JP2003043354A - Electronic imaging device - Google Patents

Electronic imaging device

Info

Publication number
JP2003043354A
JP2003043354A JP2002131458A JP2002131458A JP2003043354A JP 2003043354 A JP2003043354 A JP 2003043354A JP 2002131458 A JP2002131458 A JP 2002131458A JP 2002131458 A JP2002131458 A JP 2002131458A JP 2003043354 A JP2003043354 A JP 2003043354A
Authority
JP
Japan
Prior art keywords
group
lens
optical path
object side
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002131458A
Other languages
Japanese (ja)
Inventor
Shinichi Mihara
伸一 三原
Koichi Konishi
宏一 小西
Toyoji Hanzawa
豊治 榛澤
Masahito Watanabe
正仁 渡邉
Atsujirou Ishii
敦次郎 石井
Tetsuei Takeyama
哲英 武山
Fumiyoshi Imamura
文美 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2002131458A priority Critical patent/JP2003043354A/en
Publication of JP2003043354A publication Critical patent/JP2003043354A/en
Priority to EP12153251.9A priority patent/EP2450731B1/en
Priority to PCT/JP2003/003864 priority patent/WO2003085438A1/en
Priority to EP12153258.4A priority patent/EP2450732B1/en
Priority to CNB038079542A priority patent/CN100337140C/en
Priority to EP12153263.4A priority patent/EP2450733B1/en
Priority to EP03715536A priority patent/EP1494053B1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic imaging device, whose thickness in the depth direction is very small and which adopts the type of an optical system, capable of overcoming constraints concerning the movement of a moving group when varying power, while maintaining high specification and performance. SOLUTION: This electronic imaging device has an optical path bending zoom optical system, which includes a 1-1st group G-1 constituted of a negative lens group and a catoptric element P for bending an optical path, a 1-2nd group G1-2 including one positive lens and a 2nd group G2 having positive refractive power, in the order starting from the object side and where the 2nd group G2 moves only to the object side in the case of varying power from a wide-angle end to a telephoto end, and the electronic imaging device I arranged on the image side of the zoom optical system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光路折り曲げズー
ム光学系を有する薄型電子撮像装置に関し、特に、ズー
ムレンズ等の光学系部分の工夫により奥行き方向の薄型
化を実現した、ビデオカメラやデジタルカメラを始めと
する電子撮像装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin electronic image pickup device having an optical path bending zoom optical system, and more particularly to a video camera or a digital camera which is made thinner in the depth direction by devising an optical system portion such as a zoom lens. And an electronic image pickup device.

【0002】[0002]

【従来の技術】近年、銀塩35mmフィルム(通称ライ
カ版)カメラに代わる次世代カメラとして、デジタルカ
メラ(電子カメラ)が注目されてきている。さらに、そ
れは業務用高機能タイプからポータブルな普及タイプま
で幅広い範囲でいくつものカテゴリーを有するようにな
ってきている。
2. Description of the Related Art In recent years, a digital camera (electronic camera) has been attracting attention as a next-generation camera to replace a silver salt 35 mm film (commonly called Leica version) camera. Furthermore, it has come to have several categories in a wide range from high-performance type for business use to portable popular type.

【0003】本発明においては、特にポータブルな普及
タイプのカテゴリーに注目し、高画質を確保しながら奥
行きの薄いビデオカメラ、デジタルカメラを実現する技
術を提供することをねらっている。
In the present invention, attention is paid particularly to the portable popular type category, and it is aimed to provide a technique for realizing a video camera and a digital camera having a small depth while ensuring high image quality.

【0004】カメラの奥行き方向を薄くするのに最大の
ネックとなっているのは、光学系、特にズームレンズ系
の最も物体側の面から撮像面までの厚みである。最近で
は、撮影時に光学系をカメラボディ内からせり出し、携
帯時に光学系をカメラボディ内に収納する、いわゆる沈
胴式鏡筒を採用することが主流になっている。しかしな
がら、使用するレンズタイプやフィルターによって光学
系沈胴時の厚みが大きく異なる。特にズーム比やF値等
の仕様を高く設定するには、最も物体側のレンズ群が正
の屈折力を有するいわゆる正先行型ズームレンズは、各
々のレンズエレメントの厚みやデッドスペースが大き
く、沈胴してもたいして厚みが薄くならない(特開平1
1−258507号)。負先行型で特に2乃至3群構成
のズームレンズはその点有利であるが、群内構成枚数が
多かったり、エレメントの厚みが大きかったり、最も物
体側のレンズが正レンズの場合は沈胴しても薄くならな
い(特開平11−52246号)。
The biggest bottleneck in thinning the depth direction of the camera is the thickness from the most object side surface to the image pickup surface of the optical system, especially the zoom lens system. Recently, it has become mainstream to employ a so-called collapsible lens barrel in which the optical system is pushed out of the camera body at the time of shooting and is housed in the camera body when carrying. However, the thickness of the optical system when retracted greatly varies depending on the lens type and filter used. In order to set specifications such as zoom ratio and F-number to be high, a so-called positive-leading type zoom lens, in which the lens unit closest to the object side has a positive refractive power, has a large thickness and dead space of each lens element, which causes a collapse. Even if the thickness does not become too thin
1-258507). The negative-preceding type zoom lens having a 2 to 3 group structure is particularly advantageous in that respect. However, if the number of lens elements in the group is large, or the element thickness is large, or if the lens closest to the object side is a positive lens, it should be retracted. Does not become thin (JP-A-11-52246).

【0005】現在知られている中で、電子撮像素子用に
適し、かつ、ズーム比、画角、F値等含めた結像性能が
良好で、沈胴厚を最も薄くできる可能性を有するものの
例として、特開平11−194274号、特開平11−
287953号、特開2000−9997等のものがあ
る。
An example of a currently known one which is suitable for an electronic image pickup device, has good imaging performance including zoom ratio, angle of view, F value, etc. and has the possibility of making the collapsed thickness the thinnest. As JP-A-11-194274, JP-A-11-194274
289553, JP-A 2000-9997 and the like.

【0006】第1群を薄くするには、入射瞳位置を浅く
するのがよいが、そのためには第2群の倍率を高くする
ことになる。一方、そのために第2群の負担が大きくな
り、それ自身を薄くすることが困難になるばかりでなく
収差補正の困難さや製造誤差の効きが増大し好ましくな
い。薄型化小型化を実現するには、撮像素子を小さくす
ればよいが、同じ画素数とするためには画素ピッチを小
さくする必要があり、感度不足を光学系でカバーしなけ
ればならない。回折の影響も然りである。
In order to make the first lens unit thinner, it is preferable to make the entrance pupil position shallower, but for that purpose, the magnification of the second lens unit is increased. On the other hand, this increases the burden on the second lens unit, making it difficult to make itself thin, and it is also not preferable because it becomes difficult to correct aberrations and the effectiveness of manufacturing errors increases. In order to realize thinning and miniaturization, it is sufficient to make the image pickup device small, but in order to make the number of pixels the same, it is necessary to make the pixel pitch small, and it is necessary to cover the lack of sensitivity with an optical system. The effect of diffraction is no different.

【0007】また、奥行の薄いカメラボディにするため
に、合焦時のレンズ移動を前群ではなくいわゆるリアフ
ォーカスが駆動系のレイアウト上有効である。すると、
リアフォーカスを実施したときの収差変動が少ない光学
系を選択する必要が出てくる。もう1つの薄型化の手段
として、光学系の光路をミラー等で折り曲げる方法があ
る。この場合、折り曲げのためのスペース上変倍のため
のレンズ移動にかなりの制約が発生する。
In order to make the camera body with a small depth, the so-called rear focus is effective for the lens movement during focusing instead of the front group in view of the layout of the drive system. Then,
It becomes necessary to select an optical system in which aberration variation is small when rear focus is performed. Another thinning method is to bend the optical path of the optical system with a mirror or the like. In this case, there are considerable restrictions on the movement of the lens for zooming due to the space required for bending.

【0008】[0008]

【発明が解決しようとする課題】本発明は従来技術のこ
のような現状に鑑みてなされたものであり、その目的
は、光学系の光路(光軸)をミラー等の反射光学素子で
折り曲げたリアフォーカスのズームレンズを採用し、高
い仕様、性能を維持しつつ変倍時の移動群の移動に関す
る制約条件を克服できる光学系のタイプを採用して、奥
行方向が極めて薄い電子撮像装置を提供することであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such a state of the art, and an object thereof is to bend an optical path (optical axis) of an optical system with a reflective optical element such as a mirror. Adopting a rear-focus zoom lens, and adopting an optical system type that can overcome the restrictions on the movement of the moving group during zooming while maintaining high specifications and performance, providing an electronic imaging device with an extremely thin depth direction It is to be.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電子撮像装置は、広角端から望遠端に変倍
する際に物体側にのみ移動する群を少なくとも1つ含
み、変倍時に可動な全ての群の最も物体側のレンズより
も物体側に光路を折り曲げるための反射光学素子を少な
くとも1つ含む光路折り曲げズーム光学系及びその像側
に配置された電子撮像素子を有することを特徴とするも
のである。
In order to achieve the above object, an electronic image pickup apparatus of the present invention includes at least one group that moves only to the object side when zooming from a wide-angle end to a telephoto end. An optical path bending zoom optical system including at least one reflective optical element for bending the optical path toward the object side of the lens closest to the object side in all the groups movable at the time of zooming, and an electronic image pickup element arranged on the image side thereof. It is characterized by.

【0010】以下に、本発明において上記構成をとる理
由と作用を説明する。
Hereinafter, the reason and operation of adopting the above configuration in the present invention will be described.

【0011】本発明においては、広角端から望遠端に変
倍する際に物体側にのみ移動する群を少なくとも1つ含
み、変倍時に可動な全ての群の最も物体側のレンズより
も物体側に光路を折り曲げるための反射光学素子を少な
くとも1つ含む光路折り曲げズーム光学系を採用した。
レンズ系入射面を物体側に向けなおかつ奥行を薄くする
には、光路折り曲げを撮影光学系の出来るだけ物体側の
位置で、しかも、光線高が低い空気間隔部で実施するの
が好ましい。また、ズームやフォーカス駆動系を複雑化
しないために、移動群は折り曲げ位置よりも像側とする
のがよい。折り曲げスペースを極力小さくするために
は、折り曲げ部近傍での結像に寄与する全ての光線高が
低いのがよいことを考えると、折り曲げ部の存在する最
も物体側のレンズから変倍時に可動な群の直前までの部
分系の合成焦点距離が負であることが望ましい。
In the present invention, at least one group that moves only to the object side when zooming from the wide-angle end to the telephoto end is included, and all the groups that are movable during zooming are closer to the object side than the lens closest to the object side. In addition, an optical path bending zoom optical system including at least one reflective optical element for bending the optical path is adopted.
In order to make the entrance surface of the lens system toward the object side and make the depth thin, it is preferable to perform the optical path bending at a position on the object side of the photographing optical system as much as possible and at an air gap portion where the ray height is low. Further, in order not to complicate the zoom or focus drive system, it is preferable that the moving group is located on the image side of the bending position. In order to make the bending space as small as possible, considering that it is preferable that the height of all the rays that contribute to image formation in the vicinity of the bending portion is low, it is possible to move from the lens on the most object side where the bending portion exists to the one for zooming. It is desirable that the composite focal length of the subsystems just before the group is negative.

【0012】折り曲げズーム光学系として相応しいレン
ズ構成を具体的に述べると、物体側より順に、負レンズ
群と光路折り曲げのための反射光学素子とにて構成され
た第1−1群、正レンズを1枚含む第1−2群、正の屈
折力を有する第2群を含み、広角端から望遠端に変倍す
る際は前記第2群が物体側にのみ移動するタイプであ
る。
A lens structure suitable for a folding zoom optical system will be described in detail. A first lens group 1-1 and a positive lens group, which are composed of a negative lens group and a reflective optical element for bending an optical path, are arranged in order from the object side. This is a type that includes a first-second lens group including one lens and a second lens group having a positive refractive power, and the second lens group moves only to the object side when zooming from the wide-angle end to the telephoto end.

【0013】折り曲げズーム光学系として相応しいもう
1つのレンズ構成を具体的に述べると、物体側より順
に、入射面、射出面の少なくとも一方が凹面である光路
折り曲げのための反射光学素子であるプリズムを含む第
1−1群、正レンズを1枚含む第1−2群、正の屈折力
を有する第2群を含み、広角端から望遠端に変倍する際
は前記第2群が物体側へ単調に移動するようなタイプで
ある。
Another lens structure suitable for a bending zoom optical system will be described in detail. A prism, which is a reflecting optical element for bending an optical path, in which at least one of an entrance surface and an exit surface is a concave surface, is arranged in order from the object side. Including the 1-1st group including, the 1-2nd group including one positive lens, and the second group having a positive refracting power, the second group is moved to the object side when zooming from the wide-angle end to the telephoto end. It is a type that moves monotonously.

【0014】この場合、何れのタイプでも、反射光学素
子の反射面の直前の屈折面から反射面の直後の屈折面ま
での光軸上の空気換算長dを以下のようにするのがよ
い。
In this case, in any type, it is preferable that the air-converted length d on the optical axis from the refracting surface immediately before the reflecting surface of the reflective optical element to the refracting surface immediately after the reflecting surface is as follows.

【0015】(a) 0.5<d/L<2.1 ただし、Lは電子撮像素子の有効撮像領域(略矩形)の
対角長。
(A) 0.5 <d / L <2.1 where L is the diagonal length of the effective image pickup area (substantially rectangular) of the electronic image pickup device.

【0016】この条件(a)の上限値の2.1を越える
と、光学系が大きくなりすぎる。下限値の0.5を越え
ると、画像周辺部の結像に寄与する光束が満足に像面に
達しないし、あるいはゴーストが発生しやすい。
When the upper limit of 2.1 of the condition (a) is exceeded, the optical system becomes too large. If the lower limit of 0.5 is exceeded, the light flux that contributes to image formation in the peripheral portion of the image does not reach the image plane satisfactorily, or a ghost is likely to occur.

【0017】なお、光路を折り曲げる方向の画角が25
°±3°の範囲内の場合、約19°±3°の範囲内の場
合、それぞれ以下の範囲がよい。
The angle of view in the direction in which the optical path is bent is 25.
Within the range of ± 3 °, and within the range of about 19 ° ± 3 °, the following ranges are preferable.

【0018】(a−1) 0.8<d/L<1.9 (a−2) 0.5<d/L<1.5 さらに、次のようにすればより好ましい。(A-1) 0.8 <d / L <1.9 (A-2) 0.5 <d / L <1.5 Furthermore, the following is more preferable.

【0019】(a' −1)0.9<d/L<1.8 (a' −2)0.6<d/L<1.4 なお、何れのタイプも近軸的屈折力配置を適切にするた
めに反射面を平面以外で構成してもよい。また、反射面
の形状を自由に変えることのできる制御系を設け、それ
によって変倍の際に発生する焦点位置や収差の変動を補
正したり、フォーカスをしたり、変倍をするために形状
制御可能な形状可変ミラーにするのがより好ましい。
(A'-1) 0.9 <d / L <1.8 (a'-2) 0.6 <d / L <1.4 In both types, the paraxial refractive power arrangement is used. The reflecting surface may be configured to be other than planar for the sake of suitability. In addition, a control system that can freely change the shape of the reflecting surface is provided, so that the shape for correcting the focus position and aberration fluctuations that occur during zooming, focusing, and zooming More preferably, it is a controllable deformable mirror.

【0020】なお、これとは別に、反射光学素子をプリ
ズム平面部に平凹レンズを接合する等して構成してもよ
い。歪曲補正のレベルと電子撮像装置の目標サイズとの
バランスの関係から、最も物体側にパワーの弱い正レン
ズを付加してもよい。その場合は、第1−2群はなくて
もよい。
Alternatively, the reflective optical element may be constructed by joining a plano-concave lens to the flat surface of the prism. A positive lens having the weakest power may be added to the most object side in view of the balance between the level of distortion correction and the target size of the electronic image pickup apparatus. In that case, the first-second group may not be provided.

【0021】これら2つのズームタイプについては、そ
れぞれの最終群は非球面を有する単レンズにて構成する
のがよい。歪曲収差、非点収差、コマ収差等、軸外収差
の補正には大変効果がある。このレンズによりそれより
物体側にて発生する収差をキャンセルしている訳である
から、フォーカス等によって動かすと収差のバランスを
崩してしまう。したがって、最終群は固定とした方がよ
い。
For these two zoom types, it is preferable that each final lens group be composed of a single lens having an aspherical surface. It is very effective in correcting off-axis aberrations such as distortion, astigmatism, and coma. Since this lens cancels the aberration generated on the object side of the lens, if the lens is moved by focusing or the like, the aberration balance is lost. Therefore, the final group should be fixed.

【0022】また、フォーカスを実施する群としては、
第1群は折り曲げ系であり相応しくないので、最終群を
除く第2群以降の群で実施するのがよい。特に、フォー
カスによる焦点距離や収差の変動が少ない最終群から物
体側に2番目の群を用いてフォーカスを行うのがよい。
この場合、より近距離側への合焦は繰り出す方向とな
る。さらに、フォーカスを行うために、最終群から物体
側に2番目の群と3番目の群の望遠端での無限遠物点合
焦時の光軸上空気間隔DFTが以下の条件式を満足するの
がよい。
Further, as a group for performing focusing,
Since the first group is a bending system and is not suitable, it is preferable to carry out the second and subsequent groups except the final group. In particular, it is preferable to use the second group from the final group, which has less variation in focal length and aberration due to focusing, to the object side for focusing.
In this case, focusing on the closer distance side is in the direction of extension. Further, in order to perform focusing, the air distance D FT on the optical axis when focusing on the object point at infinity at the telephoto end of the second group and the third group from the final group satisfies the following conditional expression. Good to do.

【0023】(b) 0.1<DFT/fT <1.5 ただし、fT は望遠端での無限遠物点合焦時の全系焦点
距離である。
(B) 0.1 <D FT / f T <1.5 where f T is the focal length of the entire system when focusing on an object point at infinity at the telephoto end.

【0024】この条件(b)の上限の1.5を越える
と、ズーム比の確保が困難となり、下限値の0.1を越
えると、フォーカス可能距離レンジを十分にとることが
できない。
If the upper limit of 1.5 of this condition (b) is exceeded, it will be difficult to secure a zoom ratio, and if the lower limit of 0.1 is exceeded, the focusable distance range will not be sufficient.

【0025】なお、次のようにすればより好ましい。The following is more preferable.

【0026】(b' ) 0.2<DFT/fT <1 さらに、次のようにすればなお好ましい。(B ′) 0.2 <D FT / f T <1 Furthermore, the following is more preferable.

【0027】 (b" ) 0.25<DFT/fT <0.8 上記の2つのズームタイプは、第2群の像側に正の屈折
力を有する第3群を含み、広角端から望遠端に変倍する
際は第2群と第3群が相対的間隔を変えながら移動する
ようなズーム形式にするとよい。この方式は、スペース
を効率良く使って変倍による焦点位置補正を行いながら
高い変倍率を稼ぐことができる。
(B ″) 0.25 <D FT / f T <0.8 The above two zoom types include the third lens unit having a positive refractive power on the image side of the second lens unit, and from the wide angle end, When changing the magnification to the telephoto end, it is advisable to use a zoom type in which the second and third groups move while changing the relative distance.This method efficiently uses space to correct the focal position by changing the magnification. However, you can earn a high zoom ratio.

【0028】その場合、無限遠合焦時に広角端から望遠
端に変倍する際の第2群、第3群のそれぞれの移動量M
2 、M3 の比を、 (c) 0.5<M3 /M2 <2.0 の範囲にするのがよい。この条件の上限値の2.0を越
えると、ズーム比やフォーカス可能距離レンジを十分に
とることができない。下限値の0.5を越えると、こち
らもズーム比の確保が困難である。
In that case, the amount of movement M of each of the second group and the third group at the time of zooming from the wide-angle end to the telephoto end during focusing at infinity.
The ratio of 2 and M 3 is preferably in the range of (c) 0.5 <M 3 / M 2 <2.0. If the upper limit of 2.0 of this condition is exceeded, the zoom ratio and the focusable distance range cannot be sufficiently obtained. If the lower limit of 0.5 is exceeded, it is difficult to secure the zoom ratio here as well.

【0029】なお、次のようにすればより好ましい。The following is more preferable.

【0030】 (c' ) 0.7<M3 /M2 <1.4 さらに、次のようにすればなお好ましい。(C ′) 0.7 <M 3 / M 2 <1.4 Furthermore, the following is more preferable.

【0031】 (c" ) 0.8<M3 /M2 <1.25 上記の2つのズームタイプは、第1群(第1−1群から
第1−2群にかけての合成系)をズーム時、フォーカス
時に動かすのは光路折り曲げ系につき機構的に困難なた
め、固定とするのがよい。なお、第1−1群は変倍時固
定とするが、第1−2群は移動することが比較的容易な
ため可動としてもよい。その場合、変倍時に像側に凸の
軌跡を描きつつ移動するのがよい。この、第1−2群は
色収差や歪曲収差等の軸外収差を補正するために、物体
側から順に、負レンズ、正レンズの2枚若しくは正レン
ズ1枚から構成するのがよい。
(C ″) 0.8 <M 3 / M 2 <1.25 The two zoom types described above zoom the first group (composite system from the 1-1 group to the 1-2 group). At this time, it is better to fix it because it is mechanically difficult to move it during focusing and focusing because of the optical path bending system. Since it is relatively easy to move, in that case, it is preferable to move while drawing a convex locus on the image side at the time of zooming. For correction, it is preferable that the negative lens and the positive lens are arranged in this order from the object side, or two positive lenses or one positive lens.

【0032】さらに、以下の構成上の限定の何れかを加
えると、より一層高い仕様、性能、簡素な構成の折り曲
げズームレンズ系を得ることができ、撮像装置のさらな
る薄型化に寄与する。
Furthermore, by adding any of the following structural limitations, it is possible to obtain a folding zoom lens system having higher specifications, performance, and a simpler configuration, which contributes to further thinning of the image pickup apparatus.

【0033】○第1−1群は光路を折り曲げるための反
射光学素子より物体側の負レンズ群は、物体側に凸の負
レンズ1枚のみとする。
In the 1-1 group, the negative lens group on the object side of the reflective optical element for bending the optical path is composed of only one negative lens convex on the object side.

【0034】この配置が画角を維持しながら光学系の奥
行を最も薄くできる構成である。
With this arrangement, the depth of the optical system can be minimized while maintaining the angle of view.

【0035】○その場合、負レンズのパワーがある程度
ないと意味がないので、第1−1群と第1−2群のパワ
ー比を、 (d) −0.8<f11/f12<1.9 とする。ただし、f11は第1−1群の焦点距離、f12
第1−2群の焦点距離である。この条件の上下限の1.
9、−0.8の何れを越えても、折り曲げ光学素子が大
型化しやすい。
[0035] ○ In this case, since no sense the power of the negative lens is not to some extent, the power ratio of the 1-1 group and group the 1-2, (d) -0.8 <f 11 / f 12 < Set to 1.9. However, f 11 is the focal length of the 1-1st lens group, and f 12 is the focal length of the 1-2nd lens group. The upper and lower limits of this condition are 1.
When the value exceeds 9 or -0.8, the bending optical element tends to be large.

【0036】なお、次のようにすればより好ましい。The following is more preferable.

【0037】 (d' ) −0.6<f11/f12<1.7 さらに、次のようにすればなお好ましい。(D ′) −0.6 <f 11 / f 12 <1.7 Further, the following is more preferable.

【0038】 (d" ) −0.4<f11/f12<1.5 ○第2群又は第3群の何れか一方が単レンズ、もう一方
には少なくとも凹レンズを含む。
(D ″) −0.4 <f 11 / f 12 <1.5 ○ One of the second group and the third group includes a single lens, and the other includes at least a concave lens.

【0039】第2群と第3群は変倍時に相対的間隔をわ
ずかに変えながら概ね同一方向に移動することで、移動
スペースを共用でき、少ないスペースで焦点位置を一定
に保ちつつ変倍することができるのであるが、その他の
メリットとして、それぞれの群の色収差の補正が完結し
ている必要がないということである。つまり、第2群、
第3群は相互に色収差が補正できる。したがって、何れ
か一方を単レンズにて構成してもよい。小型軽量化に貢
献する。
By moving the second group and the third group in substantially the same direction while slightly changing the relative distance during zooming, it is possible to share a moving space and carry out zooming while keeping the focal position constant in a small space. However, another advantage is that the correction of the chromatic aberration of each group does not have to be completed. That is, the second group,
The third group can mutually correct chromatic aberration. Therefore, either one may be configured with a single lens. Contributing to downsizing and weight reduction.

【0040】○第2群と第3群の相対的間隔変化をでき
るだけ小さく保つには、第2群以降の合成系の倍率が−
1倍近傍にて変倍するのがよい。したがって、望遠端に
おいては以下の条件を満足するのがよい。
In order to keep the relative distance change between the second group and the third group as small as possible, the magnification of the composite system after the second group is-.
It is better to change the magnification in the vicinity of 1 time. Therefore, it is preferable to satisfy the following conditions at the telephoto end.

【0041】(e) 0.7<−βRt<2.1 ただし、βRtは第2群以降の望遠端における合成倍率
(無限遠物点)である。
(E) 0.7 <-β Rt <2.1 where β Rt is a composite magnification (infinity object point) at the telephoto end after the second lens unit.

【0042】この条件の上下限2.1、0.7の何れを
越えても、第2群と第3群との相対的間隔の変化量が大
きくなってしまう。
If the upper and lower limits 2.1 or 0.7 of these conditions are exceeded, the amount of change in the relative distance between the second group and the third group becomes large.

【0043】なお、次のようにすればより好ましい。The following is more preferable.

【0044】(e' ) 0.8<−βRt<1.9 さらに、次のようにすればなお好ましい。(E ') 0.8 <-β Rt <1.9 Further, the following is more preferable.

【0045】(e”) 0.85<−βRt<1.7 本発明の電子撮像装置は、また、広角端から望遠端に変
倍する際に物体側にのみ移動する群を少なくとも1つ含
み、変倍時に可動な全ての群の最も物体側のレンズより
も物体側に入射面・射出面の少なくとも一方が曲率を有
する面である光路を折り曲げるための反射光学素子を少
なくとも1つ含む光路折り曲げズーム光学系及びその像
側に配置された電子撮像素子を有することを特徴とする
ものを含むものである。
(E ″) 0.85 <−β Rt <1.7 The electronic image pickup apparatus of the present invention also includes at least one group that moves only to the object side when zooming from the wide-angle end to the telephoto end. An optical path including at least one reflective optical element for bending an optical path that is a surface having at least one of an entrance surface and an exit surface having a curvature on the object side of the most object-side lens of all the groups that are movable during zooming. It includes a folding zoom optical system and an electronic image pickup device arranged on the image side thereof.

【0046】このように、光路を折り曲げるための反射
光学素子(プリズム)に屈折力を保有させることで、レ
ンズ要素数を削減でき、コンパクト化やコストダウンに
寄与する。
As described above, by allowing the reflective optical element (prism) for bending the optical path to have a refractive power, the number of lens elements can be reduced, which contributes to downsizing and cost reduction.

【0047】この場合に、光路を折り曲げるための反射
光学素子を光路折り曲げズーム光学系の最も物体側に配
置することができる。
In this case, the reflective optical element for bending the optical path can be arranged on the most object side of the optical path bending zoom optical system.

【0048】このように、光路折り曲げ素子は出来るだ
け物体側に配した方が、電子撮像装置の奥行き方向を薄
くできる。
As described above, when the optical path bending element is arranged on the object side as much as possible, the depth direction of the electronic image pickup device can be made thin.

【0049】また、光路を折り曲げるための反射光学素
子の入射面を物体側に凹面を向けた構成にすることがで
きる。
Further, the incident surface of the reflective optical element for bending the optical path can be constructed so that the concave surface faces the object side.

【0050】本発明の一例である、物体側から負メニス
カスレンズ、光路折り曲げプリズムの順に構成したズー
ム光学系を有する薄型電子撮像装置に対し、光路折り曲
げプリズムの入射面に負の屈折力を持たせることで、そ
の負メニスカスレンズを省略でき、電子撮像装置の奥行
き方向をより薄くすることが可能となる。
In a thin electronic image pickup device having a zoom optical system, which is an example of the present invention in order from the object side, a negative meniscus lens and an optical path bending prism, a negative refracting power is given to the incident surface of the optical path bending prism. As a result, the negative meniscus lens can be omitted, and the depth direction of the electronic image pickup device can be made thinner.

【0051】その場合に、光路を折り曲げるための反射
光学素子の入射面を非球面とすることができる。
In this case, the incident surface of the reflective optical element for bending the optical path can be made aspheric.

【0052】入射面の光軸上曲率が負値(物体側に凹面
を向けた構成)である場合、歪曲収差等の軸外収差補正
上不利となるため、非球面を導入することでその収差補
正を可能としている。
If the curvature of the entrance surface on the optical axis has a negative value (the concave surface is directed to the object side), it is disadvantageous in correction of off-axis aberrations such as distortion. Correction is possible.

【0053】そして、光路を折り曲げるための反射光学
素子の射出面を平面とすることができる。
The exit surface of the reflective optical element for bending the optical path can be a flat surface.

【0054】上記のように、入射面に非球面を導入する
と、射出面との面間偏心精度の確保が困難となるため、
もう一方の面(射出面)を平面として面間偏心要求精度
を緩和することができる。
As described above, if an aspherical surface is introduced into the entrance surface, it becomes difficult to secure the accuracy of the eccentricity between the entrance surface and the exit surface.
The other surface (emission surface) can be made a flat surface to reduce the required accuracy of eccentricity between the surfaces.

【0055】また、広角端から望遠端に変倍する際に物
体側にのみ移動する群は、2つの正レンズと少なくとも
1つの負レンズとからなり、少なくとも1つずつの正レ
ンズと負レンズが互いに接合されているものとすること
ができる。
The group that moves only toward the object side when zooming from the wide-angle end to the telephoto end consists of two positive lenses and at least one negative lens, and at least one positive lens and at least one negative lens are included. It can be joined to each other.

【0056】広角端から望遠端に変倍する際に物体側に
のみ移動する群においては、正レンズと負レンズの相対
偏心による収差の劣化が大きい傾向にある。したがっ
て、上記のように出来るだけ互いに接合しておいた方が
好ましい。
In the group that moves only to the object side when zooming from the wide-angle end to the telephoto end, deterioration of aberration due to relative decentering of the positive lens and the negative lens tends to be large. Therefore, it is preferable to bond them to each other as much as possible.

【0057】また、広角端から望遠端に変倍する際に物
体側にのみ移動する群は、2つの正レンズと1つの負レ
ンズとからなり、その負レンズが少なくとも一方の正レ
ンズと互いに接合されているものとすることができる。
The group that moves only toward the object side when zooming from the wide-angle end to the telephoto end consists of two positive lenses and one negative lens, and the negative lens is cemented to at least one positive lens. It can be.

【0058】このように、広角端から望遠端に変倍する
際に物体側にのみ移動する群は、2つの正レンズと1つ
の負レンズの合計3枚が最低構成要素である。
As described above, in the group that moves only to the object side when the magnification is changed from the wide-angle end to the telephoto end, the minimum number of constituent elements is two positive lenses and one negative lens.

【0059】さて、次に、フィルター類を薄くすること
について言及する。電子撮像装置には、通常赤外光が撮
像面に入射しないように一定の厚みのある赤外吸収フィ
ルターを撮像素子よりも物体側に挿入している。これを
厚みのないコーティングに置き換えることを考える。当
然その分薄くなる訳だが、副次的効果がある。ズームレ
ンズ系後方にある電子撮像素子よりも物体側に、600
nmでの透過率が80%以上、700nmでの透過率が
10%以下の近赤外シャープカットコートを導入する
と、吸収タイプよりも相対的に赤側の透過率が高くな
り、補色モザイクフィルターを有するCCDの欠点であ
る青紫側のマゼンタ化傾向がゲイン調整により緩和さ
れ、原色フィルターを有するCCD並みの色再現を得る
ことができる。一方、補色フィルターの場合、その透過
光エネルギーの高さから原色フィルター付きCCDと比
べ実質的感度が高く、かつ,解像的にも有利であるた
め、小型CCDを使用したときのメリットが大である。
もう一方のフィルターである光学的ローパスフィルター
についてもその総厚tLPF 以下の条件を満たすようにす
るとよい。 (f) 0.15a<tLPF <0.
45a aは電子撮像素子の水平画素ピッチ(単位μm)。
Now, reference will be made to thinning the filters. In the electronic image pickup device, an infrared absorption filter having a certain thickness is usually inserted closer to the object side than the image pickup element so that infrared light does not enter the image pickup surface. Consider replacing this with a thin coating. Naturally, it will be thinned by that amount, but there is a secondary effect. On the object side of the electronic image sensor behind the zoom lens system,
When a near-infrared sharp cut coat with a transmittance of 80% or more at nm and a transmittance of 10% or less at 700 nm is introduced, the transmittance on the red side becomes relatively higher than that of the absorption type, and a complementary color mosaic filter is used. The magenta tendency on the blue-violet side, which is a drawback of the CCD, is mitigated by the gain adjustment, and color reproduction comparable to that of a CCD having a primary color filter can be obtained. On the other hand, the complementary color filter has substantially higher sensitivity than the CCD with the primary color filter due to its high transmitted light energy, and is also advantageous in resolution. Therefore, the advantage of using a small CCD is large. is there.
It is advisable to satisfy the condition of the total thickness t LPF or less for the optical low-pass filter which is the other filter. (F) 0.15a <t LPF <0.
45a is a horizontal pixel pitch (unit: μm) of the electronic image sensor.

【0060】光学的ローパスフィルターを薄くすると、
一般的にはモアレ抑制効果が減少して好ましくない。一
方、画素ピッチが小さくなるにつれて結像レンズ系の回
折の影響によりナイキスト限界以上の周波数成分のコン
トラストは減少し、モアレ抑制効果の減少はある程度許
容されるようになる。例えば、像面上投影時の方位角度
が水平(=0°)と±45°方向にそれぞれ結晶軸を有
する3種類のフィルターを光軸方向に重ねて使用する場
合、かなりモアレ抑制効果があることが知られている。
この場合のフィルターが最も薄くなる仕様としては、水
平にaμm、±45°方向にそれぞれSQRT(1/2) *aμ
mだけずらせるものが知られている。このときのフィル
ター厚は、凡そ[1+2*SQRT(1/2) ]*a/5.88
(mm)となる。ここで、SQRTはスクエアルートで
あり平方根を意味する。これは、丁度ナイキスト限界に
相当する周波数においてコントラストをゼロにする仕様
である。これよりは数%乃至数十%程度薄くすると、ナ
イキスト限界に相当する周波数のコントラストが少し出
てくるが、上記回折の影響で抑えるることが可能にな
る。
When the optical low-pass filter is made thin,
Generally, the moire suppressing effect decreases, which is not preferable. On the other hand, as the pixel pitch becomes smaller, the contrast of frequency components above the Nyquist limit is reduced due to the influence of diffraction of the imaging lens system, and the reduction of the moire suppression effect is allowed to some extent. For example, when three types of filters having crystal axes in the horizontal (= 0 °) and ± 45 ° directions when projected on the image plane are used in an overlapping manner in the optical axis direction, there is a considerable moire suppressing effect. It has been known.
The specifications for the thinnest filter in this case are horizontal aμm and ± 45 ° SQRT (1/2) * aμ.
It is known to shift by m. The filter thickness at this time is approximately [1 + 2 * SQRT (1/2)] * a / 5.88.
(Mm). Here, SQRT is a square root and means a square root. This is a specification that makes the contrast zero at a frequency just corresponding to the Nyquist limit. When the thickness is reduced by about several percent to several tens of percent, the contrast of the frequency corresponding to the Nyquist limit is slightly generated, but it can be suppressed by the influence of the diffraction.

【0061】上記以外のフィルター仕様、例えば2枚重
ねあるいは1枚で実施する場合も含めて、条件(f)を
満足するのがよい。その上限値の0.45aを越える
と、光学的ローパスフィルターが厚すぎ薄型化の妨げに
なる。下限値の0.15aを越えると、モアレ除去が不
十分になる。ただし、これを実施する場合のaの条件は
5μm以下である。
It is preferable that the condition (f) is satisfied including filter specifications other than the above, for example, a case where two filters are stacked or one filter is used. When the upper limit of 0.45a is exceeded, the optical low-pass filter becomes too thick, which hinders reduction in thickness. If the lower limit of 0.15a is exceeded, moire removal will be insufficient. However, the condition of a when this is carried out is 5 μm or less.

【0062】aが4μm以下なら、より回折の影響を受
けやすいので、 (f' ) 0.13a<tLPF <0.42a としてもよい。また、水平画素ピッチと重ねるローパス
フィルターの枚数に応じて、以下のようにしてもよい。
If a is 4 μm or less, it is more susceptible to diffraction, and therefore (f ′) 0.13a <t LPF <0.42a. Further, the following may be performed according to the horizontal pixel pitch and the number of low-pass filters to be overlapped.

【0063】 (f”)4μm 以上: 0.3a<tLPF <0.4a …3枚重ね a<5μm 0.2a<tLPF <0.28a …2枚重ね a<5μm 0.1a<tLPF <0.16a …1枚 a<5μm 4μm以下: 0.25a<tLPF <0.37a …3枚重ね a<4μm 0.16a<tLPF <0.25a …2枚重ね a<4μm 0.08a<tLPF <0.14a …1枚 a<4μm 画素ピッチの小さな電子撮像素子を使用する場合、絞り
込みによる回折効果の影響で画質が劣化する。したがっ
て、開口サイズが固定の複数の開口を有し、その中の1
つを第1群の最も像側のレンズ面と第3群の最も物体側
のレンズ面の間の何れかの光路内に挿入でき、かつ、他
の開口と交換可能とすることで像面照度の調節すること
ができる電子撮像装置としておき、その複数の開口の
中、一部の開口内に550nmに対する透過率がそれぞ
れ異なり、かつ、80%未満であるような媒体を有する
ようにして光量調節を行なうのがよい。あるいは、a
(μm)/Fナンバー<0.4となるようなF値に相当
する光量になるように調節を実施する場合は、開口内に
550nmに対する透過率がそれぞれ異なりかつ80%
未満の媒体を有する電子撮像装置とするのがよい。例え
ば、開放値から上記条件の範囲外ではその媒体なしかあ
るいは550nmに対する透過率が91%以上のダミー
媒質としておき、範囲内のときは回折の影響が出る程に
開口絞り径を小さくするのではなく、NDフィルターの
ようなもので光量調節するのがよい。
(F ″) 4 μm or more: 0.3a <t LPF <0.4a… 3 stacks a <5 μm 0.2a <t LPF <0.28a… 2 stacks a <5 μm 0.1a <t LPF <0.16a ... 1 sheet a <5 μm 4 μm or less: 0.25a <t LPF <0.37a 3 sheets stacked a <4 μm 0.16a <t LPF <0.25a 2 sheets stacked a <4 μm 0.08a <T LPF <0.14a ... 1 sheet a <4 μm When an electronic image pickup device having a small pixel pitch is used, the image quality is deteriorated due to the diffraction effect due to the narrowing down, and therefore, a plurality of apertures having a fixed aperture size are provided. , One of them
One can be inserted into the optical path between the most image-side lens surface of the first lens unit and the most object-side lens surface of the third lens unit, and can be replaced with another aperture to allow the image plane illuminance to be changed. Of the plurality of apertures, and some of the apertures have media having different transmittances for 550 nm and less than 80%. It is better to do Alternatively, a
(Μm) / F number <0.4 When adjusting so that the light amount corresponds to the F value, the transmittance at 550 nm in the aperture is different and 80%.
It is better to have an electronic imaging device with less than medium. For example, if the open value is out of the range of the above conditions, the medium is not used, or a dummy medium having a transmittance of 91% or more for 550 nm is set, and if it is within the range, the aperture stop diameter may be reduced so that the influence of diffraction may occur. Instead, it is better to adjust the light quantity with something like an ND filter.

【0064】また、その複数の開口をそれぞれ径をF値
に反比例して小さくしたものにして揃えておき、NDフ
ィルターの代わりにそれぞれ周波数特性の異なる光学的
ローパスフィルターを開口内に入れておくのでもよい。
絞り込むにつれて回折劣化が大きくなるので、開口径が
小さくなる程光学的ローパスフィルターの周波数特性を
高く設定しておく。
Further, the diameters of the plurality of openings are made smaller in inverse proportion to the F value and are aligned, and optical low-pass filters having different frequency characteristics are inserted in the openings instead of the ND filter. But it's okay.
Since the diffraction deterioration increases as the aperture is narrowed down, the frequency characteristic of the optical low pass filter is set higher as the aperture diameter becomes smaller.

【0065】電子撮像装置の薄型化は、光学系の構成の
工夫の他に、機械的機構やレイアウトの工夫も重要であ
る。特に、撮影をしないときにレンズを本体内に収納す
るいわゆる沈胴方式を採用することは重要である。その
機構として、本発明のレンズ構成の場合には、既に本体
内にある反射光学素子を光路から本体内の別の空間に退
避し、その空いた光路上の空間に、反射光学素子よりも
物体側にあって撮影時には本体から突出しているレンズ
群を移動して収納する方式を採用するのがよい。
In order to reduce the thickness of the electronic image pickup device, it is important to devise a mechanical mechanism and a layout in addition to devising the optical system configuration. In particular, it is important to adopt a so-called collapsible method in which the lens is housed in the main body when not shooting. As the mechanism, in the case of the lens configuration of the present invention, the reflective optical element already in the main body is retracted from the optical path to another space in the main body, and in the space on the empty optical path, an object is provided rather than the reflective optical element. It is advisable to adopt a method in which the lens groups that are on the side and project from the main body are moved and stored during shooting.

【0066】なお、本発明に採用したレンズ構成以外で
あっても、物体側より順に、負の第1レンズ群、光路折
り曲げのための反射光学素子、正の第2レンズ群を有す
るような光学系であれば、反射光学素子を光路から本体
内の別の空間に退避し、その空いた光路上の空間に第1
レンズ群を移動して収納する方式が使える。
It should be noted that an optical system having a negative first lens group, a reflective optical element for bending the optical path, and a positive second lens group in order from the object side, other than the lens structure adopted in the present invention. In the case of a system, the reflective optical element is retracted from the optical path to another space in the main body, and the first space is placed in the empty optical path.
The method of moving and storing the lens group can be used.

【0067】さらに、第1レンズ群の収納時、第2レン
ズ群が撮影時の最も像面から離れた位置よりも像側に退
避するようにするとよい。第2レンズ群以降には変倍や
フォーカスのための移動スペースがあるので、例えば収
納時にそれを有効利用するために、収納時には第2群は
できるだけ像側に押し下げ、必要によっては反射光学素
子も像側に移動して第1群を収納したりすることができ
る。
Further, when the first lens group is housed, it is preferable that the second lens group be retracted toward the image side with respect to the position farthest from the image plane during photographing. Since there is a moving space for zooming and focusing after the second lens group, for example, in order to make effective use of it during storage, the second group should be pushed down toward the image side as much as possible during storage, and if necessary a reflective optical element as well. It is possible to move to the image side and store the first group.

【0068】反射光学素子が特に薄板に反射ミラーコー
ティングを施した反射ミラーで構成するような場合は、
その収納時に、反射ミラーを反射面が折り曲げ、前の光
軸と垂直となるように退避させることができるので、退
避スペースを必要とせずに第1群の収納が可能である。
When the reflection optical element is composed of a reflection mirror having a thin plate coated with a reflection mirror,
At the time of storage, the reflection mirror can be retracted so that the reflection surface is bent and perpendicular to the front optical axis, so that the first group can be stored without requiring a retract space.

【0069】その他、収納時に反射光学素子以外のレン
ズ1枚1枚を倒したり移動して収納空間を作りだしても
よい。
In addition, the storage space may be created by tilting or moving the lenses other than the reflective optical element during storage.

【0070】プリズムを外殻のみ固体で形成し、内部を
液体等で充填したもので構成する場合は、内部の液体を
抜いて薄くするのもよい。
When the prism is formed by forming only the outer shell with a solid and filling the inside with a liquid or the like, the liquid inside may be drained to make it thinner.

【0071】なお、反射光学素子を利用した光学系を用
いると、以下のようなことが可能になる。
By using an optical system using a reflective optical element, the following can be achieved.

【0072】最も優れた応用例として、ポロプリズム方
式のファインダーと融合したTTL一眼レフ光学系であ
る。
The most excellent application example is a TTL single-lens reflex optical system fused with a Porro prism type finder.

【0073】例えば、反射光学素子を含む撮影光学系と
撮像素子との間に、反射光学素子での反射前後の光軸を
含む平面に対し略直角の側にも光路を分割する第2の反
射面(時分割でも振幅分割でも何でもよい)を設け、そ
の反射側に沿ってその第2の反射面の法線に対し略同一
平面内でかつ略直角である法線を有する第3の反射面を
設け、さらに、反射後の光路がその撮影光学系の入射側
の光軸と略平行に射出するように第4の反射面を設けた
もの等である。これは、カメラの薄型化に大きく貢献す
る。
For example, the second reflection that divides the optical path between the photographing optical system including the reflection optical element and the image pickup element also on the side substantially perpendicular to the plane including the optical axis before and after reflection by the reflection optical element. A surface (which may be time division or amplitude division) may be provided, and a third reflection surface having a normal line along the reflection side thereof that is substantially in the same plane as the normal line of the second reflection surface and at a right angle. And a fourth reflecting surface so that the optical path after reflection exits substantially parallel to the optical axis on the incident side of the photographing optical system. This greatly contributes to making the camera thinner.

【0074】第2の応用例として、反射光学素子とそれ
よりも物体側の光学系を例えば撮影光学系の入射瞳位置
近傍を回転中心に回転して撮影方向を変えることができ
る。あるいは、光学的な手ブレ補正も可能である。
As a second example of application, the photographing direction can be changed by rotating the reflective optical element and the optical system on the object side of the reflective optical element, for example, around the entrance pupil position of the photographing optical system as a rotation center. Alternatively, optical camera shake correction is also possible.

【0075】[0075]

【発明の実施の形態】以下、本発明の電子撮像装置に用
いられる光路折り曲げズーム光学系の実施例1〜12に
ついて説明する。これらの実施例の無限遠物点合焦時の
望遠端(a)、中間状態(b)、広角端(c)でのレン
ズ断面図をそれぞれ図1〜図12に示す。各図中、第1
群はG1、第1−1群はG1−1、第1−2群はG1−
2、第2群はG2、第3群はG3、第4群はG4、第5
群はG5、光路折り曲げプリズムはP、開口絞り(独立
の場合)はS、近赤外カットフィルターはIF、近赤外
カットコート面はIC、ローパスフィルターはLF、電
子撮像素子であるCCDのカバーガラスはCG、CCD
の像面はIで示してあり、物体側から順に配置された近
赤外カットフィルターIF、ローパスフィルターLF、
カバーガラスCG、あるいは、近赤外カットコート面I
C、ローパスフィルターLF、カバーガラスCGは、最
終群と像面Iの間に固定配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments 1 to 12 of an optical path bending zoom optical system used in an electronic image pickup device of the present invention will be described below. FIGS. 1 to 12 show lens cross-sectional views of these examples at the telephoto end (a), the intermediate state (b), and the wide-angle end (c) when focusing on an object point at infinity, respectively. First in each figure
The group is G1, the 1-1 group is G1-1, and the 1-2 group is G1-.
2, the second group is G2, the third group is G3, the fourth group is G4, the fifth
The group is G5, the optical path bending prism is P, the aperture stop (independent case) is S, the near-infrared cut filter is IF, the near-infrared cut coat surface is IC, the low-pass filter is LF, and the CCD of the electronic image sensor is a cover. Glass is CG, CCD
Is indicated by I, and the near-infrared cut filter IF, low-pass filter LF, and
Cover glass CG or near infrared cut coat surface I
C, the low-pass filter LF, and the cover glass CG are fixedly arranged between the final group and the image plane I.

【0076】実施例1の光路折り曲げズーム光学系は、
図1に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPからなる第1−1群G1−1、両凸正レンズ
からなる第1−2群G1−2、開口絞りと両凸正レンズ
からなる第2群G2、両凸正レンズと両凹負レンズの接
合レンズと両凸正レンズからなる第3群G3、物体側に
凸の負メニスカスレンズからなる第4群G4、両凸正レ
ンズからなる第5群G5からなり、広角端から望遠端に
変倍する際は、第2群G2と第3群G3は間の間隔を一
旦は広げ後に狭めながら物体側へ移動し、第4群G4は
第3群G3との間隔を広げながら物体側へ移動する。
The optical path bending zoom optical system of Example 1 is
As shown in FIG. 1, the 1-1st group G1-1 including an optical path bending prism P equivalent to a biconcave negative lens, the 1-2nd group G1-2 including a biconvex positive lens, an aperture stop and a biconvex positive lens. The second group G2 composed of lenses, the third group G3 composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and a biconvex positive lens, the fourth group G4 composed of a negative meniscus lens convex toward the object side, the biconvex positive The fifth lens group G5 is composed of lenses, and when zooming from the wide-angle end to the telephoto end, the second lens group G2 and the third lens group G3 move toward the object side while narrowing the distance between them and then narrowing them. The group G4 moves toward the object side while widening the distance from the third group G3.

【0077】非球面は、第1−2群G1−2の両凸正レ
ンズの物体側の面、第2群G2の両凸正レンズの物体側
の面、第4群G4の負メニスカスレンズの像面側の面、
第5群G5の両凸正レンズの像面側の面の4面に用いら
れている。
The aspherical surfaces are the object-side surface of the biconvex positive lens of the first-second group G1-2, the object-side surface of the biconvex positive lens of the second group G2, and the negative meniscus lens of the fourth group G4. Image side,
It is used for the four surfaces of the image-side surface of the biconvex positive lens of the fifth group G5.

【0078】実施例2の光路折り曲げズーム光学系は、
図2に示すように、両凹負レンズと等価な光路折り曲げ
プリズムPからなる第1−1群G1−1、両凸正レンズ
からなる第1−2群G1−2、独立に移動する開口絞り
S、両凸正レンズと物体側に凸の正メニスカスレンズと
物体側に凸の負メニスカスレンズからなる第2群G2、
両凸正レンズと像面側に凸の負メニスカスレンズからな
る第3群G3、物体側に凸の正メニスカスレンズからな
る第4群G4からなり、広角端から望遠端に変倍する際
は、第2群G4と第3群G3は相互に間隔を広げながら
物体側へ移動する。第1−2群G1−2と第2群G4の
間に配置された開口絞りSも、第1−2群G1−2と第
2群G4の間の間隔を狭めながら物体側へ移動する。
The optical path bending zoom optical system of Example 2 is
As shown in FIG. 2, a first-first group G1-1 including an optical path bending prism P equivalent to a biconcave negative lens, a first-second group G1-2 including a biconvex positive lens, and an aperture diaphragm that moves independently. S, a second group G2 including a biconvex positive lens, a positive meniscus lens having a convex surface on the object side, and a negative meniscus lens having a convex surface on the object side,
The third lens group G3 is composed of a biconvex positive lens and a negative meniscus lens having a convex surface on the image side, and the fourth lens group G4 is composed of a positive meniscus lens having a convex surface on the object side. The second group G4 and the third group G3 move toward the object side while increasing the distance between them. The aperture stop S arranged between the first-second group G1-2 and the second group G4 also moves toward the object side while narrowing the interval between the first-second group G1-2 and the second group G4.

【0079】非球面は、第1−2群G1−2の両凸正レ
ンズの物体側の面、第2群G2の最も物体側の面、第4
群G4の正メニスカスレンズの物体側の面の3面に用い
られている。
The aspherical surface is the object-side surface of the biconvex positive lens in the first-second group G1-2, the most object-side surface of the second group G2, and the fourth surface.
It is used for three surfaces of the positive meniscus lens of the group G4 on the object side.

【0080】実施例3の光路折り曲げズーム光学系は、
図3に示すように、物体側に凸の負メニスカスレンズと
平行平面板と等価な光路折り曲げプリズムPからなる第
1−1群G1−1、両凹負レンズと両凸正レンズからな
る第1−2群G1−2、開口絞りと両凸正レンズからな
る第2群G2、両凸正レンズと物体側に凸の負メニスカ
スレンズと両凸正レンズと像面側に凸の負メニスカスレ
ンズからなる第3群G3、像面側に凸の正メニスカスレ
ンズからなる第4群G4からなり、広角端から望遠端に
変倍する際は、第2群G2と第3群G3は間の間隔を一
旦は広げ後に狭めながら物体側へ移動する。
The optical path bending zoom optical system of Example 3 is
As shown in FIG. 3, a first-first group G1-1 including a negative meniscus lens convex on the object side and an optical path bending prism P equivalent to a plane parallel plate, a first biconcave negative lens and a biconvex positive lens -2nd group G1-2, a second group G2 consisting of an aperture stop and a biconvex positive lens, a biconvex positive lens, a negative meniscus lens convex to the object side, a biconvex positive lens and a negative meniscus lens convex to the image side And a fourth group G4 composed of a positive meniscus lens having a convex surface on the image side. When zooming from the wide-angle end to the telephoto end, the second group G2 and the third group G3 are spaced apart from each other. After expanding once, it moves toward the object side while narrowing.

【0081】非球面は、第1−2群G1−2の両凸正レ
ンズの物体側の面、第3群G3の最も物体側の面、第4
群G4の正メニスカスレンズの物体側の面の3面に用い
られている。
The aspherical surface is the object-side surface of the biconvex positive lens in the first-second group G1-2, the most object-side surface of the third group G3, and the fourth surface.
It is used for three surfaces of the positive meniscus lens of the group G4 on the object side.

【0082】実施例4の光路折り曲げズーム光学系は、
図4に示すように、物体側に凸の負メニスカスレンズと
平行平面板と等価な光路折り曲げプリズムPからなる第
1−1群G1−1、両凹負レンズと両凸正レンズからな
る第1−2群G1−2、開口絞りと両凸正レンズと両凸
正レンズと物体側に凸の負メニスカスレンズからなる第
2群G2、物体側に凸の正メニスカスレンズからなる第
3群G3、像面側に凸の正メニスカスレンズからなる第
4群G4からなり、広角端から望遠端に変倍する際は、
第2群G2と第3群G3は間の間隔を一旦は広げ後に狭
めながら物体側へ移動する。
The optical path bending zoom optical system of Example 4 is
As shown in FIG. 4, a first-first group G1-1 composed of a negative meniscus lens convex to the object side and an optical path bending prism P equivalent to a plane parallel plate, a first group composed of a biconcave negative lens and a biconvex positive lens. -Second group G1-2, a second group G2 including an aperture stop, a biconvex positive lens, a biconvex positive lens, and a negative meniscus lens having a convex surface on the object side, and a third group G3 including a positive meniscus lens having a convex surface on the object side, The fourth lens unit G4 is composed of a positive meniscus lens element having a convex surface on the image side, and when changing the magnification from the wide-angle end to the telephoto end,
The second group G2 and the third group G3 move toward the object side while once widening the interval between them and then narrowing them.

【0083】非球面は、第1−2群G1−2の両凸正レ
ンズの物体側の面、第2群G2の絞りの後の両凸正レン
ズの物体側の面、第4群G4の正メニスカスレンズの物
体側の面の3面に用いられている。
The aspherical surfaces are the object-side surface of the biconvex positive lens of the first-second group G1-2, the object-side surface of the biconvex positive lens after the stop of the second group G2, and the fourth group G4. It is used for three surfaces of the positive meniscus lens on the object side.

【0084】実施例5の光路折り曲げズーム光学系は、
図5に示すように、物体側に凸の正メニスカスレンズと
物体側に凸の負メニスカスレンズと平行平面板と等価な
光路折り曲げプリズムPからなる第1群G1、開口絞り
と両凸正レンズからなる第2群G2、両凸正レンズと両
凹負レンズの接合レンズと両凸正レンズからなる第3群
G3、物体側に凸の負メニスカスレンズからなる第4群
G4、物体側に凸の正メニスカスレンズからなる第5群
G5からなり、広角端から望遠端に変倍する際は、第2
群G2と第3群G3は間の間隔を一旦は広げ後に狭めな
がら、また、第3群G3と第4群G4は間の間隔を広げ
ながら、物体側へ移動し、第5群G5は若干像面側へ移
動する。
The optical path bending zoom optical system of Example 5 is as follows:
As shown in FIG. 5, a first group G1 including a positive meniscus lens having a convex surface on the object side, a negative meniscus lens having a convex surface on the object side, and an optical path bending prism P equivalent to a plane-parallel plate, an aperture stop and a biconvex positive lens. The second group G2, the third group G3 including a cemented lens of a biconvex positive lens and a biconcave negative lens, and a biconvex positive lens, the fourth group G4 including a negative meniscus lens convex on the object side, and the convex group on the object side. It consists of a fifth lens group G5 consisting of a positive meniscus lens, and is used when zooming from the wide-angle end to the telephoto end.
The group G2 and the third group G3 move toward the object side while temporarily narrowing the gap between them, and the third group G3 and the fourth group G4 move toward the object side while widening the gap between them, and the fifth group G5 slightly moves. Move to the image side.

【0085】非球面は、第1群G1の両凸正レンズの像
面側の面、第2群G2の両凸正レンズの物体側の面、第
4群G4の負メニスカスレンズの像面側の面、第5群G
5の正メニスカスレンズの像面側の面の4面に用いられ
ている。
The aspherical surfaces are the image side of the biconvex positive lens of the first group G1, the object side of the biconvex positive lens of the second group G2, and the image side of the negative meniscus lens of the fourth group G4. Surface, fifth group G
It is used for four surfaces of the positive meniscus lens 5 on the image side.

【0086】実施例6の光路折り曲げズーム光学系は、
図6に示すように、両凸正レンズと両凹負レンズと平行
平面板と等価な光路折り曲げプリズムPからなる第1群
G1、開口絞りと、両凸正レンズと像面側に凸の負メニ
スカスレンズの接合レンズからなる第2群G2、物体側
に凸の負メニスカスレンズからなる第3群G3、両凸正
レンズからなる第4群G4からなり、広角端から望遠端
に変倍する際は、第2群G2と第3群G3は間の間隔を
広げながら物体側へ移動し、第4群G4は像面側に凸の
軌跡を描きつつ望遠側では物体側へ若干移動する。
The optical path bending zoom optical system of the sixth embodiment is as follows:
As shown in FIG. 6, a first group G1 including a biconvex positive lens, a biconcave negative lens, and an optical path bending prism P equivalent to a plane parallel plate, an aperture stop, a biconvex positive lens, and a negative lens convex on the image plane side. A second group G2 including a cemented lens of a meniscus lens, a third group G3 including a negative meniscus lens having a convex surface on the object side, and a fourth group G4 including a biconvex positive lens when zooming from a wide-angle end to a telephoto end. The second lens group G2 and the third lens group G3 move toward the object side while increasing the distance between them, and the fourth lens group G4 moves slightly toward the object side on the telephoto side while drawing a convex locus on the image plane side.

【0087】非球面は、第1群G1の両凹負レンズの物
体側の面、第2群G2の最も物体側の面、第3群G3の
負メニスカスレンズの像面側の面の3面に用いられてい
る。
The aspherical surfaces are the three surfaces of the object-side surface of the biconcave negative lens of the first group G1, the most object-side surface of the second group G2, and the image-side surface of the negative meniscus lens of the third group G3. Is used for.

【0088】実施例7の光路折り曲げズーム光学系は、
図7に示すように、物体側に凸の負メニスカスレンズと
平行平面板と等価な光路折り曲げプリズムPからなる第
1−1群G1−1、両凹負レンズと両凸正レンズからな
る第1−2群G1−2、開口絞りと両凸正レンズと、両
凸正レンズと像面側に凸の負メニスカスレンズの接合レ
ンズと、物体側に凸の負メニスカスレンズ2枚からなる
第2群G2、像面側に凸の正メニスカスレンズからなる
第3群G3、像面側に凸の正メニスカスレンズからなる
第4群G4からなり、広角端から望遠端に変倍する際
は、第2群G2と第3群G3は間の間隔を一旦は広げ後
に狭めながら物体側へ移動する。
The optical path bending zoom optical system of the seventh embodiment is
As shown in FIG. 7, a 1-1st group G1-1 including a negative meniscus lens convex on the object side and an optical path bending prism P equivalent to a plane parallel plate, a first biconcave negative lens and a biconvex positive lens. -Second group G1-2, a second group including an aperture stop and a biconvex positive lens, a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface on the image side, and two negative meniscus lenses having a convex surface on the object side G2, a third group G3 composed of a positive meniscus lens having a convex surface on the image side, and a fourth group G4 composed of a positive meniscus lens having a convex surface on the image surface side. The group G2 and the third group G3 move toward the object side while widening the gap between them once and then narrowing them.

【0089】非球面は、第1−1群G1−1の負メニス
カスレンズの像面側の面、第2群G2の最も物体側の
面、第4群G4の正メニスカスレンズの物体側の面の3
面に用いられている。
The aspherical surface is the image-side surface of the negative meniscus lens of the 1-1st group G1-1, the most object-side surface of the second group G2, and the object-side surface of the positive meniscus lens of the fourth group G4. Of 3
It is used for the surface.

【0090】実施例8の光路折り曲げズーム光学系は、
図8に示すように、物体側に凸の負メニスカスレンズと
平行平面板と等価な光路折り曲げプリズムPからなる第
1−1群G1−1、両凹負レンズと物体側に凸の正メニ
スカスレンズからなる第1−2群G1−2、開口絞りと
両凸正レンズと、両凸正レンズと両凹負レンズの接合レ
ンズからなる第2群G2、像面側に凸の正メニスカスレ
ンズからなる第3群G3、像面側に凸の正メニスカスレ
ンズからなる第4群G4からなり、広角端から望遠端に
変倍する際は、第2群G2と第3群G3は間の間隔を一
旦は広げ後に狭めながら物体側へ移動する。
The optical path bending zoom optical system of Example 8 is as follows:
As shown in FIG. 8, a 1-1st group G1-1 including a negative meniscus lens convex to the object side and an optical path bending prism P equivalent to a plane parallel plate, a biconcave negative lens and a positive meniscus lens convex to the object side. A first-second lens group G1-2, an aperture stop and a biconvex positive lens, a second lens group G2 composed of a cemented lens of a biconvex positive lens and a biconcave negative lens, and a positive meniscus lens convex on the image side. It is composed of a third group G3 and a fourth group G4 composed of a positive meniscus lens having a convex surface on the image plane side. When zooming from the wide-angle end to the telephoto end, the distance between the second group G2 and the third group G3 is once set. Moves to the object side after widening and narrowing.

【0091】非球面は、第1−1群G1−1の負メニス
カスレンズの物体側の面、第2群G2の最も物体側の
面、第4群G4の正メニスカスレンズの像面側の面の3
面に用いられている。
The aspherical surfaces are the object-side surface of the negative meniscus lens of the 1-1st group G1-1, the most object-side surface of the second group G2, and the image-side surface of the positive meniscus lens of the fourth group G4. Of 3
It is used for the surface.

【0092】実施例9の光路折り曲げズーム光学系は、
図9に示すように、物体側に凸の負メニスカスレンズと
平行平面板と等価な光路折り曲げプリズムPからなる第
1−1群G1−1、物体側に凸の負メニスカスレンズと
物体側に凸の正メニスカスレンズからなる第1−2群G
1−2、開口絞りと両凸正レンズからなる第2群G2、
両凸正レンズと物体側に凸の負メニスカスレンズと、両
凸正レンズと両凹負レンズの接合レンズからなる第3群
G3、像面側に凸の正メニスカスレンズからなる第4群
G4からなり、広角端から望遠端に変倍する際は、第2
群G2と第3群G3は間の間隔を一旦は広げ後に若干狭
めながら物体側へ移動する。
The optical path bending zoom optical system of Example 9 is
As shown in FIG. 9, a 1-1st group G1-1 including a negative meniscus lens convex on the object side and an optical path bending prism P equivalent to a plane parallel plate, a negative meniscus lens convex on the object side and a convex on the object side. 1-2 Group G consisting of positive meniscus lenses
1-2, a second group G2 including an aperture stop and a biconvex positive lens,
From a third group G3 including a biconvex positive lens and a negative meniscus lens convex to the object side, a cemented lens of a biconvex positive lens and a biconcave negative lens, and a fourth group G4 including a positive meniscus lens convex to the image side. When zooming from the wide-angle end to the telephoto end,
The group G2 and the third group G3 move toward the object side while widening the distance between them once and then narrowing them slightly.

【0093】非球面は、第1−2群G1−2の負メニス
カスレンズの像面側の面、第3群G2の最も物体側の
面、第4群G4の正メニスカスレンズの物体側の面の3
面に用いられている。
The aspherical surface is the image-side surface of the negative meniscus lens of the first-second group G1-2, the most object-side surface of the third group G2, and the object-side surface of the positive meniscus lens of the fourth group G4. Of 3
It is used for the surface.

【0094】実施例10の光路折り曲げズーム光学系
は、図10に示すように、物体側に凸の負メニスカスレ
ンズと平行平面板と等価な光路折り曲げプリズムPから
なる第1−1群G1−1、物体側に凸の負メニスカスレ
ンズと物体側に凸の正メニスカスレンズからなる第1−
2群G1−2、開口絞りと、両凸正レンズと像面側に凸
の負メニスカスレンズの接合レンズからなる第2群G
2、物体側に凸の正メニスカスレンズと物体側に凸の負
メニスカスレンズと、両凸正レンズと両凹負レンズの接
合レンズからなる第3群G3、像面側に凸の正メニスカ
スレンズからなる第4群G4からなり、広角端から望遠
端に変倍する際は、第2群G2と第3群G3は間の間隔
を一旦は広げ後に狭めながら物体側へ移動する。
As shown in FIG. 10, the optical path bending zoom optical system of the tenth embodiment includes a 1-1st group G1-1 composed of a negative meniscus lens convex on the object side and an optical path bending prism P equivalent to a plane parallel plate. , A negative meniscus lens convex to the object side and a positive meniscus lens convex to the object side
Second group G1-2, an aperture stop, and a second group G including a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side.
2. Third lens group G3 consisting of a positive meniscus lens convex to the object side, a negative meniscus lens convex to the object side, and a cemented lens made up of a biconvex positive lens and a biconcave negative lens, from a positive meniscus lens convex to the image side When the magnification is changed from the wide-angle end to the telephoto end, the second group G2 and the third group G3 move toward the object side while narrowing the distance between them once and then narrowing the distance.

【0095】非球面は、第1−2群G1−2の負メニス
カスレンズの像面側の面、第3群G2の最も物体側の
面、第4群G4の正メニスカスレンズの物体側の面の3
面に用いられている。
The aspherical surface is the image-side surface of the negative meniscus lens of the first-second group G1-2, the most object-side surface of the third group G2, and the object-side surface of the positive meniscus lens of the fourth group G4. Of 3
It is used for the surface.

【0096】実施例11の光路折り曲げズーム光学系
は、図11に示すように、物体側に凸の負メニスカスレ
ンズと平行平面板と等価な光路折り曲げプリズムPから
なる第1−1群G1−1、物体側に凸の負メニスカスレ
ンズと物体側に凸の正メニスカスレンズからなる第1−
2群G1−2、開口絞りと、両凸正レンズと像面側に凸
の負メニスカスレンズの接合レンズからなる第2群G
2、物体側に凸の正メニスカスレンズと、凸平正レンズ
と平凹負レンズの接合レンズからなる第3群G3、両凸
正レンズからなる第4群G4からなり、広角端から望遠
端に変倍する際は、第2群G2は第3群G3は間の間隔
を一旦は広げ後に狭めながら物体側へ移動する。
As shown in FIG. 11, the optical path bending zoom optical system of Example 11 is a first-first group G1-1 composed of a negative meniscus lens convex to the object side and an optical path bending prism P equivalent to a plane parallel plate. , A negative meniscus lens convex to the object side and a positive meniscus lens convex to the object side
Second group G1-2, an aperture stop, and a second group G including a cemented lens of a biconvex positive lens and a negative meniscus lens convex on the image side.
2. Consists of a positive meniscus lens convex on the object side, a third lens group G3 including a cemented plano-convex lens and a plano-concave negative lens, and a fourth lens group G4 including a biconvex positive lens. At the time of doubling, the second group G2 and the third group G3 move to the object side while once widening the interval between them and then narrowing them.

【0097】非球面は、第1−2群G1−2の負メニス
カスレンズの像面側の面、第3群G3の正メニスカスレ
ンズの物体側の面、第4群G4の両凸正レンズの像面側
の面の3面に用いられている。
The aspherical surfaces are the image-side surface of the negative meniscus lens of the first-second group G1-2, the object-side surface of the positive meniscus lens of the third group G3, and the biconvex positive lens of the fourth group G4. It is used for three surfaces of the image side.

【0098】実施例12の光路折り曲げズーム光学系
は、図12に示すように、凹平負レンズと等価な光路折
り曲げプリズムPからなる第1−1群G1−1、物体側
に凹の負メニスカスレンズと物体側に凹の正メニスカス
レンズの接合レンズからなる第1−2群G1−2、開口
絞りと、両凸正レンズと、物体側に凸の正メニスカスレ
ンズと物体側に凸の負メニスカスレンズの接合レンズと
からなる第2群G2、両凸正レンズからなる第3群G
3、像面側に凸の正メニスカスレンズからなる第4群G
4からなり、広角端から望遠端に変倍する際は、第2群
G2と第3群G3は間の間隔を一旦は広げ後に狭めなが
ら物体側へ移動する。
As shown in FIG. 12, the optical path-bending zoom optical system according to Example 12 has a 1-1st group G1-1 composed of an optical path-bending prism P equivalent to a concave plano negative lens, and a negative meniscus concave on the object side. A first-second group G1-2 including a cemented lens of a lens and a positive meniscus lens concave to the object side, an aperture stop, a biconvex positive lens, a positive meniscus lens convex to the object side, and a negative meniscus convex to the object side. A second group G2 including a cemented lens and a third group G including a biconvex positive lens
3, the fourth group G composed of a positive meniscus lens convex on the image side
When the magnification is changed from the wide-angle end to the telephoto end, the second lens group G2 and the third lens group G3 move toward the object side while temporarily narrowing the distance between them.

【0099】非球面は、第1−1群G1−1の光路折り
曲げプリズムPの物体側の面、第2群G2の最も物体側
の面、第4群G4の正メニスカスレンズの像面側の面の
3面に用いられている。
The aspherical surfaces are the object side surface of the optical path bending prism P of the 1-1st group G1-1, the most object side surface of the second group G2, and the image plane side of the positive meniscus lens of the fourth group G4. It is used for three surfaces.

【0100】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、2ωは画角、
NOはFナンバー、WEは広角端、STは中間状態、T
Eは望遠端、r1 、r2 …は各レンズ面の曲率半径、d
1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レ
ンズのd線の屈折率、νd1、νd2…は各レンズのアッベ
数である。なお、非球面形状は、xを光の進行方向を正
とした光軸とし、yを光軸と直交する方向にとると、下
記の式にて表される。
Numerical data of each of the above-mentioned embodiments are shown below, with symbols other than the above, f is the focal length of the entire system, 2ω is the angle of view,
F NO is the F number, WE is the wide-angle end, ST is the intermediate state, T
E is the telephoto end, r 1 , r 2 ... Is the radius of curvature of each lens surface, d
1 , d 2 ... Intervals between lens surfaces, n d1 , n d2 ..., Refractive index of d line of each lens, ν d1 , ν d2, ... Abbe number of each lens. The aspherical shape is represented by the following formula, where x is an optical axis with the traveling direction of light being positive and y is a direction orthogonal to the optical axis.

【0101】x=(y2 /r)/[1+{1−(K+
1)(y/r)2 1/2 ]+A44 +A66 +A88
A1010 ただし、rは近軸曲率半径、Kは円錐係数、A4、A6
A8、A10 はそれぞれ4次、6次、8次、10次の非球面
係数である。
X = (y 2 / r) / [1+ {1- (K +
1) (y / r) 2 } 1/2 ] + A 4 y 4 + A 6 y 6 + A 8 y 8 +
A 10 y 10 However, r is a paraxial radius of curvature, K is a conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients of the 4th, 6th, 8th and 10th orders, respectively.

【0102】 実施例1 r1 = -26.8147 d1 = 3.8000 nd1 =1.73400 νd1 =51.47 r2 = ∞(反射面) d2 = 3.2000 nd2 =1.73400 νd2 =51.47 r3 = 6.2254 d3 = 1.7202 r4 = 424.9864(非球面) d4 = 2.4297 nd3 =1.84666 νd3 =23.78 r5 = -48.1247 d5 = (可変) r6 = ∞(絞り) d6 = 0.5000 r7 = 17.8731(非球面) d7 = 2.0000 nd4 =1.58913 νd4 =61.26 r8 = -16.6911 d8 = (可変) r9 = 7.9903 d9 = 6.2379 nd5 =1.48749 νd5 =70.23 r10= -14.7007 d10= 0.8488 nd6 =1.84666 νd6 =23.78 r11= 7.0178 d11= 1.1903 r12= 11.2307 d12= 1.6307 nd7 =1.84666 νd7 =23.78 r13= -24.5400 d13= (可変) r14= 18.1763 d14= 0.5000 nd8 =1.84666 νd8 =23.78 r15= 5.9110(非球面) d15= (可変) r16= 14.1876 d16= 3.0000 nd9 =1.58913 νd9 =61.26 r17= -7.1178(非球面) d17= 0.5006 r18= ∞ d18= 0.8000 nd10=1.51633 νd10=64.14 r19= ∞ d19= 1.8000 nd11=1.54771 νd11=62.84 r20= ∞ d20= 0.5000 r21= ∞ d21= 0.5000 nd12=1.51633 νd12=64.14 r22= ∞ d22= 1.1914 r23= ∞(像面) 非球面係数 第4面 K = 0.0195 A4 = 5.4111 ×10-4 A6 = 2.1984 ×10-6 A8 = 4.5957 ×10-7 A10=-1.0754 ×10-8 第7面 K = 5.8821 A4 =-2.7575 ×10-4 A6 = 5.8194 ×10-6 A8 =-7.9649 ×10-7 A10= 3.4848 ×10-8 第15面 K =-3.6043 A4 = 2.6150 ×10-3 A6 =-8.5623 ×10-6 A8 =-2.8972 ×10-6 A10= 1.5174 ×10-7 第17面 K = 0.8882 A4 = 1.1140 ×10-3 A6 =-8.5962 ×10-6 A8 = 3.9677 ×10-7 A10= 3.1086 ×10-8 ズームデータ(∞) WE ST TE f (mm) 4.59000 8.95000 13.23000 FNO 2.8316 3.8724 4.6438 2ω (°) 65.5 34.0 23.0 d5 12.93741 5.34873 2.00000 d8 2.61607 2.85689 0.50000 d13 1.09671 5.22639 10.38165 d15 1.00016 4.21405 4.71724 。Example 1 r 1 = -26.8147 d 1 = 3.8000 n d1 = 1.73400 ν d1 = 51.47 r 2 = ∞ (reflection surface) d 2 = 3.2000 n d2 = 1.73400 ν d2 = 51.47 r 3 = 6.2254 d 3 = 1.7202 r 4 = 424.9864 (aspherical surface) d 4 = 2.4297 n d3 = 1.84666 ν d3 = 23.78 r 5 = -48.1247 d 5 = (variable) r 6 = ∞ (aperture) d 6 = 0.5000 r 7 = 17.8731 (aspherical surface) ) D 7 = 2.0000 n d4 = 1.58913 ν d4 = 61.26 r 8 = -16.6911 d 8 = (variable) r 9 = 7.9903 d 9 = 6.2379 n d5 = 1.48749 ν d5 = 70.23 r 10 = -14.7007 d 10 = 0.8488 n d6 = 1.84666 ν d6 = 23.78 r 11 = 7.0178 d 11 = 1.1903 r 12 = 11.2307 d 12 = 1.6307 n d7 = 1.84666 ν d7 = 23.78 r 13 = -24.5400 d 13 = (variable) r 14 = 18.1763 d 14 = 0.5000 n d8 = 1.84666 ν d8 = 23.78 r 15 = 5.9110 (aspherical surface) d 15 = (variable) r 16 = 14.1876 d 16 = 3.0000 n d9 = 1.58913 ν d9 = 61.26 r 17 = -7.1178 (aspherical surface) d 17 = 0.5006 r 18 = ∞ d 18 = 0.8000 n d10 = 1.51633 ν d10 = 64.14 r 19 = ∞ d 19 = 1.8000 nd 11 = 1.54771 ν d11 = 62.84 r 20 = ∞ d 20 = 0.5000 r 21 = ∞ d 21 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 22 = ∞ d 22 = 1.1914 r 23 = ∞ (image plane) Aspherical coefficient 4th surface K = 0.0195 A 4 = 5.4111 × 10 -4 A 6 = 2.1984 × 10 -6 A 8 = 4.5957 × 10 -7 A 10 = -1.0754 × 10 -8 7th Surface K = 5.8821 A 4 = -2.7575 × 10 -4 A 6 = 5.8194 × 10 -6 A 8 = -7.9649 × 10 -7 A 10 = 3.4848 × 10 -8 15th surface K = -3.6043 A 4 = 2.6150 × 10 -3 A 6 = -8.5623 × 10 -6 A 8 = -2.8972 × 10 -6 A 10 = 1.5174 × 10 -7 17th surface K = 0.8882 A 4 = 1.1140 × 10 -3 A 6 = -8.5962 × 10 -6 A 8 = 3.9677 × 10 -7 A 10 = 3.1086 × 10 -8 Zoom data (∞) WEST TE f (mm) 4.59000 8.95000 13.23000 F NO 2.8316 3.8724 4.6438 2ω (°) 65.5 34.0 23.0 d 5 12.93741 5.34873 2.00000 d 8 2.61607 2.85689 0.50000 d 13 1.09671 5.22639 10.38165 d 15 1.00016 4.21405 4.71724.

【0103】 実施例2 r1 = -129.7294 d1 = 4.5500 nd1 =1.80400 νd1 =46.57 r2 = ∞(反射面) d2 = 4.0019 nd2 =1.80400 νd2 =46.57 r3 = 5.3898 d3 = 1.6465 r4 = 30.0332(非球面) d4 = 1.4609 nd3 =1.84666 νd3 =23.78 r5 = -35.8611 d5 = (可変) r6 = ∞(絞り) d6 = (可変) r7 = 9.6063(非球面) d7 = 2.7296 nd4 =1.48749 νd4 =70.23 r8 = -30.8421 d8 = 0.1469 r9 = 10.1172 d9 = 2.1277 nd5 =1.69680 νd5 =55.53 r10= 97.1974 d10= 0.0500 r11= 12.1982 d11= 0.7949 nd6 =1.84666 νd6 =23.78 r12= 5.7271 d12= (可変) r13= 14.2960 d13= 4.0342 nd7 =1.48749 νd7 =70.23 r14= -15.7323 d14= 0.1401 r15= -18.5671 d15= 1.1241 nd8 =1.84666 νd8 =23.78 r16= -29.8834 d16= (可変) r17= 46.3841(非球面) d17= 1.1752 nd9 =1.58913 νd9 =61.26 r18= 541.6142 d18= 0.4453 r19= ∞ d19= 0.8000 nd10=1.51633 νd10=64.14 r20= ∞ d20= 1.8000 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.5000 r22= ∞ d22= 0.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.2588 r24= ∞(像面) 非球面係数 第4面 K =42.6072 A4 = 4.5281 ×10-4 A6 =-1.2752 ×10-6 A8 = 2.9327 ×10-7 A10= 0 第7面 K = 0 A4 =-2.9136 ×10-4 A6 =-7.7511 ×10-7 A8 = 2.4221 ×10-8 A10= 0 第17面 K = 0 A4 =-8.0585 ×10-4 A6 = 1.7583 ×10-5 A8 =-1.1309 ×10-6 A10= 0 ズームデータ(∞) WE ST TE f (mm) 4.71141 7.84455 13.21508 FNO 2.8000 3.6612 5.0650 2ω (°) 67.8 41.2 24.8 d6 7.09024 5.59391 1.24849 d12 3.08267 9.70509 10.04403 d16 0.98577 1.28696 8.72623 。Example 2 r 1 = -129.7294 d 1 = 4.5500 n d1 = 1.80400 ν d1 = 46.57 r 2 = ∞ (reflection surface) d 2 = 4.0019 n d2 = 1.80400 ν d2 = 46.57 r 3 = 5.3898 d 3 = 1.6465 r 4 = 30.0332 (aspherical surface) d 4 = 1.4609 n d3 = 1.84666 ν d3 = 23.78 r 5 = -35.8611 d 5 = (variable) r 6 = ∞ (aperture) d 6 = (variable) r 7 = 9.6063 ( Aspherical surface) d 7 = 2.7296 n d4 = 1.48749 ν d4 = 70.23 r 8 = -30.8421 d 8 = 0.1469 r 9 = 10.1172 d 9 = 2.1277 n d5 = 1.69680 ν d5 = 55.53 r 10 = 97.1974 d 10 = 0.0500 r 11 = 12.1982 d 11 = 0.7949 n d6 = 1.84666 ν d6 = 23.78 r 12 = 5.7271 d 12 = (variable) r 13 = 14.2960 d 13 = 4.0342 n d7 = 1.48749 ν d7 = 70.23 r 14 = -15.7323 d 14 = 0.1401 r 15 = -18.5671 d 15 = 1.1241 n d8 = 1.84666 ν d8 = 23.78 r 16 = -29.8834 d 16 = (variable) r 17 = 46.3841 (aspherical) d 17 = 1.1752 n d9 = 1.58913 ν d9 = 61.26 r 18 = 541.6142 d 18 = 0.4453 r 19 = ∞ d 19 = 0.8000 n d10 = 1.51633 ν d10 = 64.14 r 20 = ∞ d 20 = 1.8000 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.5000 r 22 = ∞ d 22 = 0.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.2588 r 24 = ∞ (image plane) Aspheric coefficient 4th surface K = 42.6072 A 4 = 4.5281 × 10 -4 A 6 = -1.2752 × 10 -6 A 8 = 2.9327 × 10 -7 A 10 = 0 7th surface K = 0 A 4 = -2.9136 × 10 -4 A 6 = -7.7511 × 10 -7 A 8 = 2.4221 × 10 -8 A 10 = 0 17th surface K = 0 A 4 = -8.0585 × 10 -4 A 6 = 1.7583 × 10 -5 A 8 = -1.1309 × 10 -6 A 10 = 0 Zoom data (∞) WE ST TE f (mm) 4.71141 7.84455 13.21508 F NO 2.8000 3.6612 5.0650 2ω (°) 67.8 41.2 24.8 d 6 7.09024 5.59391 1.24849 d 12 3.08267 9.70509 10.04403 d 16 0.98577 1.28696 8.72623.

【0104】 実施例3 r1 = 22.0799 d1 = 0.7823 nd1 =1.80400 νd1 =46.57 r2 = 7.0105 d2 = 1.1905 r3 = ∞ d3 = 3.8000 nd2 =1.80400 νd2 =46.57 r4 = ∞(反射面) d4 = 3.4483 nd3 =1.80400 νd3 =46.57 r5 = ∞ d5 = 0.4000 r6 = -43.4610 d6 = 0.7742 nd4 =1.77250 νd4 =49.60 r7 = 9.6384 d7 = 0.6369 r8 = 19.1908(非球面) d8 = 1.6810 nd5 =1.84666 νd5 =23.78 r9 = -40.1274 d9 = (可変) r10= ∞(絞り) d10= 0.5000 r11= 85.1662 d11= 1.5117 nd6 =1.58913 νd6 =61.26 r12= -18.3807 d12= (可変) r13= 5.5347(非球面) d13= 2.9473 nd7 =1.48749 νd7 =70.23 r14= -102.8346 d14= 0.1500 r15= 68.5128 d15= 3.4582 nd8 =1.84666 νd8 =23.78 r16= 5.6774 d16= 2.1376 r17= 7.8453 d17= 2.3148 nd9 =1.60542 νd9 =45.99 r18= -12.6010 d18= 0.5441 r19= -6.0465 d19= 0.7255 nd10=1.61800 νd10=63.33 r20= -17.9513 d20= (可変) r21= -17.2238(非球面) d21= 1.4117 nd11=1.58913 νd11=61.26 r22= -9.8048 d22= 0.5599 r23= ∞ d23= 0.8000 nd12=1.51633 νd12=64.14 r24= ∞ d24= 1.8000 nd13=1.54771 νd13=62.84 r25= ∞ d25= 0.5000 r26= ∞ d26= 0.5000 nd14=1.51633 νd14=64.14 r27= ∞ d27= 1.3641 r28= ∞(像面) 非球面係数 第8面 K = 1.5876 A4 = 2.6616 ×10-4 A6 = 3.3939 ×10-6 A8 =-1.0023 ×10-7 A10= 0 第13面 K = 0 A4 =-2.7230 ×10-4 A6 =-5.7432 ×10-6 A8 =-3.4301 ×10-7 A10= 0 第21面 K = 0 A4 =-8.9975 ×10-4 A6 =-1.8358 ×10-5 A8 = 1.4143 ×10-6 A10= 0 ズームデータ(∞) WE ST TE f (mm) 4.60758 7.85021 13.40785 FNO 2.8000 3.4489 4.6187 2ω (°) 65.3 39.0 22.9 d9 14.75212 6.67783 2.00000 d12 0.67500 4.26744 1.54139 d20 1.35767 6.03580 13.51290 。Example 3 r 1 = 22.0799 d 1 = 0.7823 n d1 = 1.80400 ν d1 = 46.57 r 2 = 7.0105 d 2 = 1.1905 r 3 = ∞ d 3 = 3.8000 n d2 = 1.80400 ν d2 = 46.57 r 4 = ∞ (Reflecting surface) d 4 = 3.4483 n d3 = 1.80400 ν d3 = 46.57 r 5 = ∞ d 5 = 0.4000 r 6 = -43.4610 d 6 = 0.7742 n d4 = 1.77250 ν d4 = 49.60 r 7 = 9.6384 d 7 = 0.6369 r 8 = 19.1908 (aspherical surface) d 8 = 1.6810 n d5 = 1.84666 ν d5 = 23.78 r 9 = -40.1274 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 0.5000 r 11 = 85.1662 d 11 = 1.5117 n d6 = 1.58913 ν d6 = 61.26 r 12 = -18.3807 d 12 = (variable) r 13 = 5.5347 (aspherical surface) d 13 = 2.9473 n d7 = 1.48749 ν d7 = 70.23 r 14 = -102.8346 d 14 = 0.1500 r 15 = 68.5128 d 15 = 3.4582 n d8 = 1.84666 ν d8 = 23.78 r 16 = 5.6774 d 16 = 2.1376 r 17 = 7.8453 d 17 = 2.3148 n d9 = 1.60542 ν d9 = 45.99 r 18 = -12.6010 d 18 = 0.5441 r 19 =- 6.0465 d 19 = 0.7255 n d10 = 1.61800 ν d10 = 63.33 r 20 = -17. 9513 d 20 = (variable) r 21 = -17.2238 (aspherical surface) d 21 = 1.4117 n d11 = 1.58913 ν d11 = 61.26 r 22 = -9.8048 d 22 = 0.5599 r 23 = ∞ d 23 = 0.8000 n d12 = 1.51633 ν d12 = 64.14 r 24 = ∞ d 24 = 1.8000 n d13 = 1.54771 ν d13 = 62.84 r 25 = ∞ d 25 = 0.5000 r 26 = ∞ d 26 = 0.5000 n d14 = 1.51633 ν d14 = 64.14 r 27 = ∞ d 27 = 1.3641 r 28 = ∞ (image plane) Aspheric coefficient 8th surface K = 1.5876 A 4 = 2.6616 × 10 -4 A 6 = 3.3939 × 10 -6 A 8 = -1.0023 × 10 -7 A 10 = 0 13th surface K = 0 A 4 = -2.7230 × 10 -4 A 6 = -5.7432 × 10 -6 A 8 = -3.4301 × 10 -7 A 10 = 0 21st surface K = 0 A 4 = -8.9975 × 10 -4 A 6 = -1.8358 × 10 -5 A 8 = 1.4143 × 10 -6 A 10 = 0 Zoom data (∞) WE ST TE f (mm) 4.60758 7.85021 13.40785 F NO 2.8000 3.4489 4.6187 2ω (°) 65.3 39.0 22.9 d 9 14.75212 6.67783 2.00000 d 12 0.67500 4.26744 1.54139 d 20 1.35767 6.03580 13.51290.

【0105】 実施例4 r1 = 29.0184 d1 = 0.7437 nd1 =1.80400 νd1 =46.57 r2 = 7.3275 d2 = 1.3049 r3 = ∞ d3 = 4.0000 nd2 =1.80400 νd2 =46.57 r4 = ∞(反射面) d4 = 3.5133 nd3 =1.80400 νd3 =46.57 r5 = ∞ d5 = 0.3000 r6 = -31.2038 d6 = 0.7673 nd4 =1.80400 νd4 =46.57 r7 = 15.2085 d7 = 1.5760 r8 = 33.1818(非球面) d8 = 1.5628 nd5 =1.84666 νd5 =23.78 r9 = -29.4113 d9 = (可変) r10= ∞(絞り) d10= 0.5000 r11= 20.3172(非球面) d11= 1.9876 nd6 =1.58913 νd6 =61.26 r12= -14.3558 d12= 0.1387 r13= 7.0863 d13= 2.5021 nd7 =1.48749 νd7 =70.23 r14= -521.1337 d14= 0.0001 r15= 217.6721 d15= 5.9501 nd8 =1.84666 νd8 =23.78 r16= 4.5340 d16= (可変) r17= 10.1062 d17= 1.8686 nd9 =1.60300 νd9 =65.44 r18= 46.5940 d18= (可変) r19= -22.5387(非球面) d19= 2.3721 nd10=1.58913 νd10=61.26 r20= -5.8538 d20= 0.4297 r21= ∞ d21= 0.8000 nd11=1.51633 νd11=64.14 r22= ∞ d22= 0.8000 nd12=1.54771 νd12=62.84 r23= ∞ d23= 0.5000 r24= ∞ d24= 0.5000 nd13=1.51633 νd13=64.14 r25= ∞ d25= 1.3824 r27= ∞(像面) 非球面係数 第8面 K = 1.9221 A4 = 1.0674 ×10-4 A6 = 7.5509 ×10-7 A8 =-6.9692 ×10-8 A10= 0 第11面 K = 0 A4 =-1.4582 ×10-4 A6 = 4.2034 ×10-8 A8 = 1.1204 ×10-8 A10= 0 第19面 K = 0 A4 =-1.8514 ×10-3 A6 = 6.5803 ×10-6 A8 =-9.0686 ×10-7 A10= 0 ズームデータ(∞) WE ST TE f (mm) 4.65117 7.85007 13.29161 FNO 2.5000 3.4944 4.8337 2ω (°) 68.4 41.7 24.7 d9 13.35295 7.17214 2.00000 d16 1.22323 4.89168 2.01917 d18 0.94992 3.89804 12.56077 。Example 4 r 1 = 29.0184 d 1 = 0.7437 n d1 = 1.80400 ν d1 = 46.57 r 2 = 7.3275 d 2 = 1.3049 r 3 = ∞ d 3 = 4.0000 n d2 = 1.80400 ν d2 = 46.57 r 4 = ∞ (Reflecting surface) d 4 = 3.5133 n d3 = 1.80400 ν d3 = 46.57 r 5 = ∞ d 5 = 0.3000 r 6 = -31.2038 d 6 = 0.7673 n d4 = 1.80400 ν d4 = 46.57 r 7 = 15.2085 d 7 = 1.5760 r 8 = 33.1818 (aspherical surface) d 8 = 1.5628 n d5 = 1.84666 ν d5 = 23.78 r 9 = -29.4113 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 0.5000 r 11 = 20.3172 (aspherical surface) d 11 = 1.9876 n d6 = 1.58913 ν d6 = 61.26 r 12 = -14.3558 d 12 = 0.1387 r 13 = 7.0863 d 13 = 2.5021 n d7 = 1.48749 ν d7 = 70.23 r 14 = -521.1337 d 14 = 0.0001 r 15 = 217.6721 d 15 = 5.9501 n d8 = 1.84666 ν d8 = 23.78 r 16 = 4.5340 d 16 = ( variable) r 17 = 10.1062 d 17 = 1.8686 n d9 = 1.60300 ν d9 = 65.44 r 18 = 46.5940 d 18 = ( variable) r 19 = -22.5387 (aspherical surface) d 19 = 2.3721 n d10 = 1.58913 ν d10 = 61.26 r 20 = -5.8538 d 20 = 0.4297 r 21 = ∞ d 21 = 0.8000 n d11 = 1.51633 ν d11 = 64.14 r 22 = ∞ d 22 = 0.8000 n d12 = 1.54771 ν d12 = 62.84 r 23 = ∞ d 23 = 0.5000 r 24 = ∞ d 24 = 0.5000 n d13 = 1.51633 ν d13 = 64.14 r 25 = ∞ d 25 = 1.3824 r 27 = ∞ ( image plane) aspheric coefficients eighth surface K = 1.9221 A 4 = 1.0674 × 10 - 4 A 6 = 7.5509 × 10 -7 A 8 = -6.9692 × 10 -8 A 10 = 0 11th surface K = 0 A 4 = -1.4582 × 10 -4 A 6 = 4.2034 × 10 -8 A 8 = 1.1204 × 10 -8 A 10 = 0 19th surface K = 0 A 4 = -1.8514 × 10 -3 A 6 = 6.5803 × 10 -6 A 8 = -9.0686 × 10 -7 A 10 = 0 Zoom data (∞) west TE f (mm) 4.65117 7.85007 13.29161 F NO 2.5000 3.4944 4.8337 2ω (°) 68.4 41.7 24.7 d 9 13.35295 7.17214 2.00000 d 16 1.22323 4.89168 2.01917 d 18 0.94992 3.89804 12.56077.

【0106】 実施例5 r1 = 15.9959 d1 = 2.0000 nd1 =1.84666 νd1 =23.78 r2 = 17.9366(非球面) d2 = 0.8000 r3 = 122.3665 d3 = 1.0000 nd2 =1.72916 νd2 =54.68 r4 = 6.1500 d4 = 1.9000 r5 = ∞ d5 = 4.1000 nd3 =1.56883 νd3 =56.36 r6 = ∞(反射面) d6 = 3.9000 nd4 =1.56883 νd4 =56.36 r7 = ∞ d7 = (可変) r8 = ∞(絞り) d8 = 0.5928 r9 = 14.1418(非球面) d9 = 3.0000 nd5 =1.80610 νd5 =40.92 r10= -138.1914 d10= (可変) r11= 9.2691 d11= 3.2000 nd6 =1.48749 νd6 =70.23 r12= -18.4588 d12= 1.0064 nd7 =1.84666 νd7 =23.78 r13= 7.4386 d13= 0.5000 r14= 9.1725 d14= 2.4000 nd8 =1.80518 νd8 =25.42 r15= -16.4170 d15= (可変) r16= 44.6119 d16= 0.8000 nd9 =1.84666 νd9 =23.78 r17= 8.9511(非球面) d17= (可変) r18= 11.2550 d18= 2.6000 nd10=1.58913 νd10=61.26 r19= 673.2282(非球面) d19= (可変) r20= ∞ d20= 1.5000 nd11=1.51633 νd11=64.14 r21= ∞ d21= 1.4400 nd12=1.54771 νd12=62.84 r22= ∞ d22= 0.8000 r23= ∞ d23= 0.8000 nd13=1.51633 νd13=64.14 r24= ∞ d24= 1.0000 r25= ∞(像面) 非球面係数 第2面 K = 0 A4 =-2.1855 ×10-4 A6 = 3.4923 ×10-7 A8 = 0 A10= 0 第9面 K = 5.1530 A4 =-2.4340 ×10-4 A6 =-7.4872 ×10-6 A8 = 2.0515 ×10-7 A10=-1.0188 ×10-8 第17面 K =-3.7152 A4 = 1.2209 ×10-3 A6 =-1.7576 ×10-5 A8 = 2.5810 ×10-6 A10=-1.2193 ×10-7 第19面 K = 1.4583 A4 =-1.5578 ×10-4 A6 =-1.1072 ×10-5 A8 = 5.6481 ×10-7 A10=-8.6742 ×10-9 ズームデータ(∞) WE ST TE f (mm) 5.43000 10.61200 15.80000 FNO 2.7116 3.7726 4.5293 2ω (°) 63.5 35.7 24.5 d7 13.12435 4.47821 0.50000 d10 0.81880 1.71785 0.50000 d15 0.60000 2.00387 4.09707 d17 1.40000 8.20925 11.93740 d19 2.71758 2.25155 1.62627 。Example 5 r 1 = 15.9959 d 1 = 2.0000 n d1 = 1.84666 ν d1 = 23.78 r 2 = 17.9366 (aspherical surface) d 2 = 0.8000 r 3 = 122.3665 d 3 = 1.0000 n d2 = 1.72916 ν d2 = 54.68 r 4 = 6.1500 d 4 = 1.9000 r 5 = ∞ d 5 = 4.1000 n d3 = 1.56883 ν d3 = 56.36 r 6 = ∞ (reflection surface) d 6 = 3.9000 n d4 = 1.56883 ν d4 = 56.36 r 7 = ∞ d 7 = (Variable) r 8 = ∞ (aperture) d 8 = 0.5928 r 9 = 14.1418 (aspherical surface) d 9 = 3.0000 n d5 = 1.80610 ν d5 = 40.92 r 10 = -138.1914 d 10 = (variable) r 11 = 9.2691 d 11 = 3.2000 n d6 = 1.48749 ν d6 = 70.23 r 12 = -18.4588 d 12 = 1.0064 nd d7 = 1.84666 ν d7 = 23.78 r 13 = 7.4386 d 13 = 0.5000 r 14 = 9.1725 d 14 = 2.4000 n d8 = 1.80518 ν d8 = 25.42 r 15 = -16.4170 d 15 = (variable) r 16 = 44.6119 d 16 = 0.8000 n d9 = 1.84666 ν d9 = 23.78 r 17 = 8.9511 (aspherical surface) d 17 = (variable) r 18 = 11.2550 d 18 = 2.6000 n d10 = 1.58913 ν d10 = 61.26 r 19 = 673.2282 ( Aspherical surface) d 19 = (variable) r 20 = ∞ d 20 = 1.5000 n d11 = 1.51633 ν d11 = 64.14 r 21 = ∞ d 21 = 1.4400 n d12 = 1.54771 ν d12 = 62.84 r 22 = ∞ d 22 = 0.8000 r 23 = ∞ d 23 = 0.8000 n d13 = 1.51633 ν d13 = 64.14 r 24 = ∞ d 24 = 1.0000 r 25 = ∞ (image plane) Aspheric coefficient second surface K = 0 A 4 = -2.1855 × 10 -4 A 6 = 3.4923 × 10 -7 A 8 = 0 A 10 = 0 9th surface K = 5.1530 A 4 = -2.4340 × 10 -4 A 6 = -7.4872 × 10 -6 A 8 = 2.0515 × 10 -7 A 10 = -1.0188 × 10 -8 17th surface K = -3.7152 A 4 = 1.2209 × 10 -3 A 6 = -1.7576 × 10 -5 A 8 = 2.5810 × 10 -6 A 10 = -1.2193 × 10 -7 19th surface K = 1.4583 A 4 = -1.5578 × 10 -4 A 6 = -1.1072 × 10 -5 A 8 = 5.6481 × 10 -7 A 10 = -8.6742 × 10 -9 Zoom data (∞) WE ST TE f (mm) 5.43000 10.61200 15.80000 F NO 2.7116 3.7726 4.5293 2ω (°) 63.5 35.7 24.5 d 7 13.12435 4.47821 0.50000 d 10 0.81880 1.71785 0.50000 d 15 0.60000 2.00387 4.09707 d 17 1.40000 8.20925 11.93740 d 19 2.71758 2.25 155 1.62627.

【0107】 実施例6 r1 = 49.3427 d1 = 2.0000 nd1 =1.84666 νd1 =23.78 r2 = -115.4656 d2 = 0.4000 r3 = -52.5304(非球面) d3 = 1.0000 nd2 =1.69350 νd2 =53.21 r4 = 5.8428 d4 = 1.8000 r5 = ∞ d5 = 4.0000 nd3 =1.56883 νd3 =56.36 r6 = ∞(反射面) d6 = 3.8000 nd4 =1.56883 νd4 =56.36 r7 = ∞ d7 = (可変) r8 = ∞(絞り) d8 = 0.6000 r9 = 8.0295(非球面) d9 = 2.8000 nd5 =1.69350 νd5 =53.21 r10= -5.9145 d10= 0.8000 nd6 =1.80440 νd6 =39.59 r11= -12.3640 d11= (可変) r12= 26.8805 d12= 0.8000 nd7 =1.84666 νd7 =23.78 r13= 7.1849(非球面) d13= (可変) r14= 10.7803 d14= 3.1000 nd8 =1.48749 νd8 =70.23 r15= -52.9481 d15= (可変) r16= ∞ d16= 1.5000 nd9 =1.51633 νd9 =64.14 r17= ∞ d17= 1.4400 nd10=1.54771 νd10=62.84 r18= ∞ d18= 0.8000 r19= ∞ d19= 0.8000 nd11=1.51633 νd11=64.14 r20= ∞ d20= 1.0000 r21= ∞(像面) 非球面係数 第3面 K = 0 A4 = 2.6048 ×10-4 A6 =-3.2365 ×10-6 A8 = 2.2913 ×10-8 A10= 0 第9面 K = 0 A4 =-3.0615 ×10-4 A6 =-2.0330 ×10-6 A8 =-1.0403 ×10-7 A10= 0 第13面 K =-3.5241 A4 = 1.8328 ×10-3 A6 =-1.6164 ×10-5 A8 = 3.5495 ×10-6 A10=-1.2410 ×10-7 ズームデータ(∞) WE ST TE f (mm) 5.38001 8.50001 13.45001 FNO 3.0358 3.8702 4.5606 2ω (°) 65.8 43.8 28.4 d7 11.53527 6.15290 0.50000 d11 2.10162 2.49863 3.68430 d13 3.96820 9.09478 10.56416 d15 1.75491 1.61369 4.61155 。Example 6 r 1 = 49.3427 d 1 = 2.0000 n d1 = 1.84666 ν d1 = 23.78 r 2 = -115.4656 d 2 = 0.4000 r 3 = -52.5304 (aspherical surface) d 3 = 1.0000 n d2 = 1.69350 ν d2 = 53.21 r 4 = 5.8428 d 4 = 1.8000 r 5 = ∞ d 5 = 4.0000 n d3 = 1.56883 ν d3 = 56.36 r 6 = ∞ (reflection surface) d 6 = 3.8000 n d4 = 1.56883 ν d4 = 56.36 r 7 = ∞ d 7 = (variable) r 8 = ∞ (aperture) d 8 = 0.6000 r 9 = 8.0295 (aspherical surface) d 9 = 2.8000 n d5 = 1.69350 ν d5 = 53.21 r 10 = -5.9145 d 10 = 0.8000 n d6 = 1.80440 ν d6 = 39.59 r 11 = -12.3640 d 11 = (variable) r 12 = 26.8805 d 12 = 0.8000 n d7 = 1.84666 ν d7 = 23.78 r 13 = 7.1849 (aspherical) d 13 = (variable) r 14 = 10.7803 d 14 = 3.1000 n d8 = 1.48749 ν d8 = 70.23 r 15 = -52.9481 d 15 = (variable) r 16 = ∞ d 16 = 1.5000 n d9 = 1.51633 ν d9 = 64.14 r 17 = ∞ d 17 = 1.4400 n d10 = 1.54771 ν d10 = 62.84 r 18 = ∞ d 18 = 0.8000 r 19 = ∞ d 19 = 0.8000 d11 = 1.51633 ν d11 = 64.14 r 20 = ∞ d 20 = 1.0000 r 21 = ∞ ( image plane) aspherical coefficients third surface K = 0 A 4 = 2.6048 × 10 -4 A 6 = -3.2365 × 10 -6 A 8 = 2.2913 × 10 -8 A 10 = 0 9th surface K = 0 A 4 = -3.0615 × 10 -4 A 6 = -2.0330 × 10 -6 A 8 = -1.0403 × 10 -7 A 10 = 0 13th Surface K = -3.5241 A 4 = 1.8328 × 10 -3 A 6 = -1.6164 × 10 -5 A 8 = 3.5495 × 10 -6 A 10 = -1.2410 × 10 -7 Zoom data (∞) WE ST TE f (mm ) 5.38001 8.50001 13.45001 F NO 3.0358 3.8702 4.5606 2ω (°) 65.8 43.8 28.4 d 7 11.53527 6.15290 0.50000 d 11 2.10162 2.49863 3.68430 d 13 3.96820 9.09478 10.56416 d 15 1.75491 1.61369 4.61155.

【0108】 実施例7 r1 = 21.0760 d1 = 1.4000 nd1 =1.74320 νd1 =49.34 r2 = 7.9352(非球面) d2 = 2.8000 r3 = ∞ d3 = 6.5000 nd2 =1.56883 νd2 =56.36 r4 = ∞(反射面) d4 = 6.0000 nd3 =1.56883 νd3 =56.36 r5 = ∞ d5 = 0.8000 r6 = -18.8610 d6 = 0.8000 nd4 =1.72916 νd4 =54.68 r7 = 29.7460 d7 = 0.5273 r8 = 25.1850 d8 = 1.9000 nd5 =1.84666 νd5 =23.78 r9 = -121.8149 d9 = (可変) r10= ∞(絞り) d10= 0.8000 r11= 11.8772(非球面) d11= 1.9992 nd6 =1.49700 νd6 =81.54 r12= -22.2117 d12= 0.3000 r13= 8.0295 d13= 1.9997 nd7 =1.48749 νd7 =70.23 r14= -16.2855 d14= 0.7997 nd8 =1.64769 νd8 =33.79 r15= -52.6732 d15= 0.3000 r16= 7.3242 d16= 1.3308 nd9 =1.84666 νd9 =23.78 r17= 4.4772 d17= 1.2000 r18= 17.2769 d18= 1.1317 nd10=1.80610 νd10=40.92 r19= 6.2199 d19= (可変) r20= 9.0812 d20= 2.0000 nd11=1.61800 νd11=63.33 r21= 19.8406 d21= (可変) r22= -34.2139(非球面) d22= 2.0000 nd12=1.58313 νd12=59.38 r23= -9.7728 d23= 1.0032 r24= ∞ d25= 1.4400 nd13=1.54771 νd13=62.84 r25= ∞ d26= 0.8000 r26= ∞ d27= 0.8000 nd14=1.51633 νd14=64.14 r27= ∞ d28= 1.0003 r28= ∞(像面) 非球面係数 第2面 K = 0 A4 =-9.3483 ×10-5 A6 = 1.4787 ×10-7 A8 =-4.5620 ×10-8 A10= 0 第11面 K = 0 A4 =-2.6863 ×10-4 A6 =-1.0879 ×10-7 A8 = 3.8711 ×10-9 A10= 0 第22面 K = 0 A4 =-4.8081 ×10-4 A6 = 5.9535 ×10-6 A8 =-1.6767 ×10-7 A10= 0 ズームデータ(∞) WE ST TE f (mm) 5.80000 9.17005 14.49992 FNO 2.6880 3.4974 4.5402 2ω (°) 60.8 40.1 25.4 d9 14.10553 7.78994 2.48873 d19 1.54225 5.16705 2.56297 d21 2.32790 5.01801 12.92472 。Example 7 r 1 = 21.0760 d 1 = 1.4000 n d1 = 1.74320 v d1 = 49.34 r 2 = 7.9352 (aspherical surface) d 2 = 2.8000 r 3 = ∞ d 3 = 6.5000 n d2 = 1.56883 v d2 = 56.36 r 4 = ∞ (reflection surface) d 4 = 6.0000 n d3 = 1.56883 ν d3 = 56.36 r 5 = ∞ d 5 = 0.8000 r 6 = -18.8610 d 6 = 0.8000 n d4 = 1.72916 ν d4 = 54.68 r 7 = 29.7460 d 7 = 0.5273 r 8 = 25.1850 d 8 = 1.9000 n d5 = 1.84666 ν d5 = 23.78 r 9 = -121.8149 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 0.8000 r 11 = 11.8772 (aspherical surface) d 11 = 1.9992 n d6 = 1.49700 ν d6 = 81.54 r 12 = -22.2117 d 12 = 0.3000 r 13 = 8.0295 d 13 = 1.9997 n d7 = 1.48749 ν d7 = 70.23 r 14 = -16.2855 d 14 = 0.7997 n d8 = 1.64769 ν d8 = 33.79 r 15 = -52.6732 d 15 = 0.3000 r 16 = 7.3242 d 16 = 1.3308 n d9 = 1.84666 ν d9 = 23.78 r 17 = 4.4772 d 17 = 1.2000 r 18 = 17.2769 d 18 = 1.1317 n d10 = 1.80610 ν d10 = 40.92 r 19 = 6.2199 d 19 = (variable) r 20 = 9.08 12 d 20 = 2.0000 n d11 = 1.61800 ν d11 = 63.33 r 21 = 19.8406 d 21 = (variable) r 22 = -34.2139 (aspherical surface) d 22 = 2.0000 n d12 = 1.58313 ν d12 = 59.38 r 23 = -9.7728 d 23 = 1.0032 r 24 = ∞ d 25 = 1.4400 n d13 = 1.54771 ν d13 = 62.84 r 25 = ∞ d 26 = 0.8000 r 26 = ∞ d 27 = 0.8000 n d14 = 1.51633 ν d14 = 64.14 r 27 = ∞ d 28 = 1.0003 r 28 = ∞ (image plane) Aspheric coefficient second surface K = 0 A 4 = -9.3483 × 10 -5 A 6 = 1.4787 × 10 -7 A 8 = -4.5620 × 10 -8 A 10 = 0 11th Surface K = 0 A 4 = -2.6863 × 10 -4 A 6 = -1.0879 × 10 -7 A 8 = 3.8711 × 10 -9 A 10 = 0 22nd surface K = 0 A 4 = -4.8081 × 10 -4 A 6 = 5.9535 × 10 -6 A 8 = -1.6767 × 10 -7 A 10 = 0 Zoom data (∞) WE ST TE f (mm) 5.80000 9.17005 14.49992 F NO 2.6880 3.4974 4.5402 2ω (°) 60.8 40.1 25.4 d 9 14.10553 7.78994 2.48873 d 19 1.54225 5.16705 2.56297 d 21 2.32790 5.01801 12.92472.

【0109】 実施例8 r1 = 16.1825(非球面) d1 = 1.4000 nd1 =1.80610 νd1 =40.92 r2 = 7.3872 d2 = 3.5000 r3 = ∞ d3 = 6.5000 nd2 =1.60311 νd2 =60.64 r4 = ∞(反射面) d4 = 6.0000 nd3 =1.60311 νd3 =60.64 r5 = ∞ d5 = 0.7950 r6 = -27.1461 d6 = 0.8000 nd4 =1.72916 νd4 =54.68 r7 = 20.2982 d7 = 0.5273 r8 = 17.2255 d8 = 1.9000 nd5 =1.84666 νd5 =23.78 r9 = 90.2451 d9 = (可変) r10= ∞(絞り) d10= 0.8000 r11= 17.0416(非球面) d11= 1.9965 nd6 =1.56384 νd6 =60.67 r12= -13.7245 d12= 0.5000 r13= 5.5039 d13= 3.7857 nd7 =1.48749 νd7 =70.23 r14= -38.8943 d14= 0.8000 nd8 =1.69895 νd8 =30.13 r15= 4.2611 d15= (可変) r16= 16.8715 d16= 2.0000 nd9 =1.48749 νd9 =70.23 r17= 96.4706 d17= (可変) r18= -60.1937 d18= 2.0000 nd10=1.56384 νd10=60.67 r19= -11.5463(非球面) d19= 1.0039 r20= ∞ d20= 1.4400 nd11=1.54771 νd11=62.84 r21= ∞ d21= 0.8000 r22= ∞ d22= 0.8000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.0021 r24= ∞(像面) 非球面係数 第1面 K = 0 A4 = 5.1308 ×10-5 A6 = 2.3428 ×10-7 A8 =-3.7916 ×10-9 A10= 7.2819 ×10-11 第11面 K = 0 A4 =-1.6960 ×10-4 A6 =-1.0587 ×10-6 A8 = 5.6885 ×10-8 A10=-2.0816 ×10-10 第19面 K = 0 A4 = 2.9238 ×10-4 A6 =-1.4179 ×10-5 A8 = 6.7945 ×10-7 A10=-1.6439 ×10-8 ズームデータ(∞) WE ST TE f (mm) 5.80001 9.17026 14.49938 FNO 2.6926 3.5230 4.5194 2ω (°) 61.1 40.1 25.7 d9 14.09978 8.00554 2.48873 d15 2.47558 7.50212 3.24411 d17 3.07729 4.13993 13.92316 。Example 8 r 1 = 16.1825 (aspherical surface) d 1 = 1.4000 n d1 = 1.80610 ν d1 = 40.92 r 2 = 7.3872 d 2 = 3.5000 r 3 = ∞ d 3 = 6.5000 n d2 = 1.60311 ν d2 = 60.64 r 4 = ∞ (reflecting surface) d 4 = 6.0000 n d3 = 1.60311 ν d3 = 60.64 r 5 = ∞ d 5 = 0.7950 r 6 = -27.1461 d 6 = 0.8000 n d4 = 1.72916 ν d4 = 54.68 r 7 = 20.2982 d 7 = 0.5273 r 8 = 17.2255 d 8 = 1.9000 n d5 = 1.84666 ν d5 = 23.78 r 9 = 90.2451 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 0.8000 r 11 = 17.0416 (aspherical surface) d 11 = 1.9965 n d6 = 1.56384 ν d6 = 60.67 r 12 = -13.7245 d 12 = 0.5000 r 13 = 5.5039 d 13 = 3.7857 n d7 = 1.48749 ν d7 = 70.23 r 14 = -38.8943 d 14 = 0.8000 n d8 = 1.69895 ν d8 = 30.13 r 15 = 4.2611 d 15 = (variable) r 16 = 16.8715 d 16 = 2.0000 n d9 = 1.48749 ν d9 = 70.23 r 17 = 96.4706 d 17 = (variable) r 18 = -60.1937 d 18 = 2.0000 n d10 = 1.56384 ν d10 = 60.67 r 19 = -11.5463 (aspherical surface) d 19 = 1.0039 r 20 = ∞ d 20 = 1.4400 n d11 = 1.54771 ν d11 = 62.84 r 21 = ∞ d 21 = 0.8000 r 22 = ∞ d 22 = 0.8000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.0021 r 24 = ∞ (image plane) Aspherical coefficient 1st surface K = 0 A 4 = 5.1308 × 10 -5 A 6 = 2.3428 × 10 -7 A 8 = -3.7916 × 10 -9 A 10 = 7.2819 × 10 -11 11th surface K = 0 A 4 = -1.6960 × 10 -4 A 6 = -1.0587 × 10 -6 A 8 = 5.6885 × 10 -8 A 10 = -2.0816 × 10 -10 19th surface K = 0 A 4 = 2.9238 × 10 -4 A 6 = -1.4179 × 10 -5 A 8 = 6.7945 × 10 -7 A 10 = -1.6439 × 10 -8 Zoom data (∞) WE ST TE f (mm) 5.80001 9.17026 14.49938 F NO 2.6926 3.5230 4.5194 2ω (°) 61.1 40.1 25.7 d 9 14.09978 8.00554 2.48873 d 15 2.47558 7.50212 3.24411 d 17 3.07729 4.13993 13.92316.

【0110】 実施例9 r1 = 21.2658 d1 = 1.0000 nd1 =1.74100 νd1 =52.64 r2 = 8.6245 d2 = 3.3711 r3 = ∞ d3 = 5.8400 nd2 =1.80400 νd2 =46.57 r4 = ∞(反射面) d4 = 5.4952 nd3 =1.80400 νd3 =46.57 r5 = ∞ d5 = 0.3221 r6 = 300.0000 d6 = 1.0000 nd4 =1.74320 νd4 =49.34 r7 = 15.3314(非球面) d7 = 0.5979 r8 = 15.8974 d8 = 1.4903 nd5 =1.84666 νd5 =23.78 r9 = 43.0822 d9 = (可変) r10= ∞(絞り) d10= 0.6000 r11= 63.9771 d11= 1.3913 nd6 =1.61800 νd6 =63.33 r12= -23.2380 d12= (可変) r13= 7.9674(非球面) d13= 2.3478 nd7 =1.48749 νd7 =70.23 r14= -68.3182 d14= 0.1000 r15= 24.3652 d15= 3.3012 nd8 =1.84666 νd8 =23.78 r16= 7.7880 d16= 0.2484 r17= 9.2912 d17= 2.1349 nd9 =1.72916 νd9 =54.68 r18= -19.4929 d18= 0.7000 nd10=1.53172 νd10=48.84 r19= 5.2999 d19= (可変) r20= -22.5496(非球面) d20= 2.5068 nd11=1.58913 νd11=61.14 r21= -6.5395 d21= 1.0000 r22= ∞ d22= 1.5000 nd12=1.51633 νd12=64.14 r23= ∞ d23= 1.4400 nd13=1.54771 νd13=62.84 r24= ∞ d24= 0.8000 r25= ∞ d25= 0.8000 nd14=1.51633 νd14=64.14 r26= ∞ d26= 1.0894 r27= ∞(像面) 非球面係数 第7面 K = 0 A4 =-6.9423 ×10-5 A6 = 1.9216 ×10-7 A8 =-2.3395 ×10-8 A10= 0 第13面 K = 0 A4 =-2.1881 ×10-4 A6 =-2.0288 ×10-6 A8 = 7.6472 ×10-10 A10= 0 第20面 K = 0 A4 =-1.0095 ×10-3 A6 = 3.4022 ×10-8 A8 =-1.7165 ×10-7 A10= 0 ズームデータ(∞) WE ST TE f (mm) 5.52179 7.96811 15.98093 FNO 2.4770 2.9873 4.5000 2ω (°) 64.5 44.7 22.7 d9 17.73448 10.81643 2.00000 d12 1.20000 3.80000 3.50000 d19 2.60300 5.58623 15.86209 。Example 9 r 1 = 21.2658 d 1 = 1.0000 n d1 = 1.74100 ν d1 = 52.64 r 2 = 8.6245 d 2 = 3.3711 r 3 = ∞ d 3 = 5.8400 n d2 = 1.80400 ν d2 = 46.57 r 4 = ∞ (Reflecting surface) d 4 = 5.4952 n d3 = 1.80400 ν d3 = 46.57 r 5 = ∞ d 5 = 0.3221 r 6 = 300.0000 d 6 = 1.0000 nd 4 = 1.74320 ν d4 = 49.34 r 7 = 15.3314 (aspherical surface) d 7 = 0.5979 r 8 = 15.8974 d 8 = 1.4903 n d5 = 1.84666 ν d5 = 23.78 r 9 = 43.0822 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 0.6000 r 11 = 63.9771 d 11 = 1.3913 n d6 = 1.61800 ν d6 = 63.33 r 12 = -23.2380 d 12 = (variable) r 13 = 7.9674 (aspherical surface) d 13 = 2.3478 n d7 = 1.48749 ν d7 = 70.23 r 14 = -68.3182 d 14 = 0.1000 r 15 = 24.3652 d 15 = 3.3012 n d8 = 1.84666 ν d8 = 23.78 r 16 = 7.7880 d 16 = 0.2484 r 17 = 9.2912 d 17 = 2.1349 n d9 = 1.72916 ν d9 = 54.68 r 18 = -19.4929 d 18 = 0.7000 n d10 = 1.53172 ν d10 = 48.84 r 19 = 5.2999 d 19 = (variable) r 20 = -22.5496 (aspherical surface) d 20 = 2.5068 n d11 = 1.58913 ν d11 = 61.14 r 21 = -6.5395 d 21 = 1.0000 r 22 = ∞ d 22 = 1.5000 n d12 = 1.51633 ν d12 = 64.14 r 23 = ∞ d 23 = 1.4400 n d13 = 1.54771 ν d13 = 62.84 r 24 = ∞ d 24 = 0.8000 r 25 = ∞ d 25 = 0.8000 n d14 = 1.51633 ν d14 = 64.14 r 26 = ∞ d 26 = 1.0894 r 27 = ∞ (image plane) Non Spherical coefficient 7th surface K = 0 A 4 = -6.9423 × 10 -5 A 6 = 1.9216 × 10 -7 A 8 = -2.3395 × 10 -8 A 10 = 0 13th surface K = 0 A 4 = -2.1881 × 10 -4 A 6 = -2.0288 × 10 -6 A 8 = 7.6472 × 10 -10 A 10 = 0 20th surface K = 0 A 4 = -1.0095 × 10 -3 A 6 = 3.4022 × 10 -8 A 8 = -1.7165 × 10 -7 A 10 = 0 Zoom data (∞) WE ST TE f (mm) 5.52179 7.96811 15.98093 F NO 2.4770 2.9873 4.5000 2ω (°) 64.5 44.7 22.7 d 9 17.73448 10.81643 2.00000 d 12 1.20000 3.80000 3.50000 d 19 2.60300 5.58623 15.86209.

【0111】 実施例10 r1 = 24.8917 d1 = 1.0000 nd1 =1.74100 νd1 =52.64 r2 = 8.0792 d2 = 2.3760 r3 = ∞ d3 = 5.2400 nd2 =1.80400 νd2 =46.57 r4 = ∞(反射面) d4 = 5.0006 nd3 =1.80400 νd3 =46.57 r5 = ∞ d5 = 0.2922 r6 = 300.0000 d6 = 1.0000 nd4 =1.74320 νd4 =49.34 r7 = 14.5213(非球面) d7 = 0.1000 r8 = 14.5896 d8 = 1.7517 nd5 =1.84666 νd5 =23.78 r9 = 64.9869 d9 = (可変) r10= ∞(絞り) d10= 0.6000 r11= 33.4595 d11= 1.8985 nd6 =1.61800 νd6 =63.33 r12= -11.1499 d12= 0.7000 nd7 =1.80518 νd7 =25.42 r13= -20.0542 d13= (可変) r14= 10.2987(非球面) d14= 2.0299 nd8 =1.48749 νd8 =70.23 r15= 18890.0000 d15= 0.1000 r16= 19.8062 d16= 4.5045 nd9 =1.84666 νd9 =23.78 r17= 9.7836 d17= 0.2000 r18= 11.2175 d18= 1.7598 nd10=1.72916 νd10=54.68 r19= -51.5183 d19= 0.7000 nd11=1.53172 νd11=48.84 r20= 5.5430 d20= (可変) r21= -23.0137(非球面) d21= 1.9685 nd12=1.58913 νd12=61.14 r22= -7.0933 d22= 1.0000 r23= ∞ d23= 1.5000 nd13=1.51633 νd13=64.14 r24= ∞ d24= 1.4400 nd14=1.54771 νd14=62.84 r25= ∞ d15= 0.8000 r26= ∞ d16= 0.8000 nd15=1.51633 νd15=64.14 r27= ∞ d17= 1.0106 r28= ∞(像面) 非球面係数 第7面 K = 0 A4 =-8.0580 ×10-5 A6 = 7.6927 ×10-7 A8 =-2.7173 ×10-8 A10= 0 第14面 K = 0 A4 =-1.1033 ×10-4 A6 =-1.4285 ×10-8 A8 =-1.8629 ×10-8 A10= 0 第21面 K = 0 A4 =-8.5891 ×10-4 A6 = 1.0215 ×10-5 A8 =-3.2143 ×10-7 A10= 0 ズームデータ(∞) WE ST TE f (mm) 5.86879 9.99877 17.39648 FNO 2.4340 3.2140 4.5000 2ω (°) 61.4 35.8 21.0 d9 17.88781 8.41716 2.00000 d13 1.20000 6.81663 3.50000 d20 3.14136 7.01231 16.74709 。Example 10 r 1 = 24.8917 d 1 = 1.0000 n d1 = 1.74100 ν d1 = 52.64 r 2 = 8.0792 d 2 = 2.3760 r 3 = ∞ d 3 = 5.2400 n d2 = 1.80400 ν d2 = 46.57 r 4 = ∞ (Reflecting surface) d 4 = 5.0006 n d3 = 1.80400 ν d3 = 46.57 r 5 = ∞ d 5 = 0.2922 r 6 = 300.0000 d 6 = 1.0000 nd 4 = 1.74320 ν d4 = 49.34 r 7 = 14.5213 (aspheric surface) d 7 = 0.1000 r 8 = 14.5896 d 8 = 1.7517 nd d = 1.84666 ν d5 = 23.78 r 9 = 64.9869 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 0.6000 r 11 = 33.4595 d 11 = 1.8985 nd 6 = 1.61800 ν d6 = 63.33 r 12 = -11.1499 d 12 = 0.7000 n d7 = 1.80518 ν d7 = 25.42 r 13 = -20.0542 d 13 = (variable) r 14 = 10.2987 (aspheric surface) d 14 = 2.0299 n d8 = 1.48749 ν d8 = 70.23 r 15 = 18890.0000 d 15 = 0.1000 r 16 = 19.8062 d 16 = 4.5045 n d9 = 1.84666 ν d9 = 23.78 r 17 = 9.7836 d 17 = 0.2000 r 18 = 11.2175 d 18 = 1.7598 n d10 = 1.72916 ν d10 = 54.68 r 19 = -51.5183 d 19 = 0.7000 n d1 1 = 1.53172 ν d11 = 48.84 r 20 = 5.5430 d 20 = (variable) r 21 = -23.0137 (aspherical surface) d 21 = 1.9685 n d12 = 1.58913 ν d12 = 61.14 r 22 = -7.0933 d 22 = 1.0000 r 23 = ∞ d 23 = 1.5000 n d13 = 1.51633 ν d13 = 64.14 r 24 = ∞ d 24 = 1.4400 n d14 = 1.54771 ν d14 = 62.84 r 25 = ∞ d 15 = 0.8000 r 26 = ∞ d 16 = 0.8000 n d15 = 1.51633 ν d15 = 64.14 r 27 = ∞ d 17 = 1.0106 r 28 = ∞ (image plane) Aspheric coefficient 7th surface K = 0 A 4 = -8.0580 × 10 -5 A 6 = 7.6927 × 10 -7 A 8 = -2.7173 × 10 -8 A 10 = 0 14th surface K = 0 A 4 = -1.1033 × 10 -4 A 6 = -1.4285 × 10 -8 A 8 = -1.8629 × 10 -8 A 10 = 0 21st surface K = 0 A 4 = -8.5891 × 10 -4 A 6 = 1.0215 × 10 -5 A 8 = -3.2143 × 10 -7 A 10 = 0 Zoom data (∞) WE ST TE f (mm) 5.86879 9.99877 17.39648 F NO 2.4340 3.2140 4.5000 2ω (°) 61.4 35.8 21.0 d 9 17.88781 8.41716 2.00000 d 13 1.20000 6.81663 3.50000 d 20 3.14136 7.01231 16.74709.

【0112】 実施例11 r1 = 41.9739 d1 = 1.2000 nd1 =1.77250 νd1 =49.60 r2 = 11.1642 d2 = 2.9000 r3 = ∞ d3 = 6.5000 nd2 =1.78590 νd2 =44.20 r4 = ∞(反射面) d4 = 6.0000 nd3 =1.78590 νd3 =44.20 r5 = ∞ d5 = 0.3971 r6 = 28.0000 d6 = 1.2000 nd4 =1.74330 νd4 =49.33 r7 = 11.3578(非球面) d7 = 0.3457 r8 = 9.4845 d8 = 1.7925 nd5 =1.84666 νd5 =23.78 r9 = 14.2959 d9 = (可変) r10= ∞(絞り) d10= 1.0000 r11= 47.8757 d11= 1.9600 nd6 =1.72916 νd6 =54.68 r12= -9.0806 d12= 0.7000 nd7 =1.72825 νd7 =28.46 r13= -25.4395 d13= (可変) r14= 9.1761(非球面) d14= 1.9500 nd8 =1.74330 νd8 =49.33 r15= 75.3616 d15= 0.8461 r16= 24.3002 d16= 3.8969 nd9 =1.74330 νd9 =49.33 r17= ∞ d17= 1.0000 nd10=1.72825 νd10=28.46 r18= 4.8249 d18= (可変) r19= 49.5382 d19= 2.7500 nd11=1.69350 νd11=53.20 r20= -10.0407(非球面) d20= 0.8269 r21= ∞ d21= 1.4400 nd12=1.54771 νd12=62.84 r22= ∞ d22= 0.8000 r23= ∞ d23= 0.8000 nd13=1.51633 νd13=64.14 r24= ∞ d24= 1.0447 r25= ∞(像面) 非球面係数 第7面 K = 0 A4 = 2.2504 ×10-5 A6 = 2.6875 ×10-6 A8 =-1.2962 ×10-7 A10= 2.8718 ×10-9 第14面 K = 0 A4 =-9.8664 ×10-5 A6 = 4.0400 ×10-6 A8 =-4.4986 ×10-7 A10= 1.3851 ×10-8 第20面 K = 0 A4 = 5.3089 ×10-4 A6 =-1.6198 ×10-5 A8 = 4.4581 ×10-7 A10=-4.9080 ×10-9 ズームデータ(∞) WE ST TE f (mm) 6.02622 9.31725 14.28897 FNO 2.7652 3.4888 4.5271 2ω (°) 62.4 42.8 28.7 d9 14.24100 6.97804 2.00694 d13 2.10000 6.51339 5.34809 d18 2.46549 5.31403 11.45279 。Example 11 r 1 = 41.9739 d 1 = 1.2000 n d1 = 1.77250 ν d1 = 49.60 r 2 = 11.1642 d 2 = 2.9000 r 3 = ∞ d 3 = 6.5000 n d2 = 1.78590 ν d2 = 44.20 r 4 = ∞ (Reflecting surface) d 4 = 6.0000 n d3 = 1.78590 ν d3 = 44.20 r 5 = ∞ d 5 = 0.3971 r 6 = 28.0000 d 6 = 1.2000 n d4 = 1.74330 ν d4 = 49.33 r 7 = 11.3578 (aspheric surface) d 7 = 0.3457 r 8 = 9.4845 d 8 = 1.7925 n d5 = 1.84666 ν d5 = 23.78 r 9 = 14.2959 d 9 = (variable) r 10 = ∞ (aperture) d 10 = 1.0000 r 11 = 47.8757 d 11 = 1.9600 n d6 = 1.72916 ν d6 = 54.68 r 12 = -9.0806 d 12 = 0.7000 n d7 = 1.72825 ν d7 = 28.46 r 13 = -25.4395 d 13 = (variable) r 14 = 9.1761 (aspherical surface) d 14 = 1.9500 n d8 = 1.74330 ν d8 = 49.33 r 15 = 75.3616 d 15 = 0.8461 r 16 = 24.3002 d 16 = 3.8969 n d9 = 1.74330 ν d9 = 49.33 r 17 = ∞ d 17 = 1.0000 n d10 = 1.72825 ν d10 = 28.46 r 18 = 4.8249 d 18 = (Variable) r 19 = 49.5382 d 19 = 2.7500 n d11 = 1. 69350 ν d11 = 53.20 r 20 = -10.0407 (aspherical surface) d 20 = 0.8269 r 21 = ∞ d 21 = 1.4400 n d12 = 1.54771 ν d12 = 62.84 r 22 = ∞ d 22 = 0.8000 r 23 = ∞ d 23 = 0.8000 n d13 = 1.51633 ν d13 = 64.14 r 24 = ∞ d 24 = 1.0447 r 25 = ∞ (image plane) Aspheric coefficient 7th surface K = 0 A 4 = 2.2504 × 10 -5 A 6 = 2.6875 × 10 -6 A 8 = -1.2962 × 10 -7 A 10 = 2.8718 × 10 -9 14th surface K = 0 A 4 = -9.8664 × 10 -5 A 6 = 4.0400 × 10 -6 A 8 = -4.4986 × 10 -7 A 10 = 1.3851 × 10 -8 20th surface K = 0 A 4 = 5.3089 × 10 -4 A 6 = -1.6198 × 10 -5 A 8 = 4.4581 × 10 -7 A 10 = -4.9080 × 10 -9 Zoom data (∞ ) WE ST TE f (mm) 6.02622 9.31725 14.28897 F NO 2.7652 3.4888 4.5271 2ω (°) 62.4 42.8 28.7 d 9 14.24100 6.97804 2.00694 d 13 2.10000 6.51339 5.34809 d 18 2.46549 5.31403 11.45279.

【0113】 実施例12 r1 = -14.2761(非球面) d1 = 5.1000 nd1 =1.50913 νd1 =56.20 r2 = ∞(反射面) d2 = 5.7941 nd2 =1.50913 νd2 =56.20 r3 = ∞ d3 = 2.1000 r4 = -6.4892 d4 = 0.8000 nd3 =1.64000 νd3 =60.07 r5 = -84.1654 d5 = 1.1935 nd4 =1.84666 νd4 =23.78 r6 = -16.8306 d6 = (可変) r7 = ∞(絞り) d7 = 0.4000 r8 = 34.9225(非球面) d8 = 1.4006 nd5 =1.74330 νd5 =49.33 r9 = -15.2934 d9 = 0.1500 r10= 6.1210 d10= 3.3481 nd6 =1.61800 νd6 =63.33 r11= 27.4556 d11= 0.8000 nd7 =1.84666 νd7 =23.78 r12= 4.9467 d12= (可変) r13= 13.6380 d13= 1.4415 nd8 =1.51633 νd8 =64.14 r14= -143.7586 d14= (可変) r15= -19.5436 d15= 1.3641 nd9 =1.58913 νd9 =61.25 r16= -7.1346(非球面) d16= 0.8000 r17= ∞ d17= 1.0500 nd10=1.54771 νd10=62.84 r18= ∞ d18= 0.8000 r19= ∞ d19= 0.8000 nd11=1.51633 νd11=64.14 r20= ∞ d20= 0.9669 r21= ∞(像面) 非球面係数 第1面 K = 0 A4 = 3.2165 ×10-4 A6 =-9.1756 ×10-7 A8 = 4.1788 ×10-9 A10= 0.0000 第8面 K = 0 A4 =-1.2083 ×10-4 A6 = 1.1516 ×10-7 A8 =-2.9381 ×10-8 A10= 0.0000 第16面 K = 0 A4 = 1.3137 ×10-3 A6 =-2.0878 ×10-5 A8 = 4.9397 ×10-7 A10= 0.0000 ズームデータ(∞) WE ST TE f (mm) 5.02898 8.69474 14.52092 FNO 2.6544 3.5217 4.5079 2ω (°) 64.8 38.2 22.6 d6 14.61860 7.39251 1.80000 d12 3.75585 8.20107 4.39975 d14 3.16733 5.96897 15.38987 。Example 12 r 1 = -14.2761 (aspherical surface) d 1 = 5.1000 n d1 = 1.50913 ν d1 = 56.20 r 2 = ∞ (reflection surface) d 2 = 5.9941 n d2 = 1.50913 ν d2 = 56.20 r 3 = ∞ d 3 = 2.1000 r 4 = -6.4892 d 4 = 0.8000 n d3 = 1.64000 ν d3 = 60.07 r 5 = -84.1654 d 5 = 1.1935 n d4 = 1.84666 ν d4 = 23.78 r 6 = -16.8306 d 6 = (variable) r 7 = ∞ (aperture) d 7 = 0.4000 r 8 = 34.9225 (aspherical surface) d 8 = 1.4006 n d5 = 1.74330 ν d5 = 49.33 r 9 = -15.2934 d 9 = 0.1500 r 10 = 6.1210 d 10 = 3.3481 nd 6 = 1.61800 ν d6 = 63.33 r 11 = 27.4556 d 11 = 0.8000 n d7 = 1.84666 ν d7 = 23.78 r 12 = 4.9467 d 12 = (variable) r 13 = 13.6380 d 13 = 1.4415 n d8 = 1.51633 ν d8 = 64.14 r 14 = -143.7586 d 14 = (variable) r 15 = -19.5436 d 15 = 1.3641 n d9 = 1.58913 ν d9 = 61.25 r 16 = -7.1346 (aspherical surface) d 16 = 0.8000 r 17 = ∞ d 17 = 1.0500 n d10 = 1.54771 ν d10 = 62.84 r 18 = ∞ d 18 = 0.8000 r 19 = ∞ d 19 = 0.8000 n d11 = 1.51633 ν d11 = 64.14 r 20 = ∞ d 20 = 0.9669 r 21 = ∞ ( image plane) aspheric coefficients first surface K = 0 A 4 = 3.2165 × 10 -4 A 6 = -9.1756 × 10 - 7 A 8 = 4.1788 × 10 -9 A 10 = 0.0000 8th surface K = 0 A 4 = -1.2083 × 10 -4 A 6 = 1.1516 × 10 -7 A 8 = -2.9381 × 10 -8 A 10 = 0.0000 16 surfaces K = 0 A 4 = 1.3137 × 10 -3 A 6 = -2.0878 × 10 -5 A 8 = 4.9397 × 10 -7 A 10 = 0.0000 Zoom data (∞) WE ST TE f (mm) 5.02898 8.69474 14.52092 F NO 2.6544 3.5217 4.5079 2ω (°) 64.8 38.2 22.6 d 6 14.61860 7.39251 1.80000 d 12 3.75585 8.20107 4.39975 d 14 3.16733 5.96897 15.38987.

【0114】以上の実施例1、12の無限遠物点合焦時
の収差図をそれぞれ図13、図14に示す。これらの収
差図において、(a)は広角端、(b)は中間状態、
(c)は望遠端における球面収差SA、非点収差AS、
歪曲収差DT、倍率色収差CCを示す。
Aberration diagrams of Examples 1 and 12 when focusing on an object point at infinity are shown in FIGS. 13 and 14, respectively. In these aberration diagrams, (a) is the wide-angle end, (b) is the intermediate state,
(C) shows spherical aberration SA, astigmatism AS at the telephoto end,
The distortion DT and the chromatic aberration of magnification CC are shown.

【0115】次に、上記各実施例における条件(a)〜
(f)に係わるL、d/L、DFT/fT 3 /M2
11/f12 βRt、a、tLPF の値を示す。
Next, the conditions (a) to
L, d / L, D FT / f T M 3 / M 2 f related to (f)
The values of 11 / f 12 β Rt , a, and t LPF are shown.

【0116】 実施例 L d/L DFT/fT 3 /M2 11/f12 1 5.6 0.72088 0.78471 1.19347 -0.12343 2 6.0 0.79009 0.76004 0.53348 -0.32094 3 5.6 0.71748 0.11496 0.93206 0.36284 4 6.0 0.69413 0.15191 0.92989 0.20195 5 6.64 0.76797 0.25931 第3群は負 0 6 6.64 0.74877 0.27393 第3群は負 0 7 6.64 1.19996 0.17676 0.91213 0.37232 8 6.64 1.17430 0.22374 0.93381 0.39484 9 6.64 0.94629 0.21901 0.85382 0.22917 10 6.64 0.85491 0.20119 0.85523 0.05553 11 6.64 0.94867 0.37452 0.73366 0.09671 12 6.0 1.20313 0.30301 0.95350 1.26698 。Example L d / L D FT / f T M 3 / M 2 f 11 / f 12 1 5.6 0.72088 0.78471 1.19347 -0.12343 2 6.0 0.79009 0.76004 0.53348 -0.32094 3 5.6 0.71748 0.11496 0.93206 0.36284 4 6.0 0.69413 0.15191 0.92989 0.20 5 6.64 0.76797 0.25931 Negative for 3rd group 0 6 6.64 0.74877 0.27393 Negative for 3rd group 0 7 6.64 1.19996 0.17676 0.91213 0.37232 8 6.64 1.17430 0.22374 0.93381 0.39484 9 6.64 0.94629 0.21901 0.85382 0.22917 483 12 6.0 1.20313 0.30301 0.95350 1.26698.

【0117】 実施例 βRt a tLPF 1 -1.6884 3.0 1.80 2 -1.19598 3.0 1.80 3 -1.49396 3.0 1.80 4 -1.26884 3.0 0.80 5 -1.51672 3.0 1.55 6 -1.38530 3.0 1.44 7 -1.26560 3.0 1.44 8 -1.30121 3.0 1.44 9 -1.05735 3.0 1.44 10 -1.14882 3.0 1.44 11 -0.86588 3.0 1.44 11 -1.36309 2.5 1.20 。Example β Rt a t LPF 1 -1.6884 3.0 1.80 2 -1.19598 3.0 1.80 3 -1.49396 3.0 1.80 4 -1.26884 3.0 0.80 5 -1.51672 3.0 1.55 6 -1.38530 3.0 1.44 7 -1.26560 3.0 1.44 8 -1.30121 3.0 1.44 9 -1.05735 3.0 1.44 10 -1.14882 3.0 1.44 11 -0.86588 3.0 1.44 11 -1.36309 2.5 1.20.

【0118】次に、本発明の光路折り曲げズーム光学系
の沈胴方式の例について説明する。図15は、具体的に
図9の光路折り曲げズーム光学系(実施例9)に適用し
た例であり、図15(b)は実施例9の光路折り曲げズ
ーム光学系が広角端にある状態(図9(c))の光路折
り曲げ光軸を含む断面図であり、この状態において、第
1−2群G1−2と第2群G2の間の空間に、第2群G
2の2枚のレンズと第1−1群G1−1の光路折り曲げ
プリズムPを退避させ、空いた空間に第1−1群G1−
1の光路折り曲げプリズムPより前の負メニスカスレン
ズL1を沈胴させて、この光路折り曲げズーム光学系に
入射する光軸方向(カメラの奥行き方向)の厚さを薄く
している。なお、第2群G2より像面I側に空間がある
場合には、光路折り曲げプリズムPと第1−2群G1−
2だけでなく、第2群G2等を含めて像面I側に退避さ
せるようにしてもよい。
Next, an example of the collapsing method of the optical path bending zoom optical system of the present invention will be described. FIG. 15 is an example applied specifically to the optical path bending zoom optical system (Example 9) of FIG. 9, and FIG. 15B is a state in which the optical path bending zoom optical system of Example 9 is at the wide-angle end (FIG. 9 (c)) is a cross-sectional view including the optical path bending optical axis, and in this state, a second group G is provided in a space between the first-second group G1-2 and the second group G2.
2 of the two lenses and the optical path bending prism P of the 1-1st group G1-1 are retracted, and the 1-1st group G1-
The negative meniscus lens L1 in front of the first optical path bending prism P is collapsed to reduce the thickness in the optical axis direction (depth direction of the camera) incident on the optical path bending zoom optical system. When there is a space on the image plane I side of the second group G2, the optical path bending prism P and the first-second group G1-
Not only the second group G2 but also the second group G2 and the like may be retracted to the image plane I side.

【0119】図16は、光路折り曲げ用の反射光学素子
をミラーMで構成した場合の1つの沈胴方式の概念図で
あり、ミラーMを破線の位置に倒し、かつ、そのミラー
Mよりも像面I側のレンズL2、L3も破線の位置に倒
して、この光路折り曲げズーム光学系に入射する光軸方
向(カメラの奥行き方向)の厚さを薄くするようにして
いる。
FIG. 16 is a conceptual diagram of one collapsing method in which the reflecting optical element for bending the optical path is composed of the mirror M. The mirror M is tilted to the position of the broken line, and the image plane is larger than that of the mirror M. The lenses L2 and L3 on the I side are also tilted to the position of the broken line to reduce the thickness in the optical axis direction (camera depth direction) incident on the optical path bending zoom optical system.

【0120】図17は、光路折り曲げ用の反射光学素子
をミラーMで構成した場合の別の沈胴方式の概念図であ
り、ミラーMを破線の位置に倒し、空いた空間にそのミ
ラーMよりも物体側のレンズ群LGを沈胴させて、同様
に厚さを薄くしている。なお、ミラーMを倒すのではな
く、図15のように、折り曲げ後の光軸に沿って退避さ
せるようにしてもよい。
FIG. 17 is a conceptual diagram of another collapsing method in the case where the reflecting optical element for bending the optical path is composed of the mirror M. The mirror M is tilted to the position of the broken line and the mirror M is placed in an empty space. Similarly, the lens group LG on the object side is collapsed to reduce the thickness. Instead of tilting the mirror M, the mirror M may be retracted along the bent optical axis as shown in FIG.

【0121】図18は、光路折り曲げ用の反射光学素子
を液体プリズムあるいは変形可能なプリズムLPで構成
し(図18(a))、収納時に液体を抜く等して図18
(b)のようにつぶして薄くすることもでき、その空い
た空間にプリズムLPよりも物体側のレンズ群を沈胴さ
せるなり(図17)、他のレンズを倒すなり(図16)
して同様に厚さを薄くすることもできる。
In FIG. 18, the reflective optical element for bending the optical path is constituted by a liquid prism or a deformable prism LP (FIG. 18 (a)), and the liquid is drained at the time of storage and the like.
It can be thinned by crushing as in (b), and the lens group closer to the object side than the prism LP is collapsed in the vacant space (FIG. 17) and other lenses are tilted (FIG. 16).
Similarly, the thickness can be reduced.

【0122】また、本発明の光路折り曲げズーム光学系
において、光路折り曲げ用の反射光学素子を形状可変ミ
ラーで構成することもできる。形状可変ミラーは、変形
可能なフィルムに反射ミラーコーティングを施した反射
ミラーであり、折り畳みあるいは巻き取りによって退避
させることが可能である。
Further, in the optical path bending zoom optical system of the present invention, the reflective optical element for bending the optical path may be composed of a variable shape mirror. The variable shape mirror is a reflective mirror in which a deformable film is coated with a reflective mirror, and can be retracted by folding or winding.

【0123】また、光路折り曲げ用の反射光学素子を形
状可変ミラーで構成する場合に、形状可変ミラーを変形
させて合焦させるようにすることも可能である。図19
にその概念図を示す。近距離の物体に対しての合焦は、
無限遠合焦時に平面の形状可変ミラーDMの反射面を図
示の矢印で示したように凹面に変えることにより、形状
可変ミラーDMの面形状のみの変更で行っている。近距
離合焦の際に、形状可変ミラーDMの面形状を反射面の
有効面内で非球面形状とする。特に、反射面にパワーを
持たせた場合、回転対称な反射面形状であると、その反
射面に偏心して入射することによる偏心収差が発生す
る。そのため、形状可変ミラーDMの面形状を回転非対
称な曲面とすることが望ましい。
Further, when the reflective optical element for bending the optical path is composed of a variable shape mirror, it is possible to deform the variable shape mirror to focus. FIG. 19
Shows the conceptual diagram. Focusing on an object at a short distance is
By changing the reflecting surface of the planar variable shape mirror DM to a concave surface as indicated by an arrow when focusing on infinity, only the surface shape of the variable shape mirror DM is changed. When focusing on a short distance, the surface shape of the variable shape mirror DM is made an aspherical shape within the effective surface of the reflecting surface. In particular, when the reflecting surface is provided with power and has a rotationally symmetrical reflecting surface shape, decentering aberration occurs due to decentering and entering the reflecting surface. Therefore, it is desirable that the surface shape of the variable shape mirror DM is a rotationally asymmetric curved surface.

【0124】また、偏心により軸外において回転非対称
な歪曲収差等が発生する。偏心により発生する面対称な
偏心収差を補正するために、形状可変ミラーDMの面形
状を、図20に示すように、形状可変ミラーDMの反射
面に入射し反射する光軸を含む平面を唯一の対称面とし
た面対称な曲面に変形することが望ましい。
Further, due to the eccentricity, rotationally asymmetric distortion aberration and the like occur off-axis. In order to correct the plane-symmetrical eccentric aberration generated by the eccentricity, the surface shape of the variable shape mirror DM is, as shown in FIG. It is desirable to transform the surface into a plane-symmetric curved surface.

【0125】図19の構成の場合、形状可変ミラーDM
は無限遠合焦時に平面であるが、近距離物点への合焦時
には、図20に示すように、対称面を1面のみとする回
転非対称非球面に変形することで、近距離合焦時におけ
る偏心収差を補正することができる。このような構成に
より、電子撮像装置全体の小型化と性能の維持が達成さ
れる。
In the case of the configuration of FIG. 19, the variable shape mirror DM
Is a plane at the time of focusing at infinity, but at the time of focusing at an object point at a short distance, as shown in FIG. It is possible to correct decentration aberrations at the time. With such a configuration, downsizing and maintenance of performance of the entire electronic image pickup device can be achieved.

【0126】図21は、形状可変ミラーDMの反射面を
矢印方向にチルトすることにより手ブレ補正を行った例
である。図19の状態では手ブレを起こしていない場合
であり、図21は形状可変ミラーDMの反射面をチルト
する手ブレ補正機能が働いた状態である。撮影方向に対
して撮像装置が図21のように下を向いた際には、図に
示すように、形状可変ミラーDMの反射面の傾きを破線
から実線位置へ変えることで、入射光軸が傾かないよう
になっている。その際に収差の変動を抑えるように、形
状可変ミラーDMの面形状全体も変更することが望まし
い。
FIG. 21 shows an example in which camera shake correction is performed by tilting the reflecting surface of the deformable mirror DM in the direction of the arrow. In the state of FIG. 19, there is no camera shake, and in FIG. 21, the camera shake correction function of tilting the reflecting surface of the deformable mirror DM is activated. When the image pickup device faces downward in the shooting direction as shown in FIG. 21, the incident optical axis is changed by changing the inclination of the reflecting surface of the deformable mirror DM from the broken line to the solid line position as shown in the figure. It doesn't lean. At this time, it is desirable to change the entire surface shape of the variable shape mirror DM so as to suppress the fluctuation of aberration.

【0127】なお、本発明の光路折り曲げ用の反射光学
素子の反射面にパワーを持たせ、その面形状を自由曲面
等で構成してもよい。あるいは、反射光学素子の反射面
をホログフィック光学素子(HOE)で構成してもよ
い。
The reflecting surface of the reflecting optical element for bending the optical path of the present invention may be provided with power, and its surface shape may be constituted by a free curved surface or the like. Alternatively, the reflective surface of the reflective optical element may be composed of a holographic optical element (HOE).

【0128】また、その反射光学素子を実施例1〜12
のように光路折り曲げプリズムPで構成する場合に、そ
の光路折り曲げプリズムPの前後に配置されるレンズと
プリズムPを接合するように構成してもよい。
In addition, the reflective optical element is used in Examples 1 to 12.
When the optical path bending prism P is used as described above, the lenses arranged before and after the optical path bending prism P may be bonded to the prism P.

【0129】ところで、本発明の光路折り曲げズーム光
学系を用いてデジタルカメラのような電子撮像装置を構
成する場合に、光路折り曲げズーム光学系とCCDのよ
うな電子撮像素子との間に、光路分割素子を配置して撮
影光路をファインダー光路に分割するようにしてもよ
い。その例を図22に示す。図22は、デジタルカメラ
40の正面図であり、この場合の光路折り曲げズーム光
学系は90°光路を折り曲げる反射光学素子M1とその
像面側に配置されているレンズ群LAとからなり、像面
に撮像素子のCCD49が配置されている。そして、レ
ンズ群LAとCCD49の間にハーフミラーのような光
路分割素子M2が配置されており、反射光学素子M1で
の反射前後の光軸を含む平面に対し略垂直の側(図では
上側)に光路が分割される。もちろん、光路分割素子M
2はファインダー光路に光束を導くときのみ挿入される
反射面であってもよい。光路分割素子M2で反射された
光路は、別の反射面M3により、光路分割素子M2での
反射前後の光軸を含む平面内で90°折り曲げられ、さ
らに第4の反射面M4により90°折り曲げられ、光軸
が反射光学素子M1に入射する光軸と略平行に射出する
ようになっている。図22では、接眼光学系は図示され
ていないが、第4の反射面M4の射出側あるいはその反
射面M4を含んだ前後に接眼光学系が配置され、第4の
反射面M4の射出側に位置する観察者の眼球によって被
写体の観察像が観察される。
By the way, when an electronic image pickup device such as a digital camera is constructed using the optical path bending zoom optical system of the present invention, an optical path division is performed between the optical path bending zoom optical system and an electronic image pickup device such as a CCD. Elements may be arranged to divide the photographing optical path into the finder optical path. An example thereof is shown in FIG. FIG. 22 is a front view of the digital camera 40. In this case, the optical path bending zoom optical system is composed of a reflective optical element M1 that bends the optical path by 90 ° and a lens group LA arranged on the image surface side thereof. The CCD 49 of the image pickup device is arranged at. An optical path splitting element M2 such as a half mirror is arranged between the lens group LA and the CCD 49, and a side (upper side in the figure) substantially perpendicular to a plane including the optical axis before and after reflection by the reflective optical element M1. The optical path is split into. Of course, the optical path splitting element M
Reference numeral 2 may be a reflecting surface that is inserted only when guiding the light beam to the finder optical path. The optical path reflected by the optical path splitting element M2 is bent by 90 ° in a plane including the optical axis before and after reflection by the optical path splitting element M2 by another reflecting surface M3, and further bent by 90 ° by the fourth reflecting surface M4. The optical axis is emitted substantially parallel to the optical axis incident on the reflective optical element M1. In FIG. 22, although the eyepiece optical system is not shown, the eyepiece optical system is arranged on the exit side of the fourth reflecting surface M4 or before and after including the reflecting surface M4, and on the exit side of the fourth reflecting surface M4. The observation image of the subject is observed by the eyeball of the observer located.

【0130】ところで、実施例1〜12のローパスフィ
ルターLFは何れも3枚重ねで構成している。もちろ
ん、上述の実施例は、例えばローパスフィルターLFを
1枚で構成する等、前記した構成の範囲内で種々変更可
能である。
By the way, the low-pass filters LF of the first to twelfth embodiments are each formed by stacking three sheets. Of course, the above-described embodiment can be variously modified within the range of the above-described configuration, for example, one low-pass filter LF is configured.

【0131】以上の各実施例において、最終レンズ群の
像側には、図示のように、近赤外カットフィルターIF
又は近赤外カットコート面ICを入射面側に施したロー
パスフィルターLFを有している。この近赤外カットフ
ィルターIF、近赤外カットコート面ICは、波長60
0nmでの透過率が80%以上、波長700nmでの透
過率が10%以下となるように構成されている。具体的
には、例えば次のような27層の層構成からなる多層膜
である。ただし、設計波長は780nmである。
In each of the above embodiments, the near-infrared cut filter IF is provided on the image side of the final lens group as shown in the figure.
Alternatively, it has a low-pass filter LF in which a near-infrared cut coat surface IC is provided on the incident surface side. This near-infrared cut filter IF and near-infrared cut coat surface IC have a wavelength of 60
The transmittance at 0 nm is 80% or more, and the transmittance at a wavelength of 700 nm is 10% or less. Specifically, for example, it is a multilayer film having the following 27-layer structure. However, the design wavelength is 780 nm.

【0132】 基 板 材質 物理的膜厚(nm) λ/4 ─────────────────────────────── 第1層 Al2 3 58.96 0.50 第2層 TiO2 84.19 1.00 第3層 SiO2 134.14 1.00 第4層 TiO2 84.19 1.00 第5層 SiO2 134.14 1.00 第6層 TiO2 84.19 1.00 第7層 SiO2 134.14 1.00 第8層 TiO2 84.19 1.00 第9層 SiO2 134.14 1.00 第10層 TiO2 84.19 1.00 第11層 SiO2 134.14 1.00 第12層 TiO2 84.19 1.00 第13層 SiO2 134.14 1.00 第14層 TiO2 84.19 1.00 第15層 SiO2 178.41 1.33 第16層 TiO2 101.03 1.21 第17層 SiO2 167.67 1.25 第18層 TiO2 96.82 1.15 第19層 SiO2 147.55 1.05 第20層 TiO2 84.19 1.00 第21層 SiO2 160.97 1.20 第22層 TiO2 84.19 1.00 第23層 SiO2 154.26 1.15 第24層 TiO2 95.13 1.13 第25層 SiO2 160.97 1.20 第26層 TiO2 99.34 1.18 第27層 SiO2 87.19 0.65 ─────────────────────────────── 空 気 。Base plate Material Physical film thickness (nm) λ / 4 ─────────────────────────────── 1st layer Al 2 O 3 58.96 0.50 Second layer TiO 2 84.19 1.00 Third layer SiO 2 134.14 1.00 Fourth layer TiO 2 84.19 1.00 Fifth layer SiO 2 134. 14 1.00 6th layer TiO 2 84.19 1.00 7th layer SiO 2 134.14 1.00 8th layer TiO 2 84.19 1.00 9th layer SiO 2 134.14 1.00 10th Layer TiO 2 84.19 1.00 11th layer SiO 2 134.14 1.00 12th layer TiO 2 84.19 1.00 13th layer SiO 2 134.14 1.00 14th layer TiO 2 84.19 1.00 15th layer SiO 2 178.41 1.33 16th layer TiO 2 101.03 1.21 17th layer SiO 2 167.67 1.25 18th layer TiO 2 96.82 1.15 19th layer SiO 2 147.55 1.05 20th layer TiO 2 84.19 1.00 21st layer SiO 2 160 .97 1.20 22nd layer TiO 2 84.19 1.00 23rd layer SiO 2 154.26 1.15 24th layer TiO 2 95.13 1.13 25th layer SiO 2 160.97 1.20 26th layer TiO 2 99.34 1.18 27th layer SiO 2 87.19 0.65 ────────────────────────────── ──

【0133】上記の近赤外シャープカットコートの透過
率特性は図23に示す通りである。
The transmittance characteristics of the above-mentioned near infrared sharp cut coat are as shown in FIG.

【0134】また、ローパスフィルターLFの射出面側
には、図24に示すような短波長域の色の透過を低滅す
る色フィルターを設けるか若しくはコーティングを行う
ことで、より一層電子画像の色再現性を高めている。
Further, on the exit surface side of the low-pass filter LF, a color filter as shown in FIG. 24 for reducing the transmission of colors in the short wavelength range is provided or coated to further improve the color reproduction of the electronic image. It is increasing the nature.

【0135】具体的には、このフィルター若しくはコー
ティングにより、波長400nm〜700nmで透過率
が最も高い波長の透過率に対する420nmの波長の透
過率の比が15%以上であり、その最も高い波長の透過
率に対する400nmの波長の透過率の比が6%以下で
あることが好ましい。
Specifically, with this filter or coating, the ratio of the transmittance of the wavelength of 420 nm to the transmittance of the wavelength of 400 nm to 700 nm having the highest transmittance is 15% or more. The ratio of the transmittance at the wavelength of 400 nm to the transmittance is preferably 6% or less.

【0136】それにより、人間の目の色に対する認識
と、撮像及び再生される画像の色とのずれを低減させる
ことができる。言い換えると、人間の視覚では認識され
難い短波長側の色が、人間の目で容易に認識されること
による画像の劣化を防止することができる。
As a result, it is possible to reduce the difference between the color recognition of the human eye and the color of the image picked up and reproduced. In other words, it is possible to prevent the deterioration of the image due to the color on the short wavelength side, which is difficult to be recognized by human eyes, to be easily recognized by human eyes.

【0137】上記の400nmの波長の透過率の比が6
%を越えると、人間の目では認識され難い単波長城が認
識し得る波長に再生されてしまい、逆に、上記の420
nmの波長の透過率の比が15%よりも小さいと、人間
の認識し得る波長城の再生が低くなり、色のバランスが
悪くなる。
The transmittance ratio at the wavelength of 400 nm is 6
If it exceeds%, a single wavelength castle that is difficult for the human eye to recognize will be reproduced at a wavelength that can be recognized.
If the transmittance ratio of the wavelength of nm is less than 15%, the reproduction of the wavelength castle that can be recognized by humans becomes low, and the color balance becomes poor.

【0138】このような波長を制限する手段は、補色モ
ザイクフィルターを用いた撮像系においてより効果を奏
するものである。
Such means for limiting the wavelength is more effective in the image pickup system using the complementary color mosaic filter.

【0139】上記各実施例では、図24に示すように、
波長400nmにおける透過率を0%、420nmにお
ける透過率を90%、440nmにて透過率のピーク1
00%となるコーティングとしている。
In each of the above embodiments, as shown in FIG.
The transmittance at a wavelength of 400 nm is 0%, the transmittance at 420 nm is 90%, and the transmittance peak 1 is at 440 nm.
The coating is 00%.

【0140】前記した近赤外シャープカットコートとの
作用の掛け合わせにより、波長450nmの透過率99
%をピークとして、400nmにおける透過率を0%、
420nmにおける透過率を80%、600nmにおけ
る透過率を82%、700nmにおける透過率を2%と
している。それにより、より忠実な色再現を行ってい
る。
By multiplying the above-mentioned action with the near infrared sharp cut coat, the transmittance 99 at a wavelength of 450 nm is 99.
% As a peak, and the transmittance at 400 nm is 0%,
The transmittance at 420 nm is 80%, the transmittance at 600 nm is 82%, and the transmittance at 700 nm is 2%. Thereby, more faithful color reproduction is performed.

【0141】また、ローパスフィルターLFは、像面上
投影時の方位角度が水平(=0°)と±45°方向にそ
れぞれ結晶軸を有する3種類のフィルターを光軸方向に
重ねて使用しており、それぞれについて、水平にaμ
m、±45°方向にそれぞれSQRT(1/2) ×aだけずらす
ことで、モアレ抑制を行っている。ここで、SQRTは
前記のようにスクエアルートであり平方根を意味する。
Further, the low-pass filter LF uses three kinds of filters having azimuth angles at the time of projection on the image plane that have crystal axes in the horizontal (= 0 °) and ± 45 ° directions, respectively, and are stacked in the optical axis direction. And horizontal aμ for each
Moire suppression is performed by shifting SQRT (1/2) × a in the m and ± 45 ° directions. Here, SQRT is a square root as described above and means a square root.

【0142】また、CCDの撮像面I上には、図25に
示す通り、シアン、マゼンダ、イエロー、グリーン
(緑)の4色の色フィルターを撮像画素に対応してモザ
イク状に設けた補色モザイクフィルターを設けている。
これら4種類の色フィルターは、それぞれが略同じ数に
なるように、かつ、隣り合う画素が同じ種類の色フィル
ターに対応しないようにモザイク状に配置されている。
それにより、より忠実な色再現が可能となる。
On the image pickup surface I of the CCD, as shown in FIG. 25, a complementary color mosaic in which four color filters of cyan, magenta, yellow and green (green) are provided in a mosaic pattern corresponding to the image pickup pixels. A filter is provided.
These four types of color filters are arranged in a mosaic pattern so that the numbers of the filters are substantially the same and adjacent pixels do not correspond to the same type of color filters.
This allows more faithful color reproduction.

【0143】補色モザイクフィルターは、具体的には、
図25に示すように少なくとも4種類の色フィルターか
ら構成され、その4種類の色フィルターの特性は以下の
通りであることが好ましい。
The complementary color mosaic filter is specifically
As shown in FIG. 25, at least four types of color filters are included, and the four types of color filters preferably have the following characteristics.

【0144】グリーンの色フイルターGは波長GP に分
光強度のピークを有し、イエローの色フィルターYe
波長YP に分光強度のピークを有し、シアンの色フィル
ターCは波長CP に分光強度のピークを有し、マゼンダ
の色フィルターMは波長MP1とMP2にピークを有し、以
下の条件を満足する。
The green color filter G has a spectral intensity peak at a wavelength G P , the yellow color filter Y e has a spectral intensity peak at a wavelength Y P , and the cyan color filter C has a wavelength C P. The magenta color filter M has a peak of the spectral intensity and the peaks of the wavelengths M P1 and M P2 , which satisfy the following conditions.

【0145】510nm<GP <540nm 5nm<YP −GP <35nm −100nm<CP −GP <−5nm 430nm<MP1<480nm 580nm<MP2<640nm さらに、グリーン、イエロー、シアンの色フィルターは
それぞれの分光強度のピークに対して波長530nmで
は80%以上の強度を有し、マゼンダの色フィルターは
その分光強度のピークに対して波長530nmでは10
%から50%の強度を有することが、色再現性を高める
上でより好ましい。
[0145] 510nm <G P <540nm 5nm < Y P -G P <35nm -100nm <C P -G P <-5nm 430nm <M P1 <480nm 580nm <M P2 <640nm Furthermore, green, yellow, cyan The filter has an intensity of 80% or more at a wavelength of 530 nm with respect to each spectral intensity peak, and the magenta color filter has an intensity of 10% at a wavelength of 530 nm with respect to the spectral intensity peak.
% To 50% is more preferable in order to improve color reproducibility.

【0146】上記各実施例におけるそれぞれの波長特性
の一例を図26に示す。グリーンの色フィルターGは5
25nmに分光強度のビークを有している。イエローの
色フィルターYe は555nmに分光強度のピークを有
している。シアンの色フイルターCは510nmに分光
強度のピークを有している。マゼンダの色フィルターM
は445nmと620nmにピークを有している。ま
た、530nmにおける各色フィルターは、それぞれの
分光強度のピークに対して、Gは99%、Ye は95
%、Cは97%、Mは38%としている。
FIG. 26 shows an example of each wavelength characteristic in each of the above embodiments. Green color filter G is 5
It has a spectral intensity beak at 25 nm. The yellow color filter Y e has a spectral intensity peak at 555 nm. Cyan color filter C has a peak of spectral intensity at 510 nm. Magenta color filter M
Has peaks at 445 nm and 620 nm. In addition, in each color filter at 530 nm, G is 99% and Y e is 95% with respect to each spectral intensity peak.
%, C is 97%, and M is 38%.

【0147】このような補色フイルターの場合、図示し
ないコントローラー(若しくは、デジタルカメラに用い
られるコントローラー)で、電気的に次のような信号処
理を行い、 輝度信号 Y=|G+M+Ye +C|×1/4 色信号 R−Y=|(M+Ye )−(G+C)| B−Y=|(M+C)−(G+Ye )| の信号処理を経てR(赤)、G(緑)、B(青)の信号
に変換される。
In the case of such a complementary color filter, a controller (or a controller used in a digital camera) (not shown) electrically performs the following signal processing to obtain a luminance signal Y = | G + M + Y e + C | × 1 / Four color signals R-Y = | (M + Y e )-(G + C) | B-Y = | (M + C)-(G + Y e ) | signal processing, and R (red), G (green), B (blue) Is converted to a signal.

【0148】ところで、上記した近赤外シャープカット
コートの配置位置は、光路上のどの位置であってもよ
い。また、ローパスフィルターLFの枚数も前記した通
り2枚でも1枚でも構わない。
By the way, the arrangement position of the above-mentioned near infrared sharp cut coat may be any position on the optical path. Further, the number of low-pass filters LF may be two or one as described above.

【0149】また、各実施例の明るさ絞りの部分につい
ての詳細を図27示す。ただし、この図は4群構成の場
合であり、第1群G1(第1−1群G1−1+第1−2
群G1−2)における光路折り曲げプリズムPは省いて
図示してある。撮像光学系の第1群G1と第2群G2と
の間の光軸上の絞り位置に、0段、−1段、−2段、−
3段、−4段の明るさ調節を可能とするターレット10
を配置している。ターレット10には、0段の調整をす
る開口形状が直径約4mmの円形で固定の空間からなる
開口1A(波長550nmに対する透過率は100%)
と、−1段補正するために開口1Aの開口面積の約半分
の開口面積を有する開口形状が固定の透明な平行平板
(波長550nmに対する透過率は99%)からなる開
口1Bと、開口1Bと同じ面積の円形開口部を有し、−
2段、−3段、−4段に補正するため、各々波長550
nmに対する透過率が50%、25%、13%のNDフ
ィルターが設けられた開口部1C、1D、1Eとを有し
ている。
FIG. 27 shows details of the aperture stop portion of each embodiment. However, this figure shows a case of a four-group configuration, and the first group G1 (1-1st group G1-1 + 1-2)
The optical path bending prism P in the group G1-2) is omitted in the drawing. At the diaphragm position on the optical axis between the first group G1 and the second group G2 of the imaging optical system, 0 stage, −1 stage, −2 stage, −
Turret 10 with 3 or -4 steps of brightness control
Are arranged. The turret 10 has an aperture 1A having a circular shape with a diameter of about 4 mm and a fixed space for adjusting 0 steps (100% transmittance for a wavelength of 550 nm).
And an opening 1B composed of a transparent parallel plate (having a transmittance of 99% for a wavelength of 550 nm) having a fixed opening shape and having an opening area approximately half that of the opening 1A for -1 step correction. Has circular openings of the same area,
Wavelength of 550 for correction to 2 steps, -3 steps, and -4 steps
It has openings 1C, 1D, and 1E provided with ND filters having transmittances of 50%, 25%, and 13% for nm.

【0150】そして、ターレット10の回転軸11の周
りの回動により何れかの開口を絞り位置に配することで
光量調節を行っている。
Then, by rotating the turret 10 around the rotary shaft 11, one of the openings is arranged at the diaphragm position to adjust the light amount.

【0151】また、実効FナンバーFno' がFno' >a
/0.4μmとなるときに、開口内に波長550nmに
対する透過率が80%未満のNDフィルターが配される
構成としている。具体的には、実施例1では、望遠端の
実効F値が上記式を満たすのは、絞り開放時(0段)に
対して−2段とした実行F値が9.0となるときであ
り、そのときに対応する開口は1Cとなる。それによ
り、絞りの回折現象による像の劣化を抑えている。
Also, the effective F number F no 'is F no '> a
When /0.4 μm, an ND filter having a transmittance of less than 80% for a wavelength of 550 nm is arranged in the opening. Specifically, in the first embodiment, the effective F value at the telephoto end satisfies the above expression when the execution F value at −2 stops becomes 9.0 with respect to the full aperture (0 stops). Yes, the corresponding opening is 1C. This suppresses the deterioration of the image due to the diffraction phenomenon of the diaphragm.

【0152】また、図27に示すターレット10に代え
て、図28(a)に示すターレット10’を用いた例を
示す。撮像光学系の第1群G1と第2群G2との間の光
軸上の明るさ絞り位置に、0段、−1段、−2段、−3
段、−4段の明るさ調節を可能とするターレット10’
を配置している。ターレット10’には、0段の調整を
する開口形状が直径約4mmの円形で固定の開口1A'
と、−1段補正するために開口1A’の開口面積の約半
分の開口面積を有する開口形状が固定の開口1B' と、
さらに開口面積が順に小さくなり、−2段、−3段、−
4段に補正するための形状が固定の開口部1C' 、1
D' 、1E' とを有している。そして、ターレット1
0’の回転軸11の周りの回動により何れかの開口を絞
り位置に配することで光量調節を行っている。
An example in which the turret 10 'shown in FIG. 27A is used instead of the turret 10 shown in FIG. At the aperture stop position on the optical axis between the first group G1 and the second group G2 of the imaging optical system, 0 stage, −1 stage, −2 stage, −3
Turret 10 'that allows you to adjust the brightness of 4 steps and 4 steps
Are arranged. The turret 10 'has a circular opening 1A' with an opening shape for adjusting 0 steps and a diameter of about 4 mm.
And an opening 1B 'having a fixed opening shape having an opening area that is about half the opening area of the opening 1A' for -1 step correction,
Furthermore, the opening area decreases in order, -2 steps, -3 steps,-
Apertures 1C ′ whose shape is fixed for four-stage correction, 1
D ', 1E'. And turret 1
The amount of light is adjusted by arranging any of the openings at the diaphragm position by rotating about the 0'rotation axis 11.

【0153】また、これら複数の開口の中の1A' から
1D' にそれぞれ空間周波数特性の異なる光学的ローパ
スフィルターを配している。そして、図28(b)に示
すように、開口径が小さくなる程光学フィルターの空間
周波数特性を高く設定しており、それにより絞り込むこ
とによる回折現象による像の劣化を抑えている。なお、
図28(b)の各曲線は、ローパスフィルターのみの空
間周波数特性を示すものであり、各絞りの回折も含めた
特性は何れも等しくなるように設定しているものであ
る。
Further, optical low-pass filters having different spatial frequency characteristics are arranged in 1A 'to 1D' in the plurality of apertures. Then, as shown in FIG. 28B, the spatial frequency characteristic of the optical filter is set to be higher as the aperture diameter becomes smaller, thereby suppressing the deterioration of the image due to the diffraction phenomenon due to the narrowing. In addition,
Each curve in FIG. 28B shows the spatial frequency characteristic of only the low-pass filter, and the characteristics including the diffraction of each diaphragm are set to be equal.

【0154】さて、以上のような本発明の電子撮像装置
は、ズームレンズ等の結像光学系で物体像を形成しその
像をCCDや銀塩フィルムといった撮像素子に受光させ
て撮影を行う撮影装置、とりわけデジタルカメラやビデ
オカメラ、情報処理装置の例であるパソコン、電話、特
に持ち運びに便利な携帯電話等に用いることができる。
以下に、その実施形態を例示する。
In the electronic image pickup apparatus according to the present invention as described above, an image of an object is formed by an image forming optical system such as a zoom lens, and the image is picked up by an image pickup device such as a CCD or a silver salt film for image pickup. The present invention can be used for devices, particularly digital cameras and video cameras, personal computers, which are examples of information processing devices, telephones, and particularly mobile phones that are convenient to carry.
The embodiment will be exemplified below.

【0155】図29〜図31は、本発明による結像光学
系をデジタルカメラの撮影光学系41に組み込んだ構成
の概念図を示す。図29はデジタルカメラ40の外観を
示す前方斜視図、図30は同後方斜視図、図31はデジ
タルカメラ40の構成を示す断面図である。デジタルカ
メラ40は、この例の場合、撮影用光路42を有する撮
影光学系41、ファインダー用光路44を有するファイ
ンダー光学系43、シャッター45、フラッシュ46、
液晶表示モニター47等を含み、カメラ40の上部に配
置されたシャッター45を押圧すると、それに連動して
撮影光学系41、例えば実施例2の光路折り曲げズーム
光学系を通して撮影が行われる。撮影光学系41によっ
て形成された物体像が、近赤外カットフィルターIFと
光学的ローパスフィルターLFを介してCCD49の撮
像面上に形成される。このCCD49で受光された物体
像は、処理手段51を介し、電子画像としてカメラ背面
に設けられた液晶表示モニター47に表示される。ま
た、この処理手段51には記録手段52が接続され、撮
影された電子画像を記録することもできる。なお、この
記録手段52は処理手段51と別体に設けてもよいし、
フロッピー(登録商標)ディスクやメモリーカード、M
O等により電子的に記録書込を行うように構成してもよ
い。また、CCD49に代わって銀塩フィルムを配置し
た銀塩カメラとして構成してもよい。
29 to 31 are conceptual diagrams showing a configuration in which the image forming optical system according to the present invention is incorporated in the photographing optical system 41 of a digital camera. 29 is a front perspective view showing the external appearance of the digital camera 40, FIG. 30 is a rear perspective view of the same, and FIG. 31 is a sectional view showing the configuration of the digital camera 40. In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, and a flash 46.
When the shutter 45, which includes the liquid crystal display monitor 47 and the like and is disposed above the camera 40, is pressed, the photographing is performed through the photographing optical system 41, for example, the optical path bending zoom optical system of the second embodiment in conjunction therewith. The object image formed by the photographing optical system 41 is formed on the image pickup surface of the CCD 49 via the near infrared cut filter IF and the optical low pass filter LF. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the rear surface of the camera via the processing means 51. Further, the recording means 52 is connected to the processing means 51, and the captured electronic image can be recorded. The recording means 52 may be provided separately from the processing means 51,
Floppy (registered trademark) disk, memory card, M
Recording and writing may be performed electronically by O or the like. Further, it may be configured as a silver salt camera in which a silver salt film is arranged instead of the CCD 49.

【0156】さらに、ファインダー用光路44上にはフ
ァインダー用対物光学系53が配置してある。このファ
インダー用対物光学系53によって形成された物体像
は、像正立部材であるポロプリズム55の視野枠57上
に形成される。このポリプリズム55の後方には、正立
正像にされた像を観察者眼球Eに導く接眼光学系59が
配置されている。なお、撮影光学系41及びファインダ
ー用対物光学系53の入射側、接眼光学系59の射出側
にそれぞれカバー部材50が配置されている。
Further, a finder objective optical system 53 is arranged on the finder optical path 44. The object image formed by the finder objective optical system 53 is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. Behind the poly prism 55, an eyepiece optical system 59 for guiding an erect image to the observer's eye E is arranged. A cover member 50 is arranged on each of the incident side of the photographing optical system 41 and the objective optical system 53 for the finder, and the exit side of the eyepiece optical system 59.

【0157】このように構成されたデジタルカメラ40
は、撮影光学系41が広画角で高変倍比であり、収差が
良好で、明るく、フィルター等が配置できるバックフォ
ーカスの大きなズームレンズであるので、高性能・低コ
スト化が実現できる。
[0157] The digital camera 40 configured as above
Since the photographic optical system 41 is a zoom lens having a wide angle of view, a high zoom ratio, good aberrations, a high brightness, and a large back focus in which filters and the like can be arranged, high performance and low cost can be realized.

【0158】なお、図31の例では、カバー部材50と
して平行平面板を配置しているが、パワーを持ったレン
ズを用いてもよい。
In the example of FIG. 31, a plane parallel plate is arranged as the cover member 50, but a lens having power may be used.

【0159】次に、本発明の結像光学系が対物光学系と
して内蔵された情報処理装置の一例であるパソコンが図
32〜図34に示される。図32はパソコン300のカ
バーを開いた前方斜視図、図33はパソコン300の撮
影光学系303の断面図、図34は図32の状態の側面
図である。図32〜図34に示されるように、パソコン
300は、外部から繰作者が情報を入力するためのキー
ボード301と、図示を省略した情報処理手段や記録手
段と、情報を操作者に表示するモニター302と、操作
者自身や周辺の像を撮影するための撮影光学系303と
を有している。ここで、モニター302は、図示しない
バックライトにより背面から照明する透過型液晶表示素
子や、前面からの光を反射して表示する反射型液晶表示
素子や、CRTディスプレイ等であってよい。また、図
中、撮影光学系303は、モニター302の右上に内蔵
されているが、その場所に限らず、モニター302の周
囲や、キーボード301の周囲のどこであってもよい。
Next, FIGS. 32 to 34 show a personal computer as an example of an information processing apparatus in which the image forming optical system of the present invention is incorporated as an objective optical system. 32 is a front perspective view of the personal computer 300 with the cover opened, FIG. 33 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 34 is a side view of the state of FIG. As shown in FIGS. 32 to 34, the personal computer 300 includes a keyboard 301 for the preparer to input information from the outside, information processing means and recording means (not shown), and a monitor for displaying information to the operator. It has an image pickup optical system 303 for taking an image of the operator himself or herself and surroundings. Here, the monitor 302 may be a transmissive liquid crystal display element that illuminates from the back side with a backlight (not shown), a reflective liquid crystal display element that reflects and displays light from the front side, a CRT display, or the like. Further, in the figure, the photographing optical system 303 is built in the upper right of the monitor 302, but not limited to that location, it may be anywhere around the monitor 302 or around the keyboard 301.

【0160】この撮影光学系303は、撮影光路304
上に、本発明による光路折り曲げズーム光学系(図では
略記)からなる対物レンズ112と、像を受光する撮像
素子チップ162とを有している。これらはパソコン3
00に内蔵されている。
This photographing optical system 303 has a photographing optical path 304.
An objective lens 112 including an optical path bending zoom optical system (abbreviated in the drawing) according to the present invention and an image pickup device chip 162 that receives an image are provided on the top. These are PC 3
It is built into 00.

【0161】ここで、撮像素子チップ162上には光学
的ローパスフィルターLFが付加的に貼り付けられて撮
像ユニット160として一体に形成され、対物レンズ1
12の鏡枠113の後端にワンタッチで嵌め込まれて取
り付け可能になっているため、対物レンズ112と撮像
素子チップ162の中心合わせや面間隔の調整が不要で
あり、組立が簡単となっている。また、鏡枠113の先
端(図示略)には、対物レンズ112を保護するための
カバーガラス114が配置されている。なお、鏡枠11
3中のズームレンズの駆動機構等は図示を省いてある。
Here, an optical low-pass filter LF is additionally attached on the image pickup element chip 162 to integrally form an image pickup unit 160, and the objective lens 1
Since it can be fitted and attached to the rear end of the lens frame 113 of No. 12 with one touch, the centering of the objective lens 112 and the image pickup device chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is easy. . Further, a cover glass 114 for protecting the objective lens 112 is arranged at the tip (not shown) of the lens frame 113. The lens frame 11
The drive mechanism and the like of the zoom lens in 3 are not shown.

【0162】撮像素子チップ162で受光された物体像
は、端子166を介して、パソコン300の処理手段に
入力され、電子画像としてモニター302に表示され
る、図32には、その一例として、操作者の撮影された
画像305が示されている。また、この画像305は、
処理手段を介し、インターネットや電話を介して、遠隔
地から通信相手のパソコンに表示されることも可能であ
る。
The object image received by the image pickup device chip 162 is input to the processing means of the personal computer 300 via the terminal 166 and displayed on the monitor 302 as an electronic image. In FIG. A photographed image 305 of the person is shown. Also, this image 305
It is also possible to display it on a personal computer of a communication partner from a remote place via the processing means and the Internet or a telephone.

【0163】次に、本発明の結像光学系が撮影光学系と
して内蔵された情報処理装置の一例である電話、特に持
ち運びに便利な携帯電話が図35に示される。図35
(a)は携帯電話400の正面図、図35(b)は側面
図、図35(c)は撮影光学系405の断面図である。
図35(a)〜(c)に示されるように、携帯電話40
0は、操作者の声を情報として入力するマイク部401
と、通話相手の声を出力するスピーカ部402と、操作
者が情報を入力する入力ダイアル403と、操作者自身
や通話相手等の撮影像と電話番号等の情報を表示するモ
ニター404と、撮影光学系405と、通信電波の送信
と受信を行うアンテナ406と、画像情報や通信情報、
入力信号等の処理を行う処理手段(図示せず)とを有し
ている。ここで、モニター404は液晶表示素子であ
る。また、図中、各構成の配置位置は、特にこれらに限
られない。この撮影光学系405は、撮影光路407上
に配置された本発明による光路折り曲げズーム光学系
(図では略記)からなる対物レンズ112と、物体像を
受光する撮像素子チップ162とを有している。これら
は、携帯電話400に内蔵されている。
Next, FIG. 35 shows a telephone, which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as a photographing optical system, in particular, a portable telephone which is convenient to carry. Fig. 35
35A is a front view of the mobile phone 400, FIG. 35B is a side view thereof, and FIG. 35C is a cross-sectional view of the photographing optical system 405.
As shown in FIGS. 35A to 35C, the mobile phone 40
0 indicates a microphone unit 401 for inputting the operator's voice as information.
A speaker unit 402 for outputting the voice of the other party, an input dial 403 for the operator to input information, a monitor 404 for displaying a photographed image of the operator himself or the other party and information such as a telephone number, and photographing. An optical system 405, an antenna 406 for transmitting and receiving communication radio waves, image information and communication information,
And processing means (not shown) for processing the input signal and the like. Here, the monitor 404 is a liquid crystal display element. Further, in the drawing, the arrangement position of each component is not particularly limited to these. The photographing optical system 405 includes an objective lens 112 which is arranged on a photographing optical path 407 and includes an optical path bending zoom optical system (not shown in the figure) according to the present invention, and an image pickup element chip 162 which receives an object image. . These are built into the mobile phone 400.

【0164】ここで、撮像素子チップ162上には光学
的ローパスフィルターLFが付加的に貼り付けられて撮
像ユニット160として一体に形成され、対物レンズ1
12の鏡枠113の後端にワンタッチで嵌め込まれて取
り付け可能になっているため、対物レンズ112と撮像
素子チップ162の中心合わせや面間隔の調整が不要で
あり、組立が簡単となっている。また、鏡枠113の先
端(図示略)には、対物レンズ112を保護するための
カバーガラス114が配置されている。なお、鏡枠11
3中のズームレンズの駆動機構等は図示を省いてある。
Here, an optical low-pass filter LF is additionally attached on the image pickup element chip 162 to integrally form an image pickup unit 160, and the objective lens 1
Since it can be fitted and attached to the rear end of the lens frame 113 of No. 12 with one touch, the centering of the objective lens 112 and the image pickup device chip 162 and the adjustment of the surface interval are unnecessary, and the assembly is easy. . Further, a cover glass 114 for protecting the objective lens 112 is arranged at the tip (not shown) of the lens frame 113. The lens frame 11
The drive mechanism and the like of the zoom lens in 3 are not shown.

【0165】撮影素子チップ162で受光された物体像
は、端子166を介して、図示していない処理手段に入
力され、電子画像としてモニター404に、又は、通信
相手のモニターに、又は、両方に表示される。また、通
信相手に画像を送信する場合、撮像素子チップ162で
受光された物体像の情報を、送信可能な信号へと変換す
る信号処理機能が処理手段には含まれている。
The object image received by the image pickup element chip 162 is input to a processing means (not shown) through a terminal 166 and is displayed as an electronic image on the monitor 404, on the monitor of the communication partner, or on both. Is displayed. Further, when transmitting an image to a communication partner, the processing means includes a signal processing function of converting the information of the object image received by the image sensor chip 162 into a transmittable signal.

【0166】以上の本発明の電子撮像装置は例えば次の
ように構成することができる。
The electronic image pickup apparatus of the present invention described above can be configured, for example, as follows.

【0167】〔1〕 広角端から望遠端に変倍する際に
物体側にのみ移動する群を少なくとも1つ含み、変倍時
に可動な全ての群の最も物体側のレンズよりも物体側に
光路を折り曲げるための反射光学素子を少なくとも1つ
含む光路折り曲げズーム光学系及びその像側に配置され
た電子撮像素子を有することを特徴とする電子撮像装
置。
[1] At least one group that moves only to the object side when zooming from the wide-angle end to the telephoto end is included, and the optical path is closer to the object side than the most object-side lens of all the groups that are movable during zooming. An electronic image pickup apparatus comprising: an optical path bending zoom optical system including at least one reflective optical element for bending the optical axis; and an electronic image pickup element arranged on the image side thereof.

【0168】〔2〕 最も物体側のレンズから前記変倍
時に可動な全ての群の中最も物体側の面の直前までの部
分系の合成焦点距離が負である上記1記載の電子撮像装
置。
[2] The electronic image pickup device according to the above item 1, wherein the combined focal length of the subsystems from the lens closest to the object side to immediately before the surface closest to the object side of all the groups that are movable during zooming is negative.

【0169】〔3〕 物体側より順に、負レンズ群と光
路折り曲げのための反射光学素子とにて構成された第1
−1群、正レンズを1枚含む第1−2群、正の屈折力を
有する第2群を含み、広角端から望遠端に変倍する際は
前記第2群が物体側にのみ移動する光路折り曲げズーム
光学系及びその像側に配置された電子撮像素子を有する
ことを特徴とする電子撮像装置。
[3] A first lens element which is composed of, in order from the object side, a negative lens group and a reflective optical element for bending the optical path.
-1 group, a 1-2 group including one positive lens, and a second group having a positive refractive power, the second group moves only to the object side when zooming from the wide-angle end to the telephoto end. An electronic image pickup device comprising an optical path bending zoom optical system and an electronic image pickup element arranged on the image side thereof.

【0170】〔4〕 物体側より順に、入射面、射出面
の少なくとも一方が凹面である光路折り曲げのための反
射光学素子であるプリズムを含む第1−1群、正レンズ
を1枚含む第1−2群、正の屈折力を有する第2群を含
み、広角端から望遠端に変倍する際は前記第2群が物体
側へ単調に移動するような光路折り曲げズーム光学系及
びその像側に配置された電子撮像素子を有することを特
徴とする電子撮像装置。
[4] From the object side, in order from the object side, at least one of an entrance surface and an exit surface is a concave surface, a first-first group including a prism which is a reflective optical element for bending an optical path, and a first group including one positive lens. -2 group, an optical path bending zoom optical system including a second group having a positive refractive power, such that the second group monotonously moves toward the object side when zooming from the wide-angle end to the telephoto end, and its image side An electronic image pickup device having an electronic image pickup device disposed in the.

【0171】〔5〕 前記第2群の像側に正の屈折力を
有する第3群を含み、広角端から望遠端に変倍する際は
前記第2群と第3群が相対的間隔を変えながら移動する
ことを特徴とする上記3又は4記載の電子撮像装置。
[5] The image side of the second lens unit includes a third lens unit having a positive refractive power, and when zooming from the wide-angle end to the telephoto end, the second lens unit and the third lens unit have a relative distance. The electronic image pickup device as described in 3 or 4 above, wherein the electronic image pickup device moves while changing.

【0172】〔6〕 沈胴時に前記反射光学素子を退避
し、その空間に前記反射光学素子よりも物体側にある負
レンズ群を収納することを特徴とする上記3又は4記載
の電子撮像装置。
[6] The electronic image pickup device according to the above item 3 or 4, wherein the reflective optical element is retracted at the time of collapsing, and a negative lens group closer to the object side than the reflective optical element is housed in the space.

【0173】〔7〕 物体側より順に、負の第1レンズ
群、光路折り曲げのための反射光学素子、正の第2レン
ズ群を有し、沈胴時に前記反射光学素子を退避し、その
空間に前記第1レンズ群を収納する光路折り曲げズーム
光学系及びその像側に配置された電子撮像素子を有する
ことを特徴とする電子撮像装置。
[7] It has, in order from the object side, a negative first lens group, a reflective optical element for bending the optical path, and a positive second lens group. An electronic image pickup apparatus comprising: an optical path bending zoom optical system that houses the first lens group; and an electronic image pickup element that is arranged on an image side thereof.

【0174】〔8〕 前記第1レンズ群の収納時、前記
第2レンズ群が撮影時の最も像面から離れた位置よりも
像側に退避することを特徴とする上記7記載の電子撮像
装置。
[8] When the first lens group is housed, the second lens group is retracted toward the image side with respect to the position farthest from the image plane during photographing, .

【0175】[0175]

〔9〕 前記反射光学素子を薄板に反射ミ
ラーコーティングを施した反射ミラーで構成し、前記収
納時、前記反射ミラーを反射面が折り曲げ前の光軸と垂
直な方向にチルトすることを特徴とする上記6又は7記
載の電子撮像装置。
[9] It is characterized in that the reflection optical element is composed of a reflection mirror coated with a reflection mirror on a thin plate, and the reflection mirror is tilted in a direction perpendicular to the optical axis before the reflection surface is bent during the storage. The electronic image pickup device according to 6 or 7 above.

【0176】〔10〕 前記反射光学素子が像面方向に
退避することを特徴とする上記8記載の電子撮像装置。
[10] The electronic image pickup device according to the above item 8, wherein the reflective optical element is retracted in the image plane direction.

【0177】〔11〕 反射光学素子を含む撮影光学系
と電子撮像素子との間に、前記反射光学素子での反射前
後の光軸を含む平面に対し略垂直の側にも光路を分割す
る第2の反射面を設け、その反射側に沿って前記第2の
反射面の法線に対し略直角である法線を有し、かつ、前
記第2の反射面の光軸を含む入射平面と略同一の入射平
面を有する第3の反射面を設け、さらに、反射後の光路
が前記撮影光学系の入射側の光軸と略平行に射出するよ
うに第4の反射面を設けたことを特徴とする電子撮像装
置。
[11] Between the photographing optical system including the reflection optical element and the electronic image pickup element, the optical path is divided also on the side substantially perpendicular to the plane including the optical axis before and after reflection by the reflection optical element. An incident plane including two reflection surfaces, having a normal line along the reflection side that is substantially perpendicular to the normal line of the second reflection surface, and including the optical axis of the second reflection surface; A third reflecting surface having substantially the same plane of incidence is provided, and further, a fourth reflecting surface is provided so that the optical path after reflection exits substantially parallel to the optical axis on the incident side of the photographing optical system. A characteristic electronic imaging device.

【0178】〔12〕 前記反射光学素子の反射面の直
前の屈折面から反射面の直後の屈折面までの光軸上の空
気換算長dが以下の条件(a)を満足することを特徴と
する上記3又は4記載の電子撮像装置。
[12] The air-converted length d on the optical axis from the refracting surface immediately before the reflecting surface of the reflecting optical element to the refracting surface immediately after the reflecting surface satisfies the following condition (a): 3. The electronic image pickup device according to 3 or 4 above.

【0179】(a) 0.5<d/L<1.6 ただし、Lは電子撮像素子の有効撮像領域の対角長であ
る。
(A) 0.5 <d / L <1.6 where L is the diagonal length of the effective image pickup area of the electronic image pickup device.

【0180】〔13〕 前記反射面により光路を折り曲
げる方向の画角が25°±3°の範囲内の場合は以下の
条件(a−1)を満足し、前記画角が19°±3°の範
囲内の場合は以下の条件(a−2)を満足することを特
徴とする上記12記載の電子撮像装置。
[13] When the angle of view in the direction of bending the optical path by the reflecting surface is within the range of 25 ° ± 3 °, the following condition (a-1) is satisfied, and the angle of view is 19 ° ± 3 °. 13. The electronic image pickup apparatus according to the above 12, wherein the following condition (a-2) is satisfied in the range of.

【0181】(a−1) 0.8<d/L<1.4 (a−2) 0.5<d/L<1.0 〔14〕 前記反射光学素子を、平面部を有するプリズ
ムの平面部に平凹レンズが接合さた接合プリズムで構成
したことを特徴とする上記1、3、4の何れか1項記載
の電子撮像装置。
(A-1) 0.8 <d / L <1.4 (a-2) 0.5 <d / L <1.0 [14] The reflective optical element is a prism having a plane portion. 5. The electronic image pickup device according to any one of the items 1, 3, and 4, wherein the electronic image pickup device is configured by a cemented prism in which a plano-concave lens is cemented to a plane portion.

【0182】〔15〕 最も物体側に正レンズを配した
ことを特徴とする上記1、3、4の何れか1項記載の電
子撮像装置。
[15] The electronic image pickup apparatus described in any one of the above items 1, 3, and 4, characterized in that a positive lens is arranged closest to the object side.

【0183】〔16〕 前記ズーム光学系の最も像面側
に非球面を有する単レンズにて構成した最終群を有する
ことを特徴とする上記1、3、4の何れか1項記載の電
子撮像装置。
[16] The electronic image pickup according to any one of the above items 1, 3 and 4, characterized in that the zoom optical system has a final group composed of a single lens having an aspherical surface closest to the image plane. apparatus.

【0184】〔17〕 前記最終群は固定であることを
特徴とする上記16記載の電子撮像装置。
[17] The electronic image pickup apparatus according to the above item 16, wherein the final group is fixed.

【0185】〔18〕 前記ズーム光学系の最も像面側
に最終群を配し、前記最終群を除く前記第2群以降の群
でフォーカシングを行うことを特徴とする上記1、3、
4の何れか1項記載の電子撮像装置。
[18] The above-mentioned 1, 3, wherein the final group is disposed on the most image side of the zoom optical system, and focusing is performed by the second and subsequent groups excluding the final group.
4. The electronic image pickup device according to any one of 4 above.

【0186】〔19〕 前記ズーム光学系の最も像面側
に最終群を配し、前記最終群から物体側に2番目の群で
フォーカシングを行うことを特徴とする上記1、3、4
の何れか1項記載の電子撮像装置。
[19] The final group is disposed on the most image plane side of the zoom optical system, and focusing is performed by the second group from the final group to the object side.
The electronic imaging device according to claim 1.

【0187】〔20〕 前記最終群から物体側に2番目
の群と3番目の群の望遠端での無限遠物点合焦時の光軸
上空気間隔DFTが以下の条件式を満足することを特徴と
する上記19記載の電子撮像装置。
[20] The air distance D FT on the optical axis when focusing on an object point at infinity at the telephoto end of the second and third groups from the last group to the object side satisfies the following conditional expression. 21. The electronic image pickup device as described in 19 above.

【0188】(b) 0.1<DFT/fT <1.5 ただし、fT は望遠端での無限遠物点合焦時の全系焦点
距離である。
(B) 0.1 <D FT / f T <1.5 where f T is the focal length of the entire system when focusing on an object point at infinity at the telephoto end.

【0189】〔21〕 無限遠合焦時に広角端から望遠
端に変倍する際の前記第2群、前記第3群のそれぞれの
移動量M2 、M3 の比が以下の条件(c)を満足するこ
とを特徴とする上記5記載の電子撮像装置。
[21] The ratio of the moving amounts M 2 and M 3 of the second group and the third group when zooming from the wide-angle end to the telephoto end during focusing at infinity is under the following condition (c). The electronic image pickup device according to the above item 5, characterized in that

【0190】(c) 0.5<M3 /M2 <2.0 〔22〕 前記第1−2群を含みそれよりも物体側の群
全体は変倍時、フォーカシング時共に固定であることを
特徴とする上記3又は4記載の電子撮像装置。
(C) 0.5 <M 3 / M 2 <2.0 [22] The entire group including the first-second group and closer to the object side than the first-second group is fixed during zooming and during focusing. 5. The electronic image pickup device described in 3 or 4 above.

【0191】〔23〕 前記第1−2群は、物体側から
順に、負レンズ、正レンズの2枚若しくは正レンズ1枚
から構成したことを特徴とする上記3、4、5の何れか
1項記載の電子撮像装置。
[23] The first-second lens group is composed of, in order from the object side, two negative lens elements and one positive lens element or one positive lens element. The electronic imaging device according to the item.

【0192】〔24〕 前記第1−1群における光路を
折り曲げるための前記反射光学素子より物体側の負レン
ズ群は、物体側に凸の負レンズ1枚のみであることを特
徴とする上記3記載の電子撮像装置。
[24] The negative lens group closer to the object side than the reflective optical element for bending the optical path in the first-first lens group is only one negative lens convex toward the object side. The electronic imaging device described.

【0193】〔25〕 前記第1−1群と前記第1−2
群のパワー比が以下の条件(d)を満足することを特徴
とする上記3又は4記載の電子撮像装置。
[25] The first-first group and the first-second group
The electronic image pickup device according to the above item 3 or 4, wherein the power ratio of the group satisfies the following condition (d).

【0194】 (d) −0.8<f11/f12<0.9 ただし、f11は第1−1群の焦点距離、f12は第1−2
群の焦点距離である。
(D) −0.8 <f 11 / f 12 <0.9, where f 11 is the focal length of the 1-1st lens group, and f 12 is the 1-2nd lens.
The focal length of the group.

【0195】〔26〕 前記第2群又は前記第3群の何
れか一方が単レンズであることを特徴とする上記5記載
の電子撮像装置。
[26] The electronic image pickup device according to the above item 5, wherein one of the second group and the third group is a single lens.

【0196】〔27〕 前記第2群又は前記第3群の何
れか一方が単レンズで構成され、他方の群が少なくとも
凹レンズを含むことを特徴とする上記5記載の電子撮像
装置。
[27] The electronic image pickup device according to the above item 5, wherein one of the second group and the third group includes a single lens, and the other group includes at least a concave lens.

【0197】〔28〕 前記第2群と前記第3群は変倍
時に相対的間隔を変えながら同一方向に移動することを
特徴とする上記5記載の電子撮像装置。
[28] The electronic image pickup device according to the above item 5, wherein the second lens unit and the third lens unit move in the same direction while changing their relative intervals during zooming.

【0198】〔29〕 望遠端において以下の条件
(e)を満足することを特徴とする上記5記載の電子撮
像装置。
[29] The electronic image pickup apparatus as described in 5 above, which satisfies the following condition (e) at the telephoto end.

【0199】(e) 0.7<−βRt<2.1 ただし、βRtは第2群以降の望遠端における合成倍率
(無限遠物点)である。
(E) 0.7 <-β Rt <2.1 where β Rt is the composite magnification (infinity object point) at the telephoto end after the second lens unit.

【0200】〔30〕 前記ズーム光学系後方にある電
子撮像素子よりも物体側に、600nmでの透過率が8
0%以上、700nmでの透過率が10%以下の近赤外
シャープカットコートを用いたフィルターを配したこと
を特徴とする上記1、3、4の何れか1項記載の電子撮
像装置。
[30] The transmittance at 600 nm is 8 on the object side of the electronic image sensor behind the zoom optical system.
5. The electronic image pickup device according to any one of 1, 3, and 4, wherein a filter using a near infrared sharp cut coat having a transmittance of 0% or more and a transmittance at 700 nm of 10% or less is arranged.

【0201】〔31〕 前記電子撮像素子が補色モザイ
クフィルターを有することを特徴とする上記30記載の
電子撮像装置。
[31] The electronic image pickup device according to the above item 30, wherein the electronic image pickup device has a complementary color mosaic filter.

【0202】〔32〕 前記ズーム光学系後方にある電
子撮像素子よりも物体側に総厚t LPF (mm)が以下の
条件(f)を満たす光学的ローパスフィルターを配した
ことを特徴とする上記1、3、4の何れか1項記載の電
子撮像装置。
[32] The electric power provided at the rear of the zoom optical system.
Total thickness t on the object side of the child image sensor LPF(Mm) is
An optical low-pass filter satisfying the condition (f) was arranged.
The battery according to any one of the above 1, 3, 4 characterized in that
Child imaging device.

【0203】 (f) 0.15a<tLPF <0.45a ただし、aは電子撮像素子の水平画素ピッチ(単位μ
m)であり、aは5μm以下である。
(F) 0.15a <t LPF <0.45a where a is the horizontal pixel pitch (unit μ
m) and a is 5 μm or less.

【0204】〔33〕 前記ズーム光学系後方にある電
子撮像素子よりも物体側に総厚t LPF (mm)が以下の
条件(f' )を満たす光学的ローパスフィルターを配し
たことを特徴とする上記1、3、4の何れか1項記載の
電子撮像装置。
[33] The electric power provided at the rear of the zoom optical system.
Total thickness t on the object side of the child image sensor LPF(Mm) is
An optical low pass filter that satisfies the condition (f ')
5. The method according to any one of the above 1, 3, 4 characterized in that
Electronic imaging device.

【0205】 (f’) 0.13a<tLPF <0.42a ただし、aは電子撮像素子の水平画素ピッチ(単位μ
m)であり、aは4μm以下である。
(F ′) 0.13a <t LPF <0.42a where a is the horizontal pixel pitch (unit μ
m) and a is 4 μm or less.

【0206】〔34〕 開口形状が固定の複数の開口を
有し、その中の1つを第1群の最も像側のレンズ面と第
3群の最も物体側のレンズ面の間の何れかの光路内に挿
入可能であり、かつ、他の開口と交換可能とすることで
像面照度の調節を行うことを特徴とする上記1、3、4
の何れか1項記載の電子撮像装置。
[34] A plurality of apertures each having a fixed aperture shape are provided, and one of them is located between the most image side lens surface of the first group and the most object side lens surface of the third group. The illuminance of the image plane is adjusted by being able to be inserted into the optical path of the lens and being exchangeable with another aperture.
The electronic imaging device according to claim 1.

【0207】〔35〕 前記複数の開口の中、一部の開
口内に550nmに対する透過率が80%未満である媒
体を有すると共に、他の一部の開口の波長550nmに
対する透過率を80%以上としたことを特徴とする上記
34記載の電子撮像装置。
[35] Among the plurality of openings, a medium having a transmittance of less than 80% for 550 nm is provided in a part of the openings, and the transmittance of another part of the openings for a wavelength of 550 nm is 80% or more. 35. The electronic image pickup device according to the above item 34.

【0208】〔36〕 ズーム光学系の焦点距離と入射
瞳の直径から求まるFナンバーをFno、前記開口におけ
る波長550nmにおける透過率をTとしたときのFno
/√Tを実効Fno’とし、前記電子撮像素子の水平画素
ピッチをaとするとき、F no’>a(μm)/0.4μ
mとなるような実効Fナンバーに相当する光量になるよ
うに調節する場合は、開口内に550nmに対する透過
率Tが80%未満の媒体を備えた開口を前記ズーム光学
系の光路に挿入するようにしたことを特徴とする上記3
4記載の電子撮像装置。
[36] Focal Length of Zoom Optical System and Incident
The F number obtained from the diameter of the pupil is Fno, In the opening
F when the transmittance at a wavelength of 550 nm is Tno
/ √T is effective Fno'And the horizontal pixel of the electronic image sensor
When the pitch is a, F no′> A (μm) /0.4μ
The amount of light will be equivalent to the effective F number so that m will be obtained.
Transmission to 550 nm within the aperture
The aperture provided with a medium having a ratio T of less than 80% is used for the zoom optical system.
The above-mentioned 3 characterized by being inserted into the optical path of the system
4. The electronic imaging device according to 4.

【0209】〔37〕 前記複数の開口の中の複数にそ
れぞれ空間周波数特性の異なる光学的ローパスフィルタ
ーを配したことを特徴とする上記34記載の電子撮像装
置。
[37] The electronic image pickup device according to the above item 34, wherein an optical low-pass filter having a different spatial frequency characteristic is arranged in each of the plurality of openings.

【0210】〔38〕 収納時に少なくとも反射光学素
子以外の1枚のレンズをチルト移動させることで撮影時
よりも薄く収納することを特徴とする上記1記載の電子
撮像装置。
[38] The electronic image pickup apparatus as described in the above item 1, characterized in that at least one lens other than the reflective optical element is tilted at the time of storage so that the lens is stored thinner than at the time of shooting.

【0211】〔39〕 前記反射光学素子をプリズムに
て構成し、前記プリズムの外殻を固体で形成し、内部を
液体で充填し、前記ズーム光学系の沈胴時に前記液体を
抜くことにより薄く変形させることを特徴とする上記
1、3、4、6の何れか1項記載の電子撮像装置。
[39] The reflective optical element is composed of a prism, the outer shell of the prism is formed of a solid, the inside is filled with a liquid, and the liquid is removed when the zoom optical system is collapsed to be thinly deformed. 7. The electronic imaging device according to any one of the above 1, 3, 4, and 6, wherein

【0212】〔40〕 前記第4の反射面により反射さ
れた光束を観察者眼球に導くファインダー光路としたこ
とを特徴とする上記11記載の電子撮像装置。
[40] The electronic image pickup device according to the above item 11, wherein the light flux reflected by the fourth reflecting surface is used as a finder optical path that guides it to an observer's eyeball.

【0213】〔42〕 前記反射光学素子を移動させる
ことで撮影方向を変更可能としたことを特徴とする上記
1、3、4、6、11の何れか1項記載の電子撮像装
置。
[42] The electronic image pickup apparatus described in any one of the above items 1, 3, 4, 6 and 11, wherein the photographing direction can be changed by moving the reflective optical element.

【0214】〔43〕 広角端から望遠端に変倍する際
に物体側にのみ移動する群を少なくとも1つ含み、変倍
時に可動な全ての群の最も物体側のレンズよりも物体側
に入射面・射出面の少なくとも一方が曲率を有する面で
ある光路を折り曲げるための反射光学素子を少なくとも
1つ含む光路折り曲げズーム光学系及びその像側に配置
された電子撮像素子を有することを特徴とする電子撮像
装置。
[43] At least one group that moves only to the object side when zooming from the wide-angle end to the telephoto end, and is incident on the object side of the most object-side lens of all the groups that are movable during zooming An optical path bending zoom optical system including at least one reflective optical element for bending an optical path having at least one of a surface and an exit surface having a curvature, and an electronic image pickup device arranged on the image side thereof. Electronic imaging device.

【0215】〔44〕 前記光路を折り曲げるための反
射光学素子が前記光路折り曲げズーム光学系の最も物体
側に配置されていることを特徴とする上記43記載の電
子撮像装置。
[44] The electronic image pickup apparatus according to the above item 43, wherein a reflective optical element for bending the optical path is arranged on the most object side of the optical path bending zoom optical system.

【0216】〔45〕 前記光路を折り曲げるための反
射光学素子は入射面が物体側に凹面を向けていることを
特徴とする上記43又は44記載の電子撮像装置。
[45] The electronic image pickup device according to the item 43 or 44, wherein the reflecting optical element for bending the optical path has an incident surface which is concave toward the object side.

【0217】〔46〕 前記光路を折り曲げるための反
射光学素子は入射面が非球面であることを特徴とする上
記45記載の電子撮像装置。
[46] The electronic image pickup device according to the above item 45, wherein the reflecting optical element for bending the optical path has an aspherical incident surface.

【0218】〔47〕 前記光路を折り曲げるための反
射光学素子は射出面が平面であることを特徴とする上記
46記載の電子撮像装置。
[47] The electronic image pickup apparatus as described in 46 above, wherein the reflecting optical element for bending the optical path has a flat exit surface.

【0219】〔48〕 前記の広角端から望遠端に変倍
する際に物体側にのみ移動する群は、2つの正レンズと
少なくとも1つの負レンズとからなり、少なくとも1つ
ずつの正レンズと負レンズが互いに接合されていること
を特徴とする上記43から47の何れか1項記載の電子
撮像装置。
[48] The group which moves only to the object side when zooming from the wide-angle end to the telephoto end is composed of two positive lenses and at least one negative lens, and at least one positive lens. 48. The electronic image pickup device according to any one of 43 to 47, wherein the negative lenses are cemented to each other.

【0220】〔49〕 前記の広角端から望遠端に変倍
する際に物体側にのみ移動する群は、2つの正レンズと
1つの負レンズとからなり、前記負レンズが少なくとも
一方の正レンズと互いに接合されていることを特徴とす
る上記43から47の何れか1項記載の電子撮像装置。
[49] The group that moves only to the object side when zooming from the wide-angle end to the telephoto end is composed of two positive lenses and one negative lens, and the negative lens is at least one positive lens. 48. The electronic image pickup device according to any one of the items 43 to 47, wherein the electronic image pickup device is joined to the electronic image pickup device.

【0221】[0221]

【発明の効果】以上の説明から明らかなように、本発明
により、沈胴厚が薄く、収納性に優れ、かつ、高倍率で
リアフォーカスにおいても結像性能の優れたズームレン
ズを得ることができ、ビデオカメラやデジタルカメラの
徹底的薄型化を図ることが可能となる。
As is apparent from the above description, according to the present invention, it is possible to obtain a zoom lens which has a thin collapsible thickness, is excellent in storability, and has a high magnification and excellent imaging performance even in rear focusing. It is possible to make video cameras and digital cameras thinner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子撮像装置に用いられる光路折り曲
げズーム光学系の実施例1の無限遠物点合焦時の望遠端
(a)、中間状態(b)、広角端(c)でのレンズ断面
図である。
FIG. 1 is a diagram illustrating an optical path bending zoom optical system used in an electronic image pickup apparatus of the present invention at a telephoto end (a), an intermediate state (b), and a wide-angle end (c) when focusing on an object point at infinity. It is a lens sectional view.

【図2】実施例2の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
2 is a lens cross-sectional view similar to FIG. 1 of an optical path bending zoom optical system of Example 2. FIG.

【図3】実施例3の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
3 is a lens cross-sectional view similar to FIG. 1 of an optical path bending zoom optical system of Example 3. FIG.

【図4】実施例4の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
FIG. 4 is a lens cross-sectional view similar to FIG. 1 of an optical path bending zoom optical system of Example 4.

【図5】実施例5の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
5 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 5. FIG.

【図6】実施例6の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
6 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 6. FIG.

【図7】実施例7の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
7 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 7. FIG.

【図8】実施例8の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
8 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 8. FIG.

【図9】実施例9の光路折り曲げズーム光学系の図1と
同様のレンズ断面図である。
9 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 9. FIG.

【図10】実施例10の光路折り曲げズーム光学系の図
1と同様のレンズ断面図である。
10 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 10. FIG.

【図11】実施例11の光路折り曲げズーム光学系の図
1と同様のレンズ断面図である。
11 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 11. FIG.

【図12】実施例12の光路折り曲げズーム光学系の図
1と同様のレンズ断面図である。
12 is a lens cross-sectional view similar to FIG. 1 of the optical path bending zoom optical system of Example 12. FIG.

【図13】実施例1の無限遠物点合焦時の収差図であ
る。
FIG. 13 is an aberration diagram for Example 1 upon focusing on an object point at infinity.

【図14】実施例12の無限遠物点合焦時の収差図であ
る。
FIG. 14 is an aberration diagram for Example 12 upon focusing on an object point at infinity.

【図15】本発明の光路折り曲げズーム光学系の沈胴方
式の1例を説明するための図である。
FIG. 15 is a diagram for explaining an example of a collapsing method of the optical path bending zoom optical system of the present invention.

【図16】光路折り曲げ用の反射光学素子をミラーで構
成した場合の1つの沈胴方式の概念図である。
FIG. 16 is a conceptual diagram of one collapsing method in the case where the reflective optical element for bending the optical path is composed of a mirror.

【図17】光路折り曲げ用の反射光学素子をミラーで構
成した場合の別の沈胴方式の概念図である。
FIG. 17 is a conceptual diagram of another retractable method in the case where the reflective optical element for bending the optical path is composed of a mirror.

【図18】光路折り曲げ用の反射光学素子を液体プリズ
ムあるいは変形可能なプリズムで構成した場合の別の沈
胴方式の概念図である。
FIG. 18 is a conceptual diagram of another collapsing method when the reflective optical element for bending the optical path is formed of a liquid prism or a deformable prism.

【図19】光路折り曲げ用の反射光学素子を形状可変ミ
ラーで構成する場合の合焦方式の概念図である。
FIG. 19 is a conceptual diagram of a focusing method when a reflective optical element for bending an optical path is configured by a variable shape mirror.

【図20】形状可変ミラーの面形状を説明するための概
念図である。
FIG. 20 is a conceptual diagram for explaining the surface shape of the variable shape mirror.

【図21】光路折り曲げ用の反射光学素子を形状可変ミ
ラーで構成する場合の手ブレ補正方式の概念図である。
FIG. 21 is a conceptual diagram of a camera shake correction method when a reflective optical element for bending an optical path is configured by a variable shape mirror.

【図22】光路折り曲げズーム光学系からファインダー
光路を分割する構成の概念図である。
FIG. 22 is a conceptual diagram of a configuration for dividing the finder optical path from the optical path bending zoom optical system.

【図23】近赤外シャープカットコートの一例の透過率
特性を示す図である。
FIG. 23 is a diagram showing transmittance characteristics of an example of a near infrared sharp cut coat.

【図24】ローパスフィルターの射出面側に設ける色フ
ィルターの一例の透過率特性を示す図である。
FIG. 24 is a diagram showing the transmittance characteristics of an example of a color filter provided on the exit surface side of a low-pass filter.

【図25】補色モザイクフィルターの色フィルター配置
を示す図である。
FIG. 25 is a diagram showing a color filter arrangement of complementary color mosaic filters.

【図26】補色モザイクフィルターの波長特性の一例を
示す図である。
FIG. 26 is a diagram showing an example of wavelength characteristics of a complementary color mosaic filter.

【図27】各実施例の明るさ絞りの部分の一例の詳細を
示す斜視図である。
FIG. 27 is a perspective view showing details of an example of a portion of the aperture stop of each embodiment.

【図28】各実施例の明るさ絞りの部分の別の例の詳細
を示す図である。
FIG. 28 is a diagram illustrating details of another example of the aperture stop portion of each example.

【図29】本発明による光路折り曲げズーム光学系を組
み込んだデジタルカメラの外観を示す前方斜視図であ
る。
FIG. 29 is a front perspective view showing the outer appearance of a digital camera incorporating the optical path bending zoom optical system according to the present invention.

【図30】図29のデジタルカメラの後方斜視図であ
る。
30 is a rear perspective view of the digital camera shown in FIG. 29. FIG.

【図31】図29のデジタルカメラの断面図である。31 is a cross-sectional view of the digital camera shown in FIG.

【図32】本発明による光路折り曲げズーム光学系を対
物光学系として組み込れたパソコンのカバーを開いた前
方斜視図である。
FIG. 32 is a front perspective view of the personal computer in which the optical path bending zoom optical system according to the present invention is incorporated as an objective optical system with the cover open.

【図33】パソコンの撮影光学系の断面図である。FIG. 33 is a sectional view of a photographing optical system of a personal computer.

【図34】図32の状態の側面図である。FIG. 34 is a side view of the state shown in FIG. 32.

【図35】本発明による光路折り曲げズーム光学系を対
物光学系として組み込れた携帯電話の正面図、側面図、
その撮影光学系の断面図である。
FIG. 35 is a front view, a side view, and a side view of a mobile phone in which the optical path bending zoom optical system according to the present invention is incorporated as an objective optical system.
It is a sectional view of the photographing optical system.

【符号の説明】[Explanation of symbols]

G1…第1群 G1−1…第1−1群 G1−2…第1−2群 G2…第2群 G3…第3群 G4…第4群 G5…第5群 P…光路折り曲げプリズム S…開口絞り(独立の場合) IF…近赤外カットフィルター IC…近赤外カットコート面 LF…光学的ローパスフィルター CG…カバーガラス I…像面 E…観察者眼球 L1…負メニスカスレンズ M…光路折り曲げ用ミラー L2、L3…レンズ LG…レンズ群 LP…液体プリズム、変形可能なプリズム DM…形状可変ミラー M1…反射光学素子 LA…レンズ群 M2…光路分割素子 M3、M4…反射面 1A、1B、1C、1D、1E…開口 1A’、1B’、1C’、1D’、1E’…開口 10…ターレット 10’…ターレット 11…回転軸 40…デジタルカメラ 41…撮影光学系 42…撮影用光路 43…ファインダー光学系 44…ファインダー用光路 45…シャッター 46…フラッシュ 47…液晶表示モニター 49…CCD 50…カバー部材 51…処理手段 52…記録手段 53…ファインダー用対物光学系 55…ポロプリズム 57…視野枠 59…接眼光学系 112…対物レンズ 113…鏡枠 114…カバーガラス 160…撮像ユニット 162…撮像素子チップ 166…端子 300…パソコン 301…キーボード 302…モニター 303…撮影光学系 304…撮影光路 305…画像 400…携帯電話 401…マイク部 402…スピーカ部 403…入力ダイアル 404…モニター 405…撮影光学系 406…アンテナ 407…撮影光路 G1 ... 1st group G1-1 ... Group 1-1 G1-2 ... Group 1-2 G2 ... Second group G3 ... Group 3 G4 ... Group 4 G5 ... Fifth group P ... Optical path bending prism S ... Aperture stop (when independent) IF ... Near infrared cut filter IC: Near infrared cut coat surface LF ... Optical low pass filter CG ... cover glass I ... Image plane E ... Observer eye L1 ... Negative meniscus lens M ... Mirror for bending the optical path L2, L3 ... Lens LG: Lens group LP: Liquid prism, deformable prism DM: Variable shape mirror M1 ... Reflective optical element LA ... Lens group M2 ... Optical path splitting element M3, M4 ... Reflective surface 1A, 1B, 1C, 1D, 1E ... Opening 1A ', 1B', 1C ', 1D', 1E '... Opening 10 ... Turret 10 '... turret 11 ... Rotation axis 40 ... Digital camera 41 ... Shooting optical system 42 ... Optical path for photography 43 ... Finder optical system 44 ... Optical path for finder 45 ... Shutter 46 ... Flash 47 ... LCD monitor 49 ... CCD 50 ... Cover member 51 ... Processing means 52 ... Recording means 53 ... Objective optical system for viewfinder 55 ... Porro prism 57 ... Field of view frame 59 ... Eyepiece optical system 112 ... Objective lens 113 ... Mirror frame 114 ... Cover glass 160 ... Imaging unit 162 ... Image sensor chip 166 ... Terminal 300 ... PC 301 ... Keyboard 302 ... Monitor 303 ... Shooting optical system 304 ... Shooting optical path 305 ... Image 400 ... Mobile phone 401 ... Microphone part 402 ... Speaker unit 403 ... Input dial 404 ... Monitor 405 ... Photography optical system 406 ... Antenna 407 ... Shooting optical path

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榛澤 豊治 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 渡邉 正仁 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 石井 敦次郎 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 武山 哲英 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 今村 文美 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2H087 KA01 LA01 PA07 PA18 PB08 QA03 QA07 QA17 QA21 QA25 QA34 QA42 QA45 RA01 RA41 RA43 SA63 SA64 SA65 SA72 SA76 SB03 SB12 SB24 SB32 SB42 TA01 TA03 2H101 FF00 5C022 AB44 AB55 AB66 AC54    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toyoji Harusawa             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. (72) Inventor Masahito Watanabe             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. (72) Inventor Atsujiro Ishii             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. (72) Inventor Tetsuhide Takeyama             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. (72) Inventor Fumi Imamura             2-43 Hatagaya, Shibuya-ku, Tokyo Ori             Inside Npus Optical Industry Co., Ltd. F term (reference) 2H087 KA01 LA01 PA07 PA18 PB08                       QA03 QA07 QA17 QA21 QA25                       QA34 QA42 QA45 RA01 RA41                       RA43 SA63 SA64 SA65 SA72                       SA76 SB03 SB12 SB24 SB32                       SB42 TA01 TA03                 2H101 FF00                 5C022 AB44 AB55 AB66 AC54

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 広角端から望遠端に変倍する際に物体側
にのみ移動する群を少なくとも1つ含み、変倍時に可動
な全ての群の最も物体側のレンズよりも物体側に光路を
折り曲げるための反射光学素子を少なくとも1つ含む光
路折り曲げズーム光学系及びその像側に配置された電子
撮像素子を有することを特徴とする電子撮像装置。
1. At least one group that moves only to the object side when zooming from the wide-angle end to the telephoto end, and has an optical path closer to the object side than the lens closest to the object side in all the groups that are movable during zooming. An electronic image pickup apparatus comprising: an optical path bending zoom optical system including at least one reflecting optical element for bending; and an electronic image pickup element arranged on an image side thereof.
【請求項2】 最も物体側のレンズから前記変倍時に可
動な全ての群の中最も物体側の面の直前までの部分系の
合成焦点距離が負である請求項1記載の電子撮像装置。
2. The electronic image pickup apparatus according to claim 1, wherein the combined focal length of the subsystems from the lens closest to the object side to immediately before the surface closest to the object side of all the groups that are movable during zooming is negative.
【請求項3】 物体側より順に、負レンズ群と光路折り
曲げのための反射光学素子とにて構成された第1−1
群、正レンズを1枚含む第1−2群、正の屈折力を有す
る第2群を含み、広角端から望遠端に変倍する際は前記
第2群が物体側にのみ移動する光路折り曲げズーム光学
系及びその像側に配置された電子撮像素子を有すること
を特徴とする電子撮像装置。
3. A first-first lens unit which is composed of, in order from the object side, a negative lens group and a reflective optical element for bending an optical path.
An optical path bending in which a second lens group, a first and second lens group including one positive lens, and a second lens group having a positive refractive power are included, and the second lens group moves only to the object side when zooming from the wide-angle end to the telephoto end. An electronic image pickup device comprising a zoom optical system and an electronic image pickup device arranged on the image side thereof.
【請求項4】 物体側より順に、入射面、射出面の少な
くとも一方が凹面である光路折り曲げのための反射光学
素子であるプリズムを含む第1−1群、正レンズを1枚
含む第1−2群、正の屈折力を有する第2群を含み、広
角端から望遠端に変倍する際は前記第2群が物体側へ単
調に移動するような光路折り曲げズーム光学系及びその
像側に配置された電子撮像素子を有することを特徴とす
る電子撮像装置。
4. A 1-1 group including a prism which is a reflective optical element for bending an optical path in which at least one of an entrance surface and an exit surface is a concave surface in order from the object side, and a 1-th group including one positive lens. An optical path bending zoom optical system including the second lens group and the second lens group having a positive refractive power so that the second lens group moves monotonically toward the object side when zooming from the wide-angle end to the telephoto end. An electronic image pickup device having an electronic image pickup device arranged.
【請求項5】 前記第2群の像側に正の屈折力を有する
第3群を含み、広角端から望遠端に変倍する際は前記第
2群と第3群が相対的間隔を変えながら移動することを
特徴とする請求項3又は4記載の電子撮像装置。
5. A third lens unit having a positive refractive power on the image side of the second lens unit, the relative distance between the second lens unit and the third lens unit changing when zooming from the wide-angle end to the telephoto end. The electronic image pickup apparatus according to claim 3, wherein the electronic image pickup apparatus moves while moving.
【請求項6】 沈胴時に前記反射光学素子を退避し、そ
の空間に前記反射光学素子よりも物体側にある負レンズ
群を収納することを特徴とする請求項3又は4記載の電
子撮像装置。
6. The electronic image pickup apparatus according to claim 3, wherein the reflective optical element is retracted when retracted, and a negative lens group on the object side of the reflective optical element is housed in the space.
【請求項7】 物体側より順に、負の第1レンズ群、光
路折り曲げのための反射光学素子、正の第2レンズ群を
有し、沈胴時に前記反射光学素子を退避し、その空間に
前記第1レンズ群を収納する光路折り曲げズーム光学系
及びその像側に配置された電子撮像素子を有することを
特徴とする電子撮像装置。
7. A negative first lens group, a reflective optical element for bending an optical path, and a positive second lens group in order from the object side, wherein the reflective optical element is retracted when retracted, and the space is provided with the reflective optical element. An electronic image pickup apparatus comprising: an optical path bending zoom optical system that houses a first lens group; and an electronic image pickup element that is arranged on an image side thereof.
【請求項8】 反射光学素子を含む撮影光学系と電子撮
像素子との間に、前記反射光学素子での反射前後の光軸
を含む平面に対し略垂直の側にも光路を分割する第2の
反射面を設け、その反射側に沿って前記第2の反射面の
法線に対し略直角である法線を有し、かつ、前記第2の
反射面の光軸を含む入射平面と略同一の入射平面を有す
る第3の反射面を設け、さらに、反射後の光路が前記撮
影光学系の入射側の光軸と略平行に射出するように第4
の反射面を設けたことを特徴とする電子撮像装置。
8. A second optical path between the photographing optical system including the reflective optical element and the electronic image sensor, the optical path being divided also on a side substantially perpendicular to a plane including an optical axis before and after reflection by the reflective optical element. Is provided, and has a normal line which is substantially perpendicular to the normal line of the second reflection surface along the reflection side thereof, and is substantially an incident plane including the optical axis of the second reflection surface. A third reflecting surface having the same plane of incidence is provided, and further, a fourth reflecting surface is formed so that the optical path after reflection exits substantially parallel to the optical axis on the incident side of the photographing optical system.
An electronic image pickup device characterized in that a reflection surface is provided.
JP2002131458A 2001-05-14 2002-05-07 Electronic imaging device Pending JP2003043354A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002131458A JP2003043354A (en) 2001-05-14 2002-05-07 Electronic imaging device
EP12153251.9A EP2450731B1 (en) 2002-04-05 2003-03-27 Electronic imaging system comprising a zoom lens
PCT/JP2003/003864 WO2003085438A1 (en) 2002-04-05 2003-03-27 Zoom lens and electronic imaging apparatus using it
EP12153258.4A EP2450732B1 (en) 2002-04-05 2003-03-27 Electronic imaging system comprising a zoom lens
CNB038079542A CN100337140C (en) 2002-04-05 2003-03-27 Zoom lens and electronic imaging apparatus using it
EP12153263.4A EP2450733B1 (en) 2002-04-05 2003-03-27 Electronic imaging system comprising a zoom lens
EP03715536A EP1494053B1 (en) 2002-04-05 2003-03-27 Electronic imaging apparatus with zoom lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-142948 2001-05-14
JP2001142948 2001-05-14
JP2002131458A JP2003043354A (en) 2001-05-14 2002-05-07 Electronic imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007049432A Division JP4633752B2 (en) 2001-05-14 2007-02-28 Electronic imaging device

Publications (1)

Publication Number Publication Date
JP2003043354A true JP2003043354A (en) 2003-02-13

Family

ID=26615033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131458A Pending JP2003043354A (en) 2001-05-14 2002-05-07 Electronic imaging device

Country Status (1)

Country Link
JP (1) JP2003043354A (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295075A (en) * 2003-03-10 2004-10-21 Nidec Copal Corp Zoom lens
JP2004309684A (en) * 2003-04-04 2004-11-04 Olympus Corp Imaging optical system and image pickup device using the same
JP2004334070A (en) * 2003-05-12 2004-11-25 Minolta Co Ltd Imaging lens device
JP2005121799A (en) * 2003-10-15 2005-05-12 Olympus Corp Zoom lens and electronic imaging device using the same
JP2005266173A (en) * 2004-03-17 2005-09-29 Sony Corp Zoom lens and imaging device
WO2006008805A1 (en) 2004-07-20 2006-01-26 Five Dimension Co., Ltd. Electronic imaging device
JP2006053275A (en) * 2004-08-10 2006-02-23 Olympus Corp Optical system
JP2006106089A (en) * 2004-09-30 2006-04-20 Nikon Corp Zoom lens
JP2006171492A (en) * 2004-12-17 2006-06-29 Konica Minolta Photo Imaging Inc Zoom lens device, and digital camera equipped therewith, and portable information apparatus
JP2006251037A (en) * 2005-03-08 2006-09-21 Sony Corp Bent optical system and imaging apparatus
JP2006259685A (en) * 2004-11-05 2006-09-28 Matsushita Electric Ind Co Ltd Lens barrel, imaging device, and camera
EP1767977A2 (en) * 2005-09-21 2007-03-28 Olympus Imaging Corporation Negative-lead optical zoom having four lens groups and a lens-prism in the first group
JP2007114447A (en) * 2005-10-20 2007-05-10 Konica Minolta Photo Imaging Inc Photographic lens unit
US7227706B2 (en) 2004-05-24 2007-06-05 Konica Minolta Photo Imaging, Inc. Image-taking lens apparatus
JP2007139863A (en) * 2005-11-15 2007-06-07 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
US7239460B2 (en) 2005-09-20 2007-07-03 Konica Minolta Photo Imaging, Inc. Imaging optical unit and image pickup apparatus
JP2007212963A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Zoom lens system, lens barrel, imaging apparatus and camera
US7295380B2 (en) 2003-05-30 2007-11-13 Sony Corporation Zoom lens and imaging device
US7327953B2 (en) 2003-09-08 2008-02-05 Sony Corporation Zoom lens and imaging device
US7375900B2 (en) 2005-09-08 2008-05-20 Konica Minolta Photo Imaging, Inc. Variable power optical system and image pickup apparatus
US7433131B2 (en) 2003-09-08 2008-10-07 Sony Corporation Zoom lens and imaging apparatus
JP2008242446A (en) * 2007-02-26 2008-10-09 Hoya Corp Imaging unit and portable electronic device
JP2008256977A (en) * 2007-04-05 2008-10-23 Nikon Corp Zoom lens, optical equipment and imaging method
JP2008256978A (en) * 2007-04-05 2008-10-23 Nikon Corp Zoom lens, optical equipment and imaging method
US7558001B2 (en) 2006-09-13 2009-07-07 Samsung Techwin Co., Ltd. Compact zoom lens
JP2010049263A (en) * 2009-09-14 2010-03-04 Olympus Corp Electronic imaging apparatus
US7715108B2 (en) 2005-09-13 2010-05-11 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7800832B2 (en) 2005-09-13 2010-09-21 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7848030B2 (en) 2005-09-13 2010-12-07 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7898743B2 (en) 2005-09-13 2011-03-01 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
JP2013008064A (en) * 2008-07-02 2013-01-10 Panasonic Corp Zoom lens system, imaging device and camera
JP2013050674A (en) * 2011-08-31 2013-03-14 Olympus Imaging Corp Standard lens
US8477230B2 (en) 2010-06-17 2013-07-02 Olympus Imaging Corp. Image forming optical system and electronic image pickup apparatus using the same
US8587876B2 (en) 2010-11-17 2013-11-19 Olympus Imaging Corp. Zoom lens having optical path bending member and image pickup apparatus equipped with same
WO2014125533A1 (en) 2013-02-15 2014-08-21 Yabe Akira Imaging optics
CN104007543A (en) * 2013-02-26 2014-08-27 信泰光学(深圳)有限公司 Zoom lens
JP2014526825A (en) * 2011-09-09 2014-10-06 アップル インコーポレイテッド Digital camera with optical splitter
US9500841B2 (en) 2011-06-03 2016-11-22 Olympus Corporation Zoom lens, and imaging apparatus incorporating the same
JP2018077320A (en) * 2016-11-09 2018-05-17 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2022023757A (en) * 2020-07-27 2022-02-08 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド Image capturing optical lens
JP2022540061A (en) * 2019-07-03 2022-09-14 レティノル カンパニー リミテッド Camera module using small reflector and optical device for augmented reality using the same
EP2637055B1 (en) * 2012-03-09 2023-02-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295075A (en) * 2003-03-10 2004-10-21 Nidec Copal Corp Zoom lens
JP2004309684A (en) * 2003-04-04 2004-11-04 Olympus Corp Imaging optical system and image pickup device using the same
JP2004334070A (en) * 2003-05-12 2004-11-25 Minolta Co Ltd Imaging lens device
US7295380B2 (en) 2003-05-30 2007-11-13 Sony Corporation Zoom lens and imaging device
US7327953B2 (en) 2003-09-08 2008-02-05 Sony Corporation Zoom lens and imaging device
CN100380162C (en) * 2003-09-08 2008-04-09 索尼株式会社 Zoom lens and imaging apparatus
US7433131B2 (en) 2003-09-08 2008-10-07 Sony Corporation Zoom lens and imaging apparatus
JP2005121799A (en) * 2003-10-15 2005-05-12 Olympus Corp Zoom lens and electronic imaging device using the same
US7800829B2 (en) 2004-03-17 2010-09-21 Sony Corporation Zoom lens and image pick-up apparatus using zoom lens
JP2005266173A (en) * 2004-03-17 2005-09-29 Sony Corp Zoom lens and imaging device
US7227706B2 (en) 2004-05-24 2007-06-05 Konica Minolta Photo Imaging, Inc. Image-taking lens apparatus
JP4894041B2 (en) * 2004-07-20 2012-03-07 株式会社ファイブ・ディー Electronic imaging device
JPWO2006008805A1 (en) * 2004-07-20 2008-07-31 株式会社ファイブ・ディー Electronic imaging device
WO2006008805A1 (en) 2004-07-20 2006-01-26 Five Dimension Co., Ltd. Electronic imaging device
JP2006053275A (en) * 2004-08-10 2006-02-23 Olympus Corp Optical system
JP4670300B2 (en) * 2004-09-30 2011-04-13 株式会社ニコン Zoom lens
JP2006106089A (en) * 2004-09-30 2006-04-20 Nikon Corp Zoom lens
JP2006259685A (en) * 2004-11-05 2006-09-28 Matsushita Electric Ind Co Ltd Lens barrel, imaging device, and camera
JP4691433B2 (en) * 2004-11-05 2011-06-01 パナソニック株式会社 Lens barrel, imaging device, and camera
JP2006171492A (en) * 2004-12-17 2006-06-29 Konica Minolta Photo Imaging Inc Zoom lens device, and digital camera equipped therewith, and portable information apparatus
JP2006251037A (en) * 2005-03-08 2006-09-21 Sony Corp Bent optical system and imaging apparatus
US7375900B2 (en) 2005-09-08 2008-05-20 Konica Minolta Photo Imaging, Inc. Variable power optical system and image pickup apparatus
US7848030B2 (en) 2005-09-13 2010-12-07 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7898743B2 (en) 2005-09-13 2011-03-01 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7800832B2 (en) 2005-09-13 2010-09-21 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7715108B2 (en) 2005-09-13 2010-05-11 Olympus Corporation Image forming optical system and electronic image pickup apparatus using image forming optical system
US7239460B2 (en) 2005-09-20 2007-07-03 Konica Minolta Photo Imaging, Inc. Imaging optical unit and image pickup apparatus
US7679834B2 (en) 2005-09-21 2010-03-16 Olympus Imaging Corp. Zoom optical system and image pickup apparatus provided with the same
EP1767977A2 (en) * 2005-09-21 2007-03-28 Olympus Imaging Corporation Negative-lead optical zoom having four lens groups and a lens-prism in the first group
US7944619B2 (en) 2005-09-21 2011-05-17 Olympus Imaging Corp. Zoom optical system and image pickup apparatus provided with the same
EP1767977A3 (en) * 2005-09-21 2007-05-02 Olympus Imaging Corporation Negative-lead optical zoom having four lens groups and a lens-prism in the first group
US7692869B2 (en) 2005-10-20 2010-04-06 Konica Minolta Photo Imaging, Inc. Image-taking lens unit
JP2007114447A (en) * 2005-10-20 2007-05-10 Konica Minolta Photo Imaging Inc Photographic lens unit
JP2007139863A (en) * 2005-11-15 2007-06-07 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
JP2007212963A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Zoom lens system, lens barrel, imaging apparatus and camera
US7558001B2 (en) 2006-09-13 2009-07-07 Samsung Techwin Co., Ltd. Compact zoom lens
US8120693B2 (en) 2007-02-26 2012-02-21 Hoya Corporation Imaging unit and mobile electronic device
JP2008242446A (en) * 2007-02-26 2008-10-09 Hoya Corp Imaging unit and portable electronic device
JP2008256978A (en) * 2007-04-05 2008-10-23 Nikon Corp Zoom lens, optical equipment and imaging method
JP2008256977A (en) * 2007-04-05 2008-10-23 Nikon Corp Zoom lens, optical equipment and imaging method
JP2013008064A (en) * 2008-07-02 2013-01-10 Panasonic Corp Zoom lens system, imaging device and camera
JP2010049263A (en) * 2009-09-14 2010-03-04 Olympus Corp Electronic imaging apparatus
US8477230B2 (en) 2010-06-17 2013-07-02 Olympus Imaging Corp. Image forming optical system and electronic image pickup apparatus using the same
US9213171B2 (en) 2010-11-17 2015-12-15 Olympus Corporation Zoom lens having optical path bending member and image pickup apparatus equipped with same
US8587876B2 (en) 2010-11-17 2013-11-19 Olympus Imaging Corp. Zoom lens having optical path bending member and image pickup apparatus equipped with same
US8810917B2 (en) 2010-11-17 2014-08-19 Olympus Imaging Corp. Zoom lens having optical path bending member and image pickup apparatus equipped with same
US9500841B2 (en) 2011-06-03 2016-11-22 Olympus Corporation Zoom lens, and imaging apparatus incorporating the same
JP2013050674A (en) * 2011-08-31 2013-03-14 Olympus Imaging Corp Standard lens
US9465221B2 (en) 2011-09-09 2016-10-11 Apple Inc. Digital camera with light splitter
JP2014526825A (en) * 2011-09-09 2014-10-06 アップル インコーポレイテッド Digital camera with optical splitter
EP2637055B1 (en) * 2012-03-09 2023-02-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
KR20150117656A (en) 2013-02-15 2015-10-20 아키라 야베 Imaging optics
WO2014125533A1 (en) 2013-02-15 2014-08-21 Yabe Akira Imaging optics
CN104007543A (en) * 2013-02-26 2014-08-27 信泰光学(深圳)有限公司 Zoom lens
JP2018077320A (en) * 2016-11-09 2018-05-17 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2022540061A (en) * 2019-07-03 2022-09-14 レティノル カンパニー リミテッド Camera module using small reflector and optical device for augmented reality using the same
JP7356183B2 (en) 2019-07-03 2023-10-04 レティノル カンパニー リミテッド Camera module using a small reflective part and optical device for augmented reality using the same
JP2022023757A (en) * 2020-07-27 2022-02-08 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド Image capturing optical lens
JP7029516B2 (en) 2020-07-27 2022-03-03 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド Imaging optical lens

Similar Documents

Publication Publication Date Title
JP5117549B2 (en) Electronic imaging device
JP2003043354A (en) Electronic imaging device
JP5117521B2 (en) Electronic imaging device
JP4460734B2 (en) Electronic imaging device
JP4674258B2 (en) Zoom lens and electronic imaging apparatus using the same
US7477455B2 (en) Zoom lens system and electronic image pickup apparatus
JP2003302576A (en) Zoom lens and electronic image pickup device using the same
JP5484687B2 (en) Image pickup apparatus having a zoom lens
JP4097931B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
JP4451069B2 (en) Zoom lens and electronic imaging device using the same
JP4212291B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2003140043A (en) Zoom lens and electronic image pickup device using the same
JP4540261B2 (en) Electronic imaging device
JP4590127B2 (en) Electronic imaging device
JP2003114386A (en) Electronic imaging device
JP2003131133A (en) Electronic imaging unit
JP2003131130A (en) Zoom lens and electronic imaging unit using the zoom lens
US7675690B2 (en) Zoom lens system and electronic image pickup apparatus using the same
JP4633752B2 (en) Electronic imaging device
JP4633847B2 (en) Zoom lens and electronic imaging device using the same
JP4503884B2 (en) Zoom lens and imaging apparatus using the same
JP4067828B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2003131132A (en) Electronic imaging unit
JP5121546B2 (en) Zoom lens and image pickup apparatus including the zoom lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070328