JP2003034527A - Thick film of tape-like oxide superconductor and method for manufacturing it - Google Patents

Thick film of tape-like oxide superconductor and method for manufacturing it

Info

Publication number
JP2003034527A
JP2003034527A JP2002089186A JP2002089186A JP2003034527A JP 2003034527 A JP2003034527 A JP 2003034527A JP 2002089186 A JP2002089186 A JP 2002089186A JP 2002089186 A JP2002089186 A JP 2002089186A JP 2003034527 A JP2003034527 A JP 2003034527A
Authority
JP
Japan
Prior art keywords
heat treatment
oxide superconductor
crystallization
thick film
film tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002089186A
Other languages
Japanese (ja)
Inventor
Akisato Honjo
哲吏 本庄
Hiroshi Fuji
広 富士
Yuichi Nakamura
雄一 中村
Teruo Izumi
輝郎 和泉
Toru Shiobara
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Railway Technical Research Institute
International Superconductivity Technology Center
SWCC Corp
Original Assignee
Fujikura Ltd
Railway Technical Research Institute
International Superconductivity Technology Center
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Railway Technical Research Institute, International Superconductivity Technology Center, Showa Electric Wire and Cable Co filed Critical Fujikura Ltd
Priority to JP2002089186A priority Critical patent/JP2003034527A/en
Priority to PCT/JP2002/004687 priority patent/WO2002093590A1/en
Publication of JP2003034527A publication Critical patent/JP2003034527A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a thick film of tape-like oxide superconductor by a MOD(metal organic deposition) method using TFA(trifluoroacetate). SOLUTION: A mixed solution of TFA salts, which contains a prescribed molecular ratio of metal elements composing a RE-base oxide superconductor, is applied onto an IBAD composite substrate, calcine-processed to obtain a precursor, and the precursor is heated for crystallization to give a thick film of tape-like oxide superconductor. Several layers of the precursor are formed on the substrate, and by performing the calcination processing for except at least the most outer layer of the precursor within the temperature range of 250 to 350 deg.C, and the steam pertial pressure of an inducing gas in crystallization heat treatment atmosphere before crystallization of the most outer layer of the precursor within the range of 0.5 to 3.2 vol.% in order to easily obtain the thick film of a tape-like oxide superconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸化物超電導体及び
その製造方法に係り、特に超電導マグネット、超電導ケ
ーブル、電力機器等に適用可能な線材化に適する厚膜テ
ープ状酸化物超電導体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor and a method for manufacturing the oxide superconductor, and more particularly to a thick film tape-shaped oxide superconductor suitable for forming a wire applicable to superconducting magnets, superconducting cables, power equipment and the like, and manufacturing thereof. Regarding the method.

【0002】[0002]

【従来の技術】酸化物超電導体は、その臨界温度(T
c)が液体窒素温度を超えることから超電導マグネッ
ト、超電導ケーブル及び電力機器等への応用が期待され
ており、種々の研究が鋭意進められている。
2. Description of the Related Art Oxide superconductors have a critical temperature (T
Since c) exceeds the liquid nitrogen temperature, it is expected to be applied to superconducting magnets, superconducting cables, electric power equipment, etc., and various studies have been earnestly pursued.

【0003】酸化物超電体を上記の分野に適用するため
には、臨界電流密度(Jc)が高く、かつ長尺の線材を
製造する必要があり、一方、長尺テープを得るために
は、強度及び可撓性の観点から金属テープ上に酸化物超
電体を形成する必要がある。
In order to apply the oxide superconductor to the above fields, it is necessary to manufacture a long wire having a high critical current density (Jc), while obtaining a long tape. From the viewpoint of strength and flexibility, it is necessary to form the oxide superconductor on the metal tape.

【0004】また酸化物超電導体はその結晶学的方向に
より超電導特性が変化することから、面内配向性を向上
させることが必要であり、このためにも酸化物超電導体
をテープ状の基板上に形成する必要がある。この場合、
臨界電流密度を向上させるため、酸化物超電導体のc軸
を基板の板面に垂直に配向させ、かつそのa軸(又はb
軸)をほぼ電流方向に平行に面内配向させて、超電導状
態の量子的結合性を良好に保持する必要がある。
Further, since the oxide superconductor has superconducting properties which change depending on its crystallographic direction, it is necessary to improve the in-plane orientation. For this purpose, the oxide superconductor is placed on a tape-shaped substrate. Need to be formed. in this case,
In order to improve the critical current density, the c-axis of the oxide superconductor is oriented perpendicular to the plate surface of the substrate, and its a-axis (or b
It is necessary to orient the (axis) in-plane substantially parallel to the current direction to maintain good quantum coupling in the superconducting state.

【0005】テープ状のRE系酸化物超電導体、即ち、
RE1+X Ba2-X Cu3Y (ここでREは、Y、N
d、Sm、Gd、Eu,Yb、Pr又はHoから選択さ
れた少なくとも1種以上の元素を示す。以下同じ。)系
酸化物超電導体の製造方法として、MOD法が知られて
いる。
A tape-shaped RE oxide superconductor, that is,
RE 1 + X Ba 2-X Cu 3 O Y (where RE is Y, N
At least one element selected from d, Sm, Gd, Eu, Yb, Pr and Ho is shown. same as below. The MOD method is known as a method for producing a () -based oxide superconductor.

【0006】このMOD法(Metal Organic Deposition
Processes:有機酸塩堆積法)は、金属有機酸塩を熱分
解させるもので、金属成分の有機化合物を均一に溶解し
た溶液を基板上に塗布した後、これを加熱して熱分解さ
せることにより基板上に薄膜を形成する方法であり、非
真空プロセスで高いJcが得られる他、低コストで高速
成膜が可能であるため長尺のテープ状の酸化物超電導線
材の製造に適する利点を有する。
This MOD method (Metal Organic Deposition
Processes: Organic acid salt deposition method) is a method of thermally decomposing metal organic acid salts. By applying a solution in which an organic compound of a metal component is uniformly dissolved onto a substrate, then heating this to thermally decompose it. It is a method of forming a thin film on a substrate, and in addition to obtaining high Jc in a non-vacuum process, it has the advantage that it is suitable for the production of a long tape-shaped oxide superconducting wire because high-speed film formation is possible at low cost. .

【0007】MOD法においては、出発原料である金属
有機酸塩を熱分解させると通常アルカリ土類金属(Ba
等)の炭酸塩が生成されるが、この炭酸塩を経由する固
相反応による酸化物超電導体の形成には800℃以上の
高温熱処理を必要とする。そのため、フッ素を含む有機
酸塩(例えば、TFA塩:トリフルオロ酢酸塩)を出発
原料とし、水蒸気雰囲気中での熱処理及び水蒸気分圧の
制御により、RE(123)超電導体(RE:Ba:Cu
=1:2:3、以下同じ。)を形成する方法が近年精力
的に行われている。
In the MOD method, when the starting material metal organic acid salt is thermally decomposed, it is usually alkaline earth metal (Ba).
Etc.), but a high-temperature heat treatment at 800 ° C. or higher is required to form an oxide superconductor by a solid-phase reaction via the carbonate. Therefore, an organic acid salt containing fluorine (for example, TFA salt: trifluoroacetic acid salt) is used as a starting material, and heat treatment in a steam atmosphere and control of the steam partial pressure are performed to control the RE (123) superconductor (RE: Ba: Cu).
= 1: 2: 3, and so on. ) Has recently been vigorously carried out.

【0008】このTFA塩を出発原料とする方法は、溶
液中に核生成を生ぜず、水蒸気とフッ素を含むアモルフ
ァス前駆体との反応により基板からRE(123)超電導
体をエピタキシャル成長させることかできる。
The method using this TFA salt as a starting material can cause the RE (123) superconductor to grow epitaxially from the substrate by the reaction between water vapor and the amorphous precursor containing fluorine without causing nucleation in the solution.

【0009】[0009]

【発明が解決しようとする課題】上述のように、MOD
法によりテープ状の酸化物超電導体を製造する場合、実
用化のためには臨界電流値(Ic)を向上させるための
厚膜化が必要不可欠である。この厚膜化をTFA塩を出
発原料とするMOD法により達成するために、TFA塩
を含む原料溶液の粘性を高くして塗布膜を厚くすること
が考えられるが、1回で塗布する膜厚が厚くなると仮焼
時に分解生成するHF及びCO2 ガスの量が増加するこ
とにより、塗布膜が飛散する現象が生じ、結果として厚
膜のテープ状酸化物超電導体を製造することはできな
い。
SUMMARY OF THE INVENTION As described above, the MOD
In the case of producing a tape-shaped oxide superconductor by the method, it is indispensable to increase the film thickness to improve the critical current value (Ic) for practical use. In order to achieve this thickening by the MOD method using TFA salt as a starting material, it is conceivable to increase the viscosity of the raw material solution containing TFA salt to thicken the coating film. As the thickness of the film increases, the amount of HF and CO 2 gas decomposed and produced during calcination increases, causing a phenomenon in which the coating film scatters, and as a result, a thick film tape-shaped oxide superconductor cannot be manufactured.

【0010】また、塗布及び仮焼の工程を繰返して塗布
膜を厚くすることが考えられるが、この場合には、結晶
化熱処理によって基板上に面内配向性に優れた超電導結
晶を生成させることが困難となる。この理由は、結晶成
長の核となる核生成が基板面以外の部分に生ずることに
よるものと考えられている。
Further, it is conceivable to repeat the steps of coating and calcination to thicken the coating film. In this case, a superconducting crystal having excellent in-plane orientation is formed on the substrate by crystallization heat treatment. Will be difficult. The reason for this is considered to be that nucleation, which is the nucleus of crystal growth, occurs in a portion other than the substrate surface.

【0011】本発明は、以上の問題点を解決するために
なされたもので、基板上に形成した酸化物超電導前駆体
の熱処理時の仮焼熱処理温度及び/又は結晶化熱処理雰
囲気中の導入ガスの水蒸気分圧を制御することにより、
高配向性と高Jc値を有する厚膜のテープ状酸化物超電
導体及びその製造方法を提供することをその目的とす
る。
The present invention has been made to solve the above problems, and is a calcination heat treatment temperature at the time of heat treatment of an oxide superconducting precursor formed on a substrate and / or an introduction gas in a crystallization heat treatment atmosphere. By controlling the water vapor partial pressure of
It is an object of the present invention to provide a thick film tape-shaped oxide superconductor having a high orientation and a high Jc value, and a method for producing the same.

【0012】この酸化物超電導体の厚膜化は、1層又は
多層構造の仮焼塗布膜の結晶化熱処理により達成するこ
とができる。
The oxide superconductor can be made thicker by the crystallization heat treatment of the calcined coating film having a single-layer or multi-layer structure.

【0013】[0013]

【課題を解決するための手段】以上の目的を達成するた
めに、本願請求項1に係る発明、即ち、厚膜テープ状酸
化物超電導体は、基板上に酸化物超電導体を構成する各
金属元素を所定のモル比で含む金属有機酸塩の混合溶液
を塗布し、仮焼熱処理を施した酸化物超電導前駆体に結
晶化熱処理を施した酸化物超電導体において、結晶化熱
処理後の酸化物超電導体の厚さが0.5μm以上で、7
7Kにおける臨界電流密度が0.7MA/cm2を有するよう
にしたものである。
In order to achieve the above object, the invention according to claim 1 of the present application, that is, a thick film tape-shaped oxide superconductor is a metal for forming an oxide superconductor on a substrate. Oxide obtained by applying crystallization heat treatment to the oxide superconducting precursor which is obtained by applying a mixed solution of metal organic acid salt containing elements in a predetermined molar ratio and subjecting it to calcination heat treatment. If the thickness of the superconductor is 0.5 μm or more, 7
The critical current density at 7K was 0.7 MA / cm 2 .

【0014】上記の酸化物超電導前駆体は、その膜中に
存在する結晶化した酸化物及びフッ化物の粒径が0.3
μm以下であるように制御することが結晶成長の点から
好ましい。
The above-mentioned oxide superconducting precursor has a grain size of crystallized oxides and fluorides present in the film of 0.3.
From the viewpoint of crystal growth, it is preferable to control the thickness to be not more than μm.

【0015】また、上記の酸化物超電導前駆体を、基板
上に複数層形成することにより厚膜化をより容易に達成
することができる。
Further, by forming a plurality of layers of the above oxide superconducting precursor on the substrate, it is possible to easily achieve a thick film.

【0016】上記の仮焼熱処理は、少なくとも最外層の
酸化物超電導前駆体を除く仮焼熱処理温度が400℃未
満で行うことが好ましく、特に、仮焼熱処理温度が25
0〜350℃の範囲であることが好ましい。
The above-mentioned calcination heat treatment is preferably carried out at a calcination heat treatment temperature of less than 400 ° C. excluding at least the oxide superconducting precursor of the outermost layer, and particularly, the calcination heat treatment temperature is 25.
It is preferably in the range of 0 to 350 ° C.

【0017】さらに、結晶化熱処理は、水蒸気分圧が
4.0vol%以下の雰囲気中で行うことが好ましく、
特に、水蒸気分圧が0.5〜3.2vol%の範囲(更
に好ましくは、水蒸気分圧が1.0〜3.2vol%の
範囲)にあることが好ましい。この場合、少なくとも最
外層の酸化物超電導前駆体の結晶化到達前の結晶化熱処
理雰囲気中の水蒸気分圧を0.5〜3.2vol%の範
囲(更に好ましくは、水蒸気分圧が1.0〜3.2vo
l%の範囲)で行い、また、最外層の酸化物超電導前駆
体の結晶化到達後の結晶化熱処理を、結晶化到達前の水
蒸気分圧以下で行うことにとってより優れた結果が得ら
れる。
Further, the crystallization heat treatment is preferably carried out in an atmosphere having a water vapor partial pressure of 4.0 vol% or less,
In particular, the steam partial pressure is preferably in the range of 0.5 to 3.2 vol% (more preferably, the steam partial pressure is in the range of 1.0 to 3.2 vol%). In this case, at least the outermost layer of the oxide superconducting precursor has a water vapor partial pressure in the crystallization heat treatment atmosphere before reaching the crystallization of 0.5 to 3.2 vol% (more preferably, the water vapor partial pressure is 1.0 ~ 3.2vo
better results can be obtained by performing the crystallization heat treatment after reaching the crystallization of the oxide superconducting precursor of the outermost layer at a water vapor partial pressure before reaching the crystallization or less.

【0018】以上の結晶化熱処理は、水蒸気、酸化物超
電導体と反応しないガス及び酸素からなる混合ガスを導
入した雰囲気中で行われる。
The above crystallization heat treatment is carried out in an atmosphere in which a mixed gas of water vapor, a gas that does not react with the oxide superconductor and oxygen is introduced.

【0019】酸化物超電導体は、金属有機酸塩の混合溶
液を出発原料として形成されるが、この金属有機酸塩
は、トリフルオロ酢酸塩、オクチル酸塩、ナフテン酸塩
又は酢酸塩のいずれか一種以上からなることが好まし
く、特に、少なくともトリフルオロ酢酸塩を含むことが
より好ましい。
The oxide superconductor is formed by using a mixed solution of metal organic acid salt as a starting material, and the metal organic acid salt is any one of trifluoroacetate, octylate, naphthenate and acetate. It is preferably composed of one or more, and particularly preferably at least a trifluoroacetate salt is contained.

【0020】以上述べた酸化物超電導体は、本願請求項
14に係る発明、即ち、RE1+X Ba2-X Cu3Y
らなる酸化物超電導体を構成する各金属元素を所定のモ
ル比で含む金属有機酸塩の混合溶液を基板上に塗布した
後、仮焼熱処理を施すことにより酸化物超電導前駆体を
形成し、次いで結晶化熱処理を施すことにより酸化物超
電導前駆体を結晶化させて酸化物超電導体を製造する方
法において、基板上に酸化物超電導前駆体を複数層形成
するとともに、仮焼熱処理のうち少なくとも最外層の酸
化物超電導前駆体を除く仮焼熱処理温度を400℃未満
で行い、かつ結晶化熱処理雰囲気中の導入ガスの水蒸気
分圧を4.0vol%以下にして行うことにより製造す
ることができる。
In the oxide superconductor described above, the invention according to claim 14 of the present application, that is, each metal element constituting the oxide superconductor made of RE 1 + X Ba 2-X Cu 3 O Y is mixed in a predetermined mole. After applying a mixed solution of metal organic acid salt containing in a ratio to the substrate, calcination heat treatment is applied to form an oxide superconducting precursor, and then crystallization heat treatment is applied to crystallize the oxide superconducting precursor. In the method for producing an oxide superconductor by the above, a plurality of oxide superconducting precursors are formed on the substrate, and the calcining heat treatment temperature excluding at least the outermost layer oxide superconducting precursor in the calcining heat treatment is 400 ° C. It can be produced by performing the treatment at a temperature of less than 100 ° C. and a steam partial pressure of the introduced gas in the crystallization heat treatment atmosphere of 4.0 vol% or less.

【0021】この場合、仮焼熱処理温度が250〜35
0℃の範囲で、かつ結晶化熱処理雰囲気中の導入ガスの
水蒸気分圧が0.5〜3.2vol%の範囲であること
が好ましく、特に、水蒸気分圧が1.0〜3.2vol
%の範囲であることが好ましい。
In this case, the calcination heat treatment temperature is 250 to 35.
The steam partial pressure of the introduced gas in the crystallization heat treatment atmosphere is preferably in the range of 0 ° C. and in the range of 0.5 to 3.2 vol%, and particularly, the steam partial pressure is 1.0 to 3.2 vol.
It is preferably in the range of%.

【0022】[0022]

【発明の実施の形態】本発明において使用される基板と
しては、単結晶基板又は多結晶基板のいずれも用いるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION As the substrate used in the present invention, either a single crystal substrate or a polycrystalline substrate can be used.

【0023】単結晶基板としてはLaAlO3 (10
0)単結晶基板(以下、LAO単結晶基板という。)等
を用いることができ、一方、多結晶基板としては配向性
Ni基板やIBAD法(Ion Beam Assisted Depositio
n)を用いた複合基板等を用いることができる。
As a single crystal substrate, LaAlO 3 (10
0) A single crystal substrate (hereinafter referred to as LAO single crystal substrate) or the like can be used, while as a polycrystalline substrate, an oriented Ni substrate or an IBAD method (Ion Beam Assisted Depositio) is used.
A composite substrate or the like using n) can be used.

【0024】配向性Ni基板は、冷間加工したNi基板
を真空中で熱処理を施して高配向させたもので、米国オ
ークリッジ国立研究所で開発され、RABiTS(商
標:rolling-assisted biaxially textured-substrate
s)と称されている。この配向性Ni基板の上に、高温
の不活性ガス雰囲気中でエレクトロンビーム蒸発により
セリウムを堆積させ、この堆積中に水蒸気を存在させる
ことにより、CeO2 のエピタキシャル層の薄膜を設
け、さらにその上にスパッタリング法により高温減圧下
でYSZ(イットリウム安定化ジルコニア)の厚膜を形
成したものを基板として用いることができる。このCe
2 層及びYSZ層はバッファ層としての機能を有し、
超電導層との反応を抑制して超電導特性の低下を防止
し、超電導層との整合性を維持するために配置されてい
る。さらに、上記のYSZ層の上にY1+XBa2-X Cu3
Y 超電導体(以下、YBCOという。)との結晶学
的な整合性により優れたCeO2 の薄膜を設けたものも
基板として用いることができる。
The oriented Ni substrate is a cold-worked Ni substrate which is heat-treated in a vacuum to be highly oriented, and is developed at Oak Ridge National Laboratory in the United States, and RABiTS (trademark: rolling-assisted biaxially textured- substrate
s) is called. On this oriented Ni substrate, cerium was deposited by electron beam evaporation in a high temperature inert gas atmosphere, and water vapor was present during this deposition to form a thin film of a CeO 2 epitaxial layer, and further. It is possible to use, as a substrate, a thick film of YSZ (yttrium-stabilized zirconia) formed under reduced pressure at high temperature by sputtering. This Ce
The O 2 layer and the YSZ layer have a function as a buffer layer,
It is arranged in order to suppress the reaction with the superconducting layer, prevent the deterioration of the superconducting property, and maintain the compatibility with the superconducting layer. Furthermore, Y 1 + X Ba 2-X Cu 3 is formed on the YSZ layer.
A substrate provided with a CeO 2 thin film which is excellent in crystallographic compatibility with an O Y superconductor (hereinafter referred to as YBCO) can also be used as the substrate.

【0025】さらに、IBAD法を用いた複合基板(以
下、IBAD複合基板という。)は、非磁性で高強度の
テープ状Ni系基板上(ハステロイ等)に、このNi系
基板に対して斜め方向からイオンを照射しながら、ター
ゲットから発生した粒子を堆積させて形成した高配向性
を有し超電導体を構成する元素との反応を抑制する中間
層(CeO2 、Y23 、YSZ等)を設けたもので、
上記の中間層を2層構造としたもの(YSZ又はZr2
R X27 /CeO2 又はY23 等:Rxは、Y、Nd、S
m、Gd、Ei、Yb、Ho、Tm、Dy、Ce、La又はErを示す。)
もよく適合する(特開平4−329867号、特開平4
−331795号,特願2000−333843号)。
Further, a composite substrate using the IBAD method (hereinafter referred to as an IBAD composite substrate) is a non-magnetic, high-strength tape-shaped Ni-based substrate (Hastelloy, etc.) in an oblique direction with respect to the Ni-based substrate. Intermediate layer (CeO 2 , Y 2 O 3 , YSZ, etc.) that has high orientation and is formed by depositing particles generated from the target while irradiating ions from Is provided,
The above intermediate layer has a two-layer structure (YSZ or Zr 2
R X2 O 7 / CeO 2 or Y 2 O 3 etc .: Rx is Y, Nd, S
m, Gd, Ei, Yb, Ho, Tm, Dy, Ce, La or Er is shown. )
Is also well suited (JP-A-4-329867, JP-A-4
-331795, Japanese Patent Application No. 2000-333843).

【0026】本願発明においては、例えば、基板上に酸
化物超電導前駆体を複数層形成するとともに、仮焼熱処
理のうち少なくとも最外層の酸化物超電導前駆体を除く
仮焼熱処理温度を400℃未満で行うことにより、厚膜
の形成を可能とするものであるが、これは、例えば、3
層構造の仮焼膜を結晶化させて酸化物超電導体を形成す
る場合、1及び2層目の仮焼熱処理温度を400℃未
満、好ましくは250〜350℃の温度範囲で行うこと
を意味しており、3層目の仮焼熱処理温度は400℃未
満でも400℃を越えても問題はない。
In the present invention, for example, a plurality of oxide superconducting precursors are formed on the substrate, and the calcining heat treatment temperature excluding at least the outermost layer oxide superconducting precursor in the calcining heat treatment is less than 400 ° C. By doing so, it is possible to form a thick film.
When an oxide superconductor is formed by crystallizing a calcined film having a layered structure, it means that the calcining heat treatment temperature of the first and second layers is lower than 400 ° C, preferably 250 to 350 ° C. Therefore, there is no problem if the third layer calcination heat treatment temperature is lower than 400 ° C or higher than 400 ° C.

【0027】また、本願発明においては、例えば、結晶
化熱処理雰囲気中の導入ガスの水蒸気分圧を4.0vo
l%以下にして行うものであるが、この場合には前駆体
の複数層形成に加えて高粘度の溶液を用いて1層の仮焼
膜の結晶化によっても厚膜化が可能になる。
Further, in the present invention, for example, the vapor partial pressure of the introduced gas in the crystallization heat treatment atmosphere is set to 4.0 vo.
In this case, the film thickness can be increased by crystallization of one layer of the calcined film using a highly viscous solution in addition to forming a plurality of precursor layers.

【0028】本願発明においては、例えば、基板上に酸
化物超電導前駆体を複数層形成するとともに、結晶化熱
処理中の少なくとも最外層の酸化物超電導前駆体の結晶
化到達前の結晶化熱処理雰囲気中の導入ガスの水蒸気分
圧を4.0vol%以下にして行うものであるが、これ
は、例えば、3層構造の仮焼膜を結晶化させて酸化物超
電導体を形成する場合、3層目の結晶化が開始されるま
での1及び2層目の結晶化熱処理中の導入ガスの水蒸気
分圧を4.0vol%以下、好ましくは0.5〜3.2
vol%の範囲(更に好ましくは、1.0〜3.2vo
l%の範囲)、で行うことを意味しており、結晶化熱処
理雰囲気中の導入ガスは、水蒸気、酸化物超電導体と反
応しないガス及び酸素からなる混合ガスが用いられ、結
晶化熱処理雰囲気中の導入ガスの水蒸気分圧は、以上の
条件が満足されれば、一定の勾配下又は段階的に上昇さ
せることもできる。
In the present invention, for example, a plurality of oxide superconducting precursor layers are formed on a substrate, and at least the outermost layer of the oxide superconducting precursor is subjected to a crystallization heat treatment atmosphere before reaching crystallization during the crystallization heat treatment. This is performed by setting the water vapor partial pressure of the introduced gas to 4.0 vol% or less. For example, when the calcined film having a three-layer structure is crystallized to form an oxide superconductor, the third layer is used. Water vapor partial pressure of the introduced gas during the crystallization heat treatment of the first and second layers until the crystallization of (4) is started is 4.0 vol% or less, preferably 0.5 to 3.2.
vol% range (more preferably 1.0 to 3.2 vo)
In the crystallization heat treatment atmosphere, a mixed gas consisting of water vapor, a gas that does not react with the oxide superconductor, and oxygen is used as the introduction gas in the crystallization heat treatment atmosphere. The steam partial pressure of the introduced gas can also be increased under a constant gradient or stepwise if the above conditions are satisfied.

【0029】また、最外層の酸化物超電導前駆体の結晶
化到達後の結晶化熱処理は、結晶化到達前の水蒸気分圧
以下で行われることが好ましいが、特に、結晶化終了後
は水蒸気と超電導体との反応による特性の劣化を抑制す
るために乾燥ガスを導入することが好ましい。
The crystallization heat treatment after the crystallization of the oxide superconducting precursor of the outermost layer is preferably performed at a partial pressure of water vapor or lower before reaching the crystallization. It is preferable to introduce a dry gas in order to suppress the deterioration of the characteristics due to the reaction with the superconductor.

【0030】[0030]

【実施例】実施例1 基板として、長さ10mm、幅10mm、厚さ0.5m
mのLAO単結晶基板を用いた。
EXAMPLES Example 1 As a substrate, length 10 mm, width 10 mm, thickness 0.5 m
m LAO single crystal substrate was used.

【0031】この基板上に各金属TFA塩をY:Ba:
Cuのモル比が1:2:3となるようにメタノールに溶
解し、溶液濃度をY換算で0.25mol/リットルに
調整して原料溶液を作成した。
On this substrate, each metal TFA salt was added with Y: Ba:
A raw material solution was prepared by dissolving it in methanol so that the molar ratio of Cu was 1: 2: 3 and adjusting the solution concentration to 0.25 mol / liter in terms of Y.

【0032】この原料溶液を基板上にスピンコート法に
より塗布して塗布膜を形成した。このようにして得られ
た基板上の塗布膜に対して、水蒸気を含んだ酸素雰囲気
下で低昇温速度で300℃まで加熱した後炉冷し、次い
で再度上記と同様の方法により原料溶液をさらに塗布し
て塗布膜を形成した後、水蒸気を含んだ酸素雰囲気下で
低昇温速度で400℃まで加熱し、次いで炉冷してY−
Ba−Cu前駆体を得た。
This raw material solution was applied onto a substrate by spin coating to form a coating film. The coating film thus obtained on the substrate was heated to 300 ° C. at a low temperature rising rate in an oxygen atmosphere containing water vapor and then cooled in a furnace, and then the raw material solution was added again by the same method as described above. After further coating to form a coating film, it is heated to 400 ° C. at a low temperature rising rate in an oxygen atmosphere containing water vapor, and then cooled in a furnace to obtain Y-.
A Ba-Cu precursor was obtained.

【0033】この仮焼熱処理に続く結晶化熱処理におい
ては、上記の前駆体膜を水蒸気を含んだ10-3atmの
低酸素雰囲気下で25℃/minの昇温速度で加熱し、
基板温度を750℃に維持して結晶化熱処理後、次いで
炉内雰囲気を乾燥ガスに切替えて10分間保持した後、
炉冷した。
In the crystallization heat treatment subsequent to the calcination heat treatment, the precursor film is heated at a temperature rising rate of 25 ° C./min in a low oxygen atmosphere of 10 −3 atm containing water vapor,
After the crystallization heat treatment while maintaining the substrate temperature at 750 ° C., then switching the atmosphere in the furnace to a dry gas and holding it for 10 minutes,
The furnace was cooled.

【0034】以上の場合において、水蒸気は導入ガスを
30℃の脱イオン水の入ったフラスコ中をバブリングさ
せることにより炉内に導入した。また、1回の塗布で得
られる超電導体の膜厚は約0.2μmである。
In the above cases, steam was introduced into the furnace by bubbling the introduced gas in a flask containing deionized water at 30 ° C. The film thickness of the superconductor obtained by one-time application is about 0.2 μm.

【0035】以上のようにして得られた膜上に銀を蒸着
して電極を形成し、酸素雰囲気中で450℃で1時間熱
処理を施して超電導膜を形成した。
Silver was vapor-deposited on the film thus obtained to form an electrode, which was then heat-treated at 450 ° C. for 1 hour in an oxygen atmosphere to form a superconducting film.

【0036】この超電導膜はX線回折の結果、YBCO
が主成分であることが確認された。
As a result of X-ray diffraction, this superconducting film shows YBCO.
Was confirmed to be the main component.

【0037】この超電導膜について、直流4端子法によ
りTcを測定した。またYBCO(102)極点図によ
り、c軸及びa軸配向率を測定した。LAO単結晶基板
を用いた場合のTc及びc軸及びa軸配向率の測定結果
を表1に示す。
The Tc of this superconducting film was measured by the DC 4-terminal method. Further, the c-axis and a-axis orientation ratios were measured by the YBCO (102) pole figure. Table 1 shows the measurement results of the Tc and c-axis and a-axis orientation ratios when the LAO single crystal substrate was used.

【0038】[0038]

【表1】 [Table 1]

【0039】比較例1 実施例1と同様の方法によりLAO単結晶基板を用い
て、原料溶液を基板上に塗布して塗布膜を形成した。こ
のようにして得られた基板上の塗布膜に対して、水蒸気
を含んだ酸素雰囲気下で低昇温速度で400℃まで加熱
した後、炉冷してY−Ba−Cu前駆体を得た(塗布回
数1)。さらに、別途再度この仮焼膜上に上記と同様の
方法により原料溶液を塗布して塗布膜を形成した後、水
蒸気を含んだ酸素雰囲気下で低昇温速度で400℃まで
加熱した後炉冷してY−Ba−Cu前駆体を得た(塗布
回数2)。これらの2種類のY−Ba−Cu前駆体に対
して以後実施例1と同様の方法により、超電導体をLA
O単結晶基板上に形成した。
Comparative Example 1 Using a LAO single crystal substrate in the same manner as in Example 1, the raw material solution was applied onto the substrate to form a coating film. The coating film thus obtained on the substrate was heated to 400 ° C. at a low heating rate in an oxygen atmosphere containing water vapor, and then cooled in a furnace to obtain a Y—Ba—Cu precursor. (1 application). Furthermore, after separately coating the raw material solution on this calcined film by the same method as above to form a coating film, it is heated to 400 ° C. at a low heating rate in an oxygen atmosphere containing water vapor and then cooled in a furnace. Thus, a Y-Ba-Cu precursor was obtained (coating number 2). A superconductor was LA-coated with these two types of Y-Ba-Cu precursors by the same method as in Example 1 below.
It was formed on an O single crystal substrate.

【0040】この超電導膜はX線回折の結果、いずれも
YBCOが主成分であることが確認された。
As a result of X-ray diffraction, it was confirmed that YBCO was the main component in all the superconducting films.

【0041】この超電導膜について、実施例1と同様に
してTc、c軸及びa軸配向率を測定した。結果を表1
に同時に示した。
The Tc, c-axis and a-axis orientation ratios of this superconducting film were measured in the same manner as in Example 1. The results are shown in Table 1.
At the same time.

【0042】実施例2 基板としてハステロイ/YSZ/CeO2 からなるIB
AD複合基板を用いた。この複合基板は、約10nmの
平均結晶粒を有し、長さ10mm、幅10mm、厚さ
0.1mmのハステロイテープ上に、IBAD法を用い
て室温下でYSZの第1中間層を1μmの厚さに成膜
し、この上にスパッタリング法を用いてCeO2 の第2
中間層を厚さ0.5μmに形成して作成した。
Example 2 IB made of Hastelloy / YSZ / CeO 2 as a substrate
An AD composite substrate was used. This composite substrate has an average crystal grain of about 10 nm, and has a length of 10 mm, a width of 10 mm, and a thickness of 0.1 mm on a Hastelloy tape, and the first intermediate layer of YSZ having a thickness of 1 μm is formed at room temperature using the IBAD method. A second film of CeO 2 is formed on this by a sputtering method.
The intermediate layer was formed to a thickness of 0.5 μm.

【0043】この複合基板を用いた以外は実施例1と同
様の方法により、超電導体を複合基板上に形成した。こ
の超電導膜はX線回折の結果、YBCOが主成分である
ことが確認された。
A superconductor was formed on the composite substrate by the same method as in Example 1 except that this composite substrate was used. As a result of X-ray diffraction, it was confirmed that YBCO was the main component of this superconducting film.

【0044】この超電導膜について、実施例1と同様に
してTc、c軸及びa軸配向率を測定した。結果を表2
に示す。
The Tc, c-axis and a-axis orientation ratios of this superconducting film were measured in the same manner as in Example 1. The results are shown in Table 2.
Shown in.

【0045】[0045]

【表2】 [Table 2]

【0046】比較例2 基板として、実施例2のハステロイ/YSZ/CeO2
からなるIBAD複合基板を用いた以外は比較例1と同
様の方法により、2種類の超電導体をIBAD複合基板
上に形成した。この超電導膜はX線回折の結果、YBC
Oが主成分であることが確認された。
Comparative Example 2 As a substrate, Hastelloy / YSZ / CeO 2 of Example 2 was used.
Two types of superconductors were formed on the IBAD composite substrate by the same method as in Comparative Example 1 except that the IBAD composite substrate consisting of was used. This superconducting film shows YBC as a result of X-ray diffraction.
It was confirmed that O was the main component.

【0047】この超電導膜について、実施例1と同様に
してTc、c軸及びa軸配向率を測定した。結果を表2
に示した。
The Tc, c-axis and a-axis orientation ratios of this superconducting film were measured in the same manner as in Example 1. The results are shown in Table 2.
It was shown to.

【0048】以上の実施例1及び2並びに比較例1及び
2の結果から明らかなように、仮焼膜を2層に形成した
場合、1層目の仮焼熱処理を300℃で行った場合を4
00℃で行った場合と比較すると、いずれの基板を用い
た場合でも、Tcが向上するとともに、c軸配向率が著
しく向上していることが認められる。これらの値は仮焼
膜を1層に形成した場合と比較して、c軸配向率は低下
するものの、Tcは同等のレベルにあることを示してい
る。
As is apparent from the results of Examples 1 and 2 and Comparative Examples 1 and 2, when the calcined film is formed in two layers, the case where the calcining heat treatment of the first layer is performed at 300 ° C. Four
As compared with the case of performing at 00 ° C., it is recognized that the Tc is improved and the c-axis orientation ratio is significantly improved when any of the substrates is used. These values show that the Tc is at the same level, although the c-axis orientation ratio is lower than in the case where the calcined film is formed as one layer.

【0049】仮焼膜を1層又は2層に形成し、仮焼熱処
理を400℃で行った場合には、2層の仮焼膜は1層の
仮焼膜に対してTcは92Kから84〜86Kへと低下
するとともにc軸配向率も著しく低下する。
When the calcined film is formed in one or two layers and the calcined heat treatment is performed at 400 ° C., the two-layer calcined film has a Tc of 92 K to 84 with respect to one calcined film. As well as decreasing to ~ 86K, the c-axis orientation ratio also decreases significantly.

【0050】この原因は、結晶化熱処理時の1層目と2
層目の界面の不純物層の生成により、基板からのエピタ
キシャル成長を妨げることによるものと考えられる。こ
の不純物層の生成の要因としては、仮焼熱処理温度が高
い場合にアモルファス前駆体膜中の結晶化が進行し、結
晶化熱処理時に1層目と2層目の仮焼膜とその結晶粒が
優先的に反応し不純物が生成し易くなるものと考えられ
る。
This is because the first layer and the second layer during the crystallization heat treatment
It is considered that this is because the formation of the impurity layer at the interface of the second layer hinders the epitaxial growth from the substrate. The cause of the formation of the impurity layer is that the crystallization in the amorphous precursor film proceeds when the calcination heat treatment temperature is high, and the calcination films of the first and second layers and the crystal grains thereof are generated during the crystallization heat treatment. It is considered that the reaction is preferentially performed and impurities are easily generated.

【0051】また、以上の実施例1及び2の結果から、
1層目の仮焼熱処理を低くして仮焼膜を2層に形成した
場合には、基板として単結晶を用いた場合とIBAD複
合基板を用いた場合との間でTc及びc軸配向率に差は
殆ど認められない。さらに比較例1及び2の結果から、
仮焼膜を1層に形成した場合のTc及びc軸配向率の基
板による差も殆ど認められない。
From the results of Examples 1 and 2 above,
When the calcining heat treatment of the first layer is lowered to form the calcined film in two layers, the Tc and c-axis orientation ratios are different between the case where a single crystal is used as the substrate and the case where the IBAD composite substrate is used. Almost no difference is recognized. Furthermore, from the results of Comparative Examples 1 and 2,
Almost no difference in Tc and c-axis orientation ratio depending on the substrate when the calcined film is formed in one layer is observed.

【0052】実施例3 結晶化熱処理雰囲気中の導入ガスの水蒸気分圧(1.0
5vol%)と結晶化熱処理時間を変えた他は、実施例
1と同様の方法により300℃で仮焼し、さらに400
℃で仮焼してLAO単結晶基板上に仮焼膜を1層又は2
層に形成し、次いで結晶化熱処理を施して超電導膜を形
成した。また、300℃で4層まで仮焼し5層目を40
0℃で仮焼した例も同時に示した。この超電導膜はX線
回折の結果、YBCOが主成分であることが確認され
た。
Example 3 Water vapor partial pressure of introduced gas (1.0 in crystallization heat treatment atmosphere)
5 vol%) and the crystallization heat treatment time was changed, and calcination was performed at 300 ° C. by the same method as in Example 1, and further 400
Calcination at ℃ 1 and 2 calcination film on LAO single crystal substrate
It was formed into a layer and then subjected to a crystallization heat treatment to form a superconducting film. Also, calcining up to 4 layers at 300 ° C and 40 layers for 5th layer
An example of calcination at 0 ° C is also shown. As a result of X-ray diffraction, it was confirmed that YBCO was the main component of this superconducting film.

【0053】この超電導膜のJc値及びIc値(電圧基
準1μV/cm)を、直流4端子法により測定した。ま
たX線回折(ロッキングカーブ)により、YBCO(0
05)面に対応するピークの積分強度及び半値幅を求め
た。結果を表3に示す。
The Jc value and Ic value (voltage reference: 1 μV / cm) of this superconducting film were measured by the DC 4-terminal method. In addition, YBCO (0
05) The integrated intensity and the half width of the peak corresponding to the plane were obtained. The results are shown in Table 3.

【0054】[0054]

【表3】 [Table 3]

【0055】比較例3 結晶化熱処理雰囲気中の導入ガスの水蒸気分圧(4.2
vol%)と熱処理時間を変えた他は、実施例1と同様
の方法により300℃で仮焼し、さらに400℃で仮焼
してLAO単結晶基板上に仮焼膜を1層、2層又は5層
に形成し、次いで結晶化熱処理を施して超電導膜を形成
した。この超電導膜はX線回折の結果、YBCOが主成
分であることが確認された。
Comparative Example 3 Water vapor partial pressure of introduced gas (4.2 in crystallization heat treatment atmosphere)
vol%) and the heat treatment time was changed, and calcining was performed at 300 ° C. by the same method as in Example 1, and then calcining at 400 ° C. to form one or two calcined films on the LAO single crystal substrate. Alternatively, a superconducting film was formed by forming the film into five layers and then performing crystallization heat treatment. As a result of X-ray diffraction, it was confirmed that YBCO was the main component of this superconducting film.

【0056】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表3に示した。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 3.

【0057】以上の実施例3及び比較例3の結果から明
らかなように、仮焼膜を1層に形成し、水蒸気分圧を
1.05vol%又は4.2vol%に変化させた場合
には、Jc値及びIc値は多少変化するもののその差は
小さい。
As is clear from the results of Example 3 and Comparative Example 3 described above, when the calcined film was formed in one layer and the partial pressure of water vapor was changed to 1.05 vol% or 4.2 vol%, , Jc value and Ic value change somewhat, but the difference is small.

【0058】また、仮焼膜を2層に形成し、水蒸気分圧
を1.05vol%と低下させて結晶化熱処理を施した
場合には、仮焼膜を1層に形成した場合と比較して、J
c値は多少低下するもののIc値は1.5倍程度増加す
る。
When the calcination film is formed in two layers and the crystallization heat treatment is performed with the partial pressure of water vapor reduced to 1.05 vol%, the case where the calcination film is formed in one layer is compared with J
Although the c value slightly decreases, the Ic value increases about 1.5 times.

【0059】これに対して、仮焼膜を2層に形成し、水
蒸気分圧を4.2vol%で結晶化熱処理を施した場合
には、仮焼膜を1層に形成した場合と比較して、Jc値
は著しく低下する上、Ic値も低下する結果を示してお
り、この場合のロッキングカーブからYBCOのc軸配
向率の低下が確認された。
On the other hand, in the case where the calcined film is formed in two layers and the crystallization heat treatment is performed at the water vapor partial pressure of 4.2 vol%, it is compared with the case where the calcined film is formed in one layer. As a result, the Jc value is remarkably lowered, and the Ic value is also lowered. From the rocking curve in this case, it is confirmed that the c-axis orientation ratio of YBCO is lowered.

【0060】以上の結果は、結晶化熱処理時の水蒸気分
圧が増加するとYBCO膜の結晶の成長速度が大きくな
るため、結晶性及びc軸配向率が低下することによるも
のと考えられる。
It is considered that the above results are due to a decrease in the crystallinity and the c-axis orientation rate because the crystal growth rate of the YBCO film increases as the water vapor partial pressure during the crystallization heat treatment increases.

【0061】実施例4 溶液濃度を0.63mol/リットルに調整した高濃度
の原料溶液により1回の塗布で厚膜を形成し、結晶化熱
処理雰囲気中の導入ガスの水蒸気分圧(1.05vol
%)と熱処理時間を変えた他は、実施例1と同様の方法
により400℃で仮焼してLAO単結晶基板上に厚膜の
仮焼膜を1層形成し、次いで結晶化熱処理を施して超電
導膜を形成した。この超電導膜はX線回折の結果、YB
COが主成分であることが確認された。
Example 4 A thick film was formed by coating once with a high-concentration raw material solution whose solution concentration was adjusted to 0.63 mol / liter, and the vapor partial pressure (1.05 vol) of the introduced gas in the crystallization heat treatment atmosphere was changed.
%) And the heat treatment time was changed, and a calcination was performed at 400 ° C. in the same manner as in Example 1 to form one thick calcined film on the LAO single crystal substrate, followed by crystallization heat treatment. To form a superconducting film. This superconducting film shows YB
It was confirmed that CO was the main component.

【0062】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表4に示す。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 4.

【0063】[0063]

【表4】 [Table 4]

【0064】比較例4 溶液濃度を0.63mol/リットルに調整した高濃度
の原料溶液により1回の塗布で厚膜を形成し、結晶化熱
処理雰囲気中の導入ガスの水蒸気分圧(4.2vol
%)と熱処理時間を変えた他は、実施例1と同様の方法
により400℃で仮焼してLAO単結晶基板上に仮焼膜
を1層形成し、次いで結晶化熱処理を施して超電導膜を
形成した。この超電導膜はX線回折の結果、YBCOが
主成分であることが確認された。
Comparative Example 4 A thick film was formed by coating once with a high-concentration raw material solution having a solution concentration adjusted to 0.63 mol / liter, and the vapor partial pressure (4.2 vol) of the introduced gas in the crystallization heat treatment atmosphere was increased.
%) And the heat treatment time was changed, and a calcination was performed at 400 ° C. in the same manner as in Example 1 to form a calcination film on the LAO single crystal substrate, and then crystallization heat treatment was performed to obtain a superconducting film. Was formed. As a result of X-ray diffraction, it was confirmed that YBCO was the main component of this superconducting film.

【0065】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表4に示した。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 4.

【0066】以上の実施例4及び比較例4の結果から明
らかなように、原料溶液の濃度を大きくして厚膜(0.
5μm)の仮焼膜を1層に形成し、水蒸気分圧を1.0
5vol%と低下させて結晶化熱処理を施した場合に
は、仮焼膜を0.2μmの厚さの1層に形成した場合と
比較して(実施例3参照)、Jc値は約60%程度に低
下するもののIc値は1.5倍程度増加する。
As is clear from the results of Example 4 and Comparative Example 4 above, the concentration of the raw material solution was increased and the thick film (0.
5 μm) calcined film is formed in one layer and the partial pressure of water vapor is 1.0
When the heat treatment for crystallization was performed at a reduced amount of 5 vol%, the Jc value was about 60% as compared with the case where the calcined film was formed in one layer having a thickness of 0.2 μm (see Example 3). Although it decreases to some extent, the Ic value increases about 1.5 times.

【0067】これに対して、原料溶液の濃度を大きくし
て厚膜(0.5μm)の仮焼膜を1層に形成し、水蒸気
分圧を4.2vol%で結晶化熱処理を施した場合に
は、仮焼膜を0.2μmの厚さの1層に形成した場合と
比較して(比較例3参照)、Jc値及びIc値も大きく
低下する結果を示しており、この場合のロッキングカー
ブからYBCOのc軸配向率の低下が確認された。
On the other hand, when the concentration of the raw material solution was increased to form a thick film (0.5 μm) of the calcined film in one layer and the crystallization heat treatment was performed at a water vapor partial pressure of 4.2 vol%. Shows that the Jc value and the Ic value are greatly reduced as compared with the case where the calcined film is formed in a single layer having a thickness of 0.2 μm (see Comparative Example 3). From the curve, a decrease in the c-axis orientation rate of YBCO was confirmed.

【0068】この理由も結晶化熱処理時の水蒸気分圧が
増加すると、YBCO膜の結晶の成長速度が大きくな
り、結晶性及びc軸配向率が低下するためと考えられ
る。
It is considered that this is also because the increase in the water vapor partial pressure during the crystallization heat treatment increases the crystal growth rate of the YBCO film, resulting in a decrease in the crystallinity and the c-axis orientation ratio.

【0069】実施例5 実施例3のLAO単結晶基板に代えて実施例2のハステ
ロイ/YSZ/CeO 2 からなるIBAD複合基板を用
いた他は実施例3と同様の方法により、この複合基板上
に仮焼膜を1層又は2層に形成し、次いで結晶化熱処理
を施して超電導膜を形成した。この超電導膜はX線回折
の結果、YBCOが主成分であることが確認された。
Example 5 Instead of the LAO single crystal substrate of Example 3, the haste of Example 2 was used.
Roy / YSZ / CeO 2 IBAD composite substrate consisting of
On the composite substrate, the same method as in Example 3 was carried out except that
Calcination film is formed in 1 or 2 layers, and then crystallization heat treatment
Was applied to form a superconducting film. This superconducting film is X-ray diffraction
As a result, it was confirmed that YBCO was the main component.

【0070】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表5に示す。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 5.

【0071】[0071]

【表5】 [Table 5]

【0072】比較例5 実施例3のLAO単結晶基板に代えて実施例2のハステ
ロイ/YSZ/CeO 2 からなるIBAD複合基板を用
いた他は比較例3と同様の方法により、この複合基板上
に仮焼膜を1層又は2層に形成し、次いで結晶化熱処理
を施して超電導膜を形成した。この超電導膜はX線回折
の結果、YBCOが主成分であることが確認された。
Comparative Example 5 Instead of the LAO single crystal substrate of Example 3, the haste of Example 2 was used.
Roy / YSZ / CeO 2 IBAD composite substrate consisting of
On the composite substrate, the same method as in Comparative Example 3 was performed except that
Calcination film is formed in 1 or 2 layers, and then crystallization heat treatment
Was applied to form a superconducting film. This superconducting film is X-ray diffraction
As a result, it was confirmed that YBCO was the main component.

【0073】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表5に示した。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 5.

【0074】実施例6 実施例3のLAO単結晶基板に代えて実施例2のハステ
ロイ/YSZ/CeO 2 からなるIBAD複合基板を用
いた他は実施例4と同様の方法により、高濃度の原料溶
液を用いて1回の塗布で厚膜を形成し、結晶化熱処理を
施して超電導膜を形成した。この超電導膜はX線回折の
結果、YBCOが主成分であることが確認された。
Example 6 Instead of the LAO single crystal substrate of Example 3, the haste of Example 2 was used.
Roy / YSZ / CeO 2 IBAD composite substrate consisting of
In the same manner as in Example 4, except that
A thick film is formed by applying the solution once, and crystallization heat treatment is performed.
Then, a superconducting film was formed. This superconducting film is
As a result, it was confirmed that YBCO was the main component.

【0075】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表6に示す。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 6.

【0076】[0076]

【表6】 [Table 6]

【0077】比較例6 実施例3のLAO単結晶基板に代えて実施例2のハステ
ロイ/YSZ/CeO 2 からなるIBAD複合基板を用
いた他は比較例4と同様の方法により、高濃度の原料溶
液を用いて1回の塗布で厚膜を形成し、結晶化熱処理を
施して超電導膜を形成した。この超電導膜はX線回折の
結果、YBCOが主成分であることが確認された。
Comparative Example 6 Instead of the LAO single crystal substrate of Example 3, the haste of Example 2 was used.
Roy / YSZ / CeO 2 IBAD composite substrate consisting of
The same procedure as in Comparative Example 4 was repeated except that
A thick film is formed by applying the solution once, and crystallization heat treatment is performed.
Then, a superconducting film was formed. This superconducting film is
As a result, it was confirmed that YBCO was the main component.

【0078】この超電導膜のJc値、Ic値、ピーク積
分強度及び半値幅を実施例3と同様にして測定した。結
果を表6に示した。
The Jc value, Ic value, peak integrated intensity and full width at half maximum of this superconducting film were measured in the same manner as in Example 3. The results are shown in Table 6.

【0079】以上の複合基板を用いた実施例5及び6並
びに比較例5及び6の結果は、それぞれLAO単結晶基
板を用いた実施例3及び4並びに比較例3及び4と比較
して、Jc値及びIc値は低下するものの同様の傾向を
示す結果が得られた。
The results of Examples 5 and 6 using the above composite substrate and Comparative Examples 5 and 6 are Jc in comparison with Examples 3 and 4 using the LAO single crystal substrate and Comparative Examples 3 and 4, respectively. Although the values and Ic values decreased, the results showing the same tendency were obtained.

【0080】[0080]

【発明の効果】以上述べたように、本発明によれば、基
板上に形成した酸化物超電導前駆体の熱処理時の仮焼熱
処理温度及び/又は結晶化熱処理雰囲気中の導入ガスの
水蒸気分圧を制御することにより、高配向性と高Jc値
を有する厚膜のテープ状酸化物超電導体が得られる。ま
た、この酸化物超電導体の厚膜化は1層又は多層構造の
仮焼塗布膜の結晶化熱処理により達成することができる
とともに、非真空プロセスであるMOD法により超電導
層を形成するため、長尺線材に適し、その製造コストを
著しく低減させることができ、超電導マグネットや超電
導ケーブルへの応用に適する。
As described above, according to the present invention, the calcination heat treatment temperature during the heat treatment of the oxide superconducting precursor formed on the substrate and / or the vapor partial pressure of the introduced gas in the crystallization heat treatment atmosphere. A thick film tape-shaped oxide superconductor having a high orientation and a high Jc value can be obtained by controlling the above. Further, thickening of the oxide superconductor can be achieved by crystallization heat treatment of the calcined coating film having a single-layer or multi-layer structure, and the superconducting layer is formed by the MOD method which is a non-vacuum process. It is suitable for wire rods, its manufacturing cost can be significantly reduced, and it is suitable for application to superconducting magnets and cables.

フロントページの続き (71)出願人 000173784 財団法人鉄道総合技術研究所 東京都国分寺市光町2丁目8番地38 (72)発明者 本庄 哲吏 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 富士 広 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 中村 雄一 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 和泉 輝郎 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 塩原 融 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 Fターム(参考) 4G047 JA03 JA04 JB03 JC02 KB05 KB14 KD02 LA10 LB01 4M113 AD35 AD36 AD40 AD68 BA01 BA04 BA23 BA29 CA34 5G321 AA01 AA04 BA01 BA03 CA22 CA24 DB02 DB41 DB46 DB47Continued front page    (71) Applicant 000173784             Railway Technical Research Institute             38-8 Hikarimachi, Kokubunji, Tokyo (72) Inventor Tetsuro Honjo             1-10-13 Shinonome, Koto-ku, Tokyo             Research Center for Industrial Technology of Superconductivity             Research Institute (72) Inventor Fuji Hiro             1-10-13 Shinonome, Koto-ku, Tokyo             Research Center for Industrial Technology of Superconductivity             Research Institute (72) Inventor Yuichi Nakamura             1-10-13 Shinonome, Koto-ku, Tokyo             Research Center for Industrial Technology of Superconductivity             Research Institute (72) Inventor Teruo Izumi             1-10-13 Shinonome, Koto-ku, Tokyo             Research Center for Industrial Technology of Superconductivity             Research Institute (72) Inventor T. Shiobara             1-10-13 Shinonome, Koto-ku, Tokyo             Research Center for Industrial Technology of Superconductivity             Research Institute F-term (reference) 4G047 JA03 JA04 JB03 JC02 KB05                       KB14 KD02 LA10 LB01                 4M113 AD35 AD36 AD40 AD68 BA01                       BA04 BA23 BA29 CA34                 5G321 AA01 AA04 BA01 BA03 CA22                       CA24 DB02 DB41 DB46 DB47

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】基板上に、酸化物超電導体を構成する各金
属元素を所定のモル比で含む金属有機酸塩の混合溶液を
塗布し、仮焼熱処理を施した酸化物超電導前駆体に結晶
化熱処理を施した酸化物超電導体において、結晶化熱処
理後の酸化物超電導体の厚さが0.5μm以上で、77K
における臨界電流密度が0.7MA/cm2を有することを特
徴とする厚膜テープ状酸化物超電導体。
1. An oxide superconducting precursor obtained by applying a mixed solution of a metal organic acid salt containing a metal element constituting an oxide superconductor in a predetermined molar ratio onto a substrate and subjecting it to calcination heat treatment. In the oxide superconductor that has been heat treated for crystallization, the oxide superconductor after heat treatment for crystallization has a thickness of 0.5 μm or more and is 77K.
A thick-film tape-shaped oxide superconductor having a critical current density of 0.7 MA / cm 2 .
【請求項2】酸化物超電導前駆体は、その膜中に存在す
る結晶化した酸化物及びフッ化物の粒径が0.3μm以
下であることを特徴とする請求項1記載の厚膜テープ状
酸化物超電導体。
2. The thick film tape-like material according to claim 1, wherein the oxide superconducting precursor has a grain size of crystallized oxides and fluorides present in the film of 0.3 μm or less. Oxide superconductor.
【請求項3】酸化物超電導前駆体は、基板上に複数層形
成されていることを特徴とする請求項1又は2記載の厚
膜テープ状酸化物超電導体。
3. The thick film tape-shaped oxide superconductor according to claim 1, wherein a plurality of oxide superconducting precursors are formed on the substrate.
【請求項4】仮焼熱処理は、少なくとも最外層の酸化物
超電導前駆体を除く仮焼熱処理温度が400℃未満で行
われることを特徴とする請求項3記載の厚膜テープ状酸
化物超電導体。
4. The thick film tape-shaped oxide superconductor according to claim 3, wherein the calcining heat treatment is performed at a calcining heat treatment temperature of less than 400 ° C. excluding at least the oxide superconducting precursor of the outermost layer. .
【請求項5】仮焼熱処理温度は、250〜350℃であ
ることを特徴とする請求項4記載の厚膜テープ状酸化物
超電導体。
5. The thick film tape-shaped oxide superconductor according to claim 4, wherein the calcination heat treatment temperature is 250 to 350 ° C.
【請求項6】結晶化熱処理は、水蒸気分圧が4.0vo
l%以下の雰囲気中で行われることを特徴とする請求項
1乃至5いずれか1項記載の厚膜テープ状酸化物超電導
体。
6. The crystallization heat treatment has a water vapor partial pressure of 4.0 vo.
The thick film tape-shaped oxide superconductor according to any one of claims 1 to 5, which is performed in an atmosphere of 1% or less.
【請求項7】水蒸気分圧は、0.5〜3.2vol%の
範囲であることを特徴とする請求項6項記載の厚膜テー
プ状酸化物超電導体。
7. The thick film tape-shaped oxide superconductor according to claim 6, wherein the partial pressure of water vapor is in the range of 0.5 to 3.2 vol%.
【請求項8】少なくとも最外層の酸化物超電導前駆体の
結晶化到達前の結晶化熱処理は、水蒸気分圧が0.5〜
3.2vol%の雰囲気中で行われることを特徴とする
請求項3乃至7いずれか1項記載の厚膜テープ状酸化物
超電導体。
8. The crystallization heat treatment of at least the outermost layer of the oxide superconducting precursor before reaching crystallization has a water vapor partial pressure of 0.5 to 0.5.
The thick film tape-shaped oxide superconductor according to any one of claims 3 to 7, which is performed in an atmosphere of 3.2 vol%.
【請求項9】最外層の酸化物超電導前駆体の結晶化到達
後の結晶化熱処理は、結晶化到達前の水蒸気分圧以下で
行われることを特徴とする請求項3乃至8いずれか1項
記載の厚膜テープ状酸化物超電導体。
9. The heat treatment for crystallization of the oxide superconducting precursor of the outermost layer after reaching the crystallization is performed at a partial pressure of water vapor or lower before reaching the crystallization. The thick film tape-shaped oxide superconductor described.
【請求項10】結晶化熱処理は、水蒸気、酸化物超電導
体と反応しないガス及び酸素からなる混合ガスを導入し
た雰囲気中で行われることを特徴とする請求項1乃至9
いずれか1項記載の厚膜テープ状酸化物超電導体。
10. The crystallization heat treatment is performed in an atmosphere in which a mixed gas of water vapor, a gas that does not react with an oxide superconductor, and oxygen is introduced.
The thick film tape-shaped oxide superconductor according to any one of claims 1.
【請求項11】酸化物超電導体は、RE1+X Ba2-X
3Y (ここでREは、Y、Nd、Sm、Gd、E
u,Yb、Pr又はHoから選択された少なくとも1種
以上の元素を示す。以下同じ。)からなることを特徴と
する請求項1乃至10いずれか1項記載の厚膜テープ状
酸化物超電導体。
11. An oxide superconductor is RE 1 + X Ba 2-X C.
u 3 O Y (where RE is Y, Nd, Sm, Gd, E
At least one element selected from u, Yb, Pr or Ho is shown. same as below. (4) The thick film tape-shaped oxide superconductor according to any one of claims 1 to 10, wherein
【請求項12】金属有機酸塩は、トリフルオロ酢酸塩、
オクチル酸塩、ナフテン酸塩又は酢酸塩のいずれか一種
以上からなることを特徴とする請求項1乃至11いずれ
か1項記載の厚膜テープ状酸化物超電導体。
12. The metal organic acid salt is trifluoroacetate,
The thick film tape-shaped oxide superconductor according to any one of claims 1 to 11, which comprises at least one of octylate, naphthenate and acetate.
【請求項13】金属有機酸塩は、少なくともトリフルオ
ロ酢酸塩を含むことを特徴とする請求項1乃至12いず
れか1項記載の厚膜テープ状酸化物超電導体。
13. The thick film tape-shaped oxide superconductor according to claim 1, wherein the metal organic acid salt contains at least trifluoroacetic acid salt.
【請求項14】RE1+X Ba2-X Cu3Y からなる酸
化物超電導体を構成する各金属元素を所定のモル比で含
む金属有機酸塩の混合溶液を基板上に塗布した後、仮焼
熱処理を施すことにより酸化物超電導前駆体を形成し、
次いで結晶化熱処理を施すことにより前記酸化物超電導
前駆体を結晶化させて酸化物超電導体を製造する方法に
おいて、前記基板上に酸化物超電導前駆体を複数層形成
するとともに、前記仮焼熱処理のうち少なくとも最外層
の酸化物超電導前駆体を除く仮焼熱処理温度を400℃
未満で行い、かつ前記結晶化熱処理雰囲気中の導入ガス
の水蒸気分圧を4.0vol%以下にして行うことを特
徴とする厚膜テープ状酸化物超電導体の製造方法。
14. After applying a mixed solution of a metal organic acid salt containing each metal element constituting the oxide superconductor composed of RE 1 + X Ba 2 -X Cu 3 O Y in a predetermined molar ratio onto a substrate. , Forming an oxide superconducting precursor by applying calcination heat treatment,
Then, in the method for producing an oxide superconductor by crystallizing the oxide superconducting precursor by performing a crystallization heat treatment, a plurality of layers of the oxide superconducting precursor are formed on the substrate, and the calcination heat treatment is performed. Among them, the calcination heat treatment temperature excluding the oxide superconducting precursor of at least the outermost layer is 400 ° C.
And a vapor partial pressure of the introduced gas in the crystallization heat treatment atmosphere of 4.0 vol% or less.
【請求項15】仮焼熱処理温度が250〜350℃の範
囲で、かつ結晶化熱処理雰囲気中の導入ガスの水蒸気分
圧が0.5〜3.2vol%の範囲であることを特徴と
する請求項14記載の厚膜テープ状酸化物超電導体の製
造方法。
15. The calcination heat treatment temperature is in the range of 250 to 350 ° C., and the steam partial pressure of the introduced gas in the crystallization heat treatment atmosphere is in the range of 0.5 to 3.2 vol%. Item 15. A method for producing a thick film tape-shaped oxide superconductor according to Item 14.
JP2002089186A 2001-05-15 2002-03-27 Thick film of tape-like oxide superconductor and method for manufacturing it Withdrawn JP2003034527A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002089186A JP2003034527A (en) 2001-05-15 2002-03-27 Thick film of tape-like oxide superconductor and method for manufacturing it
PCT/JP2002/004687 WO2002093590A1 (en) 2001-05-15 2002-05-15 Oxide supercoductor in the form of tape and method for preparation thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001145600 2001-05-15
JP2001-145600 2001-05-15
JP2002089186A JP2003034527A (en) 2001-05-15 2002-03-27 Thick film of tape-like oxide superconductor and method for manufacturing it

Publications (1)

Publication Number Publication Date
JP2003034527A true JP2003034527A (en) 2003-02-07

Family

ID=26615145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089186A Withdrawn JP2003034527A (en) 2001-05-15 2002-03-27 Thick film of tape-like oxide superconductor and method for manufacturing it

Country Status (1)

Country Link
JP (1) JP2003034527A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100182A1 (en) * 2003-05-07 2004-11-18 International Superconductivity Technology Center, The Juridical Foundation Rare earth oxide superconductor and process for producing the same
WO2005007576A1 (en) * 2003-07-18 2005-01-27 Korea Polytechnic University Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor
KR100665587B1 (en) 2005-05-12 2007-01-09 학교법인 한국산업기술대학 Method for providing metal organic precursor solution and oxide superconducting film fabricated thereof
KR100807639B1 (en) 2006-12-06 2008-02-28 한국기계연구원 Method of manufacturing superconducting tapes using continuous coating and calcination process
WO2008023454A1 (en) 2006-08-23 2008-02-28 International Superconductivity Technology Center, The Juridical Foundation MANUFACTURING METHOD OF TAPE-SHAPED Re-BASE (123) SUPERCONDUCTOR
KR100851620B1 (en) 2006-11-14 2008-08-12 학교법인 한국산업기술대학 Method For Providing Metal Organic Precursor Solution And Oxide Superconducting Film Fabricated Thereof
WO2009087720A1 (en) 2008-01-08 2009-07-16 International Superconductivity Technology Center, The Juridical Foundation Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
JP2010123516A (en) * 2008-11-21 2010-06-03 Fujikura Ltd Method of manufacturing substrate for oxide superconductor, method of manufacturing oxide superconductor, and device for forming cap layer for oxide superconductor
US8153281B2 (en) * 2003-06-23 2012-04-10 Superpower, Inc. Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape
US8409657B2 (en) 2005-12-14 2013-04-02 The Jurical Foundation Process for producing thick-film tape-shaped re-type (123) superconductor
JP2013162049A (en) * 2012-02-07 2013-08-19 Japan Steel Works Ltd:The Superconducting multilayer structure thin film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709005B2 (en) * 2003-05-07 2011-06-22 財団法人国際超電導産業技術研究センター Rare earth oxide superconductor and manufacturing method thereof
WO2004100182A1 (en) * 2003-05-07 2004-11-18 International Superconductivity Technology Center, The Juridical Foundation Rare earth oxide superconductor and process for producing the same
US7473670B2 (en) 2003-05-07 2009-01-06 International Superconductivity Technology Center Process for producing rare earth oxide superconductor
US8153281B2 (en) * 2003-06-23 2012-04-10 Superpower, Inc. Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape
WO2005007576A1 (en) * 2003-07-18 2005-01-27 Korea Polytechnic University Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor
JP2007530398A (en) * 2003-07-18 2007-11-01 コリア インスティテュート オブ マシネリー アンド マテリアルズ Method for producing precursor solution for metalorganic vapor deposition using superconducting oxide and method for producing thin film superconductor by metalorganic vapor deposition
US7625843B2 (en) * 2003-07-18 2009-12-01 Korea Institute Of Machinery & Materials Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
KR100665587B1 (en) 2005-05-12 2007-01-09 학교법인 한국산업기술대학 Method for providing metal organic precursor solution and oxide superconducting film fabricated thereof
US8409657B2 (en) 2005-12-14 2013-04-02 The Jurical Foundation Process for producing thick-film tape-shaped re-type (123) superconductor
WO2008023454A1 (en) 2006-08-23 2008-02-28 International Superconductivity Technology Center, The Juridical Foundation MANUFACTURING METHOD OF TAPE-SHAPED Re-BASE (123) SUPERCONDUCTOR
KR100851620B1 (en) 2006-11-14 2008-08-12 학교법인 한국산업기술대학 Method For Providing Metal Organic Precursor Solution And Oxide Superconducting Film Fabricated Thereof
KR100807639B1 (en) 2006-12-06 2008-02-28 한국기계연구원 Method of manufacturing superconducting tapes using continuous coating and calcination process
EP2234121A1 (en) * 2008-01-08 2010-09-29 International Superconductivity Technology Center, The Juridical Foundation Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
EP2234121A4 (en) * 2008-01-08 2012-08-22 Int Superconductivity Tech Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
US8326387B2 (en) 2008-01-08 2012-12-04 International Superconductivity Technology Center, The Juridical Foundation Re-type oxide superconducting wire and process for producing the same
WO2009087720A1 (en) 2008-01-08 2009-07-16 International Superconductivity Technology Center, The Juridical Foundation Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
JP2010123516A (en) * 2008-11-21 2010-06-03 Fujikura Ltd Method of manufacturing substrate for oxide superconductor, method of manufacturing oxide superconductor, and device for forming cap layer for oxide superconductor
JP2013162049A (en) * 2012-02-07 2013-08-19 Japan Steel Works Ltd:The Superconducting multilayer structure thin film

Similar Documents

Publication Publication Date Title
JP4713012B2 (en) Tape-shaped oxide superconductor
US8409657B2 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP2007165153A6 (en) A method for producing a thick film tape-shaped RE (123) superconductor.
JP5244337B2 (en) Tape-shaped oxide superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
US20110105336A1 (en) Rare earth element oxide superconductive wire material and method of producing the same
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
JP4422959B2 (en) Method for producing Y-based tape-shaped oxide superconductor
JP6835203B2 (en) Oxide superconducting thin film material, oxide superconducting thin film wire, and method for manufacturing oxide superconducting thin film
US7985712B2 (en) Rare earth oxide superconductor and process for producing the same
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP4709005B2 (en) Rare earth oxide superconductor and manufacturing method thereof
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
JP5503252B2 (en) Rare earth oxide superconducting wire
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP2011201712A (en) Method for producing oriented oxide film, oriented oxide film, and oxide superconductor
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
KR100998310B1 (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JP2000086239A (en) Oxide-based superconductive material, its production and device using that
JP2013109916A (en) Oxide superconducting wire, and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607