JP2003035740A - Power distribution accident searching apparatus - Google Patents

Power distribution accident searching apparatus

Info

Publication number
JP2003035740A
JP2003035740A JP2001222862A JP2001222862A JP2003035740A JP 2003035740 A JP2003035740 A JP 2003035740A JP 2001222862 A JP2001222862 A JP 2001222862A JP 2001222862 A JP2001222862 A JP 2001222862A JP 2003035740 A JP2003035740 A JP 2003035740A
Authority
JP
Japan
Prior art keywords
point
distribution line
accident
ground fault
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222862A
Other languages
Japanese (ja)
Inventor
Takanobu Asakura
孝宜 朝倉
Takao Omori
隆雄 大森
Hiroshi Yamada
弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hasegawa Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hasegawa Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001222862A priority Critical patent/JP2003035740A/en
Publication of JP2003035740A publication Critical patent/JP2003035740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce in size, weight and cost a power distribution accident searching apparatus by easily and rapidly executing an accident searching work by decreasing in size and weight a voltage applying unit. SOLUTION: The power distribution accident searching apparatus searches a ground point of a ground fault accident occurring at a power distribution line 1. The searching apparatus comprises a transmitter 2 connected to an arbitrary ground point of the line 1 in an accident section separated from a sound section of the line 1 and having a DC power source 6 for applying a DC voltage to the line 1 of the accident section, and a receiver 3 selectively connected to an arbitrary measuring point between the connecting point of the transmitter 2 and the ground point of the ground fault accident or an arbitrary measuring point except two ground points of the connecting point of the transmitter 2 and the ground point of the ground fault accident and having a DC current detector 7 for detecting the DC current flowing to the line 1 by applying the DC voltage by the power source 6. The apparatus can specify the ground point of the ground fault accident according to an amplitude or a direction of the DC current detected by the detector 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は配電線事故探査装置
に関し、例えば特別高圧(22kV)の配電線に地絡事
故が発生した場合、配電線の健全区間から切り離された
事故区間において、地絡事故の発生地点を特定する可搬
式の配電線事故探査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distribution line accident exploration device. For example, when a ground fault occurs in a distribution line of extra high voltage (22 kV), a ground fault occurs in a fault section separated from a healthy section of the distribution line. The present invention relates to a portable distribution line accident exploration device that identifies the location of an accident.

【0002】[0002]

【従来の技術】例えば特別高圧(22kV)の配電線に
地絡事故が発生した場合、変電所の再閉路により地絡事
故の発生地点を含む事故区間を配電線の健全区間から自
動区分開閉器により自動的に切り離し、その配電線の事
故区間について地絡事故の発生地点を探査するようにし
ている。この地絡事故の発生地点の探査を絶縁抵抗の測
定や作業員による目視点検で実施していたのでは時間が
かかり早期発見が困難となる。
2. Description of the Related Art For example, when a ground fault occurs on a distribution line of extra high voltage (22 kV), an automatic section switch from a sound section of the distribution line to a fault section including a point where the ground fault occurs due to reclosing of a substation. Automatically disconnects and searches the location of the ground fault for the faulty section of the distribution line. If exploration of the point of occurrence of this ground fault is carried out by measuring insulation resistance or visual inspection by workers, it will take time and early detection will be difficult.

【0003】そのため、配電線の地絡事故の発生地点を
容易かつ迅速に探査するための装置が先に種々提案され
ている。例えば、特開平2−17468号公報に開示さ
れた配電線事故探査装置は、健全区間から切り離された
事故区間の配電線と大地との間に地絡事故の発生地点探
査用の高電圧パルスを印加するパルス発生器と、そのパ
ルス発生器でもって事故区間の配電線に供給される高電
圧パルスによりその配電線に流れるパルス電流を大地に
導く導電体となる電柱の周囲に発生する磁束と鎖交して
誘起電圧を得るコイル状の検出体とを具備する。
For this reason, various devices have been previously proposed for easily and quickly searching for a location of a ground fault in a distribution line. For example, the distribution line accident exploration device disclosed in Japanese Unexamined Patent Publication No. 2-17468 provides a high voltage pulse for exploring the occurrence point of a ground fault between the distribution line and the ground in an accident section separated from a sound section. The pulse generator to be applied and the magnetic flux and chain generated around the utility pole that becomes a conductor that guides the pulse current flowing in the distribution line to the ground by the high voltage pulse supplied to the distribution line in the fault section by the pulse generator. And a coil-shaped detector that obtains an induced voltage by intersecting each other.

【0004】例えば電柱に配電線を支持するために設け
られた碍子に地絡事故が発生した場合、この配電線事故
探査装置では、パルス発生器から高電圧パルスを発生さ
せると、その高電圧パルスの印加によりパルス電流が配
電線から電柱を介して大地に流れ込む。
For example, when a ground fault occurs in an insulator provided to support a distribution line on a utility pole, this distribution line accident exploration apparatus generates a high voltage pulse when a high voltage pulse is generated from a pulse generator. The application of pulse current causes the pulse current to flow from the distribution line to the ground through the utility pole.

【0005】一方、碍子の地絡事故によりパルス電流が
流れている電柱の周囲には磁束が発生しているため、検
出体を電柱を挟んで略対向する二位置に同じ向きでそれ
ぞれ置いて電柱にパルス電流が流れる瞬間の磁束と鎖交
させると、検出体にはそれぞれ正負の各誘起電圧が発生
する。この誘起電圧の極性が前記二位置で互いに逆極性
となる電柱を探索することにより配電線の地絡事故の発
生地点を探査するようにしている。
On the other hand, since a magnetic flux is generated around the electric pole in which the pulse current is flowing due to the ground fault of the insulator, the detectors are placed at two substantially opposite positions with the electric pole in the same direction, respectively. When the pulse current is linked to the magnetic flux at the moment when the pulse current flows, positive and negative induced voltages are generated in the detection body. By searching for a utility pole in which the polarity of the induced voltage is opposite to each other at the two positions, the location of the ground fault of the distribution line is searched.

【0006】[0006]

【発明が解決しようとする課題】ところで、例えば特開
平2−17468号公報に開示された従来の配電線事故
探査装置では、前述したように事故区間の配電線に高電
圧パルスを印加するパルス発生器と、そのパルス発生器
により印加された高電圧パルスでもって事故区間の配電
線に流れるパルス電流を大地に導く導電体となる電柱の
周囲に発生する磁束と鎖交して誘起電圧を得るコイル状
の検出体とを具備した構成となっている。
By the way, in the conventional distribution line fault exploration device disclosed in, for example, Japanese Patent Application Laid-Open No. 2-17468, pulse generation for applying a high voltage pulse to the distribution line in the faulty section as described above. Coil and a coil that obtains an induced voltage by interlinking with the magnetic flux generated around the utility pole that becomes a conductor that guides the pulse current flowing through the distribution line in the fault section to the ground by the high voltage pulse applied by the pulse generator. It has a configuration including a detector.

【0007】このような高電圧パルスの印加によるパル
ス課電方式の場合、高電圧パルスが高周波であり、配電
線と大地間に形成される対地静電容量が存在するため、
パルス電流が地絡事故の発生地点に流れにくく、配電線
と大地間の対地静電容量に流れやすくなっている。その
結果、検出体により検出可能な誘起電圧のレベルまでパ
ルス電流を増大させなければならず、そうすると、前記
パルス発生器を有する課電装置における課電出力段の電
源容量が大きくなり、課電装置自体が大型化することに
なる。
In the case of the pulse charging method by applying such a high voltage pulse, since the high voltage pulse has a high frequency and the ground capacitance formed between the distribution line and the ground exists,
It is difficult for the pulse current to flow to the point where the ground fault occurred, and it is easy for the pulse current to flow to the ground capacitance between the distribution line and the ground. As a result, it is necessary to increase the pulse current to the level of the induced voltage that can be detected by the detector, which increases the power supply capacity of the power output device in the power output device having the pulse generator. The size itself will increase.

【0008】一方、この種の配電線事故探査装置を使用
するに際しては、山奥などの僻地における配電線で地絡
事故が発生した場合、その配電線の事故区間まで配電線
事故探査装置を車などで搬送しなければならず、また、
その事故区間においても、作業員自身が配電線事故探査
装置を移送しなければならない。このような使用形態に
おいて、配電線事故探査装置の課電装置が大型の重量物
であると、現場への運搬や移動に大型車両を必要とし、
作業が大掛かりになると共に装置自体のコストアップを
招来するという問題があった。
On the other hand, when using this type of distribution line accident exploration device, when a ground fault occurs in a distribution line in a remote area such as a mountainous area, the distribution line accident exploration device is used up to the accident section of the distribution line such as a car. Must be transported by
Even in the accident area, the workers themselves must transfer the distribution line accident exploration device. In such a usage pattern, if the power distribution device of the distribution line accident exploration device is a large heavy object, a large vehicle is required for transportation or movement to the site,
There is a problem that the work becomes large and the cost of the device itself is increased.

【0009】そこで、本発明は前記問題点に鑑みて提案
されたもので、その目的とするところは、課電装置のコ
ンパクト軽量化により事故探査作業を容易かつ迅速に実
施し、配電線事故探査装置のコンパクト軽量化およびコ
ストダウンを図ることにある。
Therefore, the present invention has been proposed in view of the above-mentioned problems, and an object of the present invention is to easily and quickly carry out an accident search work by reducing the size and weight of a power-applying device and to search for a distribution line accident. The purpose is to reduce the size and weight of the device and reduce the cost.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
の技術的手段として、本発明は、配電線に発生した地絡
事故の地点を探査する配電線事故探査装置において、前
記配電線の健全区間から切り離された事故区間の配電線
の任意の地点に接続され、その事故区間の配電線に直流
電圧を印加する直流電源と、その直流電源の接続点と前
記地絡事故の地点との間の任意の測定点、または、前記
直流電源の接続点と地絡事故の地点の二地点間以外の任
意の測定点に選択的に接続され、前記直流電源による直
流電圧の印加でもって配電線に流れる直流電流を検出す
る直流電流検出器とを備え、その直流電流検出器により
検出された直流電流の大きさまたは方向でもって地絡事
故の地点の特定を可能としたことを特徴とする。
As a technical means for achieving the above object, the present invention is a distribution line accident exploration device for exploring a point of a ground fault accident that occurs in a distribution line. Between a DC power supply that is connected to an arbitrary point on the distribution line of the accident section separated from the section and applies a DC voltage to the distribution line of the accident section, and the connection point of the DC power supply and the point of the ground fault. Or any measurement point other than between the DC power supply connection point and the ground fault accident point, and is connected to the distribution line by applying a DC voltage from the DC power supply. A direct current detector for detecting a flowing direct current is provided, and the point of the ground fault can be specified by the magnitude or direction of the direct current detected by the direct current detector.

【0011】本発明に係る配電線事故探査装置では、事
故区間の配電線に給電する課電装置として、直流電圧を
印加する直流電源を用い、直流課電方式を採用したこと
により、従来のパルス課電方式と異なり、配電線と大地
間に形成される対地静電容量が存在しても、直流電源の
出力レベルを増大させることなく、検出可能なレベルの
直流電流が地絡事故の発生地点に流れるため、直流電源
の大型化を回避でき、しかも、直流電源を構成する回路
部品の選定によりその直流電源の回路構成を簡素化でき
ることから、前記課電装置の小型軽量化が図れる。
In the distribution line accident exploration apparatus according to the present invention, a DC power supply system for applying a DC voltage is used as a power supply device for supplying power to the distribution line in the accident section, and a DC power supply system is adopted. Unlike the power supply method, even if there is a ground capacitance formed between the distribution line and the ground, a detectable level of DC current is generated at the point where the ground fault occurs without increasing the output level of the DC power supply. Therefore, the DC power supply can be prevented from increasing in size, and the circuit configuration of the DC power supply can be simplified by selecting the circuit components constituting the DC power supply. Therefore, the power-saving device can be reduced in size and weight.

【0012】一方、前記直流電源による直流電圧の印加
でもって配電線に流れる直流電流を検出する直流電流検
出器として、その直流電流が流れる配電線の周囲に発生
する磁束の大きさを検出する変流器を用いる。この変流
器の一次側には直流電流が流れるため、磁束の時間的変
化がない。一次側鎖交磁束の時間的変化を二次側の誘導
起電力として検出する従来のようなコイル状の変流器で
は直流電流の検出ができないことから、時間的変化の有
無にかかわらず磁束の大きさを検出できる素子、例えば
ホール素子を組み込んだ変流器を使用することで、配電
線に流れる直流電流が検出可能となる。
On the other hand, as a DC current detector for detecting a DC current flowing through a distribution line by applying a DC voltage from the DC power supply, a transformer for detecting the magnitude of magnetic flux generated around the distribution line through which the DC current flows. Use a sink. Since a direct current flows through the primary side of this current transformer, there is no temporal change in the magnetic flux. Since a DC current cannot be detected by a conventional coiled current transformer that detects the temporal change of the primary side interlinkage magnetic flux as an induced electromotive force on the secondary side, it is not possible to detect the DC current regardless of the temporal change. By using an element capable of detecting the size, for example, a current transformer incorporating a Hall element, the direct current flowing through the distribution line can be detected.

【0013】ところで、配電線の地絡事故には、一般的
に、配電線の対地電圧の高低にかかわらず常に絶縁の悪
い抵抗地絡と、配電線の対地電圧が低い場合に絶縁がよ
く、その対地電圧が高い場合に絶縁が悪くなるギャップ
地絡とがある。
By the way, in the case of a ground fault of a distribution line, generally, a resistance ground fault having poor insulation regardless of the level of the ground voltage of the distribution line and good insulation when the ground voltage of the distribution line is low, There is a gap ground fault in which insulation deteriorates when the voltage to ground is high.

【0014】前記構成における直流電源に、事故区間の
配電線の対地電圧を表示する電圧計を設けば、その電圧
計の電圧値指示により抵抗地絡とギャップ地絡との特定
が可能となる。つまり、直流電源により事故区間の配電
線に直流電圧を印加すると、抵抗地絡の場合、配電線と
大地との間に形成された対地静電容量への初期充電後、
略一定の対地電圧となるため、電圧計の表示は一定の電
圧値を指示する。これに対して、ギャップ地絡の場合、
配電線と大地との間に形成された対地静電容量での充放
電により、一定の周期ごとに対地電圧が変動するため、
電圧計の表示は一定の周期ごとに変動する電圧値を指示
することから、これら電圧計の電圧値指示の違いにより
抵抗地絡とギャップ地絡との特定が可能となる。
If a voltmeter for displaying the ground voltage of the distribution line in the faulty section is provided in the DC power source in the above configuration, the resistance ground fault and the gap ground fault can be specified by the voltage value instruction of the voltmeter. In other words, if a DC voltage is applied to the distribution line in the fault area by a DC power supply, in the case of resistance ground fault, after initial charging to the ground capacitance formed between the distribution line and ground,
Since the voltage to ground is approximately constant, the voltmeter display indicates a constant voltage value. On the other hand, in the case of a gap ground fault,
Due to charging and discharging with the ground capacitance formed between the distribution line and the ground, the ground voltage changes at regular intervals,
Since the display of the voltmeter indicates a voltage value that fluctuates at regular intervals, it is possible to specify the resistance ground fault and the gap ground fault by the difference in the voltage value indication of these voltmeters.

【0015】[0015]

【発明の実施の形態】本発明に係る配電線事故探査装置
の実施形態を以下に詳述する。図1は三相の配電線1
(U相、V相、W相)に配電線事故探査装置を接続した
状態を示す等価回路であり、図2は三相の配電線1に接
続した配電線事故探査装置の概略構成図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a distribution line accident exploration apparatus according to the present invention will be described in detail below. Figure 1 shows a three-phase distribution line 1
FIG. 2 is an equivalent circuit showing a state in which a distribution line accident exploration device is connected to (U phase, V phase, W phase), and FIG. 2 is a schematic configuration diagram of the distribution line accident exploration device connected to the three-phase distribution line 1. .

【0016】図1および図2に示す実施形態の配電線事
故探査装置は、例えば特別高圧(22kV)の配電線1
に地絡事故が発生した場合、変電所の再閉路により地絡
事故の発生地点を含む事故区間を配電線1の健全区間か
ら自動区分開閉器により自動的に切り離し、その配電線
1の事故区間について地絡事故の発生地点を探査して特
定するものであり、送信器2と受信器3とで構成され
る。図では、二種類の地絡事故のうち、配電線1の対地
電圧の高低にかかわらず常に絶縁の悪い抵抗地絡4を実
線で示し、配電線1の対地電圧が低い場合に絶縁がよ
く、その対地電圧が高い場合に絶縁が悪くなるギャップ
地絡5を破線で示している。
The distribution line accident exploration apparatus of the embodiment shown in FIGS. 1 and 2 is, for example, a special high voltage (22 kV) distribution line 1
When a ground fault occurs in the substation, the fault section including the point where the ground fault occurs due to the reclosing of the substation is automatically separated from the sound section of the distribution line 1 by the automatic division switch, and the fault section of the distribution line 1 Is to search and identify the occurrence point of the ground fault and is composed of a transmitter 2 and a receiver 3. In the figure, among two types of ground fault accidents, the resistance ground fault 4 with poor insulation is always shown by a solid line regardless of the level of the ground voltage of the distribution line 1, and the insulation is good when the ground voltage of the distribution line 1 is low, A broken line shows a gap ground fault 5 in which insulation is deteriorated when the ground voltage is high.

【0017】送信器2は、健全区間から切り離された事
故区間の配電線1の任意の地点に接続され、その事故区
間の配電線1に直流電圧を印加する直流電源6を備え、
受信器3は、直流電源6による直流電圧の印加でもって
配電線1に流れる直流電流を検出する直流電流検出器7
とを備えている。
The transmitter 2 is connected to an arbitrary point of the distribution line 1 in the accident section separated from the sound section, and includes a DC power supply 6 for applying a DC voltage to the distribution line 1 in the accident section.
The receiver 3 includes a DC current detector 7 that detects a DC current flowing through the distribution line 1 by applying a DC voltage from the DC power supply 6.
It has and.

【0018】ここで、三相の配電線1について地絡事故
の探査を実行するに際しては、送信器2をリード線8に
より配電線1のすべての相(U相、V相、W相)に接続
する。この配電線1への送信器2の接続は、リード線8
の先端に設けられたワニ口クリップ等の接続クランプ
を、電柱の碍子近傍などで配電線1の芯線部やアークホ
ーン金属部などの導体部分に挟着することにより実現さ
れる。この送信器2により配電線1の各相に直流電圧を
同時に印加するようにしている。
Here, when the ground fault is searched for the three-phase distribution line 1, the transmitter 2 is connected to all the phases (U phase, V phase, W phase) of the distribution line 1 by the lead wire 8. Connecting. The transmitter 2 is connected to the distribution line 1 by using the lead wire 8
It is realized by sandwiching a connection clamp such as an alligator clip provided at the tip of the connector to a conductor portion such as a core wire portion of the distribution line 1 or an arc horn metal portion near the insulator of the electric pole. A DC voltage is simultaneously applied to each phase of the distribution line 1 by the transmitter 2.

【0019】一方、受信器3は直流電流検出器7を内蔵
した頭部9とその頭部9から延びる操作棒10からな
り、その頭部9を配電線1に引掛け係止することにより
前記直流電流検出器7を配電線1に接続することが可能
となっている。なお、この受信器3は、前述した送信器
2と異なり、三相の配電線1の各相について一本ずつ個
別の電流検出測定が可能なようにしている(図ではV相
に接続した状態)。また、地絡事故を探査するために
は、直流電源6を有する送信器2の接続点と地絡事故の
地点(以下、地絡事故点と称す)との間の任意の測定点
(図中、例えば実線で示す測定点)と、前記送信器2の
接続点と地絡事故点の二地点間以外の任意の測定点(図
中、例えば破線で示す測定点)に受信器3を選択的に接
続する必要がある。
On the other hand, the receiver 3 comprises a head 9 having a built-in DC current detector 7 and an operating rod 10 extending from the head 9, and the head 9 is hooked on the distribution line 1 to be locked. It is possible to connect the DC current detector 7 to the distribution line 1. Note that, unlike the transmitter 2 described above, the receiver 3 enables individual current detection and measurement for each phase of the three-phase distribution line 1 (in the figure, it is connected to the V phase). ). In addition, in order to search for a ground fault accident, an arbitrary measurement point (in the figure) between the connection point of the transmitter 2 having the DC power supply 6 and the ground fault accident point (hereinafter referred to as the ground fault accident point). , The receiver 3 can be selectively used at any measurement point (for example, a measurement point indicated by a broken line in the figure) other than between the connection point of the transmitter 2 and the ground fault accident point. Need to be connected to.

【0020】課電装置としての送信器2は、特別高圧
(22kV)の配電線1において使用する場合、最大1
8kV(≒22÷√3×√2)以上の高電圧を生成する
直流高圧電源6を具備する。この送信器2で配電線1に
印加する直流電圧は、配電線1の送電圧に応じて設定さ
れ、33kVの配電線1であれば、最大27kV(≒3
3÷√3×√2)以上の高電圧を生成する直流高圧電源
6を使用することになる。
The transmitter 2 as a power supply device has a maximum of 1 when used in the distribution line 1 of extra high voltage (22 kV).
A DC high voltage power supply 6 for generating a high voltage of 8 kV (≈22 ÷ √3 × √2) or more is provided. The DC voltage applied to the distribution line 1 by the transmitter 2 is set according to the transmission voltage of the distribution line 1, and if the distribution line 1 is 33 kV, a maximum of 27 kV (≈3
The DC high-voltage power supply 6 that generates a high voltage of 3 ÷ √3 × √2) or more is used.

【0021】この送信器2で使用される直流高圧電源6
は、図3に示すように筐体11に設けられたアース端子
12と高圧出力端子13との間に接続された直流高圧発
生回路14とデジタルメータ15(デジタル式電圧計)
からなり、この直流高圧発生回路14と高圧出力端子1
3との間に制限抵抗16を介挿している。この直流高圧
発生回路14と制限抵抗16との直列回路にはアナログ
メータ17(アナログ式電圧計)が並列に接続されてい
る。筐体11に設けられた入力端子18と直流高圧発生
回路14との間にDC/ACコンバータ19を接続して
いる。
DC high-voltage power supply 6 used in this transmitter 2
Is a DC high-voltage generating circuit 14 and a digital meter 15 (digital voltmeter) connected between a ground terminal 12 and a high-voltage output terminal 13 provided on the housing 11 as shown in FIG.
This DC high-voltage generating circuit 14 and high-voltage output terminal 1
A limiting resistor 16 is interposed between the limiting resistor 16 and the resistor 3. An analog meter 17 (analog voltmeter) is connected in parallel to the series circuit of the DC high voltage generating circuit 14 and the limiting resistor 16. A DC / AC converter 19 is connected between the input terminal 18 provided on the housing 11 and the DC high voltage generation circuit 14.

【0022】図4は送信器2の前面に設けられた操作パ
ネルを示し、前記デジタルメータ15およびアナログメ
ータ17、電源スイッチ20、入力端子18が配置され
ている。なお、高圧出力端子13およびアース端子12
は例えば筐体11の背面に配設されている。
FIG. 4 shows an operation panel provided on the front surface of the transmitter 2, in which the digital meter 15 and analog meter 17, a power switch 20, and an input terminal 18 are arranged. The high voltage output terminal 13 and the ground terminal 12
Is disposed on the back surface of the housing 11, for example.

【0023】この種の配電線事故探査装置の使用形態で
は、山奥などの僻地における配電線1で地絡事故が発生
した場合、その配電線1の事故区間まで配電線事故探査
装置を車などで搬送することができ、また、その事故区
間においても、作業員自身が配電線事故探査装置を移送
できるように可搬式とすることが必要である。この点
で、この実施形態の配電線事故探査装置では、送信器2
に直流高圧電源6を用いた直流課電方式を採用したこと
により、従来のパルス課電方式と異なり、配電線と大地
間に形成される対地静電容量が存在しても、直流高圧電
源6の出力レベルを増大させることなく、検出可能なレ
ベルの直流電流が地絡事故の発生地点に流れるため、直
流高圧電源6の大型化を回避でき、しかも、直流高圧電
源6を構成する回路部品の選定によりその直流高圧電源
6の回路構成を簡素化できることから、直流高圧電源6
の小型軽量化が図れる。この送信器2のコンパクト軽量
化により、現場への運搬や移動に大型車両を必要とせ
ず、通常の作業車でも容易となり、その取り扱い性の向
上が図れる。
In the usage pattern of this type of distribution line accident exploration device, when a ground fault occurs on the distribution line 1 in a remote area such as a mountainous area, the distribution line accident exploration device is used up to the accident section of the distribution line 1 by a car or the like. It is necessary to be transportable so that the worker himself / herself can transfer the distribution line accident exploration device even in the accident section. In this respect, in the distribution line accident exploration apparatus of this embodiment, the transmitter 2
By adopting the DC charging method using the DC high-voltage power supply 6 in the above, unlike the conventional pulse charging method, even if the ground capacitance formed between the distribution line and the ground exists, the DC high-voltage power supply 6 Since a DC current of a detectable level flows to the point of occurrence of a ground fault without increasing the output level of, the DC high-voltage power supply 6 can be prevented from becoming large, and the circuit components of the DC high-voltage power supply 6 can be prevented. Since the circuit configuration of the DC high-voltage power supply 6 can be simplified by selection, the DC high-voltage power supply 6
Can be made smaller and lighter. By making the transmitter 2 compact and lightweight, a large vehicle is not required for transportation or movement to the site, and it becomes easy even for a normal work vehicle, and its handleability can be improved.

【0024】なお、この送信器2では、図3に示すよう
に高圧出力端子13とアース端子12との間にスイッチ
21を介して放電抵抗22を接続している。この放電抵
抗22は送信器2の安全装置としての機能を発揮する。
つまり、配電線1と大地との間の対地静電容量が大きい
場合、送信器2により高電圧を印加した後、例えば作業
完了によりその送信器2の出力を低下させても配電線1
に高電圧が長時間充電されているため、作業員が誤って
配電線1に接触すると感電事故が発生する虞がある。そ
のため、送信器2の電源をオフすると自動的にスイッチ
21がオンして高圧出力端子13とアース端子12間が
放電抵抗22を介して接地されることになり、配電線1
の対地静電容量に蓄えられた電荷が放電され、配電線1
の充電電圧を強制的に降下させることができるようにな
っている。
In the transmitter 2, as shown in FIG. 3, a discharge resistor 22 is connected between the high voltage output terminal 13 and the ground terminal 12 via a switch 21. The discharge resistor 22 functions as a safety device for the transmitter 2.
That is, when the ground capacitance between the distribution line 1 and the ground is large, even if the output of the transmitter 2 is reduced after the work is completed after applying a high voltage by the transmitter 2, the distribution line 1
Since the high voltage is charged for a long time, there is a possibility that an electric shock accident may occur if a worker accidentally contacts the distribution line 1. Therefore, when the power of the transmitter 2 is turned off, the switch 21 is automatically turned on and the high voltage output terminal 13 and the ground terminal 12 are grounded via the discharge resistor 22.
The electric charge stored in the ground capacitance of the
The charging voltage of can be forcibly reduced.

【0025】送信器2のデジタルメータ15は直流高圧
発生回路16の出力電圧、例えば20kVを表示し、ア
ナログメータ17は配電線1と大地との間の対地電圧を
表示する。前述したようにこの送信器2は山奥などの僻
地における配電線1での地絡事故を探査する時に使用さ
れることが多く、そのため、電源としては車の車載バッ
テリ(DC12V)を使用すればよい。従って、入力端
子18に接続された車載バッテリからのDC12VをD
C/ACコンバータ19により昇圧して交流変換し、そ
のAC100Vを直流高圧発生回路14により例えばD
C20kVに昇圧して直流変換する。
The digital meter 15 of the transmitter 2 displays the output voltage of the DC high voltage generating circuit 16, for example, 20 kV, and the analog meter 17 displays the ground voltage between the distribution line 1 and the ground. As described above, the transmitter 2 is often used when searching for a ground fault in the distribution line 1 in a remote area such as a mountain, and therefore, a vehicle-mounted battery (DC12V) may be used as a power source. . Therefore, DC12V from the vehicle-mounted battery connected to the input terminal 18
The C / AC converter 19 boosts the voltage to convert it into AC, and the AC 100V is converted into a DC voltage by the DC high-voltage generation circuit 14,
C20kV is boosted and converted to DC.

【0026】一方、受信器3は、前記送信器2による直
流電圧の印加でもって配電線1に流れる直流電流を検出
する直流電流検出器7として、その直流電流が流れる配
電線1の周囲に発生する磁束の大きさを検出する変流器
を用いる。この変流器は、配電線1に流れる直流電流を
検出することができるように磁束の大きさを検出するホ
ール素子を鉄心に組み込んだクランプ式変流器を使用す
る。ここで、ホール素子とは、半導体薄片に電流を流
し、それと垂直方向に磁界を加えると電流および磁界と
垂直方向に電圧が発生する現象(ホール効果)を利用
し、配電線1に流れた直流電流により発生した磁界を電
圧に変換する磁気(電流)センサのことである。
On the other hand, the receiver 3 serves as a direct current detector 7 for detecting a direct current flowing through the distribution line 1 by the application of the direct current voltage by the transmitter 2 and is generated around the distribution line 1 through which the direct current flows. A current transformer that detects the magnitude of the magnetic flux is used. This current transformer uses a clamp type current transformer in which an Hall element for detecting the magnitude of magnetic flux is incorporated in an iron core so that a direct current flowing through the distribution line 1 can be detected. Here, the Hall element is a direct current flowing through the distribution line 1 utilizing a phenomenon (Hall effect) in which a current is applied to a semiconductor thin piece and a voltage is generated in a direction perpendicular to the magnetic field when a magnetic field is applied in a direction perpendicular thereto. A magnetic (current) sensor that converts a magnetic field generated by an electric current into a voltage.

【0027】この受信器3は、図5(a)〜(c)に示
すように配電線1に引掛け係止される頭部9と、その頭
部9から延びる繊維強化プラスチック(FRP)製の絶
縁性操作棒10とから構成されている。この受信器3の
使用時には、高所作業車に搭乗した作業員が操作棒10
の最後端部分を把持することにより高所にある配電線1
に引掛け係止することになる。なお、この操作棒10
は、径の異なる複数本の絶縁筒を手動で軸方向に伸縮可
能に連結した延竿式や継手式のものでも可能であり、そ
の伸縮時の固定は、各絶縁筒の端部のジョイント部材を
手動で回転させて締め付けることで行えばよい。
As shown in FIGS. 5A to 5C, the receiver 3 is made of a fiber reinforced plastic (FRP) extending from the head 9 which is hooked and locked to the distribution line 1. And the insulating operating rod 10 of FIG. When the receiver 3 is used, a worker who is on a work vehicle at an aerial position operates the operating rod 10
Distribution line 1 at a high place by gripping the rearmost part of
It will be hooked and locked on. The operating rod 10
Can be a rod type or a joint type in which multiple insulating cylinders with different diameters are manually connected to each other so that they can be expanded and contracted in the axial direction. It can be done by manually rotating and tightening.

【0028】この受信器3の頭部9には、図6に示すよ
うに直流電流検出器7であるクランプ式変流器が内蔵さ
れ、その下部に配電線1が挿入される切り欠き凹部23
が下方開口で形成され、その切り欠き凹部23の形成位
置に前記クランプ式変流器の開閉可能なリング形状の磁
界検出部24が対応して配置されている。図示しない
が、前記操作棒10を軸中心に正逆回転させることによ
り直流電流検出器7の磁界検出部24が切り欠き凹部2
3内で開閉動作するような連動機構を内蔵しており、不
安定な柱上作業においても微小電流の計測に悪影響誤差
を及ぼさないように配慮している。なお、受信器3は屋
外で使用されることから、直流電流検出器7を頭部カバ
ーで覆う防滴構造としており、防水目的から直流電流検
出器7の磁界検出部24の開閉部分を下向きに配置して
いる。
As shown in FIG. 6, a clamp type current transformer, which is a DC current detector 7, is built in the head 9 of the receiver 3, and a cutout recess 23 into which the distribution line 1 is inserted is provided under the clamp current transformer.
Is formed by a downward opening, and a ring-shaped magnetic field detecting portion 24 of the clamp type current transformer which can be opened and closed is arranged correspondingly at the position where the cutout concave portion 23 is formed. Although not shown, the magnetic field detecting section 24 of the DC current detector 7 is cut out by rotating the operating rod 10 in the forward and reverse directions about the axis.
It has a built-in interlocking mechanism that opens and closes inside the unit 3 so that it does not adversely affect the measurement of minute currents even during unstable pole work. Since the receiver 3 is used outdoors, it has a drip-proof structure in which the direct current detector 7 is covered with a head cover, and the opening / closing part of the magnetic field detecting portion 24 of the direct current detector 7 is directed downward for waterproofing purposes. It is arranged.

【0029】また、受信器3の頭部9には、図7に示す
ように直流電流検出器7の他にその直流電流検出器7に
接続されたレベル検出回路25が内蔵され、そのレベル
検出回路25の出力に、配電線1に流れる直流電流が所
定の検出レベル以上の大きさであれば発光し、その直流
電流の方向によりいずれかが発光する赤色ランプ26お
よび緑色ランプ27と、配電線1に流れる直流電流が所
定の検出レベル以上の大きさであれば発音するブザー2
8とが設けられている。これら赤色ランプ26および緑
色ランプ27を配設したランプ表示部29とブザー28
は、受信器3の頭部9を配電線1に引掛け係止した時に
下方から目視確認できるように頭部9の下面に配設され
ている〔図5(c)および図6参照〕。
Further, as shown in FIG. 7, the head 9 of the receiver 3 has a built-in level detection circuit 25 connected to the DC current detector 7 in addition to the DC current detector 7, and the level detection circuit 25 detects the level. At the output of the circuit 25, a red lamp 26 and a green lamp 27, which emit light if the direct current flowing through the distribution line 1 has a magnitude equal to or higher than a predetermined detection level, and one of which emits light depending on the direction of the direct current, and the distribution line. Buzzer 2 that sounds if the DC current flowing through 1 is above a predetermined detection level
And 8 are provided. A lamp display portion 29 provided with the red lamp 26 and the green lamp 27 and a buzzer 28
Is arranged on the lower surface of the head 9 so that it can be visually confirmed from below when the head 9 of the receiver 3 is hooked and locked to the distribution line 1 (see FIGS. 5C and 6).

【0030】その他、レベル検出回路25の動作電圧を
印加するための電池30、抵抗地絡とギャップ地絡とで
ランプ26,27が点灯するレベル検出回路25の検出
レベルを調整するためのゼロ調整器31が設けられてい
る。このゼロ調整器31は、ホール素子を鉄心に組み込
んだ変流器の場合、配電線1に流れる直流電流による磁
界の検出後に鉄心が完全に消磁されず僅かな磁気が残存
しているため、その残存磁気によるゼロ点(直流電流が
零でランプが消灯している状態)のずれを補正するもの
である。
In addition, the battery 30 for applying the operating voltage of the level detection circuit 25, and zero adjustment for adjusting the detection level of the level detection circuit 25 in which the lamps 26 and 27 are turned on by the resistance ground fault and the gap ground fault. A container 31 is provided. In the case of the current transformer in which the Hall element is incorporated in the iron core, the zero adjuster 31 does not completely demagnetize the iron core after detection of the magnetic field due to the direct current flowing through the distribution line 1, and thus a slight magnetism remains. It is intended to correct the deviation of the zero point (state in which the direct current is zero and the lamp is off) due to the residual magnetism.

【0031】さらに、ゼロ調整、抵抗地絡時の感度とギ
ャップ地絡時の感度を切り換えるための設定スイッチ3
2が設けられている。抵抗地絡時には配電線1に流れる
直流電流が小さいので高感度に設定する必要があるのに
対して、ギャップ地絡時には配電線1に大きな直流電流
が流れるので低感度に設定する必要がある。図8に示す
ようにこれらゼロ調整器31(ボリューム式)、設定ス
イッチ32(ダイヤル式)と電源スイッチ33とは受信
器3の頭部9側面に配設されている〔図5(b)および
図6参照〕。
Further, a setting switch 3 for changing the sensitivity between zero adjustment, resistance ground fault and sensitivity in gap ground fault.
Two are provided. In the case of a resistance ground fault, the direct current flowing through the distribution line 1 is small, so it is necessary to set it to high sensitivity, whereas in the case of a gap ground fault, a large direct current flows in the distribution line 1, so it is necessary to set it to low sensitivity. As shown in FIG. 8, the zero adjuster 31 (volume type), the setting switch 32 (dial type), and the power switch 33 are arranged on the side surface of the head 9 of the receiver 3 [FIG. See FIG. 6].

【0032】以上で説明した構成からなる実施形態の配
電線事故探査装置による地絡事故点の探査作業は以下の
要領でもって行われる。まず、配電線1に地絡事故が発
生した場合、変電所の再閉路により地絡事故点を含む事
故区間を配電線1の健全区間から自動区分開閉器により
自動的に切り離し、その配電線1の事故区間について地
絡事故点の探査を開始する。この地絡事故点の探査を開
始するに際しては、送信器2の高圧出力端子13から延
びるリード線8を、健全区間から切り離された事故区間
の配電線1の任意の地点で三相すべてに接続すると共
に、アース端子12から延びるリード線34をアース接
続する(図3参照)。一方、受信器2を三相の配電線1
の各相ずつに順次接続して地絡事故点を探査することに
なる。図9では三相の配電線1のうち、W相の配電線1
について地絡事故が発生し、その地絡事故点を探査する
場合を示しているが、他のU相、V相の配電線1につい
て地絡事故が発生した場合も同様であり、以下のような
探査作業を繰り返すことになる。この探査作業の要領
は、地絡事故が抵抗地絡4の場合(図9および図10参
照)とギャップ地絡5の場合(図11および図12参
照)とに分けて詳述する。
The search operation of the ground fault accident point by the distribution line accident search device of the embodiment having the above-described configuration is performed in the following manner. First, when a ground fault occurs on the distribution line 1, the fault section including the ground fault accident point is automatically separated from the sound section of the distribution line 1 by the automatic division switch by the reclosing of the substation. Start the ground fault accident point exploration for the accident section. When starting the search for this ground fault accident point, connect the lead wire 8 extending from the high voltage output terminal 13 of the transmitter 2 to all three phases at an arbitrary point of the distribution line 1 in the accident section separated from the sound section. At the same time, the lead wire 34 extending from the ground terminal 12 is grounded (see FIG. 3). On the other hand, the receiver 2 is connected to the three-phase distribution line 1
Will be sequentially connected to each phase to search the ground fault accident point. In FIG. 9, among the three-phase distribution lines 1, the W-phase distribution line 1
Shows the case where a ground fault accident occurs and the ground fault accident point is searched, but the same applies when a ground fault accident occurs for another U-phase and V-phase distribution line 1, as follows. The exploration work will be repeated. The procedure of this exploration work will be described in detail when the ground fault is a resistance ground fault 4 (see FIGS. 9 and 10) and a gap ground fault 5 (see FIGS. 11 and 12).

【0033】(抵抗地絡の場合)図9(a)に示すよう
にW相の配電線1のある地点、例えばD地点で抵抗地絡
4が発生した場合、事故区間の任意の地点、例えばB地
点で送信器2を設置し、三相すべて(U相、V相および
W相)の配電線1と大地間に高電圧を印加する〔図10
(a)参照〕。この時、各相の配電線1と大地間には対
地静電容量35,36が存在するが、W相の配電線1に
抵抗地絡4が発生しているため、W相(事故相)の配電
線1については送信器2−配電線1−抵抗地絡4−大地
−送信器2からなる閉回路が形成されるので、配電線1
のB地点(送信器2の接続点)とD地点(地絡事故点)
間では直流電流Iが流れる〔図10(c)参照〕。一
方、U相およびV相(健全相)の配電線1については地
絡事故が発生していないので、直流電流Iが流れない
〔図10(d)参照〕。なお、U相およびV相の配電線
1が例えば変圧器(図示せず)の一次巻線により電気的
に接続された状態にあったとしても、配電線1およびリ
ード線8に比べて抵抗が極めて大きいため、直流電流I
がほとんど流れない。
(In case of resistance ground fault) As shown in FIG. 9A, when a resistance ground fault 4 occurs at a certain point of the W-phase distribution line 1, for example, point D, an arbitrary point in the accident section, for example, The transmitter 2 is installed at the point B and a high voltage is applied between the distribution line 1 of all three phases (U phase, V phase and W phase) and the ground [Fig.
(See (a)]. At this time, the ground capacitances 35 and 36 exist between the distribution line 1 of each phase and the ground, but since the resistance ground fault 4 occurs in the distribution line 1 of the W phase, the W phase (accident phase) As for the distribution line 1, the closed circuit consisting of the transmitter 2-distribution line 1-resistance ground fault 4-ground-transmitter 2 is formed.
B point (connection point of transmitter 2) and D point (ground fault point)
A direct current I flows between them (see FIG. 10C). On the other hand, since no ground fault has occurred in the U-phase and V-phase (sound phase) distribution lines 1, the direct current I does not flow [see FIG. 10 (d)]. Even if the U-phase and V-phase distribution lines 1 are electrically connected by, for example, a primary winding of a transformer (not shown), the resistance is higher than that of the distribution lines 1 and the lead wires 8. DC current I because it is extremely large
Hardly flows.

【0034】送信器2により高電圧を印加した状態で、
W相(事故相)の配電線1の複数地点で受信器3を配電
線1に順次接続していく。まず、図9(a)に示すよう
にA地点で受信器3を配電線1に接続しても、A地点
(受信器3の測定点)がB地点(送信器2の接続点)と
D地点(地絡事故点)間の直流電流Iの通過経路以外で
あるため、そのA地点では直流電流Iが流れていない。
従って、受信器3の直流電流検出器7により直流電流I
が検出されず、赤色ランプ26および緑色ランプ27は
発光せず、ブザー28も発音しないことから、受信器3
のA地点よりも反B地点側(図ではA地点よりも左側を
意味する)には地絡事故点がないと判定できる。
With a high voltage applied by the transmitter 2,
The receiver 3 is sequentially connected to the distribution line 1 at a plurality of points on the distribution line 1 of the W phase (accident phase). First, as shown in FIG. 9A, even if the receiver 3 is connected to the distribution line 1 at the point A, the point A (the measurement point of the receiver 3) becomes the point B (the connection point of the transmitter 2) and the point D. The direct current I does not flow at the point A because it is not the passage of the direct current I between the points (ground fault accident points).
Therefore, the direct current detector 7 of the receiver 3 causes the direct current I
Is not detected, the red lamp 26 and the green lamp 27 do not emit light, and the buzzer 28 does not sound.
It can be determined that there is no ground fault accident point on the side of the point B opposite to the point A (meaning the left side of the point A in the figure).

【0035】次に、図9(b)に示すように送信器2の
B地点から地絡事故点であるD地点までの任意の地点、
例えばC地点で受信器3を配電線1に接続すると、前述
したような閉回路が形成されていることから、C地点
(受信器3の測定点)では直流電流Iが流れているの
で、受信器3の直流電流検出器7により所定の検出レベ
ル以上の直流電流Iが検出されて、赤色ランプ26が発
光し、かつ、ブザー28も発音することから、受信器3
のC地点よりも反B地点側(図ではC地点よりも右側を
意味する)に地絡事故点があると判定できる。
Next, as shown in FIG. 9B, an arbitrary point from point B of the transmitter 2 to point D which is the ground fault accident point,
For example, if the receiver 3 is connected to the distribution line 1 at the point C, the DC current I is flowing at the point C (measurement point of the receiver 3) because the closed circuit as described above is formed. The direct current detector 7 of the receiver 3 detects a direct current I above a predetermined detection level, the red lamp 26 emits light, and the buzzer 28 also sounds, so that the receiver 3
It can be determined that there is a ground fault accident point on the side opposite to the point C of point B (meaning the right side of the point C in the figure).

【0036】さらに、図9(c)に示すように地絡事故
点であるD地点を越えた任意の地点、例えばE地点で受
信器3を配電線1に接続すると、そのE地点(受信器3
の測定点)がB地点(送信器2の接続点)とD地点(地
絡事故点)間の直流電流Iの通過経路以外であるため、
そのE地点では直流電流Iが流れていない。従って、受
信器3の直流電流検出器7によりその直流電流Iが検出
されず、赤色ランプ26および緑色ランプ27は発光せ
ず、ブザー28も発音しないことから、受信器3のE地
点よりも反B地点側(図ではE地点よりも右側を意味す
る)には地絡事故点がないと判定できるので、前回探査
した地点であるC地点から今回探査したE地点の間に地
絡事故点があると特定できる。
Further, as shown in FIG. 9C, when the receiver 3 is connected to the distribution line 1 at an arbitrary point beyond the point D which is the ground fault accident point, for example, the point E, the point E (receiver Three
Since the measurement point) is other than the passage of the DC current I between the point B (connection point of the transmitter 2) and the point D (ground fault point),
DC current I is not flowing at the point E. Therefore, the DC current I is not detected by the DC current detector 7 of the receiver 3, the red lamp 26 and the green lamp 27 do not emit light, and the buzzer 28 does not sound. Since it can be determined that there is no ground fault accident point on the B point side (meaning the right side of E point in the figure), there is a ground fault accident point between the C point, which was the previously searched point, and the E point, which was searched this time. Can be specified.

【0037】一方、送信器2のアナログメータ17で
は、W相の配電線1のB地点からD地点までの間で直流
電流Iが流れることにより、ほぼ一定値の対地電圧〔図
10(b)参照〕を表示するため、この電圧値の指示に
よりいずれかの相の配電線1に抵抗地絡4が発生してい
ることが判明する。
On the other hand, in the analog meter 17 of the transmitter 2, a DC current I flows from the point B to the point D of the W-phase distribution line 1 so that the ground voltage of a substantially constant value [Fig. 10 (b)]. It is clear that the resistance ground fault 4 has occurred in the distribution line 1 of any phase according to the indication of this voltage value.

【0038】なお、受信器3においても、受信器3の測
定点がB地点(送信器2の接続点)とD地点(地絡事故
点)間の直流電流Iの通過経路(例えばC地点)であれ
ば、赤色ランプ26が発光し、かつ、ブザー28も発音
し、また、受信器3の測定点が直流電流Iの通過経路以
外(例えばA地点、E地点)であれば、赤色ランプ26
および緑色ランプ27は発光せず、ブザー28も発音し
ないことから、抵抗地絡4であることが判明する。
In the receiver 3 as well, the measuring point of the receiver 3 is a passage path of the direct current I between the point B (connection point of the transmitter 2) and the point D (ground fault point) (for example, point C). If so, the red lamp 26 emits light and the buzzer 28 also sounds, and if the measurement point of the receiver 3 is other than the passage of the DC current I (for example, point A, point E), the red lamp 26.
Also, the green lamp 27 does not emit light, and the buzzer 28 does not generate any sound, which indicates that the resistance ground fault 4 has occurred.

【0039】(ギャップ地絡の場合)図11(a)に示
すようにW相の配電線1のある地点、例えばD地点でギ
ャップ地絡が発生した場合、事故区間の任意の地点、例
えばB地点で送信器2を設置し、三相すべて(U相、V
相およびW相)の配電線1と大地間に高電圧を印加する
〔図12(a)参照〕。W相(事故相)の配電線1につ
いては送信器2−配電線1−ギャップ地絡5−大地−送
信器2からなる閉回路が形成されるが、ギャップ地絡5
の場合、配電線1の対地電圧が低い場合には絶縁がよい
ので、送信器2による高電圧印加でもって、ギャップ地
絡5により形成された閉回路に直流電流がほとんど流れ
ず、W相の配電線1と大地間に存在する対地静電容量3
5,36が充電される。その対地静電容量35,36の
充電によりW相の配電線1の対地電圧が高くなると絶縁
が悪くなり、対地静電容量35,36に充電された電荷
がギャップ地絡5を介して大地に流れて放電電流が流れ
ることになる〔図12(c)参照〕。
(Gap Ground Fault) As shown in FIG. 11A, when a gap ground fault occurs at a certain point of the W-phase distribution line 1, for example, point D, an arbitrary point in the accident section, for example, B Install transmitter 2 at the point and use all three phases (U phase, V phase)
A high voltage is applied between the distribution line 1 of the phase and the W phase) and the ground [see FIG. 12 (a)]. For the W-phase (accident phase) distribution line 1, a closed circuit consisting of transmitter 2-distribution line 1-gap ground fault 5-ground-transmitter 2 is formed, but gap ground fault 5
In the case of, since the insulation is good when the ground voltage of the distribution line 1 is low, almost no DC current flows through the closed circuit formed by the gap ground fault 5 even when the transmitter 2 applies a high voltage, and the W phase Ground capacitance 3 existing between the distribution line 1 and the ground
5, 36 are charged. If the ground voltage of the W-phase distribution line 1 becomes high due to the charging of the ground electrostatic capacitances 35 and 36, the insulation becomes poor, and the charges charged in the ground electrostatic capacitances 35 and 36 reach the ground via the gap ground fault 5. As a result, the discharge current flows (see FIG. 12C).

【0040】送信器2により高電圧を印加した状態で、
W相(事故相)の配電線1の複数地点で受信器3を配電
線1に順次接続していく。まず、図11(a)に示すよ
うにA地点で受信器3を配電線1に接続しても、A地点
(受信器3の測定点)がB地点(送信器2の接続点)と
D地点(地絡事故点)間の直流電流Iの通過経路以外で
あるため、そのA地点では直流電流Iが流れていない。
従って、受信器3の直流電流検出器7により直流電流I
が検出されず、赤色ランプ26および緑色ランプ27は
発光せず、ブザー28も発音しないことから、受信器3
のA地点よりも反B地点側(図ではA地点よりも左側を
意味する)には地絡事故点がないと判定できる。
With a high voltage applied by the transmitter 2,
The receiver 3 is sequentially connected to the distribution line 1 at a plurality of points on the distribution line 1 of the W phase (accident phase). First, as shown in FIG. 11A, even if the receiver 3 is connected to the distribution line 1 at the point A, the point A (the measurement point of the receiver 3) becomes the point B (the connection point of the transmitter 2) and the point D. The direct current I does not flow at the point A because it is not the passage of the direct current I between the points (ground fault accident points).
Therefore, the direct current detector 7 of the receiver 3 causes the direct current I
Is not detected, the red lamp 26 and the green lamp 27 do not emit light, and the buzzer 28 does not sound.
It can be determined that there is no ground fault accident point on the side of the point B opposite to the point A (meaning the left side of the point A in the figure).

【0041】次に、図11(b)に示すように送信器2
のB地点から地絡事故点であるD地点までの任意の地
点、例えばC地点で受信器3を配電線1に接続した場
合、対地静電容量35,36の充電により対地電圧が高
くなると、C地点(受信器3の測定点)での受信器3に
は対地静電容量35,36に充電された電荷による放電
電流が流れるので、受信器3の直流電流検出器7により
所定の検出レベル以上の直流電流Iが検出されて、赤色
ランプ26が発光し、かつ、ブザー28も発音すること
から、受信器3のC地点よりも反B地点側(図ではC地
点よりも右側を意味する)に地絡事故点があると判定で
きる。
Next, as shown in FIG. 11B, the transmitter 2
When the receiver 3 is connected to the distribution line 1 at an arbitrary point from the point B to the point D which is the ground fault point, for example, the point C, when the ground voltage becomes high due to the charging of the ground capacitances 35 and 36, At the point C (measurement point of the receiver 3), a discharge current due to the charges charged in the ground electrostatic capacitances 35 and 36 flows through the receiver 3, so that the DC current detector 7 of the receiver 3 detects a predetermined detection level. Since the above-mentioned direct current I is detected, the red lamp 26 emits light, and the buzzer 28 also sounds, the side of the receiver 3 opposite to the point C (meaning the right side of the point C in the figure). It can be determined that there is a ground fault accident point in).

【0042】さらに、図11(c)に示すように地絡事
故点であるD地点を越えた任意の地点、例えばE地点で
受信器3を配電線1に接続した場合、対地静電容量3
5,36の充電により対地電圧が高くなると、E地点
(受信器3の測定点)での受信器3には、C地点での受
信器3と逆方向に対地静電容量36に充電された電荷に
よる放電電流が流れるので、受信器3の直流電流検出器
7により所定の検出レベル以上の直流電流I’が検出さ
れて、緑色ランプ27が発光し、かつ、ブザー28も発
音することから、受信器3のE地点よりも反B地点側
(図ではE地点よりも右側を意味する)には地絡事故点
がないと判定できるので、前回探査した地点であるC地
点から今回探査したE地点の間に地絡事故点があると特
定できる。
Further, as shown in FIG. 11 (c), when the receiver 3 is connected to the distribution line 1 at an arbitrary point beyond the point D which is the ground fault accident point, for example the point E, the ground capacitance 3
When the ground voltage became higher due to the charging of 5, 36, the ground capacitance 36 was charged in the receiver 3 at the point E (measurement point of the receiver 3) in the opposite direction to the receiver 3 at the point C. Since a discharge current due to electric charge flows, the DC current detector 7 of the receiver 3 detects a DC current I ′ of a predetermined detection level or higher, the green lamp 27 emits light, and the buzzer 28 also sounds. Since it can be determined that there is no ground fault accident point on the side opposite to the point B of the receiver 3 (meaning the right side of the point E in the figure), the point E searched this time from the point C, which was the last point searched. It can be specified that there is a ground fault accident point between the points.

【0043】一方、送信器2のアナログメータ17で
は、W相の配電線1と大地間の対地静電容量35,36
による充放電の繰り返しにより、W相の配電線1に流れ
る直流電流の変動があることから、電圧値が一定の周期
ごとに変動する対地電圧〔図12(b)参照〕を表示す
るため、この電圧値の指示(針の振れ)によりいずれか
の相の配電線1にギャップ地絡5が発生していることが
判明する。
On the other hand, in the analog meter 17 of the transmitter 2, the ground capacitances 35 and 36 between the W-phase distribution line 1 and the ground.
Since there is a change in the DC current flowing through the W-phase distribution line 1 due to the repetition of charging and discharging by, the ground voltage (see FIG. 12 (b)) whose voltage value changes in a constant cycle is displayed. It is found that a gap ground fault 5 has occurred in the distribution line 1 of any phase according to the voltage value instruction (needle deflection).

【0044】一方、U相およびV相(健全相)の配電線
1についてはギャップ地絡5が発生していないが、それ
ら配電線1と大地間の対地静電容量(図示せず)が存在
するので、その対地静電容量の放電電流が送信器2のリ
ード線8を介してW相(事故相)の配電線1に流れ込む
ため、緑色ランプ27が発光し、かつ、ブザー28も発
音することから、地絡事故が発生していない健全相であ
ることが判明する〔図10(d)参照〕。
On the other hand, no gap ground fault 5 is generated in the U-phase and V-phase (sound phase) distribution lines 1, but there is a ground capacitance (not shown) between the distribution line 1 and the ground. Therefore, the discharge current of the electrostatic capacitance to the ground flows into the distribution line 1 of the W phase (accident phase) via the lead wire 8 of the transmitter 2, so that the green lamp 27 emits light and the buzzer 28 also sounds. From this, it is found that the sound phase is a sound phase in which no ground fault has occurred (see FIG. 10D).

【0045】なお、受信器3においても、受信器3の測
定点がB地点(送信器2の接続点)とD地点(地絡事故
点)間の直流電流Iの通過経路(例えばC地点)であれ
ば、赤色ランプ26が発光し、かつ、ブザー28も発音
し、また、受信器3の測定点が地絡事故点を越えた地点
(例えばE地点)であれば、緑色ランプ27が発光し、
かつ、ブザー28も発音することから、ギャップ地絡5
であることが判明する。
In the receiver 3 as well, the measurement point of the receiver 3 is a passage path of the direct current I between the point B (connection point of the transmitter 2) and the point D (ground fault point) (for example, point C). If so, the red lamp 26 emits light and the buzzer 28 also sounds, and if the measurement point of the receiver 3 is a point beyond the ground fault accident point (for example, point E), the green lamp 27 emits light. Then
Moreover, since the buzzer 28 is also pronounced, the gap ground fault 5
Turns out to be

【0046】[0046]

【発明の効果】本発明によれば、配電線に発生した地絡
事故の地点を探査する配電線事故探査装置において、健
全区間から切り離された事故区間の配電線に直流電圧を
印加する直流電源を用いた直流課電方式を採用したこと
により、従来のパルス課電方式と異なり、配電線と大地
間に形成される対地静電容量が存在しても、直流電源の
出力レベルを増大させることなく、検出可能なレベルの
直流電流が地絡事故の発生地点に流れるため、直流電源
の大型化を回避でき、しかも、直流電源を構成する回路
部品の選定によりその直流電源の回路構成を簡素化でき
ることから、前記直流電源のコンパクト軽量化により配
電線事故探査装置の取り扱い性が大幅に向上して事故探
査作業を容易かつ迅速に実施でき、配電線事故探査装置
のコストダウンも図れてその実用的価値は大きい。
According to the present invention, in a distribution line fault exploration device for exploring a point of a ground fault accident occurring in a distribution line, a DC power source for applying a DC voltage to the distribution line in the fault section separated from the sound section. Different from the conventional pulse charging method by using the DC charging method, the output level of the DC power supply can be increased even if there is a ground capacitance formed between the distribution line and the ground. Since a DC current of a detectable level flows to the point of occurrence of a ground fault, the DC power supply can be prevented from increasing in size, and the circuit configuration of the DC power supply can be simplified by selecting the circuit components that make up the DC power supply. As a result, the DC power supply can be made compact and lightweight to greatly improve the handleability of the distribution line accident exploration device, and to easily and quickly perform accident exploration work, and also reduce the cost of the distribution line accident exploration device. Its practical value is is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態における配電線事故探査装置
の概略構成を示す等価回路図である。
FIG. 1 is an equivalent circuit diagram showing a schematic configuration of a distribution line accident exploration apparatus according to an embodiment of the present invention.

【図2】本発明の実施形態における配電線事故探査装置
の概略構成図である。
FIG. 2 is a schematic configuration diagram of a distribution line accident exploration device according to an embodiment of the present invention.

【図3】本発明の実施形態における配電線事故探査装置
の送信器を示す回路図である。
FIG. 3 is a circuit diagram showing a transmitter of a distribution line accident exploration device according to an embodiment of the present invention.

【図4】本発明の実施形態における配電線事故探査装置
の送信器の操作パネルを示す正面図である。
FIG. 4 is a front view showing an operation panel of the transmitter of the distribution line accident exploration apparatus according to the embodiment of the present invention.

【図5】(a)は本発明の実施形態における配電線事故
探査装置の受信器を示す側面図である。(b)は(a)
の正面図である。(c)は(b)の受信器の頭部の底面
図である。
FIG. 5A is a side view showing a receiver of the distribution line accident exploration device according to the embodiment of the present invention. (B) is (a)
FIG. (C) is a bottom view of the head of the receiver of (b).

【図6】本発明の実施形態における配電線事故探査装置
の受信器の概略構成を示す要部側面図である。
FIG. 6 is a side view of essential parts showing a schematic configuration of a receiver of the distribution line accident exploration device according to the embodiment of the present invention.

【図7】本発明の実施形態における配電線事故探査装置
の受信器を示す回路図である。
FIG. 7 is a circuit diagram showing a receiver of the distribution line accident exploration device according to the embodiment of the present invention.

【図8】本発明の実施形態における配電線事故探査装置
の受信器の操作パネルを示す正面図である。
FIG. 8 is a front view showing the operation panel of the receiver of the distribution line accident exploration apparatus according to the embodiment of the present invention.

【図9】配電線事故探査装置による地絡事故(抵抗地
絡)点の探査作業を説明するためのもので、(a)はA
地点、(b)はC地点、(c)はE地点に受信器をそれ
ぞれ接続した場合を示す回路図である。
FIG. 9 is a view for explaining a ground fault accident (resistive ground fault) point exploration work by a distribution line accident exploration device, where (a) is A
It is a circuit diagram which shows the case where a receiver is each connected to a point, (b) C point, and (c) E point.

【図10】配電線事故探査装置による地絡事故(抵抗地
絡)点の探査作業における電圧電流波形で、(a)は送
信器の出力電圧、(b)は配電線の対地電圧、(c)は
事故相の電流、(d)は健全相の電流をそれぞれ示す波
形図である。
FIG. 10 is a voltage / current waveform in a ground fault accident (resistance ground fault) point search operation by a distribution line accident detection device, where (a) is an output voltage of a transmitter, (b) is a ground voltage of a distribution line, and (c) is a waveform. ) Is a waveform diagram showing the current of the accident phase, and (d) is a waveform diagram showing the current of the sound phase.

【図11】配電線事故探査装置による地絡事故(ギャッ
プ地絡)点の探査作業を説明するためのもので、(a)
はA地点、(b)はC地点、(c)はE地点に受信器を
それぞれ接続した場合を示す回路図である。
FIG. 11 is for explaining a ground fault accident (gap ground fault) point exploration work by a distribution line accident exploration device.
Is a circuit diagram showing a case where a receiver is connected to point A, point (b) is point C, and point (c) is point E.

【図12】配電線事故探査装置による地絡事故(ギャッ
プ地絡)点の探査作業における電圧電流波形で、(a)
は送信器の出力電圧、(b)は配電線の対地電圧、
(c)は事故相の電流、(d)は健全相の電流をそれぞ
れ示す波形図である。
FIG. 12 is a voltage / current waveform in a ground fault accident (gap ground fault) point exploration work by a distribution line fault exploration device, (a)
Is the output voltage of the transmitter, (b) is the ground voltage of the distribution line,
(C) is a waveform diagram showing a fault phase current, and (d) is a sound phase current.

【符号の説明】[Explanation of symbols]

1 配電線 2 送信器 3 受信器 4 抵抗地絡 5 ギャップ地絡 6 直流電源 7 直流電流検出器 1 distribution line 2 transmitter 3 receiver 4 Resistance ground fault 5 Gap ground fault 6 DC power supply 7 DC current detector

フロントページの続き (72)発明者 大森 隆雄 兵庫県尼崎市尾浜町3丁目29番3号 長谷 川電機工業株式会社内 (72)発明者 山田 弘 兵庫県尼崎市尾浜町3丁目29番3号 長谷 川電機工業株式会社内 Fターム(参考) 2G033 AA02 AB01 AC02 AD19 AD20 AD21 AE09 AG10 5G004 AA02 AB01 BA01 CA01 DA01Continued front page    (72) Inventor Takao Omori             Hase, 3-29-3 Obamacho, Amagasaki City, Hyogo Prefecture             Kawa Electric Industry Co., Ltd. (72) Inventor Hiroshi Yamada             Hase, 3-29-3 Obamacho, Amagasaki City, Hyogo Prefecture             Kawa Electric Industry Co., Ltd. F term (reference) 2G033 AA02 AB01 AC02 AD19 AD20                       AD21 AE09 AG10                 5G004 AA02 AB01 BA01 CA01 DA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 配電線に発生した地絡事故の地点を探査
する配電線事故探査装置において、前記配電線の健全区
間から切り離された事故区間の配電線の任意の地点に接
続され、その事故区間の配電線に直流電圧を印加する直
流電源と、その直流電源の接続点と前記地絡事故の地点
との間の任意の測定点、または、前記直流電源の接続点
と地絡事故の地点の二地点間以外の任意の測定点に選択
的に接続され、前記直流電源による直流電圧の印加でも
って配電線に流れる直流電流を検出する直流電流検出器
とを備え、その直流電流検出器により検出された直流電
流の大きさまたは方向でもって地絡事故の地点の特定を
可能としたことを特徴とする配電線事故探査装置。
1. A distribution line accident exploration device for exploring a ground fault accident point in a distribution line, which is connected to an arbitrary point of a distribution line in an accident section separated from a sound section of the distribution line, and the accident DC power supply for applying DC voltage to the distribution line of the section, any measurement point between the connection point of the DC power supply and the point of the ground fault, or the connection point of the DC power supply and the point of the ground fault , Which is selectively connected to any measurement point other than between the two points, and is provided with a direct current detector for detecting a direct current flowing through the distribution line by applying a direct current voltage from the direct current power source, and the direct current detector A distribution line accident exploration device characterized in that it is possible to identify the location of a ground fault accident based on the magnitude or direction of the detected direct current.
【請求項2】 前記直流電源に、事故区間の配電線の対
地電圧を表示する電圧計を設け、その電圧計の電圧値指
示により抵抗地絡とギャップ地絡を特定可能としたこと
を特徴とする請求項1に記載の配電線事故探査装置。
2. The DC power supply is provided with a voltmeter for displaying a ground voltage of a distribution line in an accident section, and a resistance ground fault and a gap ground fault can be specified by a voltage value instruction of the voltmeter. The distribution line accident exploration device according to claim 1.
JP2001222862A 2001-07-24 2001-07-24 Power distribution accident searching apparatus Pending JP2003035740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222862A JP2003035740A (en) 2001-07-24 2001-07-24 Power distribution accident searching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222862A JP2003035740A (en) 2001-07-24 2001-07-24 Power distribution accident searching apparatus

Publications (1)

Publication Number Publication Date
JP2003035740A true JP2003035740A (en) 2003-02-07

Family

ID=19056279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222862A Pending JP2003035740A (en) 2001-07-24 2001-07-24 Power distribution accident searching apparatus

Country Status (1)

Country Link
JP (1) JP2003035740A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033131A (en) * 2005-07-25 2007-02-08 Chugoku Electric Power Co Inc:The Device for detecting grounding accident point on distribution line, and method of specifying grounding accident point using device
JP2010256134A (en) * 2009-04-23 2010-11-11 Chugoku Electric Power Co Inc:The Equipment for probing accident point
CN103543384A (en) * 2013-10-15 2014-01-29 国家电网公司 Method for determining bus ground faults
JP2015052568A (en) * 2013-09-09 2015-03-19 中国電力株式会社 Accident investigation device
JP2015053834A (en) * 2013-09-09 2015-03-19 中国電力株式会社 Current measuring instrument for standing body and accident survey method using the same
JP2015137854A (en) * 2014-01-20 2015-07-30 マルチ計測器株式会社 Insulation monitoring device
JP2016148564A (en) * 2015-02-12 2016-08-18 中国電力株式会社 Current detector
US9863997B2 (en) 2015-06-19 2018-01-09 Honeywell International Inc. Devices, methods, and systems for localizing a fault on a live cable
CN109782106A (en) * 2019-01-07 2019-05-21 邯郸钢铁集团有限责任公司 A kind of DC system earth fault lookup device and method
CN117949781A (en) * 2024-03-27 2024-04-30 国网山东省电力公司临朐县供电公司 Low-voltage line fault finding device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033131A (en) * 2005-07-25 2007-02-08 Chugoku Electric Power Co Inc:The Device for detecting grounding accident point on distribution line, and method of specifying grounding accident point using device
JP2010256134A (en) * 2009-04-23 2010-11-11 Chugoku Electric Power Co Inc:The Equipment for probing accident point
JP2015052568A (en) * 2013-09-09 2015-03-19 中国電力株式会社 Accident investigation device
JP2015053834A (en) * 2013-09-09 2015-03-19 中国電力株式会社 Current measuring instrument for standing body and accident survey method using the same
CN103543384A (en) * 2013-10-15 2014-01-29 国家电网公司 Method for determining bus ground faults
JP2015137854A (en) * 2014-01-20 2015-07-30 マルチ計測器株式会社 Insulation monitoring device
JP2016148564A (en) * 2015-02-12 2016-08-18 中国電力株式会社 Current detector
US9863997B2 (en) 2015-06-19 2018-01-09 Honeywell International Inc. Devices, methods, and systems for localizing a fault on a live cable
CN109782106A (en) * 2019-01-07 2019-05-21 邯郸钢铁集团有限责任公司 A kind of DC system earth fault lookup device and method
CN109782106B (en) * 2019-01-07 2021-03-09 邯郸钢铁集团有限责任公司 Direct current system ground fault searching device and method
CN117949781A (en) * 2024-03-27 2024-04-30 国网山东省电力公司临朐县供电公司 Low-voltage line fault finding device and method

Similar Documents

Publication Publication Date Title
JP2003035740A (en) Power distribution accident searching apparatus
CN108254658A (en) A kind of distribution earth fault searches instrument and lookup method
KR101399922B1 (en) Current transformer protector
CN208172087U (en) One kind is portable to test discharger
JP2005241297A (en) Withstand voltage test method of power equipment
CN112415429B (en) Medium voltage grounding fault intelligent diagnostic instrument
JP5501653B2 (en) Accident point search system
CN106532675B (en) A kind of harmonic elimination apparatus and harmonic elimination system
JP2001133497A (en) Phase-discriminating device of power distribution line
US4254374A (en) Cable tester
JP4848096B2 (en) Fault location method and apparatus for high voltage distribution lines
JP2014240810A (en) Fault point survey device and fault point survey method
CN109188186A (en) A kind of polarity of transformer detection method
JP4441720B2 (en) Failure point search device
KR100463450B1 (en) Apparatus for generating pulsating current signal and apparatus for ouputing sensed signal for detecting the position of an electricity leakage of power lines for lighting pole
CN205246811U (en) Portable line fault indicator tester
JP3285446B2 (en) Noise tester
CN106896335A (en) A kind of portable thread line fault indicator tester
KR200465727Y1 (en) Electric insulation monitoring system of ground feeding cable
CN106405201B (en) A kind of intellectual alarming in short range of electric power device
JP2010256135A (en) Equipment for probing accident point
JP3909410B2 (en) Simulated fault current generator and ground fault point indicator inspection device
JP2020112363A (en) Direct current electroscope
JPH06105279B2 (en) Distribution line ground fault accident point exploration method
JPS5912633Y2 (en) Transmitter for accident point detection

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031118