the same manner as the battery of Example 11.

【0027】(比較例4〜6)表2に示すように、比較
例4〜6では、AB及びGにはホウ素を含有せず、配
合割合Rを、それぞれ90:0:0:10、88:
2:0:10、85:0:5:10とした以外は実施例
11と同様に電池を作製した。
[0027] (Comparative Examples 4-6) Table As shown in 2, in Comparative Example 4-6 contained no boron in the AB and G n, the mixing ratio R n, respectively 90: 0: 0:10 , 88:
A battery was produced in the same manner as in Example 11 except that the time was 2: 0: 10 and 85: 0: 5: 10.

【0028】<試験・評価>以上のように作製した実施
例及び比較例の電池について出力を測定するための出力
試験及び寿命を測定するためのパルスサイクル試験を行
った。
<Test / Evaluation> The batteries of Examples and Comparative Examples manufactured as described above were subjected to an output test for measuring the output and a pulse cycle test for measuring the life.

【0029】(出力試験)出力試験では、まず、電池を
定電圧で4Vに保持した後、25A、50A、100A
で放電させた時の5秒目電圧を測定した。次に、その電
圧を電流値に対してプロットした直線が、3Vと交差す
る点の電流値(Ia)を読み取り、出力(W)=Ia×
3.0として出力を求めた。
(Output test) In the output test, first, the battery was kept at 4V at a constant voltage, and then 25A, 50A, 100A.
The voltage was measured at 5 seconds when the battery was discharged at. Next, the current value (Ia) at the point where the straight line obtained by plotting the voltage with respect to the current value intersects 3V is read, and the output (W) = Ia ×
The output was determined as 3.0.

【0030】(パルスサイクル試験)パルスサイクル試
験では、電池の状態が徐々に放電状態になるパターン1
は、充電を50Aで10秒間、放電を100Aで5秒間
と50Aで5秒間との2回、休止時間をそれぞれ5秒間
とした。電池の状態が徐々に充電方向となるパターン2
は、充電を50Aで10秒間と5秒間との2回、放電を
100Aで5秒、休止時間をそれぞれ5秒間とした。こ
のパターン1と2の切り替えは、電圧が上限電圧4.2
V、下限電圧3.0Vに達したときに行った。また、こ
の試験を加速するために周囲温度を50゜Cとした。電
池の寿命は、出力試験で求めた出力が初期の出力の70
%に低下したときとする。下表3及び表4にそれぞれの
試験結果を示す。
(Pulse cycle test) In the pulse cycle test, pattern 1 in which the state of the battery gradually becomes the discharge state
Was charged at 50 A for 10 seconds, discharged twice at 100 A for 5 seconds and 50 A for 5 seconds, and the rest time was 5 seconds each. Pattern 2 in which the battery state gradually changes to the charging direction
Was charged twice at 50 A for 10 seconds and 5 seconds, discharged at 100 A for 5 seconds, and rested for 5 seconds. When switching between patterns 1 and 2, the upper limit voltage is 4.2.
V, when the lower limit voltage of 3.0V was reached. Also, the ambient temperature was 50 ° C. to accelerate this test. As for the battery life, the output obtained in the output test is 70% of the initial output.
When it drops to%. The test results are shown in Tables 3 and 4 below.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】表3に示すように、正極にカーボンブラッ
クを配合した場合、比較例1と実施例1〜4の試験結果
を見ると、ホウ素を含有したカーボンブラックの方が、
出力、寿命が向上することが分かる。また、ホウ素含有
割合Bを0.1重量%以上にすると特に寿命特性の向
上が大きく見られる。
As shown in Table 3, when carbon black was mixed in the positive electrode, the test results of Comparative Example 1 and Examples 1 to 4 showed that the carbon black containing boron was
It can be seen that the output and life are improved. Further, when the boron content ratio Br is set to 0.1% by weight or more, the life characteristics are particularly greatly improved.

【0034】正極に黒鉛を配合した場合、比較例2と実
施例5〜8の試験結果を表3から見ると、ホウ素を含有
した黒鉛の方が、出力、寿命が向上することが分かる。
また、ホウ素含有量を0.1重量%以上にすると特に寿
命特性の向上が大きく見られる。
When graphite is blended in the positive electrode, the test results of Comparative Example 2 and Examples 5 to 8 are seen from Table 3, and it can be seen that the graphite containing boron improves the output and life.
Further, when the boron content is 0.1% by weight or more, the life characteristics are particularly improved.

【0035】正極に力ーボンブラックと黒鉛とを共に配
合した場合、実施例3と実施例9、10の試験結果を表
3から見ると、ホウ素を含有したカーボンブランクの使
用により、寿命が200以上になる。また、カーボンブ
ラックだけでなく、黒鉛もホウ素を含有すると、更に寿
命を向上させることができる。
When the carbon black and graphite were mixed together in the positive electrode, the test results of Examples 3 and 9 and 10 are seen in Table 3, and the life of the carbon blank containing boron was 200 or more. Become. If not only carbon black but also graphite contains boron, the life can be further improved.

【0036】また、表4に示すように、負極の非晶質炭
素にホウ素を含有した場合は、比較例4と実施例11〜
14の試験結果を見ると、ホウ素を含有した非晶質炭素
の方が、出力、寿命が向上することが分かる。また、ホ
ウ素含有割合Bを0.1重量%以上にすると効果が大
きくなる。
Further, as shown in Table 4, when boron was contained in the amorphous carbon of the negative electrode, Comparative Example 4 and Examples 11 to 11 were used.
From the test results of No. 14, it is understood that the amorphous carbon containing boron has improved output and life. Further, when the boron content ratio Br is 0.1% by weight or more, the effect becomes large.

【0037】負極にアセチレンブラックを配合した場
合、比較例5と実施例15〜18の試験結果を表4から
見ると、ホウ素を含有したアセチレンブラックの方が、
出力、寿命が向上することが分かる。また、ホウ素含有
割合Bを0.1重量%以上にすると効果が大きくな
る。
When acetylene black is blended in the negative electrode, the test results of Comparative Example 5 and Examples 15 to 18 are seen from Table 4, and the acetylene black containing boron is
It can be seen that the output and life are improved. Further, when the boron content ratio Br is 0.1% by weight or more, the effect becomes large.

【0038】負極に黒鉛を配合した場合、比較例6と実
施例19〜22の試験結果を表4から見ると、ホウ素を
含有した黒鉛の方が、出力、寿命が向上することが分か
る。また、ホウ素含有割合Bを0.1重量%以上にす
ると効果が大きくなる。
When graphite is blended in the negative electrode, the test results of Comparative Example 6 and Examples 19 to 22 are seen from Table 4, and it is understood that the graphite containing boron has improved output and life. Further, when the boron content ratio Br is 0.1% by weight or more, the effect becomes large.

【0039】負極にアセチレンブラックを配合した場合
のアセチレンブラックの量は、実施例23〜27の試験
結果を表4から見ると、1〜10重量%で効果が大き
い、11重量%含有させると、負極の銅箔との密着性が
悪くなり、配合したアセチレンブラックの効果が薄れて
しまう。
The amount of acetylene black in the case of incorporating acetylene black in the negative electrode is 1 to 10% by weight when the results of the tests of Examples 23 to 27 are seen from Table 4, and 11% by weight is large. The adhesion of the negative electrode to the copper foil is deteriorated, and the effect of the compounded acetylene black is diminished.

【0040】ホウ素の原子半径は炭素の原子半径より小
さいため、ホウ素は容易に炭素の結晶構造の炭素原子の
位置に入り込むことができる。ホウ素が炭素原子の位置
に入り込むと、炭素材の中で、電子の移動に寄与してい
る不対電子の数が増加する。電子伝導性が向上し、瞬間
的な大電流放電時に必要な電子を供給できると考えられ
ている。また、局部的な抵抗が小さくなることで、正負
極の活物質のストレスも緩和され、長期的な寿命特性も
向上されると考えられる。
Since the atomic radius of boron is smaller than that of carbon, boron can easily enter the positions of carbon atoms in the crystal structure of carbon. When boron enters the position of a carbon atom, the number of unpaired electrons contributing to the movement of electrons in the carbon material increases. It is considered that the electron conductivity is improved and the necessary electrons can be supplied at the momentary high-current discharge. Further, it is considered that the local resistance becomes small, so that the stress of the positive and negative electrode active materials is relieved and the long-term life characteristics are improved.

【0041】なお、本実施形態では、ホウ素を含有させ
る炭素材にカーボンブラック及び黒鉛を、炭素質導電材
にアセチレンブラック及び黒鉛を用いた例を示したが、
これに限定されるものではなく、ケッチンブラックやフ
ァーネスカーボン等のカーボンブラックや人工黒鉛を用
いてもよいし、ホウ素含有割合が3重量%以下であれ
ば、例えば、負極のアセチレンブラック及び黒鉛に同時
にホウ素を含有させてもよい。
In this embodiment, carbon black and graphite are used as the carbon material containing boron, and acetylene black and graphite are used as the carbonaceous conductive material.
The present invention is not limited to this, and carbon black such as Ketchin black or furnace carbon or artificial graphite may be used, and if the boron content is 3% by weight or less, for example, acetylene black and graphite of the negative electrode may be used at the same time. Boron may be contained.

【0042】また、本実施形態では、正極の活物質にマ
ンガン酸リチウムを用いた例を示したが、マンガン(M
n)ではなくCoやNiの複合酸化物や、Mn、Co、
Niの一部を例えば、Li、Co、Ni、Mn、Fe、
Cu、Al、Cr、Mg、Zn、V、Ga、B、Fの少
なくとも1種類以上の元素で置換又はドープした遷移金
属複合酸化物を用いてもよい。
In this embodiment, lithium manganese oxide is used as the active material of the positive electrode.
n), not Co or Ni composite oxide, Mn, Co,
For example, Li, Co, Ni, Mn, Fe,
A transition metal composite oxide substituted or doped with at least one element of Cu, Al, Cr, Mg, Zn, V, Ga, B, and F may be used.

【0043】更に、本実施形態では、負極の活物質に非
晶質炭素を用いた例を示したが、リチウムイオンを挿
入、脱離可能な黒鉛であればその他の炭素材料を用いて
もよい。
Furthermore, in the present embodiment, an example in which amorphous carbon is used as the negative electrode active material has been shown, but other carbon materials may be used as long as graphite is capable of inserting and releasing lithium ions. .

【0044】更にまた、本実施形態では、電解質として
LiPFを使用したが、これに限定されるものではな
く、例えば、LiClO、LiAsF、LiB
、LiB(C、CHSOLi、CF
SOLiなどやこれらの混合物を用いてもよい。ま
た、非水電解液の溶媒として、プロピレンカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチルラクトン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチ
ル−1,3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリルなどを混合した混合溶媒を用いてもよい。
Furthermore, in the present embodiment, LiPF 6 was used as the electrolyte, but the electrolyte is not limited to this, and for example, LiClO 4 , LiAsF 6 , LiB.
F 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF
3 SOLi or the like or a mixture thereof may be used. Further, as a solvent for the non-aqueous electrolyte, propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyl lactone,
A mixed solvent obtained by mixing tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like may be used.

【0045】また、本実施形態では、結着材としてPV
DFを用いた例を示したが、テフロン(登録商標)、ポ
リエチレン、ポリスチレン、ポリブタジエン、ブチルゴ
ム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化
ゴム、ニトロセルロース、シアノエチルセルロース、各
種ラテックス、アクリロニトリル、フッ化ビニル、フッ
化ビニリデン、フッ化プロピレン、フッ化クロロプレ
ン、アクリル系樹脂などの重合体及びこれらの混合体な
どを使用してもよい。
In this embodiment, PV is used as the binder.
Examples using DF have been shown, but Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride. Polymers such as vinylidene fluoride, propylene fluoride, chloroprene fluoride and acrylic resins, and mixtures thereof may be used.

【0046】更に、本実施形態では、円筒状の有底電池
缶を使用した例を示したが、形には関係なく、角型や扁
平型などの形の電池缶を用いてもよい。
Further, in this embodiment, an example of using a cylindrical bottomed battery can is shown, but a rectangular or flat battery can may be used regardless of the shape.

【0047】また、本実施形態では、高出力タイプの電
池の例を示したが、高容量タイプの電池でも本発明を利
用することができる。
In this embodiment, an example of a high output type battery is shown, but the present invention can be applied to a high capacity type battery.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
正極に炭素材、負極にリチウムイオンを脱挿入可能な炭
素材及び選択的に炭素質導電材を含んでおり、正負極の
炭素材及び炭素質導電材の少なくともいずれかにホウ素
を含有させたため、瞬間的な大電流放電時に必要な電子
を供給できるので、正極の表面の電子とリチウムイオン
との反応を円滑にし抵抗を低減でき高出力を得ることが
できると共に、局部的な抵抗を小さくできるので、正極
のストレスも緩和され寿命を向上させることができる、
という効果を得ることができる。
As described above, according to the present invention,
The positive electrode is a carbon material, and the negative electrode contains a carbon material capable of deintercalating lithium ions and selectively contains a carbonaceous conductive material, and at least one of the carbon material and the carbonaceous conductive material of the positive and negative electrodes contains boron, Since necessary electrons can be supplied at the time of momentary high-current discharge, the reaction between the electrons on the surface of the positive electrode and lithium ions can be smoothed, the resistance can be reduced, high output can be obtained, and the local resistance can be reduced. , Stress of the positive electrode can be relieved and life can be improved.
The effect can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 賢二 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AK03 AL06 AM05 AM07 BJ02 BJ14 EJ01 EJ04 EJ12 HJ01 5H050 AA02 BA17 CA07 CB07 DA10 EA01 EA09 EA10 EA24 HA01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenji Hara             2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo             Inside Shin-Kobe Electric Machinery Co., Ltd. F-term (reference) 5H029 AJ02 AK03 AL06 AM05 AM07                       BJ02 BJ14 EJ01 EJ04 EJ12                       HJ01                 5H050 AA02 BA17 CA07 CB07 DA10                       EA01 EA09 EA10 EA24 HA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複合酸化物及び炭素材
を含む正極と、リチウムイオンを脱挿入可能な炭素材及
び選択的に炭素質導電材を含む負極とを備えたリチウム
二次電池において、前記正負極の炭素材及び前記炭素質
導電材の少なくともいずれかにホウ素を所定量含有する
ことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode containing a lithium-transition metal composite oxide and a carbon material, and a negative electrode containing a carbon material capable of deintercalating lithium ions and optionally a carbonaceous conductive material, A lithium secondary battery comprising a predetermined amount of boron in at least one of the positive and negative electrode carbon materials and the carbonaceous conductive material.
【請求項2】 前記ホウ素は、前記正負極の炭素材及び
前記炭素質導電材の少なくともいずれかに対し0.08
重量%以上3重量%以下の割合で含有されていることを
特徴とする請求項1に記載のリチウム二次電池。
2. The boron content is 0.08 with respect to at least one of the carbon material of the positive and negative electrodes and the carbonaceous conductive material.
The lithium secondary battery according to claim 1, wherein the lithium secondary battery is contained in a ratio of not less than 3% by weight and not more than 3% by weight.
【請求項3】 前記正極の炭素材及び炭素質導電材は、
カーボンブラック又は黒鉛であることを特徴とする請求
項2に記載のリチウム二次電池。
3. The carbonaceous material and carbonaceous conductive material of the positive electrode,
The lithium secondary battery according to claim 2, which is carbon black or graphite.
【請求項4】 前記正極に前記カーボンブラック及び前
記黒鉛を含有し、該カーボンブラック及び黒鉛のうち少
なくともカーボンブラックにホウ素を含有し、該ホウ素
が前記カーボンブラック及び黒鉛中に3重量%以下の割
合で含有されていることを特徴とする請求項3に記載の
リチウム二次電池。
4. The positive electrode contains the carbon black and the graphite, at least carbon black of the carbon black and graphite contains boron, and the boron is contained in the carbon black and the graphite in an amount of 3% by weight or less. The lithium secondary battery according to claim 3, wherein the lithium secondary battery is contained in.
JP2001230837A 2001-07-31 2001-07-31 Lithium secondary battery Pending JP2003045434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230837A JP2003045434A (en) 2001-07-31 2001-07-31 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001230837A JP2003045434A (en) 2001-07-31 2001-07-31 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003045434A true JP2003045434A (en) 2003-02-14

Family

ID=19062979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230837A Pending JP2003045434A (en) 2001-07-31 2001-07-31 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2003045434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324194A (en) * 2005-05-20 2006-11-30 Nec Corp Secondary battery
JP2009295675A (en) * 2008-06-03 2009-12-17 Nippon Zeon Co Ltd Electrode for electrochemical element and electrochemical element
JP2012028211A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Lithium secondary battery negative electrode material, lithium secondary battery negative electrode using the same and lithium secondary battery using the electrode
WO2015129186A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324194A (en) * 2005-05-20 2006-11-30 Nec Corp Secondary battery
JP2009295675A (en) * 2008-06-03 2009-12-17 Nippon Zeon Co Ltd Electrode for electrochemical element and electrochemical element
JP2012028211A (en) * 2010-07-26 2012-02-09 Hitachi Chem Co Ltd Lithium secondary battery negative electrode material, lithium secondary battery negative electrode using the same and lithium secondary battery using the electrode
WO2015129186A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
CN106063000A (en) * 2014-02-28 2016-10-26 三洋电机株式会社 Positive electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JPWO2015129186A1 (en) * 2014-02-28 2017-03-30 三洋電機株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
CN111029569B (en) Lithium ion battery lithium supplementing additive, battery electrode, preparation method and application thereof
JP5286200B2 (en) Lithium ion secondary battery
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
JP4779323B2 (en) Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same
KR20120095803A (en) Positive-electrode active material with high power at the low soc and lithium secondary battery including them
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP2008218122A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20200274147A1 (en) Negative electrode active material for lithium secondary battery and method for preparing the same
KR20080029479A (en) Cathode active material, lithium secondary battery comprising same, and hybrid capacitor comprising same
US10374224B2 (en) Method of manufacturing non-aqueous electrolyte solution secondary battery and non-aqueous electrolyte solution secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP3979044B2 (en) Lithium secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JPH04162357A (en) Nonaqueous secondary battery
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
JP2003045434A (en) Lithium secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
WO2017068985A1 (en) Lithium-ion cell
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
KR101288742B1 (en) positive-electrode active material and Lithium secondary battery including them
KR100436708B1 (en) Negative active material composition and lithium battery containing anode plate prepared from the same
JPH04328258A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421