JP2003034578A - Silicon nitride-based composite sintered body and method for producing the same - Google Patents

Silicon nitride-based composite sintered body and method for producing the same

Info

Publication number
JP2003034578A
JP2003034578A JP2001222814A JP2001222814A JP2003034578A JP 2003034578 A JP2003034578 A JP 2003034578A JP 2001222814 A JP2001222814 A JP 2001222814A JP 2001222814 A JP2001222814 A JP 2001222814A JP 2003034578 A JP2003034578 A JP 2003034578A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
based composite
composite sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222814A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001222814A priority Critical patent/JP2003034578A/en
Priority to US10/311,604 priority patent/US6844282B2/en
Priority to CNB028013255A priority patent/CN100480214C/en
Priority to PCT/JP2002/003864 priority patent/WO2002085812A1/en
Priority to EP02718611A priority patent/EP1298106A4/en
Publication of JP2003034578A publication Critical patent/JP2003034578A/en
Priority to US11/031,994 priority patent/US7008893B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride-based composite sintered body having good mechanical properties in the range from room temperature to a low-to- medium temperature, a low coefficient of friction and good abrasion resistance, and to provide a method for producing the same. SOLUTION: The silicon nitride-based composite sintered body comprising silicon nitride, titanium nitride and carbide, silicon carbide and graphite or carbon, is characterized in that it has an average particle diameter of 100 nm or less and a coefficient of friction under no lubrication of 0.2 or less. The method for producing the silicon nitride-based composite sintered body is characterized in that grinding and mixing silicon nitride powders, sintering aid powders, titanium metal powders and graphite or carbon powders until the silicon nitride, titanium nitride and carbide, silicon carbide and graphite or carbon have an average particle diameter of 30 nm or less to form composite secondary particles, molding the composite secondary particles to form moldings, and sintering the moldings at a temperature of 1200-1600 deg.C under non-oxidizing atmosphere to form a sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種機構部材や切
削工具・摺動部材等に使用される高耐摩耗・低摩擦のセ
ラミック材料として、室温から中低温領域で優れた機械
的特性を有する窒化ケイ素焼結体及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a ceramic material having high wear resistance and low friction, which is used for various mechanical members, cutting tools, sliding members, etc., and has excellent mechanical properties in the range of room temperature to middle and low temperatures. The present invention relates to a silicon nitride sintered body and a method for manufacturing the same.

【0002】[0002]

【従来の技術】窒化ケイ素(Si34)は強度、靭性、
耐食性、耐酸化性、耐熱衝撃性において優れた材料であ
るために、切削工具やガスタービン、軸受等に幅広く使
用されている。さらに最近では、エンジン部品や精密部
品などの構造材料にも使用する研究が進められ、耐摩耗
性等の摩耗特性など性能レベルが苛酷になりつつある。
2. Description of the Related Art Silicon nitride (Si 3 N 4 ) is used for strength, toughness,
It is widely used in cutting tools, gas turbines, bearings, etc. because of its excellent corrosion resistance, oxidation resistance, and thermal shock resistance. Furthermore, recently, research has been conducted for use in structural materials such as engine parts and precision parts, and performance levels such as wear characteristics such as wear resistance are becoming severe.

【0003】例えば、高い耐摩耗性が要求されている特
定の自動車部品等の精密耐摩部品に窒化ケイ素系複合材
料を用いる場合には、超硬合金(WCからなる硬質粒子
とCo等の結合相とからなるサーメット材料)やハイス
のような従来の材料に比べ顕著に高い耐摩耗性が要求さ
れている。
For example, when a silicon nitride-based composite material is used for precision wear-resistant parts such as specific automobile parts which require high wear resistance, cemented carbide (hard particles made of WC and a binder phase such as Co) is used. It is required to have a significantly higher wear resistance than conventional materials such as cermet materials consisting of and HSS.

【0004】しかしながら、窒化珪素系の複合材料は、
これらの材料に比べ高価であるとともに、耐摩耗性は、
その価格レベルに見合うだけの満足したレベルにはない
のが現状である。
However, the silicon nitride-based composite material is
It is more expensive than these materials and wear resistance is
The current situation is that we are not satisfied with the price level.

【0005】なお、「窒化ケイ素系」とは、主結晶相と
して窒化ケイ素(Si34)および/又はサイアロンを
含むセラミックスを指す。また、「窒化ケイ素系の複合
材料」とは、窒化ケイ素系セラミックスを主結晶とする
マトリックス中に、それとは異なった成分を分散複合化
させた材料をいう。
The term "silicon nitride system" refers to a ceramic containing silicon nitride (Si 3 N 4 ) and / or sialon as a main crystal phase. Further, the "silicon nitride-based composite material" refers to a material in which a different component is dispersed and composited in a matrix having silicon nitride-based ceramics as a main crystal.

【0006】このような窒化ケイ素系材料においては、
その特性をより一層向上させるために様々な研究が行わ
れている。例えば、特開平11−139882号公報並
びに特開平11−139874号公報には、窒化ケイ素
粉末と金属チタン粉末とを窒素雰囲気中にて高加速度で
混合することにより、微細な窒化ケイ素粒子と窒化チタ
ン粒子とからなる複合粉末が得られ、この複合粉末を用
いることにより、窒化チタン粒子が窒化ケイ素の粒成長
を抑制し、微細な結晶構造で高強度の窒化ケイ素焼結体
を製造できることが報告されている。
In such a silicon nitride material,
Various studies have been conducted to further improve the characteristics. For example, in JP-A-11-139882 and JP-A-11-139874, fine silicon nitride particles and titanium nitride are obtained by mixing silicon nitride powder and titanium metal powder at high acceleration in a nitrogen atmosphere. It is reported that a composite powder consisting of particles and a titanium nitride particle can suppress grain growth of silicon nitride by using this composite powder, and a high-strength silicon nitride sintered body with a fine crystal structure can be produced. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述の
窒化ケイ素焼結体は高強度を示すものの、機械構造用材
料としての摩擦に関する特性、特に現在の省エネルギー
化の傾向に関して最も期待されている無潤滑下での摩擦
を低下させることについては未だ研究されていなかっ
た。
However, although the above-mentioned silicon nitride sintered body exhibits high strength, it has the most promising non-lubricating properties in terms of friction properties as a material for machine structural use, especially in the current trend of energy saving. Reducing friction below has not yet been studied.

【0008】一方、低摩擦係数を有するセラミックス材
料を作製するために一般的に行われる手法としては、窒
化ホウ素、硫化モリブデン、グラファイト等の固体潤滑
材を材料中に分散させる手法がよく知られている。しか
し、これら固体潤滑材の第2相はサブミクロン程度の大
きさでしか分散させることができず、そのため摩擦係数
の低下と耐摩耗特性の向上には限界があった。
On the other hand, as a method generally used for producing a ceramic material having a low coefficient of friction, a method of dispersing a solid lubricant such as boron nitride, molybdenum sulfide or graphite in the material is well known. There is. However, the second phase of these solid lubricants can be dispersed only in a size of submicron, so that there is a limit to the reduction of friction coefficient and the improvement of wear resistance.

【0009】本発明は、このような従来の事情に鑑み、
室温から中低温域で優れた機械的特性を有すると共に、
低い摩擦係数を有し、耐摩耗性に優れた窒化ケイ素系焼
結体およびその製造方法を提供することを目的とする。
The present invention has been made in view of such conventional circumstances.
In addition to having excellent mechanical properties from room temperature to mid-low temperature range,
An object of the present invention is to provide a silicon nitride-based sintered body having a low friction coefficient and excellent wear resistance, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明はまず、窒化ケイ
素とチタン系窒化物・炭化物、炭化ケイ素及びグラファ
イトあるいはカーボンの組成からなり、平均粒径が10
0nm以下で無潤滑中での摩擦係数が0.2以下である
ことを特徴とする窒化ケイ素系複合焼結体である。
The present invention first comprises a composition of silicon nitride and titanium-based nitride / carbide, silicon carbide and graphite or carbon, and has an average particle size of 10
A friction coefficient of 0 nm or less and 0.2 or less in a non-lubricated state is a silicon nitride-based composite sintered body.

【0011】本発明では、30nm以下の粒径とされた
窒化ケイ素、金属窒化物及び/又は炭化物およびグラフ
ァイト粉末あるいはカーボン粉末の各原料粉末を混合粉
砕して形成した二次粒子を用い放電プラズマ焼結によっ
て非酸化性雰囲気中で1200〜1600℃で焼結した
もので、組織は平均粒径が100nm以下、さらに好ま
しくは50nm以下の均一な粒径からなるナノ構造を持
つ組織である。金属Tiは焼結中に全てTiNとTiC
あるいはTiCNに変化しており、TiN粒子がSi3
4の粒成長を抑制して組織を微細化するとともに、C
はSi34、TiNおよびTiCあるいはTiCNの重
なる点および粒界に分散している。また一部のCはSi
Cとなる場合もある。
In the present invention, discharge plasma firing is performed using secondary particles formed by mixing and pulverizing raw material powders of silicon nitride, metal nitride and / or carbide and graphite powder or carbon powder having a particle size of 30 nm or less. Sintered at 1200 to 1600 ° C. in a non-oxidizing atmosphere by binding, and the structure is a structure having a nanostructure having an average particle size of 100 nm or less, more preferably 50 nm or less. Metal Ti is all TiN and TiC during sintering
Or it has changed to TiCN, and the TiN particles are changed to Si 3
The grain growth of N 4 is suppressed to make the structure finer, and C
Are dispersed at the overlapping points and grain boundaries of Si 3 N 4 , TiN and TiC or TiCN. Some C is Si
It may be C.

【0012】このような特殊なナノ構造によって、摩耗
特性の優れた窒化ケイ素系複合焼結体となる。また、本
材料は、共摺りだけでなく、鋼等の金属に対しても優れ
ており、摩擦係数は0.2以下、比摩耗量は1.0×1
-8mm2/N以下と低い摩擦係数を有し、耐摩耗性に
も優れたものである。この低摩耗の理由としては、固体
潤滑剤であるCが微細に分散したこと、及び鋼と凝着し
にくいTi系化合物がナノサイズで分散したためである
と考えられる。
Due to such a special nanostructure, a silicon nitride-based composite sintered body having excellent wear characteristics is obtained. Further, this material is excellent not only for co-sliding but also for metals such as steel, the coefficient of friction is 0.2 or less, and the specific wear amount is 1.0 × 1.
0 -8 mm 2 / N have the following low coefficient of friction, it is excellent in wear resistance. It is considered that the reason for this low wear is that C, which is a solid lubricant, is finely dispersed, and that a Ti-based compound that is hard to adhere to steel is dispersed in a nano size.

【0013】本発明の製造方法は、窒化ケイ素粉末と焼
結助剤粉末、金属チタン粉末およびグラファイト粉末あ
るいはカーボン粉末を一次粒子の平均粒径が30nm以
下になるまで混合粉砕し、複合二次粒子を形成して、該
複合二次粒子を成形して成形体とし、該成形体を120
0〜1600℃、窒素雰囲気下にて焼結して焼結体とす
ることを特徴とする。また、本発明の材料特性を発現す
る平均粒径は100nm以下、好ましくは50nm以下
である。
In the manufacturing method of the present invention, silicon nitride powder and sintering aid powder, metallic titanium powder and graphite powder or carbon powder are mixed and pulverized until the average particle diameter of primary particles becomes 30 nm or less, and composite secondary particles are obtained. And the composite secondary particles are molded into a molded body.
It is characterized in that it is sintered at 0 to 1600 ° C. in a nitrogen atmosphere to obtain a sintered body. Further, the average particle size that exhibits the material characteristics of the present invention is 100 nm or less, preferably 50 nm or less.

【0014】窒化ケイ素、焼結助剤、金属チタン及びグ
ラファイトあるいはカーボンの各粉末を、圧力0.05
〜1.0MPaの窒素雰囲気中において室温〜250℃
の温度にて10〜300Gの加速度で混合することによ
り、各粉末は30nm以下の平均粒径となり、窒化ケイ
素、窒化チタン、炭化チタン、炭窒化チタン、グラファ
イトあるいはカーボンおよびこれらの粒子の表面を覆っ
ているアモルファス相を含む相と共に平均粒径が0.3
μm以上である窒化ケイ素系複合二次粒子が形成され
る。なお、焼結助剤としてはY23、Al23等が用い
られる。
Powders of silicon nitride, a sintering aid, metallic titanium and graphite or carbon were added at a pressure of 0.05.
Room temperature to 250 ° C. in a nitrogen atmosphere of up to 1.0 MPa
By mixing at an acceleration of 10 to 300 G at a temperature of 10 to 300 G, each powder has an average particle size of 30 nm or less and covers the surface of silicon nitride, titanium nitride, titanium carbide, titanium carbonitride, graphite or carbon and these particles. The average particle size is 0.3 with the phase including the amorphous phase.
Silicon nitride-based composite secondary particles having a size of μm or more are formed. As the sintering aid, Y 2 O 3 , Al 2 O 3 or the like is used.

【0015】混合手段としては、粉砕を伴う遊星ボール
ミルやアトライターを用いることが好ましい。かかる高
加速度での混合により、金属チタンが下記化学式の各反
応を主に起こして窒化ケイ素、窒化チタン、炭化チタ
ン、炭窒化チタンを微細化してそれぞれ20nm以下の
平均粒径を有するものとしていくものと考えられる。 Si34+4Ti→4TiN+3Si 2Ti+N2→2TiN Ti+C→TiC この際にTiNとTiCは互いに固溶し、炭窒化チタン
を形成することが多い。
As a mixing means, it is preferable to use a planetary ball mill or an attritor that involves grinding. By such high-acceleration mixing, metallic titanium mainly causes each reaction of the following chemical formulas to refine silicon nitride, titanium nitride, titanium carbide, and titanium carbonitride to have an average particle diameter of 20 nm or less, respectively. it is conceivable that. Si 3 N 4 + 4Ti → 4TiN + 3Si 2Ti + N 2 → 2TiN Ti + C → TiC At this time, TiN and TiC often form a solid solution with each other to form titanium carbonitride.

【0016】ここで加速度を10〜300Gに限定する
理由は、10G未満では均一な粉末の微細化が起こり難
く、最終的な焼結体の結晶粒径が不均一になってしまう
ためである。また、混合時の加速度が300Gを超える
と、粉砕機におけるポットやボールが摩耗することによ
り不純物が混入されるようになる。
The reason why the acceleration is limited to 10 to 300 G is that if it is less than 10 G, it is difficult for the powder to be made uniform and the crystal grain size of the final sintered body becomes uneven. Further, when the acceleration during mixing exceeds 300 G, the pots and balls in the crusher are worn and impurities are mixed.

【0017】この高加速度で混合する際の温度として
は、室温〜250℃、好ましくは50℃〜200℃であ
る。この温度領域において上記反応が促進され、短時間
で目的とする20nm以下の平均粒径の粉体を基礎とし
た複合二次粒子粉末を得ることができる。混合時間につ
いては、0.5時間未満では反応に伴う微細化が進行せ
ず、50時間を超えると不純物が混入するため、0.5
〜50時間とすることが望ましい。なお、混合の際の加
速度、温度、混合時間は、その作製したい粉末の条件に
より適宜制御することが必要である。
The temperature for mixing with high acceleration is room temperature to 250 ° C, preferably 50 ° C to 200 ° C. The above reaction is promoted in this temperature range, and the desired composite secondary particle powder based on the powder having an average particle diameter of 20 nm or less can be obtained in a short time. Regarding the mixing time, if the mixing time is less than 0.5 hours, the miniaturization accompanying the reaction does not proceed, and if the mixing time exceeds 50 hours, impurities are mixed.
It is desirable to set the time to 50 hours. In addition, the acceleration, temperature, and mixing time at the time of mixing must be appropriately controlled depending on the conditions of the powder to be produced.

【0018】また、上記の反応を起こすためには窒素雰
囲気が必要であり、その窒素雰囲気の圧力は0.05〜
1.0MPaの範囲が好ましく、0.08〜0.15M
Paの範囲がさらに好ましい。窒素雰囲気の圧力が0.
05MPa未満では反応の制御が困難であり、また、
1.0MPaを超えると耐圧容器等の特殊な容器が必要
となるので好ましくない。
Further, a nitrogen atmosphere is required to cause the above reaction, and the pressure of the nitrogen atmosphere is 0.05 to
The range of 1.0 MPa is preferable, and 0.08 to 0.15 M
The range of Pa is more preferable. The pressure of the nitrogen atmosphere is 0.
If it is less than 05 MPa, it is difficult to control the reaction, and
If it exceeds 1.0 MPa, a special container such as a pressure resistant container is required, which is not preferable.

【0019】金属チタン粉末の添加量は、特に制限はな
いが、5重量%未満の場合には反応するTiの量が少な
過ぎるために、窒化ケイ素を微細化することができな
い。また、添加量が60重量%を超えると、反応するT
iの量が多くなり、焼結体の色ムラ等が発生するために
好ましくない。従って、金属チタン粉末の添加量は5〜
60重量%の範囲が好ましい。C量が20重量%を超え
ると、アグレッシブ摩耗が激しくなり、耐摩耗性が低下
する。また、C量が0.5重量%未満であると、固体潤
滑剤であるCが不十分となり摩耗係数が増大する。
The amount of titanium metal powder added is not particularly limited, but if it is less than 5% by weight, the amount of Ti that reacts is too small, and silicon nitride cannot be made fine. Also, if the addition amount exceeds 60% by weight, the reaction of T
This is not preferable because the amount of i increases and color unevenness of the sintered body occurs. Therefore, the addition amount of titanium metal powder is 5
A range of 60% by weight is preferred. When the amount of C exceeds 20% by weight, aggressive wear becomes severe and wear resistance decreases. If the amount of C is less than 0.5% by weight, the solid lubricant C is insufficient and the wear coefficient increases.

【0020】以上のような混合粉砕をすることによっ
て、混合中に金属TiからTiN等へのメカノケミカル
反応が起こり、混合時間が増加するに伴ないSi34
結晶径は微細化する。そして、最終的には平均粒径が
0.3μm以上の二次複合粒子を形成する。
By mixing and pulverizing as described above, a mechanochemical reaction from metal Ti to TiN or the like occurs during mixing, and the crystal size of Si 3 N 4 becomes finer as the mixing time increases. Finally, secondary composite particles having an average particle size of 0.3 μm or more are formed.

【0021】かかる二次複合粒子を成形後、成形体を1
200〜1600℃で窒素雰囲気下にて焼結する。焼結
時の熱により、結晶粒同士が一体化し粒成長することが
知られているので、このような加熱に伴う粒成長をでき
るだけ抑制するため、高い圧力をかけて焼結する方法
や、低温、短時間で焼結する方法が有効である。本発明
では、放電プラズマ焼結またはマイクロ波焼結が有効で
ある。
After molding the secondary composite particles, a molded body is
Sinter at 200 to 1600 ° C. under a nitrogen atmosphere. It is known that the heat of sintering causes the crystal grains to unite with each other and grow.Therefore, in order to suppress grain growth due to such heating as much as possible, a method of sintering with high pressure or low temperature The method of sintering in a short time is effective. In the present invention, spark plasma sintering or microwave sintering is effective.

【0022】このような製造方法により、前述の特徴を
もった本発明の新規な窒化ケイ素系複合焼結体が得られ
る。
By such a manufacturing method, the novel silicon nitride-based composite sintered body of the present invention having the above-mentioned characteristics can be obtained.

【0023】[0023]

【発明の実施の形態】本発明における原料粉末として
は、いずれも市販のものでよい。Si34粉末の結晶型
は、α型、β型のいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The raw material powder in the present invention may be any commercially available product. The crystal form of the Si 3 N 4 powder may be either α type or β type.

【0024】かかるSi34粉末で市販の平均粒径0.
5μmの粉末に、焼結助剤として2.5wt%のY23
粉末と1wt%のAl23粉末を加え、更に平均粒径1
0μmの金属Ti粉末を30wt%、平均粒径5μmの
カーボン粉末を5wt%添加して0.1MPaの窒素雰
囲気中において50℃の温度条件で、Si34製ボール
を用いた遊星ボールミルにより加速度150Gで16時
間混合した。
With such Si 3 N 4 powder, a commercially available average particle size of 0.
2.5 wt% Y 2 O 3 as a sintering aid in 5 μm powder
Powder and 1 wt% Al 2 O 3 powder were added, and the average particle size was 1
30 wt% of 0 μm metallic Ti powder and 5 wt% of carbon powder with an average particle size of 5 μm were added and accelerated by a planetary ball mill using Si 3 N 4 balls under a temperature condition of 50 ° C. in a nitrogen atmosphere of 0.1 MPa. Mix for 16 hours at 150G.

【0025】得られた粉末をXRDにて定性分析を行っ
たところ、Si34、TiN、TiCN及びCのピーク
を確認することができた。また、この複合二次粒子粉末
を透過電子顕微鏡で観察した結果、各粒子の平均粒径は
いずれも30nm以下であり、それらの粒子はアモルフ
ァス相に覆われている構造であることが分かった。この
得られた複合二次粒子の平均粒径は0.5μmであっ
た。
When the obtained powder was qualitatively analyzed by XRD, peaks of Si 3 N 4 , TiN, TiCN and C could be confirmed. Further, as a result of observing the composite secondary particle powder with a transmission electron microscope, it was found that the average particle diameter of each particle was 30 nm or less, and the particles had a structure covered with an amorphous phase. The average particle size of the obtained composite secondary particles was 0.5 μm.

【0026】この複合二次粒子をカーボンダイスに充填
した後、通電焼結が可能な放電プラズマ焼結機(SP
S)で昇温速度100℃/min、保持時間5分で表1
に示す条件で焼結した。また、測温はカーボンダイスを
二色温度計にて測定した。
After filling the composite secondary particles in a carbon die, a discharge plasma sintering machine (SP
In S), the heating rate is 100 ° C./min and the holding time is 5 minutes.
Sintered under the conditions shown in. Further, the temperature was measured by using a carbon die with a two-color thermometer.

【0027】[0027]

【表1】 [Table 1]

【0028】得られた焼結体は、研削、ラッピング処理
した後、XRDで組成を評価した他、ボールオンディス
ク試験機で、φ5mmのSi34ボールを用い、0.2
m/sec、摺動距離1000mの無潤滑条件(25
℃、大気、湿度60%)10Nの条件で、耐摩耗特性を
評価した。その摩耗係数と比摩耗量を評価した。また、
この焼結体を研摩した後、Arイオンエッチングで薄膜
試験片を作製し、透過電子顕微鏡を用いて平均粒径を評
価した。以上の結果を表2に示す。
The obtained sintered body was ground and lapped, and then the composition was evaluated by XRD. In addition, a ball-on-disk tester was used, and a Si 3 N 4 ball of φ5 mm was used.
m / sec, sliding distance 1000 m, non-lubricated condition (25
The wear resistance was evaluated under the conditions of 10 ° C., atmospheric pressure and humidity of 60%. The wear coefficient and the specific wear amount were evaluated. Also,
After polishing this sintered body, a thin film test piece was prepared by Ar ion etching, and the average particle diameter was evaluated using a transmission electron microscope. The above results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例Cにおいては、φ5mmのSUJ2
ボールを使用し、同様な試験を行った。その結果、摩擦
係数は0.1を示した。また、比摩耗量は0.4×10
-8mm2/Nであった。
In the embodiment C, the SUJ2 having a diameter of 5 mm is used.
A similar test was conducted using balls. As a result, the friction coefficient was 0.1. The specific wear amount is 0.4 × 10
It was −8 mm 2 / N.

【0031】また、φ5mmのSi34ボールで、2
0、40、80Nで0.1〜2.0m/sec、摺動距
離1000mの条件で試験を行ない、同様な摩擦係数、
比摩耗量の結果を得た。
Also, with a Si 3 N 4 ball of φ5 mm, 2
The test was conducted under the conditions of 0, 40, 80 N at 0.1 to 2.0 m / sec and a sliding distance of 1000 m.
The result of specific wear amount was obtained.

【0032】実施例2 実施例1と同様に、焼結助剤として2.5wt%のY2
3;1wt%のAl23を加えた平均粒径0.5μm
のSi34粉末に、平均粒径10μmの金属チタンと、
平均粒径5μmのカーボン粉末を表3に示すように配合
し、Si34ボールを用い、窒素雰囲気0.1MPa、
温度50℃、加速度150Gの条件で遊星ボールミルを
用いて16時間混合した。得られた複合二次粒子は実施
例1同様、通電焼結が可能な放電プラズマ焼結で表3の
条件で焼結させた。
Example 2 As in Example 1, 2.5 wt% Y 2 as a sintering aid was used.
O 3 ; average particle size 0.5 μm to which 1 wt% of Al 2 O 3 is added
Of Si 3 N 4 powder, and titanium metal having an average particle size of 10 μm,
Carbon powder having an average particle size of 5 μm was blended as shown in Table 3, Si 3 N 4 balls were used, and a nitrogen atmosphere was 0.1 MPa.
The mixture was mixed for 16 hours using a planetary ball mill under the conditions of a temperature of 50 ° C. and an acceleration of 150G. As in Example 1, the obtained composite secondary particles were sintered under the conditions of Table 3 by discharge plasma sintering capable of electric current sintering.

【0033】[0033]

【表3】 [Table 3]

【0034】得られた焼結体は、実施例1と同様な手法
で評価した。この結果を表4に示す。
The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【発明の効果】本発明は、室温から中低温域(300℃
以下)で優れた機械的強度を有し、低い摩擦係数を有
し、耐摩耗性に優れた窒化ケイ素系複合焼結体であり、
各種機構部材や切削工具・摺動部材として有用なもので
ある。又、製造方法では、特定の複合二次粒子を用い、
特定の条件で焼結することによって、焼結時の粒成長を
抑制することができて、上記のように優れた特性をもつ
窒化ケイ素系複合焼結体を得ることができる。
INDUSTRIAL APPLICABILITY The present invention has a room temperature to a low temperature range (300 ° C.).
The following) is a silicon nitride-based composite sintered body having excellent mechanical strength, a low friction coefficient, and excellent wear resistance,
It is useful as various mechanical members, cutting tools, and sliding members. Also, in the manufacturing method, using a specific composite secondary particles,
By sintering under a specific condition, grain growth during sintering can be suppressed, and a silicon nitride-based composite sintered body having excellent characteristics as described above can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF33 FF40 FF47 FF55 4G001 BA03 BA09 BA25 BA32 BA38 BA57 BA60 BA61 BB03 BB09 BB22 BB25 BB32 BB38 BB57 BB60 BC01 BC13 BC21 BC41 BC42 BC52 BC54 BD12 BD18 BE21    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3C046 FF33 FF40 FF47 FF55                 4G001 BA03 BA09 BA25 BA32 BA38                       BA57 BA60 BA61 BB03 BB09                       BB22 BB25 BB32 BB38 BB57                       BB60 BC01 BC13 BC21 BC41                       BC42 BC52 BC54 BD12 BD18                       BE21

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 窒化ケイ素とチタン系窒化物・炭化物、
炭化ケイ素及びグラファイトあるいはカーボンの組成か
らなり、平均粒径が100nm以下で無潤滑中での摩擦
係数が0.2以下であることを特徴とする窒化ケイ素系
複合焼結体。
1. Silicon nitride and titanium-based nitride / carbide,
A silicon nitride-based composite sintered body comprising a composition of silicon carbide and graphite or carbon, having an average particle size of 100 nm or less and a friction coefficient of 0.2 or less in an unlubricated state.
【請求項2】 平均粒径が50nm以下である請求項1
記載の窒化ケイ素系複合焼結体。
2. The average particle size is 50 nm or less.
The described silicon nitride-based composite sintered body.
【請求項3】 チタン系窒化物・炭化物が互いに固溶し
ていることを特徴とする請求項1又は2記載の窒化ケイ
素複合焼結体。
3. The silicon nitride composite sintered body according to claim 1, wherein titanium-based nitrides and carbides are in solid solution with each other.
【請求項4】 比摩耗量が1.0×10-8mm2/N以
下であることを特徴とする請求項1ないし3のいずれか
1項に記載の窒化ケイ素系複合焼結体。
4. The silicon nitride-based composite sintered body according to claim 1, wherein the specific wear amount is 1.0 × 10 −8 mm 2 / N or less.
【請求項5】 窒化ケイ素粉末と焼結助剤粉末、金属チ
タン粉末およびグラファイト粉末あるいはカーボン粉末
を窒化ケイ素とチタン窒化物・炭化物、およびグラファ
イトあるいはカーボン粉末を一次粒子の平均粒径が30
nm以下になるまで粉砕混合し、複合二次粒子を形成し
て、該複合二次粒子を成形して成形体とし、該成形体を
1200〜1600℃、非酸化性雰囲気下にて焼結して
焼結体とすることを特徴とする窒化ケイ素系複合焼結体
の製造方法。
5. A silicon nitride powder and a sintering aid powder, a titanium metal powder and a graphite powder or a carbon powder of silicon nitride and a titanium nitride / carbide, and a graphite or a carbon powder having an average primary particle diameter of 30.
pulverized and mixed to have a particle size of not more than nm to form composite secondary particles, and the composite secondary particles are molded into a molded body, and the molded body is sintered at 1200 to 1600 ° C. in a non-oxidizing atmosphere. A method for producing a silicon nitride-based composite sintered body, comprising:
【請求項6】 金属チタン粉末の添加量が5〜60重量
%、グラファイトあるいはカーボン粉末の添加量が0.
5〜20重量%である請求項5記載の窒化ケイ素系複合
焼結体の製造方法。
6. The amount of titanium metal powder added is 5 to 60% by weight, and the amount of graphite or carbon powder added is 0.
The method for producing a silicon nitride-based composite sintered body according to claim 5, which is 5 to 20% by weight.
【請求項7】 粉砕混合は、圧力0.05〜1.0MP
aの窒素雰囲気中において、室温〜250℃の温度にて
10〜300Gの加速度の下で行う請求項5または6記
載の窒化ケイ素系複合焼結体の製造方法。
7. The crushing and mixing is performed at a pressure of 0.05 to 1.0 MP.
The method for producing a silicon nitride-based composite sintered body according to claim 5 or 6, which is carried out in a nitrogen atmosphere of a at a temperature of room temperature to 250 ° C under an acceleration of 10 to 300G.
【請求項8】 焼結は、放電プラズマ焼結またはマイク
ロ波焼結で行う請求項5ないし7のいずれかに記載の窒
化ケイ素系複合焼結体の製造方法。
8. The method for producing a silicon nitride-based composite sintered body according to claim 5, wherein the sintering is performed by spark plasma sintering or microwave sintering.
JP2001222814A 2001-04-20 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same Pending JP2003034578A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001222814A JP2003034578A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same
US10/311,604 US6844282B2 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
CNB028013255A CN100480214C (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and production method thereof
PCT/JP2002/003864 WO2002085812A1 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
EP02718611A EP1298106A4 (en) 2001-04-20 2002-04-18 Silicon nitride based composite sintered product and method for production thereof
US11/031,994 US7008893B2 (en) 2001-04-20 2005-01-11 Silicon nitride-based composite sintered body and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222814A JP2003034578A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003034578A true JP2003034578A (en) 2003-02-07

Family

ID=19056236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222814A Pending JP2003034578A (en) 2001-04-20 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003034578A (en)

Similar Documents

Publication Publication Date Title
US7008893B2 (en) Silicon nitride-based composite sintered body and producing method thereof
EP2297371B1 (en) Cubic boron nitride compact
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP2006111947A (en) Ultra-fine particle of cermet
JP5079940B2 (en) Tungsten carbide cemented carbide composite material sintered body
JP2003034578A (en) Silicon nitride-based composite sintered body and method for producing the same
JP2004131769A (en) Hyperfine-grained cemented carbide
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2003034579A (en) Silicon-nitride-based composite sintered body and method for producing the same
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP2003034580A (en) Silicon nitride-based composite sintered body and method for producing the same
JP2796011B2 (en) Whisker reinforced cemented carbide
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP2003034584A (en) Silicon nitride-based composite powder and method for producing the same
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH11269573A (en) Manufacture of cemented carbide containing plate crystal wc
JP2006213977A (en) Chromium-containing cermet
JPH0849037A (en) Sintered compact for tool and its production
JPH06340941A (en) Nano-phase composite hard material and its production
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JPH0559481A (en) Sintered hard alloy having high hardness
JPH0545549B2 (en)