JP2003042062A - Capacity control valve - Google Patents

Capacity control valve

Info

Publication number
JP2003042062A
JP2003042062A JP2001231627A JP2001231627A JP2003042062A JP 2003042062 A JP2003042062 A JP 2003042062A JP 2001231627 A JP2001231627 A JP 2001231627A JP 2001231627 A JP2001231627 A JP 2001231627A JP 2003042062 A JP2003042062 A JP 2003042062A
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
refrigerant
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001231627A
Other languages
Japanese (ja)
Other versions
JP3942851B2 (en
Inventor
Hisatoshi Hirota
久寿 広田
Tomokazu Nakazawa
智一 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2001231627A priority Critical patent/JP3942851B2/en
Priority to US10/199,650 priority patent/US6662582B2/en
Priority to EP02016890A priority patent/EP1281868B1/en
Priority to DE60218581T priority patent/DE60218581T2/en
Publication of JP2003042062A publication Critical patent/JP2003042062A/en
Application granted granted Critical
Publication of JP3942851B2 publication Critical patent/JP3942851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacity control valve capable of reducing the time of the operation capacity transition and making motions without requiring a large solenoid force even if the size of the valve is enlarged to increase the quantity of a refrigerant. SOLUTION: A differential pressure sensitive part is separated from a valve part and the differential pressure sensitive part is detected by a small-diameter piston rod 23, so that even a small solenoid part can set the differential pressure. A valve element 26, whose diameter is larger than that of the piston rod 23 to increase the quantity of the refrigerant, is structured to move integrally with a shaft 32. The pressure Pc of a pressure governing chamber is received at both ends of a reduced diameter part of the shaft 32 in the axial direction, and the inlet pressure Ps of an inlet chamber is received at the integrally formed valve element 26 and both ends of the shaft 32 in the axial direction. As a result, the effects of the pressure Pc and the inlet pressure Ps are cancelled and the valve element 26 is controlled only with the differential pressure detected by the piston rod 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は容量制御弁に関し、
特に自動車用空調装置の冷凍サイクルの中で冷媒ガスを
圧縮する可変容量圧縮機に使用される容量制御弁に関す
る。
TECHNICAL FIELD The present invention relates to a displacement control valve,
In particular, the present invention relates to a capacity control valve used in a variable capacity compressor that compresses a refrigerant gas in a refrigeration cycle of an automobile air conditioner.

【0002】[0002]

【従来の技術】自動車用空調装置の冷凍サイクル中で冷
媒を圧縮するために用いられる圧縮機は、エンジンを駆
動源としているので、回転数制御を行うことができな
い。そこで、エンジンの回転数に制約されることなく適
切な冷房能力を得るために、冷媒の圧縮容量を変えるこ
とができる可変容量圧縮機が用いられている。
2. Description of the Related Art A compressor used for compressing a refrigerant in a refrigerating cycle of an automobile air conditioner uses an engine as a drive source, and therefore cannot control the rotation speed. Therefore, in order to obtain an appropriate cooling capacity without being restricted by the engine speed, a variable capacity compressor capable of changing the compression capacity of the refrigerant is used.

【0003】このような可変容量圧縮機においては、エ
ンジンによって回転駆動される軸に取り付けられた揺動
板に圧縮用ピストンが連結され、揺動板の角度を変えて
ピストンのストロークを変えることにより冷媒の吐出量
を変えるようにしている。
In such a variable displacement compressor, a compression piston is connected to an oscillating plate attached to a shaft that is rotationally driven by an engine, and the stroke of the piston is changed by changing the angle of the oscillating plate. The discharge amount of the refrigerant is changed.

【0004】揺動板の角度は、密閉された調圧室内に圧
縮された冷媒の一部を導入し、その導入する冷媒の圧力
を変化させ、ピストンの両面にかかる圧力の釣り合いを
変化させることによって連続的に変えている。
The angle of the oscillating plate is such that a part of the compressed refrigerant is introduced into the closed pressure regulating chamber, the pressure of the introduced refrigerant is changed, and the balance of the pressure applied to both surfaces of the piston is changed. Is changing continuously by.

【0005】たとえば特開2001−132650号公
報に記載の圧縮容量制御装置では、圧縮機の吐出口と調
圧室との間または吐出口と吸入口との間に電磁制御弁を
備えている。この電磁制御弁は、それらの前後差圧を所
定値に保つように連通または閉塞させる制御をしてお
り、差圧の所定値を電流値によって外部から設定するこ
とができるようになっている。これにより、エンジンの
回転数が上昇したときには、調圧室に導入される圧力を
増加させ、ピストンストロークを短くして圧縮できる容
量を小さくし、回転数が低下したときには、調圧室に導
入される圧力を減少させ、ピストンストロークを長くし
て圧縮できる容量を大きくするようにして圧縮機から吐
出される冷媒の圧力を一定に保つようにしている。
For example, the compression capacity control device disclosed in Japanese Patent Laid-Open No. 2001-132650 is provided with an electromagnetic control valve between the discharge port of the compressor and the pressure adjusting chamber or between the discharge port and the suction port. This electromagnetic control valve is controlled to communicate or close so as to maintain the differential pressure across the valves at a predetermined value, and the predetermined value of the differential pressure can be externally set by a current value. As a result, when the engine speed increases, the pressure introduced into the pressure regulation chamber is increased, the piston stroke is shortened to reduce the compressible capacity, and when the engine speed decreases, the pressure is introduced into the pressure regulation chamber. The pressure of the refrigerant discharged from the compressor is kept constant by decreasing the pressure of the refrigerant and increasing the piston stroke to increase the capacity of compression.

【0006】ところで、自動車用空調装置の冷凍サイク
ルに使用されている冷媒としては、代替フロンHFC−
134aが一般的に用いられるが、近年、冷媒の臨界温
度を越えた超臨界域で冷凍作用を行わせる、たとえば二
酸化炭素を冷媒とする冷凍サイクルが開発されている。
By the way, as a refrigerant used in the refrigeration cycle of an automobile air conditioner, an alternative CFC HFC-
134a is generally used, but in recent years, a refrigeration cycle has been developed in which, for example, carbon dioxide is used as a refrigerant, which causes a refrigerating action in a supercritical region exceeding the critical temperature of the refrigerant.

【0007】[0007]

【発明が解決しようとする課題】従来の圧縮容量制御装
置の電磁制御弁では、可変容量圧縮機の運転容量を最大
にしようとするとき、調圧室から吸入室へ導出する冷媒
量をできるだけ多くして調圧室の圧力を低下させる必要
があるが、そのとき弁の大きさが小さいと、導出される
冷媒量が少ないため、最大運転への移行に時間がかか
り、制御性が悪化する場合があった。
In the electromagnetic control valve of the conventional compression capacity control device, when the operating capacity of the variable capacity compressor is to be maximized, the amount of the refrigerant discharged from the pressure regulation chamber to the suction chamber is maximized. It is necessary to lower the pressure in the pressure regulating chamber by using the valve, but at that time, if the size of the valve is small, it takes a long time to shift to the maximum operation because the amount of discharged refrigerant is small, and the controllability deteriorates. was there.

【0008】また、導出される冷媒量を増やそうと弁の
大きさを大きくすると、弁の受圧面積も大きくなるた
め、弁を制御するのに大きなソレノイド力が必要にな
る。特に、冷媒に二酸化炭素を使用しているような冷凍
サイクルでは、冷媒を超臨界域まで昇圧させるため、冷
媒の吐出圧力が非常に高くなり、弁を制御するためのソ
レノイド力も大きくなって、巨大なソレノイドが必要に
なり、その結果、電磁制御弁の大型化を招き、コストア
ップに繋がるという問題点があった。
Further, when the size of the valve is increased in order to increase the amount of the discharged refrigerant, the pressure receiving area of the valve also increases, so that a large solenoid force is required to control the valve. In particular, in a refrigeration cycle that uses carbon dioxide as a refrigerant, the refrigerant is pressurized to a supercritical range, so the discharge pressure of the refrigerant becomes extremely high, and the solenoid force for controlling the valve also increases, resulting in a huge However, there is a problem in that a large solenoid is required, resulting in an increase in cost.

【0009】本発明はこのような点に鑑みてなされたも
のであり、運転容量移行時の時間を短縮するとともに、
冷媒量を増やすために弁の大きさを大きくしても大きな
ソレノイド力を必要としないで動作することができる容
量制御弁を提供することを目的とする。
The present invention has been made in view of the above points, and shortens the time required for shifting the operating capacity, and
An object of the present invention is to provide a capacity control valve that can operate without requiring a large solenoid force even if the size of the valve is increased to increase the amount of refrigerant.

【0010】[0010]

【課題を解決するための手段】本発明では上記問題を解
決するために、吸入室の圧力と吐出室の圧力との差圧を
所定の差圧に保つように調圧室から前記吸入室に導出す
る冷媒量を制御して可変容量圧縮機から吐出される冷媒
の容量を変化させる容量制御弁において、前記調圧室と
前記吸入室との間の冷媒通路を連通および閉塞して前記
調圧室から前記吸入室に導出する冷媒量を制御する弁部
と、前記弁部と分離して構成され前記吐出室の圧力と前
記吸入室の圧力との差圧を感知して前記弁部の開度を制
御する差圧感知部と、供給する電流値を変化させて前記
弁部の弁体に与えるソレノイド力を変化させることによ
り前記所定の差圧を変化させて冷媒の吐出量を制御する
ソレノイド部と、を備えていることを特徴とする容量制
御弁が提供される。
According to the present invention, in order to solve the above problems, the pressure adjusting chamber is moved to the suction chamber so that the pressure difference between the pressure in the suction chamber and the pressure in the discharge chamber is maintained at a predetermined differential pressure. A capacity control valve that controls the amount of refrigerant to be discharged to change the capacity of the refrigerant discharged from the variable capacity compressor, by communicating and closing the refrigerant passage between the pressure regulation chamber and the suction chamber to control the pressure. A valve portion for controlling the amount of refrigerant discharged from the chamber to the suction chamber, and a valve portion which is formed separately from the valve portion and senses a differential pressure between the pressure in the discharge chamber and the pressure in the suction chamber to open the valve portion. And a solenoid for controlling the discharge amount of the refrigerant by changing the predetermined differential pressure by changing the supplied current value to change the solenoid force applied to the valve body of the valve section. And a volume control valve are provided.

【0011】このような容量制御弁によれば、弁部と差
圧感知部とを分離する構成にした。これにより、両端に
吸入室の圧力と吐出室の圧力とを受けてそれらの差圧を
感知する部分の直径を小さくすることができ、小さなソ
レノイド力でも差圧を設定できて、ソレノイド部を小型
化することができる。また、弁部の弁体を大きくするこ
とができるため、運転容量の移行時に多量の冷媒を流す
ことができ、最大容量への移行時間を短縮することがで
きる。
According to such a capacity control valve, the valve portion and the differential pressure sensing portion are separated from each other. This makes it possible to reduce the diameter of the part that receives the pressure of the suction chamber and the pressure of the discharge chamber at both ends and senses the pressure difference between them, and it is possible to set the pressure difference even with a small solenoid force, making the solenoid part compact. Can be converted. Further, since the valve body of the valve portion can be made large, a large amount of refrigerant can be made to flow at the time of transition of the operating capacity, and the transition time to the maximum capacity can be shortened.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。図1は本発明による容量制
御弁を適用した可変容量圧縮機の概略を示す断面図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the outline of a variable displacement compressor to which a displacement control valve according to the present invention is applied.

【0013】可変容量圧縮機は、気密に形成された調圧
室1を有し、中には回転自在に支持された回転軸2を有
している。この回転軸2の一端は、図示しない軸封装置
を介して調圧室1の外まで延びていて、クラッチおよび
ベルトを介してエンジンの出力軸から駆動力が伝達され
るプーリ3が固定されている。回転軸2には、揺動板4
が傾斜角可変に設けられている。回転軸2の軸線の回り
には、複数(図示の例では1つ)のシリンダ5が配置さ
れている。各シリンダ5には、揺動板4の回転運動を往
復運動に変換するピストン6が配置されている。各シリ
ンダ5は、それぞれ吸入用リリーフ弁7および吐出用リ
リーフ弁8を介して吸入室9および吐出室10に接続さ
れている。各シリンダ5の吸入室9は、互いに連通して
1つの部屋になっており、冷凍サイクルの蒸発器に接続
される。また、各シリンダ5の吐出室10も、互いに連
通して1つの部屋になっており、冷凍サイクルのガスク
ーラまたは凝縮器に接続される。
The variable capacity compressor has an airtightly formed pressure adjusting chamber 1 and a rotary shaft 2 rotatably supported therein. One end of the rotary shaft 2 extends to the outside of the pressure regulation chamber 1 via a shaft sealing device (not shown), and a pulley 3 to which driving force is transmitted from the output shaft of the engine is fixed via a clutch and a belt. There is. A swing plate 4 is attached to the rotary shaft 2.
Is provided with a variable tilt angle. A plurality of (one in the illustrated example) cylinders 5 are arranged around the axis of the rotary shaft 2. Each cylinder 5 is provided with a piston 6 that converts the rotational movement of the oscillating plate 4 into a reciprocating movement. Each cylinder 5 is connected to a suction chamber 9 and a discharge chamber 10 via a suction relief valve 7 and a discharge relief valve 8, respectively. The suction chambers 9 of the cylinders 5 communicate with each other to form a single chamber, which is connected to the evaporator of the refrigeration cycle. Further, the discharge chambers 10 of the cylinders 5 also communicate with each other to form a single chamber, which is connected to the gas cooler or the condenser of the refrigeration cycle.

【0014】この可変容量圧縮機では、吐出室10の吐
出圧力Pdおよび吸入室9の吸入圧力Psを受ける差圧
感知部と、調圧室1から吸入室9へ向かう冷媒流路の途
中に設けられ差圧感知部によって感知された吐出圧力P
dと吸入圧力Psとの差圧によって冷媒流量を制御する
弁体とを備えた容量制御弁11が設けられ、吐出室10
と調圧室1との間には、オリフィス12が設けられてい
る。
In this variable displacement compressor, a differential pressure sensing portion that receives the discharge pressure Pd of the discharge chamber 10 and the suction pressure Ps of the suction chamber 9 and a refrigerant flow path from the pressure adjusting chamber 1 to the suction chamber 9 are provided. Discharge pressure P sensed by the differential pressure sensing unit
A displacement control valve 11 having a valve body that controls the refrigerant flow rate by the pressure difference between d and the suction pressure Ps is provided.
An orifice 12 is provided between the pressure adjusting chamber 1 and the pressure adjusting chamber 1.

【0015】以上の構成の可変容量圧縮機において、エ
ンジンの駆動力によって回転軸2が回転し、その回転軸
2に設けられた揺動板4が回転すると、揺動板4に連結
されたピストン6が往復運動し、これによって吸入室9
の冷媒がシリンダ5に吸入され、シリンダ5内で圧縮さ
れ、圧縮された冷媒が吐出室10へ吐出される。
In the variable displacement compressor having the above construction, when the rotary shaft 2 is rotated by the driving force of the engine and the swing plate 4 provided on the rotary shaft 2 is rotated, the piston connected to the swing plate 4 is rotated. 6 reciprocates, whereby the suction chamber 9
Of the refrigerant is sucked into the cylinder 5, compressed in the cylinder 5, and the compressed refrigerant is discharged to the discharge chamber 10.

【0016】このとき、通常運転のときは、容量制御弁
11は、その差圧感知部が吐出室10の冷媒の吐出圧力
Pdと吸入室9の吸入圧力Psとを受けて、その差圧が
所定の差圧に保つように調圧室1から吸入室9へ流れる
冷媒の量を制御する。これにより、調圧室1内の圧力P
cが所定値に保たれ、シリンダ5の容量が所定値に制御
される。
At this time, during normal operation, the differential pressure sensing portion of the capacity control valve 11 receives the discharge pressure Pd of the refrigerant in the discharge chamber 10 and the suction pressure Ps of the suction chamber 9, and the differential pressure is detected. The amount of refrigerant flowing from the pressure adjusting chamber 1 to the suction chamber 9 is controlled so as to maintain a predetermined differential pressure. As a result, the pressure P in the pressure regulation chamber 1
c is maintained at a predetermined value, and the capacity of the cylinder 5 is controlled to a predetermined value.

【0017】また、運転容量を最小に移行するとき、容
量制御弁11は、弁を全閉にして調圧室1から吸入室9
へ導出される冷媒量をゼロにすることで調圧室1の圧力
Pcが上昇する時間を短縮する。
When the operating capacity is shifted to the minimum, the capacity control valve 11 is fully closed and the pressure control chamber 1 to the suction chamber 9 are closed.
By reducing the amount of the refrigerant discharged to zero, the time for the pressure Pc of the pressure regulation chamber 1 to rise is shortened.

【0018】運転容量を最大に移行するとき、容量制御
弁11は、弁を全開にして、調圧室1から吸入室9へ導
出される冷媒量を最大にするよう制御する。このとき、
吐出室10から調圧室1への冷媒の導入は、オリフィス
12を介して行なわれるのに対し、吐出室10から調圧
室1への冷媒の流れは、弁孔の大きな弁を介して流れる
ため、調圧室1の圧力Pcは速やかに低下し、最大運転
に移行する時間を短縮する。
When the operating capacity is maximized, the capacity control valve 11 controls the valve to be fully opened to maximize the amount of the refrigerant discharged from the pressure regulating chamber 1 to the suction chamber 9. At this time,
The introduction of the refrigerant from the discharge chamber 10 into the pressure adjusting chamber 1 is performed via the orifice 12, while the flow of the refrigerant from the discharge chamber 10 into the pressure adjusting chamber 1 flows through a valve having a large valve hole. Therefore, the pressure Pc of the pressure regulation chamber 1 is rapidly reduced, and the time required for shifting to the maximum operation is shortened.

【0019】次に、本発明による容量制御弁11につい
て詳細に説明する。図2は第1の実施の形態に係る容量
制御弁を示す中央縦断面図である。この容量制御弁11
は、吐出室10の吐出圧力Pdと吸入室9の吸入圧力P
sとを感知する差圧感知部と、調圧室1から吸入室9へ
導出される冷媒量を制御する弁部と、この弁部が吐出圧
力Pdと吸入圧力Psとの差圧によって流量制御を開始
する値を外部から設定するソレノイド部とが同一軸線上
に配置されて構成されている。
Next, the capacity control valve 11 according to the present invention will be described in detail. FIG. 2 is a central longitudinal sectional view showing the displacement control valve according to the first embodiment. This capacity control valve 11
Is the discharge pressure Pd of the discharge chamber 10 and the suction pressure P of the suction chamber 9.
s, a differential pressure sensing unit, a valve unit that controls the amount of refrigerant drawn from the pressure regulation chamber 1 to the suction chamber 9, and a valve unit that controls the flow rate by the differential pressure between the discharge pressure Pd and the suction pressure Ps. And a solenoid portion for externally setting a value for starting the above are arranged on the same axis.

【0020】差圧感知部は、ボディ21の図の上端側の
開口内部に螺着されたホルダ22と、このホルダ22の
軸線上にて軸線方向に進退自在に保持された小径のピス
トンロッド23とを有している。ボディ21の図の上端
部には、キャップ24が螺着され、そのキャップ24に
は、吐出室10の吐出圧力Pdを導入する複数の連通孔
25が設けられている。
The differential pressure sensing portion includes a holder 22 screwed into the opening of the body 21 on the upper end side in the figure, and a small-diameter piston rod 23 held on the axis of the holder 22 so as to be movable back and forth in the axial direction. And have. A cap 24 is screwed onto the upper end of the body 21 in the figure, and the cap 24 is provided with a plurality of communication holes 25 for introducing the discharge pressure Pd of the discharge chamber 10.

【0021】弁部は、ボディ21の軸線位置に配置され
た弁体26と、ボディ21に形成された弁座27とを有
している。弁体26は、これとホルダ22との間に配置
されたスプリング29によって弁閉方向に付勢されてい
る。この弁座27の弁孔は、ボディ21に穿設されたポ
ート30と連通している。このポート30は、調圧室1
から冷媒を導入する冷媒流路に接続される部分であり、
このポート30の外周を覆うようにボディ21にストレ
ーナ31が嵌め込まれている。
The valve portion has a valve body 26 arranged at the axial position of the body 21 and a valve seat 27 formed on the body 21. The valve body 26 is biased in the valve closing direction by a spring 29 arranged between the valve body 26 and the holder 22. The valve hole of the valve seat 27 communicates with the port 30 formed in the body 21. This port 30 is used in the pressure regulation chamber 1
Is a part connected to the refrigerant flow path for introducing the refrigerant from
A strainer 31 is fitted into the body 21 so as to cover the outer periphery of the port 30.

【0022】ボディ21は、その軸線位置に弁孔の内径
と同じ内径を有する筒状開口部が形成され、この中にシ
ャフト32が配置されている。このシャフト32は、ポ
ート30に連通する筒状開口部に位置する部分が縮径さ
れており、その上端部は弁体26に圧入されている。シ
ャフト32の大径部分には、複数の溝が周設されてい
て、ラビリンスシールを形成している。このボディ21
には、また、その軸線と平行に、弁体26が配置されて
いる空間から複数の連通孔33が貫通形成されている。
The body 21 is formed with a cylindrical opening having an inner diameter the same as the inner diameter of the valve hole at the axial position, and the shaft 32 is arranged in the cylindrical opening. The shaft 32 has a reduced diameter at a portion located in a cylindrical opening communicating with the port 30, and an upper end portion thereof is press-fitted into the valve body 26. A plurality of grooves are formed around the large diameter portion of the shaft 32 to form a labyrinth seal. This body 21
Further, a plurality of communication holes 33 are formed so as to penetrate from the space in which the valve element 26 is arranged in parallel with the axis thereof.

【0023】ボディ21は、ボディ34の上部開口部へ
螺着されている。ボディ21の下方におけるボディ34
内の空間は、このボディ34に穿設されたポート35と
連通されている。このポート35は、吸入室9へ冷媒を
導出する冷媒流路に接続される部分である。また、この
ボディ34の下方開口部には、ソレノイド部の固定鉄芯
36の上部とスリーブ37の上端部とが固定されてい
る。そのスリーブ37の下端部は、ストッパ38によっ
て閉止されている。このソレノイド部の軸線位置には、
シャフト39が固定鉄芯36を貫通して配置されてお
り、その上端部は、固定鉄芯36の上部の中央開口部に
螺着されたガイド40により、下端部は、ストッパ38
に設けられたガイド41によって軸線方向に摺動自在に
保持されている。そのシャフト39の下方には、可動鉄
芯42が嵌合されており、その可動鉄芯42は、その上
端がシャフト39に嵌め込まれた止め輪43によって当
接されており、ガイド41との間に配置されたスプリン
グ44によって図の上方へ付勢されている。そして、ス
リーブ37の外周には、電磁コイル45が配置されてい
る。
The body 21 is screwed into the upper opening of the body 34. Body 34 below body 21
The inner space communicates with a port 35 formed in the body 34. The port 35 is a part connected to a refrigerant flow path for leading the refrigerant to the suction chamber 9. In addition, the upper portion of the fixed iron core 36 of the solenoid portion and the upper end portion of the sleeve 37 are fixed to the lower opening of the body 34. The lower end of the sleeve 37 is closed by a stopper 38. At the axial position of this solenoid,
A shaft 39 is arranged so as to penetrate through the fixed iron core 36, and an upper end portion thereof is guided by a guide 40 screwed into an upper central opening of the fixed iron core 36, and a lower end portion thereof is provided with a stopper 38.
It is held slidably in the axial direction by a guide 41 provided on the. A movable iron core 42 is fitted below the shaft 39, and the movable iron core 42 has its upper end abutted by a retaining ring 43 fitted into the shaft 39, and is in contact with the guide 41. Is urged upward in the figure by a spring 44 arranged at. An electromagnetic coil 45 is arranged on the outer circumference of the sleeve 37.

【0024】また、ポート30より先端側のボディ21
には、Oリング46が周設され、ポート35を挟んでそ
の上下位置のボディ34には、Oリング47,48がそ
れぞれ周設されている。
The body 21 on the tip side of the port 30
An O-ring 46 is provided around the body 34, and O-rings 47 and 48 are provided around the body 34 above and below the port 35, respectively.

【0025】ここで、この容量制御弁11の中の圧力関
係について説明する。まず、弁体26とこれに固着され
たシャフト32において、シャフト32の縮径部には、
ポート30を介して導入された調圧室1の圧力Pcを受
け、弁体26とシャフト32の有効受圧面積は同じにし
てある。このため、圧力Pcは、弁体26に対して図の
上向きの方向の力が働き、シャフト32に対しては図の
下向きの方向へ働く。一方、ポート35における吸入圧
力Psは、シャフト32の下方側の端面と連通孔33を
介して弁体26にもかかっている。したがって、一体と
なった弁体26とシャフト32は、調圧室1の圧力Pc
や吸入室9の吸入圧力Psの影響を受けない構造になっ
ている。
Here, the pressure relationship in the capacity control valve 11 will be described. First, in the valve body 26 and the shaft 32 fixed to the valve body 26, in the reduced diameter portion of the shaft 32,
The valve body 26 and the shaft 32 have the same effective pressure receiving area by receiving the pressure Pc of the pressure regulating chamber 1 introduced through the port 30. Therefore, the pressure Pc acts on the valve body 26 in the upward direction in the figure, and acts on the shaft 32 in the downward direction in the figure. On the other hand, the suction pressure Ps at the port 35 is also applied to the valve body 26 via the lower end surface of the shaft 32 and the communication hole 33. Therefore, the valve body 26 and the shaft 32, which are integrated with each other, have the same pressure Pc
The structure is not affected by the suction pressure Ps of the suction chamber 9 and the suction chamber 9.

【0026】また、差圧感知部では、ピストンロッド2
3の上端部に吐出室10の吐出圧力Pdを受け、下端部
に吸入室9の吸入圧力Psを受けているため、ピストン
ロッド23には、吐出圧力Pdと吸入圧力Psとの差圧
に応じた図の下向きの力が働き、弁体26を弁閉方向に
付勢している。ピストンロッド23は、シャフト32に
比べて十分に小径であり、受圧面積が小さくなってい
る。このため、吐出圧力Pdと吸入圧力Psとの差圧を
小さい受圧面積で感知できることから、冷媒として、超
臨界域まで昇圧されるような、たとえば二酸化炭素を用
いた冷凍サイクルにも使用することができる。
In the differential pressure sensing section, the piston rod 2
Since the upper end of 3 receives the discharge pressure Pd of the discharge chamber 10 and the lower end receives the suction pressure Ps of the suction chamber 9, the piston rod 23 receives the pressure difference between the discharge pressure Pd and the suction pressure Ps. The downward force of the figure acts to urge the valve body 26 in the valve closing direction. The piston rod 23 has a diameter sufficiently smaller than that of the shaft 32, and has a small pressure receiving area. Therefore, the pressure difference between the discharge pressure Pd and the suction pressure Ps can be sensed with a small pressure receiving area, and therefore, the refrigerant can be used in a refrigeration cycle that uses carbon dioxide, for example, that is pressurized to a supercritical region. it can.

【0027】さらに、ソレノイド部は、電磁コイル45
に供給する電流に応じたソレノイド力を発生し、シャフ
ト39が弁体26と一体となったシャフト32を図の上
向き方向に付勢する。
Further, the solenoid portion is an electromagnetic coil 45.
A solenoid force is generated according to the current supplied to the shaft 32, and the shaft 39 urges the shaft 32 integrated with the valve body 26 in the upward direction in the drawing.

【0028】また、ポート35における吸入圧力Ps
は、固定鉄芯36とガイド40との間、固定鉄芯36と
シャフト39との間、固定鉄芯36と可動鉄芯42との
間、スリーブ37と可動鉄芯42との間、可動鉄芯42
とストッパ38との間の隙間にも行っており、ソレノイ
ド部の内部は吸入圧力Psによって充満されている。
Further, the suction pressure Ps at the port 35
Are the fixed iron core 36 and the guide 40, the fixed iron core 36 and the shaft 39, the fixed iron core 36 and the movable iron core 42, the sleeve 37 and the movable iron core 42, and the movable iron core. Core 42
The gap between the stopper 38 and the stopper 38 is also performed, and the inside of the solenoid portion is filled with the suction pressure Ps.

【0029】以上のような構造を持った容量制御弁11
において、ソレノイド部の電磁コイル45に制御電流が
供給されていないときには、ソレノイド力はないため、
図2に示したように、ソレノイド部の可動鉄芯42は、
スプリング29とスプリング44とのばね荷重のバラン
スで固定鉄芯36から離れている。ピストンロッド23
に当接された弁体26は、吐出圧力Pdと吸入圧力Ps
との差圧で弁座27に着座されている。したがって、調
圧室1から吸入室9に冷媒を流す流路が閉塞されたこと
により、調圧室1の圧力Pcは、吐出圧力Pdに近い値
になり、ピストン6の両面にかかる圧力差が最も小さく
なる。これにより、揺動板4はピストン6のストローク
が最も小さくなるような傾斜角になり、可変容量圧縮機
は、運転容量が最小の状態で運転することになる。
The capacity control valve 11 having the above structure
In, when there is no control current supplied to the electromagnetic coil 45 of the solenoid section, there is no solenoid force,
As shown in FIG. 2, the movable iron core 42 of the solenoid is
The spring 29 and the spring 44 are apart from the fixed iron core 36 due to the balance of the spring load. Piston rod 23
The valve body 26 abutted against the discharge pressure Pd and the suction pressure Ps
It is seated on the valve seat 27 due to the differential pressure between Therefore, the pressure Pc in the pressure regulating chamber 1 becomes a value close to the discharge pressure Pd due to the blockage of the flow path for flowing the refrigerant from the pressure regulating chamber 1 to the suction chamber 9, and the pressure difference applied to both surfaces of the piston 6 is reduced. The smallest. As a result, the oscillating plate 4 has an inclination angle such that the stroke of the piston 6 is minimized, and the variable displacement compressor operates in a state in which the operating capacity is minimum.

【0030】ソレノイド部の電磁コイル45に最大の制
御電流が供給されると、可動鉄芯42が固定鉄芯36に
吸着されて図の上方へ移動し、弁体26は全開になる。
これにより、調圧室1から、ポート30、弁体26と弁
座27との間、連通孔33、ポート35を介して、吸入
室9へ流れる冷媒の量が最大となって、調圧室1の圧力
Pcは急減するので、運転容量が最大に移行する速度を
早くすることができるようになる。
When the maximum control current is supplied to the electromagnetic coil 45 of the solenoid section, the movable iron core 42 is attracted to the fixed iron core 36 and moves upward in the figure, and the valve body 26 is fully opened.
As a result, the amount of refrigerant flowing from the pressure regulation chamber 1 to the suction chamber 9 via the port 30, the valve element 26 and the valve seat 27, the communication hole 33, and the port 35 is maximized, and the pressure regulation chamber is maximized. Since the pressure Pc of 1 suddenly decreases, the speed at which the operating capacity shifts to the maximum can be increased.

【0031】また、ソレノイド部の電磁コイル45に所
定の制御電流が供給される通常の制御をしている場合
は、その制御電流の大きさに応じて可動鉄芯42が固定
鉄芯36に吸引されて図の上方へ移動する。これによ
り、弁体26は、所定の開度に保持される。ここで、吐
出圧力Pdと吸入圧力Psとの差圧がソレノイド部によ
って設定されたソレノイド力より大きくなると、弁体2
6は弁閉方向に移動され、調圧室1から吸入室9に流れ
る冷媒量を絞り、運転容量を少なくする方向へ容量制御
する。
Further, when performing a normal control in which a predetermined control current is supplied to the electromagnetic coil 45 of the solenoid portion, the movable iron core 42 is attracted to the fixed iron core 36 according to the magnitude of the control current. It is moved to the upper part of the figure. As a result, the valve body 26 is held at a predetermined opening. Here, when the pressure difference between the discharge pressure Pd and the suction pressure Ps becomes larger than the solenoid force set by the solenoid portion, the valve body 2
6 is moved in the valve closing direction to reduce the amount of the refrigerant flowing from the pressure regulating chamber 1 to the suction chamber 9 to control the capacity in the direction to reduce the operating capacity.

【0032】図3は第2の実施の形態に係る容量制御弁
を示す中央縦断面図である。この図3において、図2に
示した構成要素と同じ要素については、同じ符号を付し
てその詳細な説明は省略する。
FIG. 3 is a central longitudinal sectional view showing the displacement control valve according to the second embodiment. In FIG. 3, the same components as those shown in FIG. 2 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0033】この第2の実施の形態に係る容量制御弁1
1aによれば、調圧室1に連通するポート30と吸入室
9に連通するポート35との配置が逆になっており、ま
た、ボディ21と固定鉄芯36とが一体に形成され、吸
入室9に連通するポート35とソレノイド部およびシャ
フト32の図の下端側とを均圧にする連通孔33が固定
鉄芯36をも貫通して形成されている。
Capacity control valve 1 according to the second embodiment
According to 1a, the arrangement of the port 30 communicating with the pressure adjusting chamber 1 and the port 35 communicating with the suction chamber 9 is reversed, and the body 21 and the fixed iron core 36 are integrally formed, and the suction is performed. A communication hole 33 for equalizing the pressure of the port 35 communicating with the chamber 9 and the solenoid portion and the lower end side of the shaft 32 in the drawing is formed through the fixed iron core 36.

【0034】この容量制御弁11aにおいても第1の実
施の形態の容量制御弁11と同様に、一体となった弁体
26およびシャフト32は、調圧室1の圧力Pcおよび
吸入室9の吸入圧力Psの影響がキャンセルされ、吐出
圧力Pdと吸入圧力Psとの差圧だけで制御される構成
になっている。また、吐出圧力Pdと吸入圧力Psとの
差圧を感知する部分を弁部と分離した小径のピストンロ
ッド23とし、このピストンロッド23と弁体26とが
当接された構成になっている。
Also in this displacement control valve 11a, as in the displacement control valve 11 of the first embodiment, the valve body 26 and the shaft 32 which are integrated form a pressure Pc in the pressure regulating chamber 1 and a suction in the suction chamber 9. The influence of the pressure Ps is canceled and the control is performed only by the differential pressure between the discharge pressure Pd and the suction pressure Ps. Further, the portion for sensing the pressure difference between the discharge pressure Pd and the suction pressure Ps is a small-diameter piston rod 23 separated from the valve portion, and the piston rod 23 and the valve body 26 are in contact with each other.

【0035】したがって、上記構成により、この容量制
御弁11aは、第1の実施の形態に係る容量制御弁11
と同じように動作する。
Therefore, with the above structure, the displacement control valve 11a is the same as the displacement control valve 11 according to the first embodiment.
Works the same as.

【0036】[0036]

【発明の効果】以上説明したように、本発明では、差圧
感知部を弁部と分離し、差圧感知部を小径のピストンロ
ッドで感知するようにして、差圧の設定を行うソレノイ
ド力を小さくするようにし、ピストンロッドによって開
度が制御される弁体を大きくして、冷媒が流れる量を増
やすように構成した。また、弁体は、ピストンロッドが
感知した差圧だけで制御できるように、調圧室の圧力お
よび吸入室の吸入圧力の影響をキャンセルする構成にし
た。これにより、ソレノイド力を小さくできるため、ソ
レノイド部を小型化した小型で低コストの容量制御弁を
提供でき、また、調圧室から吸入室へ冷媒を流す量を制
御する弁体を大きくしたので、運転容量最大に移行する
ときの移行時間を短縮することができる。
As described above, according to the present invention, the differential pressure sensing portion is separated from the valve portion, and the differential pressure sensing portion is sensed by the piston rod having a small diameter to set the differential pressure. Is made smaller, and the valve body whose opening is controlled by the piston rod is made larger to increase the amount of refrigerant flowing. Further, the valve body is configured to cancel the influence of the pressure in the pressure adjusting chamber and the suction pressure in the suction chamber so that the valve body can be controlled only by the differential pressure sensed by the piston rod. As a result, since the solenoid force can be reduced, it is possible to provide a small-sized and low-cost capacity control valve in which the solenoid portion is downsized, and the valve body that controls the amount of refrigerant flowing from the pressure regulation chamber to the suction chamber is enlarged. It is possible to shorten the transition time when shifting to the maximum operating capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による容量制御弁を適用した可変容量圧
縮機の概略を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a variable displacement compressor to which a displacement control valve according to the present invention is applied.

【図2】第1の実施の形態に係る容量制御弁を示す中央
縦断面図である。
FIG. 2 is a central longitudinal sectional view showing the displacement control valve according to the first embodiment.

【図3】第2の実施の形態に係る容量制御弁を示す中央
縦断面図である。
FIG. 3 is a central longitudinal sectional view showing a displacement control valve according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 調圧室 2 回転軸 3 プーリ 4 揺動板 5 シリンダ 6 ピストン 7 吸入用リリーフ弁 8 吐出用リリーフ弁 9 吸入室 10 吐出室 11,11a 容量制御弁 12 オリフィス 21 ボディ 22 ホルダ 23 ピストンロッド 24 キャップ 25 連通孔 26 弁体 27 弁座 29 スプリング 30 ポート 31 ストレーナ 32 シャフト 33 連通孔 34 ボディ 35 ポート 36 固定鉄芯 37 スリーブ 38 ストッパ 39 シャフト 40 ガイド 41 ガイド 42 可動鉄芯 43 止め輪 44 スプリング 45 電磁コイル 46,47,48 Oリング 1 Pressure regulation room 2 rotation axes 3 pulleys 4 rocking plate 5 cylinders 6 pistons 7 Relief valve for inhalation 8 Discharge relief valve 9 Inhalation chamber 10 Discharge chamber 11,11a Capacity control valve 12 orifice 21 body 22 Holder 23 Piston rod 24 caps 25 communication holes 26 valve body 27 seat 29 spring 30 ports 31 Strainer 32 shaft 33 communication hole 34 body 35 ports 36 fixed iron core 37 Sleeve 38 Stopper 39 shaft 40 guides 41 Guide 42 Movable iron core 43 retaining ring 44 spring 45 electromagnetic coil 46,47,48 O-ring

フロントページの続き Fターム(参考) 3H045 AA04 AA27 BA13 BA37 CA02 CA03 DA25 DA43 EA13 EA33 EA42 3H076 AA06 BB32 BB43 CC03 CC12 CC20 CC84 Continued front page    F term (reference) 3H045 AA04 AA27 BA13 BA37 CA02                       CA03 DA25 DA43 EA13 EA33                       EA42                 3H076 AA06 BB32 BB43 CC03 CC12                       CC20 CC84

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸入室の圧力と吐出室の圧力との差圧を
所定の差圧に保つように調圧室から前記吸入室に導出す
る冷媒量を制御して可変容量圧縮機から吐出される冷媒
の容量を変化させる容量制御弁において、 前記調圧室と前記吸入室との間の冷媒通路を連通および
閉塞して前記調圧室から前記吸入室に導出する冷媒量を
制御する弁部と、 前記弁部と分離して構成され前記吐出室の圧力と前記吸
入室の圧力との差圧を感知して前記弁部の開度を制御す
る差圧感知部と、 供給する電流値を変化させて前記弁部の弁体に与えるソ
レノイド力を変化させることにより前記所定の差圧を変
化させて冷媒の吐出量を制御するソレノイド部と、 を備えていることを特徴とする容量制御弁。
1. A variable displacement compressor is controlled by controlling the amount of refrigerant drawn from the pressure adjusting chamber to the suction chamber so that the pressure difference between the pressure in the suction chamber and the pressure in the discharge chamber is maintained at a predetermined differential pressure. In a capacity control valve for changing the capacity of the refrigerant, a valve unit for controlling and controlling the amount of the refrigerant discharged from the pressure regulating chamber to the suction chamber by communicating and closing the refrigerant passage between the pressure regulating chamber and the suction chamber. A differential pressure sensing unit that is configured separately from the valve unit and senses a differential pressure between the pressure in the discharge chamber and the pressure in the suction chamber to control the opening of the valve unit; And a solenoid unit that controls the discharge amount of the refrigerant by changing the predetermined differential pressure by changing the solenoid force applied to the valve body of the valve unit. .
【請求項2】 前記差圧感知部は、両端に前記吐出室の
圧力と前記吸入室の圧力とを受けるとともに前記吸入室
の圧力を受ける側の端部が前記弁部の弁体に当接してい
るピストンロッドを有していることを特徴とする請求項
1記載の容量制御弁。
2. The differential pressure sensing portion receives pressure of the discharge chamber and pressure of the suction chamber at both ends, and an end portion on a side receiving the pressure of the suction chamber abuts on a valve body of the valve portion. 3. The displacement control valve according to claim 1, further comprising a piston rod that is open.
【請求項3】 前記弁部は、前記差圧感知部の前記ピス
トンロッドより大きな径を有して前記調圧室と前記吸入
室との間の冷媒通路を連通および閉塞する弁体と、前記
弁体と前記ソレノイド部との間に配置されて前記弁体の
前後にかかる前記調圧室の圧力と前記吸入室の圧力との
影響をキャンセルするシャフトとを有することを特徴と
する請求項2記載の容量制御弁。
3. A valve body having a diameter larger than that of the piston rod of the differential pressure sensing portion, the valve body communicating and closing a refrigerant passage between the pressure adjusting chamber and the suction chamber, 3. A shaft arranged between the valve body and the solenoid part, for canceling the influence of the pressure of the pressure regulation chamber and the pressure of the suction chamber applied to the front and rear of the valve body. The described capacity control valve.
【請求項4】 前記シャフトは、前記調圧室の圧力を受
ける前記弁体の受圧面積と同じ断面積を有する大径部
と、前記弁体と前記大径部との間を連結する縮径部とを
有し、前記縮径部の空間に前記調圧室からの冷媒通路が
連通され、前記弁体の前記ピストンロッドに当接してい
る側の空間と前記ソレノイド部の側の前記大径部の端面
のある空間とが連通孔によって連通されていることを特
徴とする請求項3記載の容量制御弁。
4. The shaft has a large diameter portion having the same cross-sectional area as the pressure receiving area of the valve body that receives the pressure of the pressure regulating chamber, and a reduced diameter connecting the valve body and the large diameter portion. A refrigerant passage from the pressure regulating chamber is communicated with the space of the reduced diameter portion, the space on the side of the valve body in contact with the piston rod and the large diameter of the solenoid portion side. The capacity control valve according to claim 3, wherein a space having an end face of the portion is communicated with the space by a communication hole.
【請求項5】 前記ソレノイド部は、前記弁体の前記ピ
ストンロッドに当接している側の空間と連通されて前記
吸入室の圧力によって満たされていることを特徴とする
請求項4記載の容量制御弁。
5. The capacity according to claim 4, wherein the solenoid portion is communicated with a space of the valve body on the side in contact with the piston rod and is filled with the pressure of the suction chamber. Control valve.
【請求項6】 冷媒の臨界温度を越えた超臨界域で冷凍
作用を行わせる冷凍サイクルに用いる可変容量圧縮機に
適用したことを特徴とする請求項1記載の容量制御弁。
6. The capacity control valve according to claim 1, wherein the capacity control valve is applied to a variable capacity compressor used in a refrigeration cycle in which a refrigeration operation is performed in a supercritical region exceeding a critical temperature of a refrigerant.
JP2001231627A 2001-07-31 2001-07-31 Capacity control valve Expired - Fee Related JP3942851B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001231627A JP3942851B2 (en) 2001-07-31 2001-07-31 Capacity control valve
US10/199,650 US6662582B2 (en) 2001-07-31 2002-07-19 Displacement control valve
EP02016890A EP1281868B1 (en) 2001-07-31 2002-07-30 Displacement control valve
DE60218581T DE60218581T2 (en) 2001-07-31 2002-07-30 Capacity control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231627A JP3942851B2 (en) 2001-07-31 2001-07-31 Capacity control valve

Publications (2)

Publication Number Publication Date
JP2003042062A true JP2003042062A (en) 2003-02-13
JP3942851B2 JP3942851B2 (en) 2007-07-11

Family

ID=19063655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231627A Expired - Fee Related JP3942851B2 (en) 2001-07-31 2001-07-31 Capacity control valve

Country Status (4)

Country Link
US (1) US6662582B2 (en)
EP (1) EP1281868B1 (en)
JP (1) JP3942851B2 (en)
DE (1) DE60218581T2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422552C (en) * 2005-11-16 2008-10-01 株式会社丰田自动织机 Control device for a vehicular refrigeration, vehicular variable displacement compressor, and control valve for the vehicular variable displacement compressor
WO2020179597A1 (en) 2019-03-01 2020-09-10 イーグル工業株式会社 Capacity control valve
US11378194B2 (en) 2018-11-07 2022-07-05 Eagle Industry Co., Ltd. Capacity control valve
US11473683B2 (en) 2018-08-08 2022-10-18 Eagle Industry Co., Ltd. Capacity control valve
US11473684B2 (en) 2018-12-04 2022-10-18 Eagle Industry Co., Ltd. Capacity control valve
US11480166B2 (en) 2018-07-13 2022-10-25 Eagle Industry Co., Ltd. Capacity control valve
US11536257B2 (en) 2018-07-12 2022-12-27 Eagle Industry Co., Ltd. Capacity control valve
US11555489B2 (en) 2018-07-12 2023-01-17 Eagle Industry Co., Ltd. Capacity control valve
US11841090B2 (en) 2019-04-03 2023-12-12 Eagle Industry Co., Ltd. Capacity control valve
US11873805B2 (en) 2018-08-08 2024-01-16 Eagle Industry Co., Ltd. Capacity control valve
US11927275B2 (en) 2019-04-03 2024-03-12 Eagle Industry Co., Ltd. Capacity control valve
US11994120B2 (en) 2018-07-12 2024-05-28 Eagle Industry Co., Ltd. Capacity control valve
US12012948B2 (en) 2018-08-08 2024-06-18 Eagle Industry Co., Ltd. Capacity control valve
US12018663B2 (en) 2020-04-23 2024-06-25 Eagle Industry Co., Ltd. Capacity control valve

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152674B2 (en) * 2002-06-04 2008-09-17 株式会社テージーケー Capacity control valve for variable capacity compressor
JP2004293497A (en) * 2003-03-28 2004-10-21 Tgk Co Ltd Control valve for variable displacement compressor
JP2005105935A (en) * 2003-09-30 2005-04-21 Fuji Koki Corp Control valve for variable displacement compressor
JP2006177300A (en) * 2004-12-24 2006-07-06 Toyota Industries Corp Capacity control mechanism in variable displacement compressor
EP1867873B1 (en) * 2005-04-08 2012-07-11 Eagle Industry Co., Ltd. Capacity control valve
DE102005020206A1 (en) * 2005-04-28 2006-11-16 G. Kromschröder AG gas train
JP4865333B2 (en) * 2006-01-06 2012-02-01 サンデン株式会社 Variable capacity compressor
JP2008045522A (en) * 2006-08-21 2008-02-28 Toyota Industries Corp Refrigerant flow rate detecting structure in compressor
JP2008121636A (en) * 2006-11-15 2008-05-29 Toyota Industries Corp Refrigerant flow volume detecting structure in compressor
JP5680628B2 (en) * 2010-04-29 2015-03-04 イーグル工業株式会社 Capacity control valve
US9523987B2 (en) * 2011-06-15 2016-12-20 Eagle Industry Co., Ltd. Capacity control valve
CN102706055B (en) * 2012-06-29 2014-07-16 赵良全 Energy saving control regulator, refrigerating system using energy saving control, and pressure regulating method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341378A (en) * 1993-06-03 1994-12-13 Tgk Co Ltd Capacity control device of variable capacity compressor
US6138468A (en) * 1998-02-06 2000-10-31 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for controlling variable displacement compressor
JP2000145629A (en) * 1998-11-11 2000-05-26 Tgk Co Ltd Variable displacement compressor
JP3963619B2 (en) 1999-11-05 2007-08-22 株式会社テージーケー Compression capacity controller for refrigeration cycle
JP3780784B2 (en) * 1999-11-25 2006-05-31 株式会社豊田自動織機 Control valve for air conditioner and variable capacity compressor
JP2001165055A (en) * 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd Control valve and displacement variable compressor
JP3906432B2 (en) * 1999-12-27 2007-04-18 株式会社豊田自動織機 Air conditioner
DE60122225T2 (en) * 2000-02-18 2007-07-12 Calsonic Kansei Corp. Swash plate compressor with variable displacement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422552C (en) * 2005-11-16 2008-10-01 株式会社丰田自动织机 Control device for a vehicular refrigeration, vehicular variable displacement compressor, and control valve for the vehicular variable displacement compressor
US11994120B2 (en) 2018-07-12 2024-05-28 Eagle Industry Co., Ltd. Capacity control valve
US11555489B2 (en) 2018-07-12 2023-01-17 Eagle Industry Co., Ltd. Capacity control valve
US11536257B2 (en) 2018-07-12 2022-12-27 Eagle Industry Co., Ltd. Capacity control valve
US11480166B2 (en) 2018-07-13 2022-10-25 Eagle Industry Co., Ltd. Capacity control valve
US11473683B2 (en) 2018-08-08 2022-10-18 Eagle Industry Co., Ltd. Capacity control valve
US11873805B2 (en) 2018-08-08 2024-01-16 Eagle Industry Co., Ltd. Capacity control valve
US12012948B2 (en) 2018-08-08 2024-06-18 Eagle Industry Co., Ltd. Capacity control valve
US11378194B2 (en) 2018-11-07 2022-07-05 Eagle Industry Co., Ltd. Capacity control valve
US11473684B2 (en) 2018-12-04 2022-10-18 Eagle Industry Co., Ltd. Capacity control valve
US11598437B2 (en) 2019-03-01 2023-03-07 Eagle Industry Co., Ltd. Capacity control valve
WO2020179597A1 (en) 2019-03-01 2020-09-10 イーグル工業株式会社 Capacity control valve
US11841090B2 (en) 2019-04-03 2023-12-12 Eagle Industry Co., Ltd. Capacity control valve
US11927275B2 (en) 2019-04-03 2024-03-12 Eagle Industry Co., Ltd. Capacity control valve
US12018663B2 (en) 2020-04-23 2024-06-25 Eagle Industry Co., Ltd. Capacity control valve

Also Published As

Publication number Publication date
JP3942851B2 (en) 2007-07-11
EP1281868A3 (en) 2004-09-22
EP1281868B1 (en) 2007-03-07
US6662582B2 (en) 2003-12-16
EP1281868A2 (en) 2003-02-05
DE60218581D1 (en) 2007-04-19
DE60218581T2 (en) 2007-06-21
US20030024257A1 (en) 2003-02-06

Similar Documents

Publication Publication Date Title
JP2003042062A (en) Capacity control valve
US6662581B2 (en) Variable displacement compressor and displacement control valve for variable displacement compressor
US5486098A (en) Swash plate type variable displacement compressor
US7644729B2 (en) Capacity control valve
JP4700048B2 (en) Capacity control valve
US20050265853A1 (en) Control valve for variable displacement compressor
KR20060049566A (en) Control valve for variable displacement compressor
JP4446026B2 (en) Capacity control valve for variable capacity compressor
JP4152674B2 (en) Capacity control valve for variable capacity compressor
JP4130566B2 (en) Capacity control valve for variable capacity compressor
US20060053812A1 (en) Control valve for variable displacement compressor
US7021901B2 (en) Variable displacement compressor
JP4046530B2 (en) Capacity control valve for variable capacity compressor
JP2006322393A (en) Control valve for variable displacement compressor
JP4173073B2 (en) Control valve for variable capacity compressor
JP3996357B2 (en) Variable capacity compressor and capacity control valve for variable capacity compressor
JP2007239535A (en) Variable displacement reciprocating fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees