JP2003039330A - Grinding tool - Google Patents

Grinding tool

Info

Publication number
JP2003039330A
JP2003039330A JP2001223785A JP2001223785A JP2003039330A JP 2003039330 A JP2003039330 A JP 2003039330A JP 2001223785 A JP2001223785 A JP 2001223785A JP 2001223785 A JP2001223785 A JP 2001223785A JP 2003039330 A JP2003039330 A JP 2003039330A
Authority
JP
Japan
Prior art keywords
wood
grindstone
wood flour
polishing
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001223785A
Other languages
Japanese (ja)
Inventor
Shigetoshi Harima
重俊 播摩
Takeshi Kajimoto
武志 梶本
Toshiaki Hanasaka
寿章 花坂
Kazumi Yamaguchi
和三 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakayama Prefecture
Original Assignee
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakayama Prefecture filed Critical Wakayama Prefecture
Priority to JP2001223785A priority Critical patent/JP2003039330A/en
Publication of JP2003039330A publication Critical patent/JP2003039330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To require a grinding tool effective for environmental antipollution measures by providing precise finishing satisfying flatness without imparting deep polishing streaks to a body to be polished, providing high polishing capability, suppressing surface working deterioration and providing biodegradation. SOLUTION: In this grinding tool, abrasive grain 1 and wood flour 2 are solidified via a wood liquid material 3. As the wood floor 2, the one dry distilled by heating under an oxygen-free atmosphere or a substantially oxygen-free atmosphere is used.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、環境に優しい新規
な砥石に関する。 【0002】 【従来の技術および発明が解決しようとする課題】従
来、精密機械部品、電子部品、光学部品などの精密研磨
においては、レジノ砥石、弾性砥石、遊離砥粒などの研
磨材が用いられている。前記のうち、レジノ砥石は剛体
に近いため、被研磨体表面に深い研磨条痕を付けて荒い
仕上がりになり、また被研磨体の表面層に加工変質を引
き起こすことが知られている。一方、弾性砥石は研磨能
力がレジノ砥石に及ばないため研磨条痕の問題は少な
い。しかしながら、被研磨体における研磨面の平坦性が
失われるという、いわゆるダレの問題が新たに発生し、
加工変質の問題についても解決に至っていない。それに
対し、遊離砥粒による研磨は、これらの問題を一応解決
できる方法として使用されているが、研磨材の使用効率
が非常に低いという問題がある。他方、上記した従来の
砥石は、砥粒を固める接着剤として石油系合成化合物が
使われている場合がほとんどである。かかる従来の砥石
では研磨液に砥石の摩耗物が混入するが、その混入物は
上述したように石油系合成化合物を含んでいるため微生
物分解されず、環境汚染の問題を抱えている。 【0003】本発明は、上記した従来の問題点に鑑みて
なされたものであって、被研磨体に深い研磨条痕を与え
ることなく、平坦性を満たした精密な仕上がりが得ら
れ、研磨能力が高く、表面加工変質を抑え、尚かつ、生
分解性があって環境汚染対策に有効な砥石の提供を目的
としている。 【0004】 【課題を解決するための手段】上記課題の解決は、砥粒
と、所定の処理を施した木粉とを木質液化物を介して固
めて成ることを特徴とする砥石により達成可能である。
つまり、砥石の研磨能力は研磨に作用する一粒一粒の砥
粒を被研磨体に押しつける圧力が重要であるため、これ
を如何に制御するかがポイントとなる。砥石を使った研
磨において、被研磨体に作用させる力は砥石を駆動する
軸に加える力のみである。軸に加える作用力を砥粒一個
一個の必要な作用力に制御するには、砥粒と砥粒の間に
緩衝作用のあるものを配置することで達成し得る。他
方、砥石の弾性が大きければ、被研磨体の形状に砥石の
作用面がなじんで変形するため、被研磨体表面の平坦性
が保てない。逆に、砥石の剛性が大きければ、被研磨体
表面が砥石面に合わされて平坦性が得られる。すなわ
ち、必要なだけの弾性を持たせることにより、平坦性を
確保し、尚かつ研磨条痕を小さくできる。 【0005】そこで、本発明者らは、適当な弾性が得ら
れる材料について鋭意検討した結果、所定処理した木粉
が最適であることを見出した。かかる木粉としては天然
の木材から得られるが、材種により性質が異なるので、
適正な材種を選択することが望ましい。この木粉は砥石
に適度な剛性と弾性を持たせることができ、これを使用
することで平坦性がよく、深い研磨条痕のない仕上がり
面の被研磨体が得られる。 【0006】前記の所定処理とは、無酸素雰囲気ないし
略無酸素雰囲気で木粉を加熱すること(このような加熱
処理を以下、加熱乾留処理と称す)である。かかる加熱
乾留処理により、硬さ、脆性、磨耗性、疎水性といった
木粉の性質を変えることができる。このとき、適正な加
熱乾留処理条件を選定することで、必要とする硬さ、脆
性、磨耗性、疎水性を備えた木粉が得られる。一般に、
砥石の成型にあたり砥粒以外を添加すると、研磨能力が
低下するとされている。特に、添加物が靭性を有し磨耗
しにくいものであると、研磨能力は更に低下してしま
う。これは添加物が磨耗しないで砥石表面に残り、新し
い砥粒の切り刃の出現を遅らせるからである。そこで、
上述のように加熱乾留処理することにより、木粉の靭性
が低下して脆性が増し、また疎水化してくる。このよう
に加熱乾留処理された木粉を使用することにより、研磨
能力の低下を少なくできるのである。 【0007】使用する接着剤は砥石の性質に多大な影響
を与えるが、木材を液化して得られた木質液化物は硬化
後の柔軟性や木粉との親和性からみて、接着剤として非
常に好ましいものである。また、木質液化物は自然界に
おける生分解性も有している。 【0008】 【発明の実施の形態】次に、本発明の実施の形態につい
て以下に説明する。本発明に係る砥石は、主に、研磨の
基本材料としての砥粒、弾性発現体としての加熱乾留処
理木粉、並びに、これらの材料を接着・固化する木質液
化物から構成される成型体であり、必要に応じて木質液
化物を硬化する硬化剤が添加される。 【0009】本発明に用いる砥粒としてその種類は特に
限定されないが、例えばダイヤモンド、CBN、炭化珪
素、溶融アルミナ、鉱石、ガラスなどの粒体、これらの
混合物が挙げられる。砥粒の使用量としては、例えば砥
石の成型体全体重量に対し60〜90wt%の配合割合
が好ましい。また、砥粒の平均粒径や粒径分布は必要に
応じて任意に選択される。また、木質液化物との接合性
を高めるために、カップリング剤を使用しても構わな
い。 【0010】本発明に用いる木粉の由来木材としては特
に限定されずあらゆる種類の木材が使用可能であるが、
例えば松、杉、ヒノキ、ブナなどが挙げられる。また、
原料木材の形態としては、例えば加工残材、おが屑など
の加工廃材、間伐材なども考えられ、これらは粉体化し
て用いることができる。 【0011】木粉の粒子は、使用する砥粒粒子の平均粒
径の1/10〜10倍範囲のものを使用できる。1/1
0を下回る平均粒径の木粉を使用すると、クッション性
を持たせることが困難であるとともに、目詰まりを起こ
しやすく研磨能力の低下を来す。平均粒径が10倍を超
えると砥石成型体における砥粒密度が低下し、研磨能力
の低下をもたらすので好ましくない。 【0012】ところで、生木粉を含む砥石を用いて水ま
たは水溶液をかけながら研磨する水研磨の場合、生木粉
が吸水膨潤して砥粒の接合力を弱めるため、回転による
研削力が低下して使用できなくなることがある。この場
合、木材チップあるいは生木粉を、無酸素雰囲気ないし
略無酸素雰囲気下、所定時間(例えば2〜40時間)で所
定温度(例えば200〜400℃)に加熱して揮発分を
排出させたものを使用すれば、前記の吸水膨潤をさける
ことができる。かかる加熱乾留処理は木粉の吸水性を低
下させ硬度を増加させればそれで十分であり、炭化まで
は要求されない。すなわち、熱処理条件、使用する木材
の種類などを適切に選定することにより、必要とする吸
水性と硬度の木粉を得てこれを使用すればよい。尚、加
熱乾留処理された木材チップは粉砕工程を経て木粉にさ
れる。 【0013】次に、木粉の使用量について述べる。ま
ず、次の式(1)により砥粒質量と砥粒平均粒径に基づ
いて数Nを計算する。 N = W/(4/3 × πD3 × 1/8 × ρ × 10-21 ) ・・・(1) ここで、W :砥粒の質量(g) D :砥粒の平均粒径(μm) ρ :砥粒の真比重 そして、式(1)で得た数Nを基に、使用する木粉の量
mを次の式(2)を用いて算出する。 Wm = f×N×(4/3 × πDm 3 × 1/8 × ρ × 10-21 ) ・・・(2) ここで、Wm :木粉の質量(g) Dm :使用する木粉の平均粒径(μm) ρm :木粉の基になった木材の真比重 f :砥粒個数に対する木粉個数の比率を表す個数比率
係数(f=1/5〜10) 【0014】本発明に用いる木質液化物は、木材のチッ
プなどを、フェノール類と硫酸など酸触媒の存在下、所
定温度(150〜165℃)で所定時間(60〜160
分間)加熱し分解液化させて得られる木質由来のノボラ
ック樹脂である。木質液化物の原材料である木材の材種
は特に限定されないが、使用する木粉と同種の木材を使
用すれば、木粉との親和性が高くなり、成型性が向上す
る。かかる木質液化物は常温で固体であり、その代表物
性値は、例えば流動温度(見掛け融点)が145〜16
0℃、溶融粘度(測定温度=160℃)が1400〜1
4000ポイズ、数平均分子量が800〜1100、重
量平均分子量が2700〜5200である。前記の流動
温度と溶融粘度は株式会社島津製作所製のフローテスタ
ーGFT−500Aで測定した。数平均分子量と重量平
均分子量は、ショーデックスGPC・KF802とKF
803のカラムを用いたウォータース・クロマトグラフ
ィシステム6000Aで測定した。 【0015】実際の成型にあたって、まず使用する砥粒
の平均粒子径を基に、用いる木粉の粒径を決め、必要と
するフルイ器で篩い分けして木粉の粒径を調整した。次
に、砥石成型体全体の空隙率(図2に示した空孔4の占
める割合)を体積率Vs(%)で10〜50%の範囲に
設定し、更に、砥粒を体積率Vm(%)で10〜60%
に設定し、式(1)および(2)を用いて木粉(加熱乾
留処理品も含む)の使用量を算出した。算出した木粉の
使用量と比重ρmとから木粉の体積率Vw(%)を算出し
た。 【0016】次に、使用する接着剤の体積率Va(%)
を次の式(3)で求める。 Va=α×Vw ・・・(3) ここで、αは木粉1部に対する接着剤量の比率(部)を
示し、0.1 < α < 2 である。このようにして
得られた各々の体積率Vm,Vw,Va,Vsが、次の式
(4)を満たす条件の組成となるように、それぞれの使
用量が調整されるのである。 Vm+Vw+Va+Vs=100 ・・・(4) 【0017】次に、本発明を実施例でもって更に詳しく
説明する。 [実施例1]JIS#2000の緑色炭化珪素砥粒(G
C砥粒、平均粒径7μm)40部を用い、木粉は砥粒と
同等の平均粒径約7μmのものを使用する。木粉の使用
量は、個数比率係数f=1として、式(1),(2)よ
り算出した。用いる木粉は以下のように調製した。ま
ず、米松のおが屑を半密閉容器に入れ、おが屑の上面を
燃焼防止用のガラス繊維布で被い、更に半密閉容器を簡
易に蓋した状態として加熱を開始した。加熱が開始され
るとまもなくおが屑から分解ガスが発生し、容器内はほ
ぼ無酸素雰囲気になる。この雰囲気下でおが屑は200
℃に保持され24時間加熱乾留される。乾留後のおが屑
は製粉機で粉砕して木粉とし、目開き200μmのフル
イを通過し、かつ、目開き100μmのフルイを通過し
ないものを分級採取した。 【0018】また、用いる木質液化物は、フェノールと
濃硫酸(酸触媒)の存在下、米松材チップを60分間1
60℃に加熱し分解液化させて得た。得られた木質液化
物の物性は、流動温度(擬似融点)が150℃(室温で
固体)、溶融粘度(測定温度=160℃)が2965ポ
イズ、数平均分子量が932、重量平均分子量が334
1であった。 【0019】引き続き、接着剤としての木質液化物16
部と、硬化剤としてのヘキサメチレントリアミン4部
(接着剤と硬化剤を合わせた量でα=1)とを乳鉢で粉
砕して混合し、これに、上記のように分級して得た木粉
20部とGC砥粒40部を加えて更に混合した。これら
の混合物を直径75mmφ、厚み20mmの円盤型金型
に入れてプレスし、そのまま160℃で1時間加熱して
成型し、冷却固化後取り出した。 【0020】上記のように成型した砥石の外観を図1に
示す。この砥石Aでは、その中心部にフライス盤などの
回転駆動軸に取付けるための軸取付孔10が形成されて
いる。砥石Aは、図2に示すように、砥粒1と木粉2と
が木質液化物3を介して固められていて、無数の空孔4
を有する微細構造となっている。 【0021】[実施例2]実施例1における木粉の1/
5倍の粒径の木粉を用い、式(2)の係数fをf=5と
した以外は、実施例1と同様にして砥石を製作した。 【0022】[ 実施例3]実施例1における木粉の1
0倍の粒径の木粉を用い、式(2)の係数fをf=1/
5とした以外は、実施例1と同様にして砥石を製作し
た。 【0023】[実施例4]実施例1における木粉の11
倍の粒径の木粉を用い、式(2)の係数fをf=1とし
た以外は、実施例1と同様にして砥石を製作した。 【0024】[実施例5]実施例1における木粉の1/
2倍の粒径の木粉を用い、式(2)の係数fをf=1/
6とした以外は、実施例1と同様にして砥石を製作し
た。 【0025】[実施例6]実施例1における木粉の1/
11倍の粒径の木粉を用い、式(2)の係数fをf=5
とした以外は、実施例1と同様にして砥石を製作した。 【0026】[比較例1]JIS#2000のGC砥粒
(平均粒径7μm)100部に液体フエノール樹脂5.
7部をコーティングし、これに反応性粉末ノボラック樹
脂18.4部をブレンドする。これを実施例1の金型に
入れてプレスし、初めに100℃で1時間、続いて17
0℃で1時間加熱したのち冷却して、従来のレジノ砥石
を作成した。 【0027】[比較例2]市販のPVAロール砥石を購
入し、ダイヤモンド切断砥石で直径75mmφ、厚み3
0mmのロール砥石(従来の弾性砥石)を作成した。 【0028】「研磨試験評価」実施例1〜6および比較
例1,2で作成した砥石の研磨テストを実施した。中心
にステンレス軸を有する直径75mmφ、厚み5mmの
ステンレス円板に前記の砥石をホットメルト接着剤で接
着し、ステンレス円板のステンレス軸をフライス盤の回
転駆動体に取付けた。一方、幅30mm、厚み10m
m、長さ50mmのステンレス角材(テストピース)を
フライス盤のテーブル上に固定した。砥石を1000r
pmで回転させてステンレス角材の表面に当てた後、砥
石を更に0.1mm押し込んで水をかけながら1分間研
磨した。研磨終了後、ステンレス角材の減量(研磨
量)、表面粗さRa,Ryを計測し、角材稜線において
観察されるダレ(平坦性)を目視で観察した。表面粗さ
Ra,Ryは株式会社ミツトヨ製の表面粗さ測定機SJ
−30を用いて測定した。結果は下記の表1の通りであ
る。 【0029】 【表1】【0030】表1に示した試験結果から明らかなよう
に、実施例1〜6で製作した砥石は、研磨力(研磨量)
に関し比較例1のレジノ砥石に及ばなかったものの、比
較例2の弾性砥石とは同等であった。実施例間の比較で
は、実施例5,6の研磨力が大きく、弾性砥石よりも大
であった。また、被研磨体の表面粗さRa,Ryに関し
実施例1〜6の砥石は比較例1のレジノ砥石より優れて
いて深い研磨条痕も見当たらず、比較例2の弾性砥石と
同等であった。実施例間では、実施例1〜4により処理
した被研磨体研磨面の鏡面状態が美しく、比較例2の弾
性砥石による場合と同等もしくはそれ以上に優れてい
た。そして、ダレに関して実施例1〜6の砥石は、比較
例1のレジノ砥石と同様にダレが観察されず平坦な研磨
面の被研磨体が得られた。これに対し、比較例2の弾性
砥石によれば、被研磨体の研磨面に大きなダレが観察さ
れた。 【0031】「自然劣化試験評価」実施例1〜6および
比較例1,2により得た砥石を図1のようにくり抜い
て、中心部に貫通孔11を有するドーナッツ状のサンプ
ルAsをそれぞれ得た。これらのサンプルAsは土中に
1年間埋めたのちに取り出した。各サンプルについて
は、(埋込前)と処理後(1年間埋込後)に割裂強度を
測定した。割裂強度はサンプルAsの貫通孔11に装着
した2つの治具を互いにサンプル径方向逆向き(矢印1
2方向)に引張って、サンプルAsが割れたときの引張
り力で示した。それぞれの結果を下記の表2に示す。 【0032】 【表2】【0033】表2に示した試験結果から明らかなよう
に、実施例1〜6で得た砥石の割裂強度は、土中埋込前
と1年間埋込後の双方ともレジノ砥石(比較例1)と弾
性砥石(比較例2)の中間値であった。ところが、強度
低下率(=(初期強度−処理後強度)×100/初期強
度)は、レジノ砥石(比較例1)が2%、弾性砥石(比
較例2)が10%であるのと比べ、実施例1〜6の砥石
は約22〜50%と極めて大きく、生分解性が高いこと
を示している。 【0034】 【発明の効果】以上詳述したように、本発明によれば、
主な構成成分である、砥粒、加熱乾留した木粉、木質液
化物の3成分のうち、砥粒そのものは環境汚染を引き起
こすものでなく、かつ、砥粒を除く2成分は生分解性を
有しているので、全体として環境汚染への影響が非常に
少ない砥石を実現することができる。そのうえ、本発明
の砥石は研磨力があり、表面仕上がりも精密で研磨条痕
がなく、ダレがなく、あるいは、平坦性に優れている。
換言すれば、従来の弾性砥石およびレジノ砥石双方の優
れた性能を兼ね備えたものが提供される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new eco-friendly grinding wheel. 2. Description of the Related Art Conventionally, in the precision polishing of precision mechanical parts, electronic parts, optical parts, etc., abrasives such as resino grindstones, elastic whetstones, and loose abrasives have been used. ing. Among them, it is known that a resino grindstone is close to a rigid body, so that the surface of the object to be polished has a deep polishing streak to give a rough finish, and that the surface layer of the object to be polished is deteriorated in processing. On the other hand, elastic whetstones have less polishing ability than resino whetstones, and therefore have little problem of polishing streaks. However, the so-called sagging problem that the flatness of the polished surface of the object to be polished is lost,
The problem of processing deterioration has not been solved. On the other hand, polishing using free abrasive grains is used as a method for solving these problems, but there is a problem that the use efficiency of the abrasive is extremely low. On the other hand, most of the above-mentioned conventional grinding stones use a petroleum-based synthetic compound as an adhesive for solidifying the abrasive grains. In such a conventional grindstone, abrasion material of the grindstone is mixed into the polishing liquid. However, since the mixed material contains a petroleum-based synthetic compound as described above, it is not decomposed by microorganisms and has a problem of environmental pollution. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a precise finish that satisfies flatness without giving deep polishing streaks to a body to be polished. The purpose of the present invention is to provide a grinding stone which is high in quality, suppresses surface processing deterioration, and is biodegradable and effective for environmental pollution countermeasures. [0004] The above object can be attained by a whetstone characterized in that abrasive grains and wood powder having been subjected to a predetermined treatment are solidified via a woody liquefied material. It is.
In other words, the polishing ability of the grindstone is important because the pressure for pressing each abrasive grain acting on the polishing object against the object to be polished is important, and how to control this is important. In polishing using a grindstone, the force applied to the object to be polished is only a force applied to a shaft for driving the grindstone. Controlling the acting force applied to the shaft to the required acting force for each of the abrasive grains can be achieved by disposing a buffering material between the abrasive grains. On the other hand, if the grindstone has high elasticity, the working surface of the grindstone adapts to the shape of the polished body and is deformed, so that the flatness of the polished body surface cannot be maintained. Conversely, if the grindstone has high rigidity, the surface of the object to be polished matches the grindstone surface, and flatness can be obtained. That is, by providing necessary elasticity, flatness can be ensured and polishing streaks can be reduced. [0005] The inventors of the present invention have conducted intensive studies on materials capable of obtaining appropriate elasticity, and as a result, have found that wood powder that has been subjected to predetermined treatment is optimal. Such wood flour can be obtained from natural wood, but its properties vary depending on the grade.
It is desirable to select an appropriate grade. The wood powder can give the grindstone an appropriate rigidity and elasticity, and by using the wood powder, an object to be polished having a good flatness and a finished surface without deep polishing streaks can be obtained. [0006] The above-mentioned predetermined treatment is to heat the wood flour in an oxygen-free atmosphere or a substantially oxygen-free atmosphere (such a heating treatment is hereinafter referred to as a heating dry distillation treatment). By such a heat-drying treatment, the properties of wood powder such as hardness, brittleness, abrasion, and hydrophobicity can be changed. At this time, wood powder having the required hardness, brittleness, abrasion, and hydrophobicity can be obtained by selecting appropriate heating and dry distillation conditions. In general,
It is said that the addition of abrasives other than abrasive grains in the formation of a grindstone lowers the polishing ability. In particular, if the additive is tough and hard to wear, the polishing ability is further reduced. This is because the additive remains on the wheel surface without wear and slows the appearance of new abrasive cutting edges. Therefore,
By performing the heating and carbonization treatment as described above, the toughness of the wood flour decreases, the brittleness increases, and the wood flour becomes hydrophobic. By using the wood powder heat-distilled as described above, a decrease in polishing ability can be reduced. [0007] The adhesive used has a great effect on the properties of the grindstone, but the wood liquefied product obtained by liquefying wood is extremely adhesive as an adhesive in view of the flexibility after curing and the affinity for wood powder. Is preferred. Woody liquefaction also has biodegradability in nature. Next, an embodiment of the present invention will be described below. The grindstone according to the present invention is mainly composed of abrasive grains as a basic material for polishing, heat-distillation-treated wood flour as an elasticity developing body, and a molded body composed of a woody liquefied substance that adheres and solidifies these materials. In some cases, a hardening agent for hardening the woody liquefied material is added as needed. The type of abrasive used in the present invention is not particularly limited, and examples thereof include particles such as diamond, CBN, silicon carbide, fused alumina, ore, glass, and mixtures thereof. The amount of the abrasive used is preferably, for example, 60 to 90% by weight based on the total weight of the molded product of the grindstone. The average grain size and grain size distribution of the abrasive grains are arbitrarily selected as needed. Further, a coupling agent may be used in order to enhance the bonding property with the woody liquefied matter. The wood derived from wood flour used in the present invention is not particularly limited, and any kind of wood can be used.
For example, pine, cedar, cypress, beech and the like can be mentioned. Also,
As the form of the raw wood, for example, processing residual materials, processing waste materials such as sawdust, thinning materials and the like can be considered, and these can be used in the form of powder. Wood powder particles having a range of 1/10 to 10 times the average particle size of the abrasive grains used can be used. 1/1
If wood powder having an average particle diameter smaller than 0 is used, it is difficult to provide cushioning properties, and clogging is likely to occur, resulting in a decrease in polishing ability. If the average particle size is more than 10 times, the density of the abrasive grains in the molded whetstone is reduced, and the polishing ability is undesirably reduced. In the case of water polishing using a grindstone containing raw wood powder while pouring water or an aqueous solution, the raw wood powder absorbs and swells to weaken the bonding force of the abrasive grains. May become unusable. In this case, the wood chips or raw wood flour were heated to a predetermined temperature (for example, 200 to 400 ° C.) for a predetermined time (for example, 2 to 40 hours) in an oxygen-free atmosphere or a substantially oxygen-free atmosphere to discharge volatile components. The use of a material can prevent the above-mentioned water absorption swelling. It is sufficient to reduce the water absorption of the wood flour and increase the hardness by such heating dry distillation, and carbonization is not required. That is, by appropriately selecting the heat treatment conditions, the type of wood to be used, and the like, the required water absorption and hardness of the wood powder may be obtained and used. The wood chips heat-distilled are turned into wood flour through a pulverizing step. Next, the amount of wood flour used will be described. First, the number N is calculated by the following equation (1) based on the mass of the abrasive grains and the average grain size of the abrasive grains. N = W / (4/3 × πD 3 × 1/8 × ρ × 10 -21 ) (1) where W: mass of abrasive grains (g) D: average particle diameter of abrasive grains (μm ) [rho: true specific gravity of the abrasive grains and, based on the number N obtained by the formula (1), the amount W m of wood flour used is calculated using the following equation (2). W m = f × N × (4/3 × πD m 3 × 1/8 × ρ × 10 -21 ) (2) where W m : mass of wood flour (g) D m : used Average particle size of wood flour (μm) ρ m : True specific gravity of wood on which wood flour is based f: Number ratio coefficient (f = 1/5 to 10) representing the ratio of the number of wood flours to the number of abrasive grains The wood liquefied product used in the present invention is obtained by subjecting wood chips and the like to a predetermined temperature (150 to 165 ° C.) for a predetermined time (60 to 160 ° C.) in the presence of an acid catalyst such as phenols and sulfuric acid.
Min) is a wood-derived novolak resin obtained by heating to decompose and liquefy. The type of wood that is a raw material of the woody liquefied material is not particularly limited. However, if wood of the same type as used wood flour is used, affinity with the wood flour is increased, and moldability is improved. Such a woody liquefied substance is solid at room temperature, and its typical physical property value is, for example, a flow temperature (apparent melting point) of 145 to 16
0 ° C, melt viscosity (measuring temperature = 160 ° C) 1400-1
The number average molecular weight is 4000 to 1100, and the weight average molecular weight is 2700 to 5200. The above-mentioned flow temperature and melt viscosity were measured with a flow tester GFT-500A manufactured by Shimadzu Corporation. The number average molecular weight and weight average molecular weight are those of Shodex GPC KF802 and KF
The measurement was performed using a Waters chromatography system 6000A using a 803 column. In actual molding, first, the particle size of the wood flour to be used was determined based on the average particle size of the abrasive grains to be used, and the grain size of the wood flour was adjusted by sieving with a required sieve. Next, the porosity (the ratio occupied by the pores 4 shown in FIG. 2) of the whole grindstone body is set in the range of 10 to 50% by volume ratio Vs (%). %) In 10-60%
And the amount of wood flour (including heat-distilled products) was calculated using equations (1) and (2). The volume ratio Vw (%) of the wood flour was calculated from the calculated amount of wood flour used and the specific gravity ρ m . Next, the volume ratio Va (%) of the adhesive used is
Is obtained by the following equation (3). Va = α × Vw (3) Here, α indicates a ratio (part) of the amount of the adhesive to one part of the wood flour, and is 0.1 <α <2. The amounts used are adjusted so that the volume ratios Vm, Vw, Va, and Vs obtained in this manner have compositions satisfying the following equation (4). Vm + Vw + Va + Vs = 100 (4) Next, the present invention will be described in more detail with reference to embodiments. [Example 1] JIS # 2000 green silicon carbide abrasive grains (G
(C abrasive grains, average particle diameter 7 μm) 40 parts, and wood powder having an average particle diameter of about 7 μm equivalent to that of the abrasive grains is used. The used amount of wood flour was calculated from the equations (1) and (2), assuming that the number ratio coefficient f = 1. The wood flour used was prepared as follows. First, rice pine sawdust was placed in a semi-closed container, the upper surface of the sawdust was covered with a glass fiber cloth for preventing combustion, and heating was started with the semi-closed container simply closed. Shortly after the heating is started, a decomposition gas is generated from the sawdust, and the inside of the container becomes almost an oxygen-free atmosphere. In this atmosphere, sawdust is 200
It is kept at ℃ and heated to dryness for 24 hours. The sawdust after the carbonization was pulverized by a mill to make wood flour, and those that passed through a sieve having an opening of 200 μm but did not pass through a sieve having an opening of 100 μm were classified and collected. The wood liquefaction used is a rice pine wood chip for 1 minute for 60 minutes in the presence of phenol and concentrated sulfuric acid (acid catalyst).
It was obtained by heating to 60 ° C. to decompose and liquefy. The physical properties of the obtained wood liquefaction were as follows: a flowing temperature (pseudo melting point) of 150 ° C. (solid at room temperature), a melt viscosity (measuring temperature = 160 ° C.) of 2,965 poise, a number average molecular weight of 932, and a weight average molecular weight of 334.
It was one. Subsequently, the woody liquefied material 16 as an adhesive
And 4 parts of hexamethylenetriamine as a curing agent (α = 1 in the combined amount of the adhesive and the curing agent) are crushed and mixed in a mortar, and the wood obtained by the classification as described above is added thereto. 20 parts of powder and 40 parts of GC abrasive grains were added and further mixed. These mixtures were placed in a disk mold having a diameter of 75 mmφ and a thickness of 20 mm, pressed, molded by heating at 160 ° C. for 1 hour, and solidified by cooling. FIG. 1 shows the appearance of the whetstone formed as described above. In the whetstone A, a shaft mounting hole 10 for mounting to a rotary drive shaft such as a milling machine is formed at the center thereof. As shown in FIG. 2, the grinding stone A has abrasive grains 1 and wood flour 2 hardened via a woody liquefied substance 3,
Is obtained. Example 2 1/1 of the wood flour in Example 1
A grindstone was manufactured in the same manner as in Example 1 except that wood powder having a particle size five times as large was used and the coefficient f in the equation (2) was set to f = 5. Example 3 One of the wood flours in Example 1
Using wood powder having a particle size of 0 times, the coefficient f of the equation (2) is calculated as f = 1 /
A grindstone was manufactured in the same manner as in Example 1 except that the whetstone was set to 5. [Embodiment 4] 11 of wood flour in Embodiment 1
A grindstone was manufactured in the same manner as in Example 1 except that wood powder having twice the particle size was used and the coefficient f in the equation (2) was set to f = 1. Example 5 1/1 of the wood flour in Example 1
Using twice the particle size of wood flour, the coefficient f of the equation (2) is calculated as f = 1 /
A grindstone was manufactured in the same manner as in Example 1 except that the whetstone was set to 6. Example 6 1/1 of the wood flour in Example 1
Using 11 times the particle size of wood flour, the coefficient f of the equation (2) is set to f = 5.
A whetstone was manufactured in the same manner as in Example 1 except that the whetstone was used. Comparative Example 1 Liquid phenol resin was added to 100 parts of JIS # 2000 GC abrasive grains (average particle size: 7 μm).
7 parts are coated and 18.4 parts of reactive powder novolak resin are blended into it. This was placed in the mold of Example 1 and pressed, first at 100 ° C. for 1 hour, followed by 17 hours.
After heating at 0 ° C. for 1 hour and cooling, a conventional resino whetstone was prepared. [Comparative Example 2] A commercially available PVA roll whetstone was purchased and a diamond cutting whetstone having a diameter of 75 mmφ and a thickness of 3 was used.
A 0 mm roll whetstone (conventional elastic whetstone) was prepared. "Evaluation of polishing test" A polishing test of the grindstones prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was performed. The above-mentioned grindstone was bonded to a stainless steel disk having a diameter of 75 mm and a thickness of 5 mm having a stainless steel shaft at the center with a hot melt adhesive, and the stainless steel shaft of the stainless steel disk was attached to a rotary drive of a milling machine. On the other hand, width 30mm, thickness 10m
A 50 mm long stainless steel bar (test piece) was fixed on a table of a milling machine. 1000r whetstone
After rotating at pm and hitting the surface of the stainless steel bar, the grindstone was further pushed in by 0.1 mm and polished for 1 minute while applying water. After the polishing, the weight loss (polishing amount) and the surface roughness Ra and Ry of the stainless steel bar were measured, and the sag (flatness) observed at the ridge line of the bar was visually observed. The surface roughness Ra and Ry are measured by a surface roughness measuring device SJ manufactured by Mitutoyo Corporation.
It measured using -30. The results are shown in Table 1 below. [Table 1] As is clear from the test results shown in Table 1, the grindstones manufactured in Examples 1 to 6 had a polishing force (amount of polishing).
Although it did not reach the level of the resino grindstone of Comparative Example 1, it was equivalent to the elastic grindstone of Comparative Example 2. In comparison between the examples, the polishing power of Examples 5 and 6 was large, and was larger than that of the elastic whetstone. In addition, with respect to the surface roughness Ra and Ry of the object to be polished, the grindstones of Examples 1 to 6 were superior to the resino grindstone of Comparative Example 1 and did not show any deep grinding marks, and were equivalent to the elastic grindstone of Comparative Example 2. . Among the examples, the mirror surface state of the polished surface of the object to be polished treated in Examples 1 to 4 was beautiful, and was equal to or better than that of the elastic grinding stone of Comparative Example 2. As for the grindstones of Examples 1 to 6, no sagging was observed with the grindstones of Examples 1 to 6, and a polished body having a flat polished surface was obtained. On the other hand, according to the elastic grindstone of Comparative Example 2, large dripping was observed on the polished surface of the polished body. [Evaluation of Natural Deterioration Test] The grindstones obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were hollowed out as shown in FIG. 1 to obtain donut-shaped sample As having a through hole 11 in the center. . These sample As were taken out after being buried in soil for one year. For each sample, the splitting strength was measured (before embedding) and after the treatment (after embedding for one year). The splitting strength of the two jigs mounted on the through holes 11 of the sample As was opposite to each other in the sample radial direction (arrow 1).
(In two directions) and the tensile force when the sample As was cracked was shown. The results are shown in Table 2 below. [Table 2] As is clear from the test results shown in Table 2, the splitting strengths of the grindstones obtained in Examples 1 to 6 were the same as those of the Regino grindstones before embedding in the soil and after embedding for one year (Comparative Example 1). ) And the elastic whetstone (Comparative Example 2). However, the strength reduction rate (= (initial strength−strength after treatment) × 100 / initial strength) is 2% for the resino whetstone (Comparative Example 1) and 10% for the elastic whetstone (Comparative Example 2). The grindstones of Examples 1 to 6 were extremely large, about 22 to 50%, indicating high biodegradability. As described in detail above, according to the present invention,
Of the three main components, abrasive grains, heat-distilled wood flour, and wood liquefaction, the abrasive grains themselves do not cause environmental pollution, and the two components excluding the abrasive grains have biodegradability. As a result, it is possible to realize a grindstone having very little influence on environmental pollution as a whole. In addition, the grindstone of the present invention has an abrasive power, a precise surface finish, no polishing streaks, no sagging, or excellent flatness.
In other words, there is provided a conventional elastic wheel and a resino wheel that have both excellent performances.

【図面の簡単な説明】 【図1】本発明の一実施例に係る砥石の全体を示す外観
図である。 【図2】前記砥石の微細構造を説明するための説明図で
ある。 【符号の説明】 A 砥石 1 砥粒 2 木粉 3 木質液化物 4 空孔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view showing an entire grindstone according to one embodiment of the present invention. FIG. 2 is an explanatory diagram for explaining a fine structure of the grinding wheel. [Description of Signs] A Whetstone 1 Abrasive grain 2 Wood flour 3 Wood liquefaction 4 Void

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花坂 寿章 和歌山県和歌山市小倉60番地 和歌山県工 業技術センター内 (72)発明者 山口 和三 和歌山県和歌山市小倉60番地 和歌山県工 業技術センター内 Fターム(参考) 3C063 AA02 AB03 BC03 BC09 BD01 BD04 FF05    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Toshiaki Hanasaka             60 Kokura, Wakayama City, Wakayama Prefecture Wakayama Engineering             Industrial Technology Center (72) Inventor Kazuzo Yamaguchi             60 Kokura, Wakayama City, Wakayama Prefecture Wakayama Engineering             Industrial Technology Center F term (reference) 3C063 AA02 AB03 BC03 BC09 BD01                       BD04 FF05

Claims (1)

【特許請求の範囲】 【請求項1】 砥粒と、無酸素雰囲気ないし略無酸素雰
囲気で加熱乾留した木粉とを木質液化物を介して固めて
成ることを特徴とする砥石。
Claims: 1. A grindstone comprising abrasive grains and wood flour heated and carbonized in an oxygen-free or substantially oxygen-free atmosphere via a woody liquefied material.
JP2001223785A 2001-07-25 2001-07-25 Grinding tool Pending JP2003039330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223785A JP2003039330A (en) 2001-07-25 2001-07-25 Grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223785A JP2003039330A (en) 2001-07-25 2001-07-25 Grinding tool

Publications (1)

Publication Number Publication Date
JP2003039330A true JP2003039330A (en) 2003-02-13

Family

ID=19057058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223785A Pending JP2003039330A (en) 2001-07-25 2001-07-25 Grinding tool

Country Status (1)

Country Link
JP (1) JP2003039330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253581A (en) * 2009-04-22 2010-11-11 Nikon Corp Polisher, polishing method, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253581A (en) * 2009-04-22 2010-11-11 Nikon Corp Polisher, polishing method, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2523971B2 (en) Abrasive article
AT500593B1 (en) ROLLING GRINDING PROCESS
CN102245352B (en) Bonded abrasive tool and method of forming
CH697296B1 (en) A method of roll grinder.
KR101707286B1 (en) Agglomerate abrasive grain comprising incorporated hollow microspheres
KR20070002089A (en) Abrasive articles, compositions, and methods of making the same
JP2003517380A (en) Abrasive article fixed using hybrid binder
CN102481682A (en) Composition for cutting wheel and cutting wheel by using the same
CN110497327A (en) Big outer diameter resin wheel and preparation method thereof
RU2505389C2 (en) Element of abrasive material for final vibration machining, and its formation method
JP2003039330A (en) Grinding tool
US4682988A (en) Phenolic resin bonded grinding wheels
US3476537A (en) Abrasive composition with limestone as the porosity-inducing agent
KR20020024892A (en) Superbrasive tool and manufacturing method of it using Superbrasive stone for grinding of Brown tube pannel face
EP2127809B1 (en) A preshaped abrasive element
Sabaa et al. Glass and porcelain waste as abrasives investigated at different conditions
JP2004142085A (en) Vitrified grinding wheel and method for manufacturing the same
KR20010110199A (en) Moldable abrasive pellets, their production and use
JP3314213B2 (en) Resinoid grinding wheel and method of manufacturing the same
JPH08155840A (en) Cohered abrasive grain grinding wheel
CA1178065A (en) Phenolic resin bonded grinding wheels
JP2008142883A (en) Resinoid bonded grinding wheel
JPS58171262A (en) Grind stone and manufacture thereof
WO2022147432A1 (en) Abrasive article and method of use
JP2001049606A (en) Elastic pavement material