JP2003033872A - Closed type compressor and its welding method, and automatic welding device - Google Patents

Closed type compressor and its welding method, and automatic welding device

Info

Publication number
JP2003033872A
JP2003033872A JP2001222400A JP2001222400A JP2003033872A JP 2003033872 A JP2003033872 A JP 2003033872A JP 2001222400 A JP2001222400 A JP 2001222400A JP 2001222400 A JP2001222400 A JP 2001222400A JP 2003033872 A JP2003033872 A JP 2003033872A
Authority
JP
Japan
Prior art keywords
welding
pulse
current
cylindrical container
hermetic compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001222400A
Other languages
Japanese (ja)
Other versions
JP4867095B2 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Mitsuaki Haneda
光明 羽田
Hirotaka Tachibana
浩隆 立花
Koichi Sekiguchi
浩一 関口
Hidenari Takada
英成 高田
Takayuki Kashima
孝之 鹿島
Hideya Saito
秀弥 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Via Mechanics Ltd
Original Assignee
Hitachi Ltd
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Via Mechanics Ltd filed Critical Hitachi Ltd
Priority to JP2001222400A priority Critical patent/JP4867095B2/en
Publication of JP2003033872A publication Critical patent/JP2003033872A/en
Application granted granted Critical
Publication of JP4867095B2 publication Critical patent/JP4867095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a closed type compressor and its welding method which, in hermetically welding a cylindrical vessel of a closed type compressor, prevent generation of spatters and their intrusion into the vessel and which are suitable for obtaining a welding zone of excellent quality, and also to provide a automatic welding device. SOLUTION: The welding method is a pulse arc welding using a welding-wire as an electrode. A globule is formed at the tip end of a molten welding-wire during a pulse period while a pulse current and voltage are being applied. The wire globule is detached and shifted to a molten pool immediately after the pulse period ends or in the first half of the period while a base current and voltage are being applied. Setting such an appropriate welding waveform that one globule can be shifted in one pulse period, at the same time setting a mean welding voltage for maintaing such an arc length that a short circuit shift does not occur when shifting the wire globule, and at the same time setting a mean welding current required for melting a joint part, then the pulse arc welding is conducted. Thus, the circumferential lap fillet welded part or the circumferential butting welded part of the closed type compressor can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍、冷房、空調
機器に使用される各種の密閉形圧縮機及びその溶接方法
並びに溶接装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various hermetic compressors used in refrigeration, air-conditioning and air-conditioning equipment, welding methods and welding apparatuses for the hermetic compressors.

【0002】[0002]

【従来の技術】従来、スパッタを低減する溶接法とし
て、特開平1−254385号公報(文献1)、特開平
5−23850号公報(文献2)、特開平7−1674
3号公報(文献3)及び特開平7−47473号公報
(文献4)に記載の技術が知られていた。これら文献に
は、いずれもパルス放電を利用したパルス溶接装置が記
載されている。
2. Description of the Related Art Conventionally, as a welding method for reducing spatter, JP-A-1-254385 (Reference 1), JP-A-5-23850 (Reference 2), and JP-A-7-1674 are available.
The techniques described in Japanese Patent Laid-Open No. 3 (Document 3) and Japanese Patent Laid-Open No. 7-47473 (Document 4) have been known. All of these documents describe a pulse welding device using pulse discharge.

【0003】溶接時の問題としてスパッタとアンダーカ
ット(溶接欠陥)が挙げられるが、スパッタは、ワイヤ
電極と被溶接物との接触(短絡)が原因であり、アンダ
ーカットは、アーク長が長くなることで起こることが上
記文献1に記載されている。
Spatters and undercuts (welding defects) can be cited as problems during welding. Spatters are caused by the contact (short circuit) between the wire electrode and the object to be welded, and undercuts result in a long arc length. What happens in that case is described in the above-mentioned Document 1.

【0004】シールドガスがアルゴンを主原料(アルゴ
ン20%と炭酸ガス)とした場合、パルスピーク電流を
300Aから400Aと比較的低い電流とすることで、
ワイヤ電極と被溶接物との距離を0.4mm間で近づけ
ても短絡が起こらず、溶滴離脱が可能であるが、アルゴ
ンはランニングコストがかかる問題がある。そこで、シ
ールドガスを炭酸ガス100%とすると、パルス期間に
溶滴が形成され、次のパルス期間の初期に溶滴が離脱す
る場合、溶滴離脱時にワイヤ電極と被溶接物とが接触
し、接触状態が解かれアークが再点弧した時にスパッタ
が発生すること、及びパルス期間中に溶滴が形成されベ
ース電流期間中に溶滴離脱した時に、アーク切れを起こ
してしまうことが記載されている。
When the shielding gas is argon as a main raw material (20% argon and carbon dioxide gas), the pulse peak current is set to a relatively low current of 300 A to 400 A,
Even if the distance between the wire electrode and the object to be welded is reduced to 0.4 mm, a short circuit does not occur, and droplets can be separated, but argon has a problem of high running cost. Therefore, when the shield gas is 100% carbon dioxide gas, droplets are formed during the pulse period, and when the droplets are released at the beginning of the next pulse period, the wire electrode and the workpiece are contacted when the droplets are released, It is described that spatter occurs when the contact state is released and the arc is re-ignited, and that the arc is broken when a droplet is formed during the pulse period and detached during the base current period. There is.

【0005】また、文献2には、1パルス期間中に1溶
滴させる技術が記載されている。更に、文献3には、シ
ールドガス中のアルゴン含有量が少ない場合、パルスの
ピーク期間で形成された溶滴は次のパルス期間でしか離
脱できないことに言及している。そして、文献4には、
炭酸ガスパルスアーク溶接におけるスパッタの低減を、
ワイヤの材質を工夫することで行うことが記載されてい
る。
Further, Document 2 describes a technique of making one droplet during one pulse period. Further, Document 3 mentions that when the content of argon in the shield gas is low, the droplet formed in the peak period of the pulse can be separated only in the next pulse period. And in Document 4,
Reduction of spatter in carbon dioxide pulse arc welding
It is described that this is done by devising the material of the wire.

【0006】ところで、密閉形圧縮機を密閉するために
は、モータ部品や圧縮機部品などが収納されている円筒
容器とフタキャップとを封止溶接(密閉溶接)する必要が
ある。圧縮機は耐圧強度を必要とする精密な高圧容器で
あり、継手部の接合方法としては一般にアーク溶接法が
用いられ、母材強度並みの溶接強度を必要としている。
この密閉溶接を行う時に溶融金属の一部がスパッタとな
って発生及び飛散すると、この飛散したスパッタの一部
が溶接継手の隙間や容器の開口孔から容器内部に侵入す
ることになる。溶接によるスパッタは硬い金属粒子であ
り、特に容器内の圧縮機部に侵入した場合には、摺動部
や回転部を損傷させたり、ロックさせたりする大きな故
障要因となる。
By the way, in order to seal the hermetic compressor, it is necessary to perform sealing welding (sealing welding) between the cylindrical container accommodating the motor parts and the compressor parts and the lid cap. The compressor is a precise high-pressure vessel that requires compressive strength, and the arc welding method is generally used as the joining method for the joints, and requires welding strength similar to that of the base metal.
If a part of the molten metal is generated and scatters as spatter during this closed welding, a part of this spatter will enter the inside of the container through the gap of the weld joint or the opening hole of the container. Spatter due to welding is hard metal particles, and particularly when it enters the compressor section in the container, it becomes a major cause of failure that damages or locks the sliding section and the rotating section.

【0007】このため、従来からスパッタの発生が少な
い溶接方法や容器内部へのスパッタの侵入を防止する方
法などが提案されている。特開平7−119636号公
報(文献5)に記載の密閉形圧縮機容器の溶接方法は、
円筒容器とフタキャップとの重ね継手内部に軟質金属の
シ−ル材を挿入し、円筒容器とフタキャップの一部を電
気溶接して密閉するようにしている。また、特許第30
51701号公報(文献6)に記載の密閉形スクロール
圧縮機は、ディスチャージカバー又は上部鏡板の下端を
絞って小径とし、この下端を固定スクロールの外周縁に
当接させてこれをフレームとの間に狭持した状態で、デ
ィスチャージカバー又は上部鏡板を容器本体に溶接する
ようにしている。
Therefore, conventionally, a welding method in which the generation of spatter is small, a method of preventing the spatter from entering the container, and the like have been proposed. The welding method for the hermetic compressor container described in JP-A-7-119636 (Reference 5) is
A sealant made of a soft metal is inserted inside the lap joint of the cylindrical container and the lid cap, and a part of the cylindrical container and the lid cap are electrically welded to hermetically seal them. Also, Patent No. 30
In the hermetic scroll compressor described in Japanese Patent Publication No. 51701 (Document 6), the lower end of the discharge cover or the upper end plate is narrowed to have a small diameter, and the lower end is brought into contact with the outer peripheral edge of the fixed scroll so that it is between the frame and the frame. The discharge cover or the upper end plate is welded to the container body in a state of being sandwiched.

【0008】しかし、文献5に記載の密閉形圧縮機容器
の溶接方法は、重ね継手内部に挿入された軟質金属のシ
−ル材によってスパッタの侵入を阻止できるものと考え
られが、余分なシール材の費用や挿入作業がかかるばか
りでなく、溝形成の加工工程や加工費も必要という問題
がある。また、上記のシール材を加工溝に挿入するため
の隙間が大きくなり、その隙間のある重ね継手部をアー
ク溶接などの電気溶接で簡単に密閉することは困難と考
えられ、溶接中にスパッタが多発する結果になる恐れが
ある。
However, the method for welding the hermetic compressor container described in Document 5 is considered to be able to prevent the intrusion of spatter by the seal material of the soft metal inserted inside the lap joint, but an extra seal is required. There is a problem that not only the material cost and the insertion work are required, but also the groove forming process and the process cost are required. In addition, the gap for inserting the above sealing material into the processing groove becomes large, and it is considered difficult to easily seal the lap joint with the gap by electric welding such as arc welding, and spatter is generated during welding. It may result in frequent occurrence.

【0009】さらに、文献6に記載の密閉形スクロール
圧縮機では、ディスチャージカバー又は上部鏡板を容器
本体に溶接することが記載されているが、どんな溶接法
でどのような溶接施工条件にて溶接するのか全く記載さ
れていない。この他にも、スクロール圧縮機、ロータリ
ー圧縮機など各種の密閉形圧縮機の内部構造や部品形状
や組立構造や溶接による固定法などを示した例は幾つか
あるが、密閉形圧縮機の容器を密閉する溶接方法及びス
パッタ発生の防止法を示した文献はほとんど見当たらな
い。
Furthermore, in the hermetic scroll compressor described in Document 6, it is described that the discharge cover or the upper end plate is welded to the container body. However, what welding method and welding conditions are used. Or not listed at all. In addition to these, there are several examples showing the internal structure, parts shape, assembly structure and fixing method by welding of various hermetic compressors such as scroll compressors and rotary compressors. There are almost no documents that show the welding method for sealing and the method for preventing spatter generation.

【0010】このように密閉形電動圧縮の溶接は、通常
の溶接に比べスパッタの問題に対して細心の注意を払わ
ねばならない。しかし、上記文献5及び文献6に示され
ているように加工時に対策を行うためには、密閉チャン
バの加工精度を上げなければならず製作費用が高くな
り、加工に時間がかかってしまうといった問題がある。
As described above, in the closed type electric compression welding, it is necessary to pay close attention to the problem of spatter as compared with the usual welding. However, as shown in the above-mentioned Documents 5 and 6, in order to take countermeasures at the time of processing, it is necessary to increase the processing accuracy of the closed chamber, resulting in high manufacturing cost and time-consuming processing. There is.

【0011】そこで、前記文献1乃至文献4に記載の溶
接法では、密閉形電動圧縮機特有の問題であるスパッタ
の低減が見込めないことから、特公平7−3223号公
報(文献7)においては、全密閉圧縮機の溶接法とし
て、非消耗電極方式のプラズマアーク溶接法を用い、ア
ーク中にワイヤを添加しながら円筒容器とフタキャップ
とを密閉溶接するようにしている。非消耗電極方式のア
ーク溶接では、継手溶接部の強度を確保するためにワイ
ヤの添加が不可欠である。
Therefore, in the welding methods described in the above-mentioned Documents 1 to 4, reduction of spatter, which is a problem peculiar to the hermetic electric compressor, cannot be expected. Therefore, in Japanese Patent Publication No. 7-3223 (Document 7). As a welding method of the fully hermetic compressor, a plasma arc welding method of a non-consumable electrode method is used, and a cylindrical container and a lid cap are hermetically welded while adding a wire into the arc. In non-consumable electrode type arc welding, the addition of wires is indispensable in order to secure the strength of the joint weld.

【0012】[0012]

【発明が解決しようとする課題】上記文献7の全密閉圧
縮機に使用されている溶接法は、スパッタの発生がほと
んどないプラズマアーク溶接であり、溶接時に容器内部
へ侵入するスパッタも少ないものと考えられる。しかし
ながら、非消耗性のタングステンを電極とするプラズマ
アーク溶接は、溶接速度の高速化が望めないばかりでな
く、生産ラインでの繰り返し溶接によって電極やノズル
が消耗してアーク溶接の乱れや溶接欠陥が生じ易いとい
う問題がある。アーク中に添加するワイヤの狙い位置が
変化すると、溶融プールが乱れたり、ワイヤ溶滴が飛び
出したりする。また、過剰な溶接入熱によって溶接周辺
部の温度が上昇し易いおそれがある。さらに、タングス
テンを電極とするワイヤ添加式のTIGアーク溶接や、
ワイヤを通電加熱するホットワイヤ方式のTIGアーク
溶接においては、タングステン電極が露出した状態で使
用するために、溶接による電極の傷みが速く、短い時間
間隔で電極及び付属部品の交換が必要であり、溶接稼動
時間率や使い勝手が低下する問題がある。ワイヤの狙い
位置の変化すると溶融プールが乱れ易くなり、そのワイ
ヤや溶滴が電極に接触した場合には電極溶損で溶接困難
に至る問題もある。
The welding method used for the hermetic compressor of Document 7 is plasma arc welding in which almost no spatter is generated, and it is assumed that few spatters penetrate into the container during welding. Conceivable. However, in plasma arc welding using non-consumable tungsten as an electrode, not only can welding speed not be expected to be high, but also electrodes and nozzles are consumed due to repeated welding on the production line, which causes arc welding disturbances and welding defects. There is a problem that it easily occurs. If the target position of the wire added in the arc changes, the molten pool will be disturbed or wire droplets will jump out. In addition, the temperature of the peripheral portion of the weld may be likely to rise due to excessive welding heat input. Furthermore, wire addition type TIG arc welding using tungsten as an electrode,
In TIG arc welding of a hot wire method for electrically heating a wire, since the tungsten electrode is used in an exposed state, the electrode is quickly damaged by welding, and it is necessary to replace the electrode and accessory parts at short time intervals. There is a problem that the welding operation time rate and usability are reduced. When the target position of the wire changes, the molten pool is likely to be disturbed, and when the wire or droplet contacts the electrode, there is a problem that welding is difficult due to electrode melting loss.

【0013】一方、溶接業界では、溶接ワイヤを電極と
するパルスMAG/MIG溶接機が市販され、高溶着で
高能率な溶接が可能であることから各種の溶接構造物に
適用されてきている。また、パルスアーク溶接は、通常
の直流アーク溶接(MAG溶接又はMIG溶接)に比べ
て、スパッタの発生が少ないことが知られている。
On the other hand, in the welding industry, a pulse MAG / MIG welding machine having a welding wire as an electrode is commercially available and has been applied to various welded structures because it is possible to perform highly efficient welding with high welding. In addition, pulse arc welding is known to generate less spatter than ordinary DC arc welding (MAG welding or MIG welding).

【0014】しかしながら、実際にスパッタの発生が少
なく、かつ、溶接欠陥もない良好な溶接を行うために
は、対象製品の材質や継手形状など各々の用途に適した
パルス溶接波形及び溶接施工条件を確立する必要があ
る。また、密閉形圧縮機の封止溶接にパルスアーク溶接
が適用された例も既にあるが、スパッタの発生を低減す
るまでに至っておらず、圧縮機内へのスパッタ侵入によ
るロック不良の問題が解決されていない状況にある。
However, in order to actually perform good welding with less spatter and no welding defects, the pulse welding waveform and welding conditions suitable for each application such as the material of the target product and the joint shape are used. Need to be established. In addition, although there are already examples of pulse arc welding being applied to the sealed welding of hermetic compressors, the problem of lock failure due to spatter intrusion into the compressor has been solved because the generation of spatter has not yet been reduced. Not in a situation.

【0015】本発明は上記の問題に鑑みてなされたもの
で、その目的は、スクロール圧縮機、ロータリー圧縮機
など各種の密閉形圧縮機における円筒容器の密閉溶接で
スパッタの発生及び円筒容器内への侵入をなくすと共
に、品質の良い溶接部を得るのに好適な密閉形圧縮機及
びその溶接方法並びに自動溶接装置を提供することにあ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to generate spatter and to enter a cylindrical container by hermetically welding a cylindrical container in various hermetic compressors such as a scroll compressor and a rotary compressor. It is an object of the present invention to provide a hermetic compressor, a welding method therefor, and an automatic welding apparatus which are suitable for obtaining a welded portion of high quality while preventing intrusion of dust.

【0016】[0016]

【課題を解決するための手段】上記目的は、クランク軸
を回転させるモータ部品、このクランク軸の駆動によっ
て冷媒を圧縮する圧縮機部品を収納した円筒容器と、こ
の円筒容器の上端部又は下端部或いは両方の端部に圧入
したフタキャップと、この円筒容器とフタキャップとの
円周継手部を溶接ワイヤ溶融式のパルスアーク溶接を行
うことで密閉する密閉形圧縮機において、前記円筒容器
とフタキャップとの継手形状を重ねすみ肉又は突き合せ
の円周継手とし、この円周継手部の溶接を、臨界電流よ
りも高いパルス電流と低いベース電流を交互に繰り返し
出力する溶接ワイヤ溶融式の直流パルス溶接電源を用い
て、パルス電流・電圧の期間中に溶融させたワイヤ先端
に溶滴を形成させ、このパルス期間の終了直後又はベー
ス電流・電圧の期間前半にワイヤ溶滴を溶融プール側へ
離脱移行させるように設定されたパルス溶接波形とし、
前記ワイヤ溶滴の移行時に短絡移行が生じない程度のア
ーク長を保持し得る溶接平均電圧と前記継手部の溶融に
見合う溶接平均電流に設定されたパルスアーク溶接とす
ること達成される。
The above object is to provide a cylindrical container containing a motor component for rotating a crankshaft, a compressor component for compressing a refrigerant by driving the crankshaft, and an upper end portion or a lower end portion of the cylindrical container. Alternatively, in a hermetic compressor in which a lid cap press-fitted at both ends and a circumferential joint portion between the cylindrical container and the lid cap are hermetically sealed by performing a welding wire melting type pulse arc welding, the cylindrical container and the lid are sealed. Welding wire fusion type direct current that alternately outputs a pulse current higher than the critical current and a base current lower than the critical current by welding the circumferential joint with a lapped fillet or butt joint shape with the cap. A pulse welding power source is used to form droplets on the tip of the wire melted during the pulse current / voltage period, and immediately after the end of this pulse period or at the base current / voltage period. A set pulse welding waveform so as to half the leaving transition wire droplet to the molten pool side,
It is possible to achieve pulse arc welding in which a welding average voltage that can maintain an arc length that does not cause a short circuit transition during the transition of the wire droplets and a welding average current that is commensurate with the melting of the joint portion are achieved.

【0017】特に好ましくは、パルスアーク溶接におけ
るシールドガスをアルゴンと炭酸ガス、またはアルゴン
と炭酸ガスと酸素とする。
Particularly preferably, the shield gas in pulse arc welding is argon and carbon dioxide, or argon, carbon dioxide and oxygen.

【0018】また上記目的は、クランク軸を回転させる
モータ部品、このクランク軸の駆動によって冷媒を圧縮
する圧縮機部品を収納した円筒容器と、この円筒容器の
上端部又は下端部或いは両方の端部に圧入したフタキャ
ップと、この円筒容器とフタキャップとの円周継手部を
溶接ワイヤ溶融式のパルスアーク溶接を行うことで密閉
する密閉形圧縮機の溶接方法において、臨界電流よりも
高いパルス電流と低いベース電流を交互に繰り返し出力
する溶接ワイヤ溶融式の直流パルス溶接電源を用いて、
パルス電流・電圧の期間中に溶融させたワイヤ先端に溶
滴を形成させ、このパルス期間の終了直後又はベース電
流・電圧の期間前半にワイヤ溶滴を溶融プール側へ離脱
移行させるように設定されたパルス溶接波形とし、前記
ワイヤ溶滴の移行時に短絡移行が生じない程度のアーク
長を保持し得る溶接平均電圧と前記継手部の溶融に見合
う溶接平均電流に設定し、前記密閉形圧縮機側又は溶接
トーチ側を回転走行させながらパルスアーク溶接を行
い、重ねすみ肉円周溶接部又は突き合せ円周溶接部を得
るようにすることによって達成される。
Further, the above object is to provide a cylindrical container accommodating a motor component for rotating a crankshaft, a compressor component for compressing a refrigerant by driving the crankshaft, and an upper end portion or a lower end portion or both end portions of the cylindrical container. In the welding method of the hermetic compressor, in which the lid cap press-fitted into and the circumferential joint portion of this cylindrical container and the lid cap are hermetically sealed by performing the welding wire melting type pulse arc welding, the pulse current higher than the critical current Using a welding wire melting type DC pulse welding power source that alternately and repeatedly outputs a low base current
It is set to form droplets at the tip of the melted wire during the pulse current / voltage period, and to transfer the droplets to the molten pool side immediately after the end of this pulse period or in the first half of the base current / voltage period. Pulse welding waveform, and set to a welding average voltage that can maintain an arc length that does not cause a short circuit transition at the time of transfer of the wire droplets and a welding average current commensurate with melting of the joint portion, and the hermetic compressor side Alternatively, it is achieved by performing pulse arc welding while rotating the welding torch side so as to obtain a lap fillet circumferential weld or a butt circumferential weld.

【0019】また、特に好ましくは、パルスアーク溶接
におけるシールドガスをアルゴンと炭酸ガス、またはア
ルゴンと炭酸ガスと酸素とする。
Particularly preferably, the shield gas in pulse arc welding is argon and carbon dioxide, or argon, carbon dioxide and oxygen.

【0020】上記目的は、クランク軸を回転させるモー
タ部品、このクランク軸の駆動によって冷媒を圧縮する
圧縮機部品を収納した円筒容器と、この円筒容器の上端
部又は下端部或いは両方の端部に圧入したフタキャップ
と、この円筒容器とフタキャップとの間に形成される重
ねすみ肉継手円周部又は突き合せ継手円周部を溶接ワイ
ヤ溶融式のパルスアーク溶接を行う溶接装置において、
パルス電流値又はこの電流を出力させるパルス電圧値と
パルス時間の調整可能で、少なくともベース時間の増減
制御によって溶接平均電圧や平均電流を増減し得る直流
パルス溶接電源と、前記密閉形圧縮機の脱着固定及び回
転走行が可能な回転装置と、ワイヤ送給装置を介してパ
ルス溶接電源に接続され、密閉形圧縮機の継手部へのト
ーチ位置決め及び回避移動が可能な可動軸手段に固定さ
れた溶接トーチと、前記パルス溶接電源及び回転装置の
動作を制御する制御盤とを備え、前記直流パルス溶接電
源の設定を、臨界電流よりも高いパルス電流と低いベー
ス電流を交互に繰り返し出力するようにし、パルス電流
・電圧の期間中に溶融させたワイヤ先端に溶滴を形成
し、このパルス期間の終了直後又はベース電流・電圧の
期間前半にワイヤ溶滴が溶融プール側へ離脱移行するパ
ルス溶接波形となるようにし、前記ワイヤ溶滴の移行時
に短絡移行が生じない程度のアーク長を保持し得る溶接
平均電圧と前記継手部の溶融に見合う溶接平均電流と
し、前記密閉形圧縮機を回転走行させながら重ねすみ肉
継手円周部又は突き合せ継手円周部を密閉するようにす
ることによって達成される。
The above object is to provide a motor part for rotating a crankshaft, a cylindrical container accommodating a compressor part for compressing a refrigerant by driving the crankshaft, and an upper end portion or a lower end portion or both end portions of the cylindrical container. In the welding device for performing the pulse arc welding of the welding wire melting the press fit lid cap, the lap fillet joint circumferential portion or the butt joint circumferential portion formed between the cylindrical container and the lid cap,
A pulse current value or a pulse voltage value for outputting this current and a pulse time can be adjusted, and at least a DC pulse welding power source capable of increasing or decreasing the welding average voltage or current by controlling the increase / decrease of the base time, and the attachment / detachment of the hermetic compressor Welding fixed to a movable shaft means that can be fixed and rotated and connected to a pulse welding power source through a wire feeder, and that can move the torch to the joint part of the hermetic compressor and can perform avoidance movement. A torch and a control panel for controlling the operation of the pulse welding power source and the rotating device are provided, and the setting of the DC pulse welding power source is such that a pulse current higher than a critical current and a low base current are alternately and repeatedly output, A droplet is formed on the tip of the melted wire during the pulse current / voltage period, and the wire melts immediately after the end of this pulse period or in the first half of the base current / voltage period. Is a pulse welding waveform that departs and moves to the melting pool side, and a welding average voltage that can hold an arc length that does not cause a short circuit transfer when the wire droplets transfer and a welding average current that is suitable for melting the joint portion. It is achieved by sealing the circumferential portion of the lap fillet joint or the circumferential portion of the butt joint while rotating the hermetic compressor while rotating.

【0021】また、上記目的は、臨界電流よりも高いパ
ルス電流と低いベース電流を交互に繰り返し出力する溶
接ワイヤ溶融式の直流パルス溶接電源を用いて、パルス
電流・電圧の期間中に溶融させたワイヤ先端に溶滴を形
成させ、このパルス期間の終了直後又はベース電流・電
圧の期間前半にワイヤ溶滴を溶融プール側へ離脱移行さ
せるように設定されたパルス溶接波形とし、前記ワイヤ
溶滴の移行時に短絡移行が生じない程度のアーク長を保
持し得る溶接平均電圧と前記継手部の溶融に見合う溶接
平均電流に設定してパルスアーク溶接を行いことで溶接
部を得るようにした溶接方法とすることで達成される。
[0021] Further, the above-mentioned object is to melt during a period of pulse current / voltage by using a welding wire melting type DC pulse welding power source which alternately and repeatedly outputs a pulse current higher than the critical current and a low base current. A droplet is formed at the tip of the wire, and the pulse welding waveform is set so as to transfer the droplet to the molten pool side immediately after the end of this pulse period or in the first half of the base current / voltage period. A welding method for obtaining a welded portion by performing pulse arc welding by setting a welding average voltage capable of holding an arc length that does not cause a short circuit transition at the time of transition and a welding average current commensurate with melting of the joint portion, and It is achieved by doing.

【0022】[0022]

【発明の実施の形態】本発明の実施例を詳細に説明する
前に、簡単のその概要を説明する。密閉形圧縮機の円筒
容器フタキャップとを密閉するパルスアーク溶接でスパ
ッタが発生する原因を検討した結果、主にワイヤ溶滴
の移行がパルス溶接波形と合っていない時と、ワイヤ
溶滴が短絡移行する時にそのワイヤ溶滴がスパッタとな
って飛散することが判った。このため、発明者等は、ア
ーク溶接及びワイヤ溶滴移行の基本現象に基づいて、パ
ルス溶接波形とワイヤ溶滴移行を同期化すると共にワイ
ヤ溶滴の短絡移行を防止して、スパッタの発生及び円筒
容器内への侵入をなくすと共に、品質の良い溶接部を得
るのに有効な方策を見出した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments of the present invention in detail, a brief outline thereof will be described. As a result of investigating the cause of spatter in pulse arc welding that seals the lid of the cylindrical container of the hermetic compressor, the results were mainly when the wire droplet transfer did not match the pulse welding waveform and when the wire droplet short-circuited. It was found that the droplets of the wire were spattered and scattered when transferred. Therefore, the inventors of the present invention synchronize the pulse welding waveform and the wire droplet transfer, and at the same time prevent the wire droplet from short-circuiting, based on the basic phenomena of arc welding and wire droplet transfer, thereby preventing the occurrence of spatter and We have found an effective measure to prevent invasion into the cylindrical container and obtain a good quality weld.

【0023】すなわち、溶接ワイヤに適したパルス電流
値又はこの電流を出力させるパルス電圧値とパルス時間
の調整設定或いは切替え設定が可能で、かつ、少なくと
もベース時間の増減制御によって溶接平均電圧や平均電
流を増減し得る直流パルス溶接電源を用いて、ワイヤ溶
滴が規則正しく1パルスで1溶滴、ベース期間で溶滴離
脱(1周期1溶滴)する適正パルス溶接波形を設定する
と共に、短絡移行が生じない程度のアーク長の保持が可
能な溶接平均電圧と溶接対象の継手部の溶融に見合う溶
接平均電流とを設定し、シールドガスをアルゴンを含有
するものとして、密閉形圧縮機の重ねすみ肉継手円周部
又は突き合せ継手円周部を密閉するパルスアーク溶接を
行うことで、品質の良好な円周溶接部が得られると共に
スパッタの発生及び容器内部への侵入を防止することが
できる。
That is, the pulse current value suitable for the welding wire or the pulse voltage value for outputting this current and the pulse time can be adjusted or switched, and at least the average welding voltage or the average current can be controlled by increasing or decreasing the base time. By using a DC pulse welding power source that can increase or decrease the power, a proper pulse welding waveform is set in which the wire droplets are regularly 1 pulse with 1 pulse, and are separated from the droplets in the base period (1 droplet per cycle), and the short circuit transition Set the welding average voltage that can maintain the arc length to the extent that it does not occur and the welding average current that is commensurate with the melting of the joint to be welded, and the shield gas contains argon, and the lap fillet of the hermetic compressor By performing pulse arc welding to seal the joint circumference or the butt joint circumference, a good-quality circumference weld can be obtained and spatter can be prevented. It can be prevented from entering the container interior.

【0024】これによって、圧縮機の摺動部や回転部の
スパッタによる損傷、ロック不良が回避でき、密閉形圧
縮機の信頼性を高めることができる。また、密閉すべき
円筒容器とフタキャップとの間に形成される重ねすみ肉
継手円周部又は突き合せ継手円周部の嵌め合い隙間の寸
法公差を最大でも0.2mm以下に形成することで、継
手形状が簡単になるばかりでなく、密閉形圧縮機の組立
が容易となり精度も確保することができ、この継手円周
部を密閉するパルスアーク溶接を行う時に容器内部への
スパッタの侵入抑制を図ることができる。
This makes it possible to avoid damage to the sliding parts and rotating parts of the compressor due to spatter and lock failure, and to improve the reliability of the hermetic compressor. Further, by forming the dimensional tolerance of the fitting gap of the lap fillet joint circumferential portion or the butt joint circumferential portion formed between the cylindrical container to be sealed and the lid cap to 0.2 mm or less at the maximum. In addition to simplifying the joint shape, the hermetic compressor can be easily assembled and the accuracy can be ensured, and spatter is prevented from entering the inside of the container when performing pulse arc welding to seal the joint circumference. Can be achieved.

【0025】さらに、フタキャップ側又は円筒容器側の
溶け込みが深くても板厚半分以下の浅い形状となる溶接
入熱に必要な溶接平均電流及び溶接速度を設定すること
で、フタキャップ及び円筒容器の過剰な加熱防止及び溶
接部の余盛り量を抑制することができる。溶接開始時に
は、プリーフロー時間を設けたシールドガス雰囲気内
で、平均値が小電流・電圧のパルスアークを発生させた
後に定常溶接の平均電流・電圧のパルスアークに移行さ
せることで、大気の巻き込みによるアーク切れやスパッ
タの発生や溶接不良のない良好なアークスタート及びビ
ード始端部を得ることができる。
Further, even if the penetration on the lid cap side or the cylindrical container side is deep, a welding average current and a welding speed necessary for welding heat input with a shallow shape of less than half the plate thickness are set to set the lid cap and the cylindrical container. It is possible to prevent excessive heating and suppress the excess amount of the welded portion. At the start of welding, in a shield gas atmosphere with a pre-flow time, a pulse arc with an average value of a small current / voltage is generated, and then it is transferred to a pulse arc with an average current / voltage of steady welding, thereby entraining the atmosphere. It is possible to obtain a good arc start and a bead start end without arc breakage, spatter generation, or welding failure caused by the above.

【0026】また、溶接終了側では、ビード始端部に適
正量のビード重ねをしてからパルスアークの平均電流・
電圧の減少及び回転走行の停止制御を行うことで、融合
不良や凹みのない良好な溶接ビード終端部を得ることが
できる。さらに、アーク点直下の溶融プールが下進姿勢
の位置に形成するように溶接トーチを配置してパルスア
ーク溶接を実施することで、高速溶接が可能となるばか
りでなく、アンダーカットなどの溶接欠陥のない良好な
溶接ビード外観及び溶け込み形状を得ることができる。
On the welding end side, the average current of the pulse arc
By reducing the voltage and controlling the rotation traveling to stop, it is possible to obtain a good weld bead end portion without fusion defects or dents. In addition, by arranging the welding torch and performing pulse arc welding so that the molten pool immediately below the arc point is formed in a downward position, not only high-speed welding is possible, but also welding defects such as undercutting occur. It is possible to obtain a good weld bead appearance and a welded shape without cracks.

【0027】一方、密閉形圧縮機の本溶接を行う以前
に、TIG溶接など非消耗電極方式のアーク溶接で重ね
すみ肉継手円周部又は突き合せ継手円周部の複数箇所に
仮付け接合を行い、本溶接を仮付け接合の箇所から開始
することで、溶接による微少な変形や隙間の変動を抑制
することができ、円筒容器内部へのスパッタの侵入を防
止することができる。
On the other hand, before performing the main welding of the hermetic compressor, temporary welding is performed at a plurality of positions on the lap fillet joint circumferential portion or the butt joint circumferential portion by non-consumable electrode type arc welding such as TIG welding. By performing the main welding from the position of the temporary joining, it is possible to suppress the minute deformation and the fluctuation of the gap due to the welding, and it is possible to prevent the spatter from entering the inside of the cylindrical container.

【0028】さらに、溶接終了後か又は溶接終了後に密
閉形圧縮機を搬送する過程で、冷却用のエアーを吹付け
ることにより、円筒容器及びフタキャップの溶接による
温度上昇が抑止でき、所定の高温度下で機能劣化が懸念
される電極部品や樹脂部品などを確実に保護することが
できる。
Furthermore, by blowing cooling air after the completion of welding or in the process of transporting the hermetic compressor after the completion of welding, the temperature rise due to the welding of the cylindrical container and the lid cap can be suppressed, and a predetermined high temperature can be suppressed. It is possible to reliably protect electrode parts, resin parts, and the like, which may be deteriorated in function under temperature.

【0029】以下、本発明1実施例を図面に基づいて説
明する。図1は本発明の一実施例を示す密封形圧縮機の
溶接装置の概略構成図である。1は密閉形圧縮機で必要
なモータ部品や圧縮機部品などを収納した円筒容器であ
り、その円筒容器1の上部及び下部にはフタキャップ2
a、2bが圧入されている。この円筒容器1及びフタキ
ャップ2a、2bは通常の鋼板材を成形加工したもので
ある。3は密閉形圧縮機の円筒容器1を任意の姿勢で位
置決め固定及び回転走行させることが可能な回転装置で
あり、制御盤10の指令で動作するようになっている。
4は密閉形圧縮機の封止溶接を行う溶接トーチであり、
円筒容器1とフタキャップ2aとの間に形成される重ね
すみ肉継手部19に配置され、トーチケーブル6を介し
てワイヤ送給装置8に接続されている。また、7は臨界
電流より高いパルス電流と低いベース電流を交互に繰り
返し出力する溶接ワイヤ溶融式の直流パルス溶接電源
(定電流制御方式又は定電圧制御方式或いは両方併用制
御方式のパルス溶接電源)であって、その給電ケーブル
11がトーチケーブル6と回転装置3に接続され、パル
スアーク溶接に必要な給電を制御盤の指令で行うように
構成されている。9は溶接トーチ4の先端部にトーチケ
ーブル6を介してシールドガス9aを供給するガスボン
ベであり、鋼板材の溶接で用いられているArガスを主
成分とする10〜20%程度のCO2ガス入りの混合ガスボ
ンベである。このAr+CO2混合ガスの代わりに、例
えば数%のO2を加えたAr+CO2+O2の混合ガス
やAr+O2の混合ガスを使用することも可能である。
A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram of a welding device for a hermetic compressor showing an embodiment of the present invention. Reference numeral 1 denotes a cylindrical container that houses motor parts and compressor parts required for a hermetic compressor, and a lid cap 2 is provided on the upper and lower parts of the cylindrical container 1.
a and 2b are press-fitted. The cylindrical container 1 and the lid caps 2a and 2b are formed by forming an ordinary steel plate material. Reference numeral 3 denotes a rotating device capable of positioning, fixing, and rotationally traveling the cylindrical container 1 of the hermetic compressor in an arbitrary posture, and is operated by a command from the control panel 10.
4 is a welding torch for sealing and sealing the hermetic compressor,
It is arranged in the lap fillet joint portion 19 formed between the cylindrical container 1 and the lid cap 2 a, and is connected to the wire feeding device 8 via the torch cable 6. In addition, 7 is a welding wire melting type DC pulse welding power source that alternately and repeatedly outputs a pulse current higher than the critical current and a low base current.
(Constant current control system or constant voltage control system or pulse welding power supply of both combined control system), the power supply cable 11 is connected to the torch cable 6 and the rotating device 3 to supply power required for pulse arc welding. It is configured to be performed by the command of. Reference numeral 9 is a gas cylinder for supplying a shield gas 9a to the tip portion of the welding torch 4 via the torch cable 6, and contains 10 to 20% CO2 gas containing Ar gas as a main component used in the welding of steel sheet materials. It is a mixed gas cylinder. Instead of this Ar + CO2 mixed gas, it is also possible to use, for example, a mixed gas of Ar + CO2 + O2 or a mixed gas of Ar + O2 to which several% of O2 is added.

【0030】パルス溶接電源7は、少なくとも1パルス
で1溶滴、次のベース期間で溶滴離脱させるための直流
パルス溶接波形が設定可能であり、溶接ワイヤ5の銘柄
や径や材質、シールドガス成分に適したパルス電流値又
はこのパルス電流を出力させるパルス電圧値とパルス時
間の調整設定が可能で、かつ、ベース電流及びベース電
圧を出力させるベース時間の増減によって平均電流とワ
イヤ送り速度及び平均電圧を増減し得る直流パルス溶接
電源である。
The pulse welding power source 7 can set a DC pulse welding waveform for at least one pulse for one droplet and for releasing the droplet in the next base period. The brand, diameter and material of the welding wire 5 and the shield gas can be set. The pulse current value suitable for the component or the pulse voltage value and pulse time for outputting this pulse current can be adjusted and set, and the average current, wire feed speed and average can be adjusted by increasing or decreasing the base time for outputting the base current and base voltage. It is a DC pulse welding power source that can increase and decrease the voltage.

【0031】図2は密閉形圧縮機内部の概略構造の一例
を示す断面図である。モータ部品は、円筒容器1の内周
面に固定されたステータ13b及び外部から給電する電
極部13cと、このステータ13bの内側に遊嵌してい
るローター13aと、このローター13aの内側に設置
されて回転するクランク軸12とから構成されている。
また、このクランク軸12の下部は圧縮機部に連結され
ており、シリンダ15の上下に固定してあるベアリング
14a、14bによって回転自在に支持されている。圧
縮機部のシリンダ15には、クランク軸12の回転によ
って偏心運動をするローラ16が収容されており、この
ローラ16の偏心運動及び図示していないブレードの往
復運動による圧縮空間の体積変化によって、外部の吸入
管17aから導入される冷媒ガス17bを吸入して圧縮
及び吐出する一連の圧縮サイクルが行なわれるようにな
っている。圧縮された冷媒ガス17bはモータ部品室に
導かれて、円筒容器1の上部にあるフタキャップ2aに
接合設置の吐出管17cより外部に吐出される。クラン
ク軸12の内部には、ベアリング14a、14bの回転
部やシリンダ15とローラ16との摺動部に潤滑油を供
給するための給油通路18が設けられている。シリンダ
15の外周面は、円筒容器1の内側に複数点のアークス
ポット溶接又は他の溶接法にて接合固定(シリンダ溶接
部15b)されている。円筒容器1の上下端部には、フ
タキャップ2a、2bがそれぞれ圧入されており、両者
の間に形成される各々の重ねすみ肉継手部19を密閉溶
接すべきフタ円周溶接部20a、20bがある。ここで
はフタキャップ2a、2bが円筒容器1の内側に圧入さ
れた一例を示しているが、円筒容器1の外側にフタキャ
ップを圧入する構造の場合でも、重ねすみ肉継手円周部
を密閉溶接する必要がある。また、継手形状が他の突き
合せ継手の構造の場合でも、その突合せ継手円周部を密
閉溶接する必要がある。さらに、上述した密閉形圧縮機
はロータリー方式の構造であるが、他の圧縮機構のスク
ロール方式やレシプロ方式の密閉形圧縮機においても、
各々の圧縮容器を密閉するために溶接が必要となる。
FIG. 2 is a sectional view showing an example of a schematic structure inside the hermetic compressor. The motor component is installed inside the rotor 13a, a stator 13b fixed to the inner peripheral surface of the cylindrical container 1, an electrode portion 13c for supplying power from the outside, a rotor 13a loosely fitted inside the stator 13b. And a crankshaft 12 that rotates.
The lower portion of the crankshaft 12 is connected to the compressor portion, and is rotatably supported by bearings 14a and 14b fixed to the top and bottom of the cylinder 15. A cylinder 16 of the compressor unit accommodates a roller 16 which is eccentrically moved by the rotation of the crankshaft 12. Due to the eccentric movement of the roller 16 and the volume change of the compression space due to the reciprocating movement of a blade (not shown), A series of compression cycles in which the refrigerant gas 17b introduced from the external suction pipe 17a is sucked, compressed and discharged is performed. The compressed refrigerant gas 17b is guided to the motor component chamber and is discharged to the outside from a discharge pipe 17c that is installed by being joined to the lid cap 2a on the upper portion of the cylindrical container 1. Inside the crankshaft 12, an oil supply passage 18 for supplying lubricating oil to the rotating portions of the bearings 14a and 14b and the sliding portion between the cylinder 15 and the roller 16 is provided. The outer peripheral surface of the cylinder 15 is joined and fixed to the inside of the cylindrical container 1 by a plurality of points of arc spot welding or another welding method (cylinder weld portion 15b). Lid caps 2a and 2b are press-fitted into the upper and lower ends of the cylindrical container 1, respectively, and lid circumferential welded portions 20a and 20b to be hermetically welded to each lap fillet joint portion 19 formed therebetween. There is. Here, an example is shown in which the lid caps 2a and 2b are press-fitted inside the cylindrical container 1, but even in the case of a structure in which the lid cap is press-fitted outside the cylindrical container 1, the lap fillet joint circumferential portion is hermetically welded. There is a need to. Further, even when the joint shape is another butt joint structure, it is necessary to hermetically weld the circumferential portion of the butt joint. Furthermore, the above-mentioned hermetic compressor has a rotary type structure, but also in scroll type and reciprocating hermetic compressors of other compression mechanisms,
Welding is required to seal each compression vessel.

【0032】図3(1)は密閉形圧縮機の円筒容器1とフ
タキャップ2aとの間に形成される重ねすみ肉継手部1
9の一部を拡大した断面であり、図3(2)(3)はその重
ねすみ肉継手部19を密閉するために垂直姿勢又は水平
姿勢でパルスアーク溶接を行う一実施例を示す。このパ
ルスアーク溶接では、回転装置3に設置している密閉形
圧縮機の円筒容器1側を回転走行させると共に、シール
ドガス9aの雰囲気内で重ねすみ肉継手19と溶接ワイ
ヤ5との間にパルス状の電圧Vp、Vbを交互に印加及
びパルス電流Ip、ベース電流Ibを出力させて、アー
ク21を発生及び溶融プールを形成させながら重ねすみ
肉継手19の密閉溶接を行って重ねすみ肉円周溶接部2
0aを得るようにしている。図中の矢印24bは、溶接
中に飛散した図示していないスパッタ28の一部が継手
の隙間24aより侵入する時のスパッタ侵入路である。
図4は継手形状が他の突合せ継手22、23の構造から
成る一実施例を示す断面図であり、同図(1)は絞り加工
成形したフタキャップ2cの端面側を円筒容器1の内側
に圧入して、その外側の曲面部と円筒容器1端面の間に
突き合せ継手22を形成し、パルスアーク溶接による突
合せ継手円周溶接部22aを得るようにしている。ま
た、同図(2)はフタキャップ2a内面の端面側に予め接
合した裏当てインナーリング材25を円筒容器1の内側
に圧入し、フタキャップ2a端面と円筒容器1端面の間
に突き合せ継手部23を形成して、パルスアーク溶接に
よる突合せ継手円周溶接部23aを得るようにしてい
る。図3(1)に示した重ねすみ肉継手部19の嵌め合い
隙間の寸法公差は最大でも0.2mm以下に形成すると
良い。また、図4(1)(2)に示した突合せ継手部22、
23における円筒容器1とフタキャップ2aとの嵌め合
い隙間、或いは円筒容器1と裏当てインナーリング材2
5との嵌め合い隙間の寸法公差についても最大でも0.
2mm以下に形成すると良い。継手形状が簡単になるば
かりでなく、密閉形圧縮機の組立が容易となり精度も確
保することができ、この継手円周部を密閉するパルスア
ーク溶接を行う時に容器内部へのスパッタの侵入抑制を
図ることが可能となる。さらに、図3(2)に示したよう
に垂直姿勢で溶接を行う場合は、溶接ワーク側(円筒容
器1及びフタキャップ2a)を回転走行させる代わり
に、例えば、溶接トーチ4を溶接ロボットなどの回転駆
動装置に設置して回転走行させることも可能である。こ
の垂直姿勢で良好な重ねすみ肉円周溶接部20aを得る
ためのパルスアーク溶接の限界速度は1000mm/m
in程度である。溶接速度が1000mm/minを越
える高速度溶接領域では、溶接中の溶融金属が重力作用
によって円筒容器1側へ垂れ落ち易くなるか、あるいは
キャップ2a側にアンダーカットが生じるために良好な
溶接ビードを得ることが難しい。これに対して、図3
(3)及び図4(1)(2)に示したように円筒容器1が水平
姿勢の場合には、溶融金属の垂れ落ち要因が小さくな
り、例えば1500mm/min以上の高速度領域でも
安定な溶接が可能である。
FIG. 3 (1) shows a lap fillet joint portion 1 formed between the cylindrical container 1 and the lid cap 2a of the hermetic compressor.
Fig. 3 (2) (3) is an enlarged cross-sectional view of a part of Fig. 9, and shows an embodiment in which pulse arc welding is performed in a vertical posture or a horizontal posture in order to seal the lap fillet joint portion 19 thereof. In this pulse arc welding, while the cylindrical container 1 side of the hermetic compressor installed in the rotating device 3 is rotated, a pulse is generated between the overlap fillet joint 19 and the welding wire 5 in the atmosphere of the shield gas 9a. Voltage Vp and Vb are alternately applied and a pulse current Ip and a base current Ib are output to generate an arc 21 and form a molten pool, and the lap fillet joint 19 is hermetically welded to form a lap fillet circumference. Welded part 2
I try to get 0a. An arrow 24b in the drawing is a spatter entry path when a part of the spatter 28 (not shown) scattered during welding enters through the gap 24a of the joint.
FIG. 4 is a cross-sectional view showing an embodiment in which the joint shape is the structure of the other butt joints 22 and 23. FIG. 1 (1) shows the end surface side of the draw-formed lid cap 2c inside the cylindrical container 1. The butt joint 22 is press-fitted to form a butt joint 22 between the curved surface on the outer side and the end surface of the cylindrical container 1 to obtain a butt joint circumferential weld 22a by pulse arc welding. Further, FIG. 2 (2) shows that the backing inner ring material 25 previously joined to the end surface side of the inner surface of the lid cap 2a is press-fitted into the inside of the cylindrical container 1, and the butt joint is provided between the end surface of the lid cap 2a and the end surface of the cylindrical container 1. The portion 23 is formed so as to obtain the butt joint circumferential weld portion 23a by pulse arc welding. It is preferable that the dimensional tolerance of the fitting gap of the lap fillet joint portion 19 shown in FIG. 3 (1) is 0.2 mm or less at the maximum. In addition, the butt joint portion 22 shown in FIGS.
23, the fitting gap between the cylindrical container 1 and the lid cap 2a, or the cylindrical container 1 and the backing inner ring material 2
As for the dimensional tolerance of the fitting clearance with 5, the maximum is 0.
It is preferable to form it to 2 mm or less. Not only the joint shape is simple, but also the hermetic compressor can be easily assembled and the accuracy can be ensured.When performing pulse arc welding to seal the circumference of this joint, it is possible to prevent spatter from entering the container. It is possible to plan. Furthermore, when performing welding in a vertical posture as shown in FIG. 3 (2), instead of rotating the welding work side (cylindrical container 1 and lid cap 2a), for example, the welding torch 4 is welded by a welding robot or the like. It is also possible to install it in a rotary drive device and rotate it. The limit speed of pulse arc welding for obtaining a good lap fillet circumferential weld 20a in this vertical posture is 1000 mm / m.
It is about in. In the high-speed welding region where the welding speed exceeds 1000 mm / min, the molten metal during welding is likely to drip toward the cylindrical container 1 side due to the action of gravity, or an undercut occurs on the cap 2a side, so that a good welding bead is formed. Hard to get. On the other hand, FIG.
As shown in (3) and FIGS. 4 (1) and (2), when the cylindrical container 1 is in the horizontal posture, the factor of drooping of the molten metal becomes small, and for example, it is stable even in a high speed region of 1500 mm / min or more. Welding is possible.

【0033】図5は本発明のパルスアーク溶接方法の一
実施例であり、スパッタの発生をなくすためのパルスア
ーク溶接の電圧・電流波形及びワイヤ先端の溶滴移行の
概要を示す説明図である。横軸の時間に対する縦軸に
は,定速送りのワイヤ、パルス電圧の波形、パルス電流
の波形、ワイヤ溶滴の形成と移行の概要を示している。
FIG. 5 is an embodiment of the pulse arc welding method of the present invention, and is an explanatory view showing the voltage / current waveform of pulse arc welding for eliminating the occurrence of spatter and the outline of droplet transfer at the wire tip. . The vertical axis with respect to time on the horizontal axis shows the wire at constant speed, the waveform of the pulse voltage, the waveform of the pulse current, and the outline of the formation and transfer of wire droplets.

【0034】臨界電流よりも高いパルス電流Ipと低い
ベース電流Ibを交互に繰り返し出力するパルス溶接電
源7を用いている。
A pulse welding power source 7 is used which alternately outputs a pulse current Ip higher than the critical current and a base current Ib lower than the critical current.

【0035】パルス電流Ip・電圧Vpの期間Tp中に
溶融させたワイヤ5先端に溶滴26を形成させ、このパ
ルス期間Tp終了後のベース電流Ib・電圧Vbの期間
Tb前半に、ワイヤ溶滴26を母材29側の溶融プール
27へ離脱移行させる、1パルスで1溶滴移行が可能な
適正パルス溶接波形を出力させるようにしている。同時
に、ワイヤ溶滴26の移行時に短絡移行が生じない程度
のアーク長を保持するように溶接平均電圧Eaを出力さ
せて、円筒容器1とフタキャップ2a、2bとの円周継
手部の密閉溶接を行う。これにより品質の良好な溶接部
が得られると共にスパッタの発生をなくすことができ、
円筒容器1内部へのスパッタ28の侵入を未然に防止す
ることができる。上記の1パルスで1溶滴移行が可能な
適正パルス溶接波形は、溶接ワイヤの銘柄や径や材質な
どによって異なるが、例えば、JIS規格YGW15の
ワイヤ径1.2mmの場合、パルス電流値がIp=52
0A程度の時の適正なパルス期間はTp=1.6〜2.1
ms程度となる。ワイヤ送り速度Wfは、溶接平均電流
Iaとほぼ比例増加する関係にあるので、その電流値I
aに出力に同調させて送れば良い。また、定電圧制御方
式のパルス溶接電源を使用する時には、パルス電圧Vp
及びパルス期間Tpの設定によって上記のパルス電流I
pを出力させれば良い。
A droplet 26 is formed on the tip of the wire 5 melted during the period Tp of the pulse current Ip / voltage Vp, and the droplet of the wire is formed in the first half of the period Tb of the base current Ib / voltage Vb after the end of the pulse period Tp. An appropriate pulse welding waveform that allows 26 to be transferred to the molten pool 27 on the base material 29 side and to transfer 1 droplet with 1 pulse is output. At the same time, the welding average voltage Ea is output so as to maintain an arc length that does not cause a short circuit transition when the wire droplets 26 transit, and the hermetically sealed welding of the circumferential joint portion between the cylindrical container 1 and the lid caps 2a and 2b is performed. I do. As a result, a good quality weld can be obtained and spatter can be eliminated.
It is possible to prevent the spatter 28 from entering the inside of the cylindrical container 1 in advance. The appropriate pulse welding waveform capable of transferring one droplet with one pulse varies depending on the brand, diameter and material of the welding wire. For example, when the wire diameter of JIS standard YGW15 is 1.2 mm, the pulse current value is Ip. = 52
The proper pulse period at about 0 A is Tp = 1.6 to 2.1.
It is about ms. Since the wire feed speed Wf has a relationship that increases substantially proportionally to the welding average current Ia, its current value I
It suffices to synchronize the output with a and send. When using a constant voltage control type pulse welding power source, the pulse voltage Vp
And the above pulse current I depending on the setting of the pulse period Tp.
It is sufficient to output p.

【0036】一方、図6(1)(2)及び図7は、溶接中に
スパッタが発生する模式図を示したものであり、アーク
21長が短くてワイヤ先端の溶滴26が短絡移行(アー
ク消滅)してアーク再点弧する時や、アーク力の強いパ
ルス電流Ipの期間Tp中に溶滴26が離脱移行する時
に、溶滴26の一部がスパッタ28となって飛散し、そ
の飛散したスパッタ28の一部が継手隙間24aから円
筒容器1の内部に侵入24bすることになる。このた
め、溶滴26の短絡移行が生じる溶接平均電圧Eaで溶
接を行うとスパッタ28の多発を招く結果に至る。
On the other hand, FIGS. 6 (1) (2) and 7 are schematic views showing spatters generated during welding, in which the arc 21 is short and the droplet 26 at the wire tip moves to a short circuit ( (When the arc disappears) and the arc is re-ignited, or when the droplet 26 dissociates and transfers during the period Tp of the pulse current Ip having a strong arc force, a part of the droplet 26 scatters as a spatter 28, and Part of the scattered spatter 28 enters the inside of the cylindrical container 1 through the joint gap 24a 24b. For this reason, if welding is performed at the welding average voltage Ea at which the droplet 26 shifts to a short circuit, the result is that spatter 28 is frequently generated.

【0037】また、図7に示したようにワイヤ溶滴26
がパルス電流Ipの期間Tp中に移行するパルス溶接波
形、或いはワイヤ溶滴26の移行が非同期なパルス溶接
波形で溶接を行うと、アーク力の強いパルス電流Ipに
よる溶滴26の分断・飛散によってスパッタ28の発生
を招く結果となる。したがって、スパッタ28の発生を
なくす方策で特に重要なことは、図5に示したように規
則正しく1パルスで1溶滴移行が可能な適正パルス溶接
波形を出力させることと、溶接対象の継手部の溶融に見
合う溶接平均電流を出力(ワイヤ送りも同調)させると共
に、ワイヤ溶滴26を低いベース電流Ipの期間Tb中
のアーク空間で移行させる平均電圧Eaを出力させるこ
とである。パルスアーク溶接での平均電圧はEa=(Vp・
Tp+Vb・Tb)/(Tp+Tb)で示され、また、平均電流はIa=
(Ip・Tp+Ib・Tb)/(Tp+Tb)で示される。ここでは矩形波の
パルス波形で説明したが、台形波状、鋸形波状のパルス
波形でも良い。
In addition, as shown in FIG.
When welding is performed with a pulse welding waveform in which the pulse current Ip shifts during the period Tp, or a pulse welding waveform in which the movement of the wire droplet 26 is asynchronous, the pulse current Ip with a strong arc force causes the droplet 26 to be divided and scattered. This results in the generation of spatter 28. Therefore, what is particularly important in the measure for eliminating the generation of the spatter 28 is to output an appropriate pulse welding waveform capable of regularly transferring one droplet with one pulse as shown in FIG. That is, the welding average current commensurate with melting is output (the wire feed is also synchronized), and the average voltage Ea that causes the wire droplet 26 to move in the arc space during the period Tb of the low base current Ip is output. The average voltage in pulse arc welding is Ea = (Vp ・
Tp + Vb · Tb) / (Tp + Tb), and the average current is Ia =
It is shown by (Ip · Tp + Ib · Tb) / (Tp + Tb). Although a rectangular pulse waveform has been described here, a trapezoidal or sawtooth pulse waveform may be used.

【0038】図8(1)は本発明の溶接方法を示す他の一
実施例であり、円筒容器1が傾斜する姿勢になるように
密閉形圧縮機を図示していない回転装置3に設置して、
重ねすみ肉継手部19の封止溶接(溶接方向30) を行
う様子を示した概略図である。また、図8(2)は溶接ト
ーチ4のワイヤ1位置決めをフタキャップ2a側より示
した正面図である。ここでは溶接トーチ4に前進角(θ1
=3〜20度程度)を設けると共に、溶接すべき継手部
19に対するワイヤ5先端位置を頂点31より先行(オ
フセット量S=10〜40mm程度)させた位置に合せ
ることで、溶接中のアーク21及び溶融プール27を前
進する方向に安定に形成することができる。また、図8
(3)に示すように、溶接トーチ1を頂点31から円周方
向に回転(θ2=10〜80度)させた位置に配置して位
置決めすると、下進姿勢の位置にアーク直下の溶融プー
ル27を形成することができる。密閉形圧縮機の姿勢位
置については、円筒容器1が概ね水平姿勢又は水平方向
から概ね50度までの傾斜姿勢となるように設置(α=
0〜50度)すれば良い。このように円筒容器1の姿勢
位置決め及び溶接トーチ4の位置決めして、上述したパ
ルスアーク溶接を行うことで、溶融プールの先行促進が
図れて高速度溶接が可能となり、スパッタの発生及び容
器内への侵入を防止でき、また、アンダーカットなどの
溶接欠陥のない良好な溶接ビード外観、及び図8(4)に
示すような溶け込み形状を得ることができる。特に、溶
融プールを先行させることによって、継手部の隙間と接
するプール先端から溶滴移行点までの距離が長くなり、
その隙間からのスパッタ侵入を抑制することができる。
FIG. 8 (1) shows another embodiment of the welding method of the present invention, in which the hermetic compressor is installed on the rotating device 3 (not shown) so that the cylindrical container 1 is inclined. hand,
FIG. 6 is a schematic view showing a state of performing sealing welding (welding direction 30) of the lap fillet joint portion 19. 8 (2) is a front view showing the positioning of the wire 1 of the welding torch 4 from the side of the lid cap 2a. Here, the advance angle (θ1
= About 3 to 20 degrees) and by adjusting the position of the tip of the wire 5 to the joint portion 19 to be welded to a position ahead of the apex 31 (offset amount S = about 10 to 40 mm), the arc 21 during welding And the molten pool 27 can be stably formed in the forward direction. Also, FIG.
As shown in (3), when the welding torch 1 is arranged and positioned at a position rotated (θ 2 = 10 to 80 degrees) from the apex 31 in the circumferential direction, the molten pool 27 immediately below the arc is moved to the downward position. Can be formed. As for the position of the hermetic compressor, the cylindrical container 1 is installed so that the cylindrical container 1 is in a substantially horizontal position or an inclined position of approximately 50 degrees from the horizontal direction (α =
0 to 50 degrees). By performing the above-described pulse arc welding by positioning the cylindrical container 1 and the welding torch 4 in this way, it is possible to promote the molten pool in advance and enable high-speed welding, thereby generating spatter and entering the container. Of the weld bead can be prevented, and a good weld bead appearance without welding defects such as undercut, and a penetration shape as shown in FIG. 8 (4) can be obtained. In particular, by advancing the molten pool, the distance from the pool tip in contact with the gap of the joint to the droplet transfer point becomes longer,
It is possible to prevent spatter from entering through the gap.

【0039】図9に、図5に示したパルス溶接波形を用
いて密閉形圧縮機の重ねすみ肉継手部19のパルスアー
ク溶接を行った時の溶接平均電流Iaと平均電圧Eaの
関係を示す。図中のA線はスパッタが発生しない密閉溶
接の可能な特性曲線、B線はスパッタが多発する密閉溶
接の特性曲線をそれぞれ示している。したがって、ワイ
ヤ溶滴26が規則正しく1パルスで溶滴移行する適正な
パルス溶接波形と、短絡移行が生じない程度のアーク長
の保持が可能な溶接平均電圧Ea及び平均電流(A線)を
出力させることで、図6に示したスパッタ28の発生が
なくなり、円筒容器1内部へのスパッタ28の侵入を防
止することができ、アンダーカットや融合不良などの溶
接欠陥のない良好な円周溶接部20aを得ることができ
る。円周溶接部20aの形状については、図8(4)及び
図3(2)(3)に示したようにフタキャップ2a側の溶け
込みhが深くても板厚tの半分以下(h≦t/2)の浅い
形状となるように、溶接入熱の抑制が可能な平均電流と
平均電圧及び溶接速度を設定して溶接すると良い。ま
た、図4(1)に示した突合せ継手22の円周溶接部22
aにおいても、フタキャップ2c側の溶け込み深さhが
板厚tの半分以下になるように溶接すれば良い。さら
に、フタキャップ2aが円筒容器1の外側に圧入した図
示していない構造の密閉形圧縮機においては、円周溶接
部20aの溶け込み方向が円筒容器1側に反転すること
になるが、その溶け込み深さhが板厚半分以下の形状に
なるように溶接を行えば良い。このような溶け込み形状
の密閉溶接を行うことで、フタキャップ2a、2b、2
c及び円筒容器1の過剰な加熱防止及び溶接部の余盛り
量を抑制することができる。
FIG. 9 shows the relationship between the welding average current Ia and the average voltage Ea when pulse arc welding of the lap fillet joint portion 19 of the hermetic compressor is performed using the pulse welding waveform shown in FIG. . In the figure, line A shows a characteristic curve of hermetic welding in which spatter does not occur, and line B shows a characteristic curve of hermetic welding in which spatter frequently occurs. Therefore, an appropriate pulse welding waveform in which the wire droplets 26 are regularly droplet-transferred in one pulse, and a welding average voltage Ea and an average current (A line) capable of maintaining the arc length to the extent that short-circuit transfer does not occur are output. As a result, the generation of the spatter 28 shown in FIG. 6 is eliminated, it is possible to prevent the spatter 28 from entering the inside of the cylindrical container 1, and a good circumferential welded portion 20a having no welding defects such as undercut and fusion failure. Can be obtained. Regarding the shape of the circumferential welded portion 20a, as shown in FIGS. 8 (4) and 3 (2) (3), even if the penetration h on the lid cap 2a side is deep, it is less than half of the plate thickness t (h ≦ t It is advisable to set the average current and average voltage and welding speed at which welding heat input can be suppressed so that the shape becomes / 2) shallow. In addition, the circumferential welded portion 22 of the butt joint 22 shown in FIG.
Also in a, welding may be performed so that the penetration depth h on the lid cap 2c side is half or less of the plate thickness t. Further, in the hermetic compressor having a structure (not shown) in which the lid cap 2a is press-fitted to the outside of the cylindrical container 1, the melting direction of the circumferential welded portion 20a is reversed to the cylindrical container 1 side. Welding may be carried out so that the depth h is half the plate thickness or less. By performing such a welded seal welding, the lid caps 2a, 2b, 2
It is possible to prevent excessive heating of c and the cylindrical container 1 and suppress the excess amount of the welded portion.

【0040】図10は、密閉形圧縮機をパルスアーク溶
接で密閉した後にフタキャップ2a中央部分の最高温度
の測定を行った結果の一例を示す。図中のC線は密閉溶
接が終了して数十秒経過後に到達した最高温度、また、
D線は密閉溶接の終了後に冷却用のエアーを溶接部分及
びその周辺部に十数秒間吹付けた後に測定した最高温度
をそれぞれ示している。フタキャップ2aの温度は溶接
入熱(Q=60・Ia・Ea/Vs)の増加に比例して上昇してい
る。過剰な温度上昇は、電極部品や樹脂部品の機能劣化
を招く恐れがあるため、溶接入熱を抑制して溶接するか
又は上昇する温度を強制的に下げる必要がある。温度上
昇を下げる一つの手段としてエアー吹付け法が有効であ
り、短時間で50度程度下げることができる。このエア
ー吹付けは、密閉溶接の終了後に密閉形圧縮機を搬送す
る過程で行っても、同様な温度抑制の効果があり、溶接
部分又は所定の高温度下で機能低下が懸念される電極部
分及びその周辺部に短時間吹付ければ良い。
FIG. 10 shows an example of the result of measuring the maximum temperature of the central portion of the lid cap 2a after sealing the hermetic compressor by pulse arc welding. The C line in the figure is the maximum temperature reached several tens of seconds after the end of the closed welding,
The D line indicates the maximum temperature measured after spraying cooling air on the welded portion and its peripheral portion for more than ten seconds after the end of the hermetic welding. The temperature of the lid cap 2a rises in proportion to the increase in welding heat input (Q = 60 · Ia · Ea / Vs). Excessive temperature rise may lead to functional deterioration of the electrode parts and resin parts, so it is necessary to suppress welding heat input to perform welding or to forcefully lower the rising temperature. The air blowing method is effective as one means for reducing the temperature rise, and the temperature can be lowered by about 50 degrees in a short time. Even if this air blowing is performed in the process of transporting the hermetic compressor after the end of the hermetic welding, it has the same effect of suppressing the temperature, and the welded portion or the electrode portion in which the functional deterioration is feared under a predetermined high temperature And it may be sprayed on the surrounding area for a short time.

【0041】図11は密閉形圧縮機の円筒容器1とフタ
キャップ2a、2bとの円周継手部を密閉するパルスア
ーク溶接で必要となる条件制御ブロック線図の一例であ
り、横軸の時間に対する縦軸には、ワイヤの送り速度W
f(m/min)、溶接の平均電流Ia(A)、平均電圧Ea
(V)、溶接速度Vs(mm/min)、シールドガス流量SGをそ
れぞれ示している。すなわち、溶接の開始時には、少な
くとも1秒以上のプリーフロー時間(T1)を設けてシール
ドガスを流し、そのガス雰囲気内で平均値が小電流Ia1
・電圧Ea1のパルスアークをP1点で発生させて初期の
溶融プールをT2時間で形成させる。そのT2時間経過後
に、定常溶接の平均電流Ia2・電圧Ea2のパルスアークに
移行させると共に、密閉形圧縮機を回転走行(溶接速度
Vs)させて定常溶接を行う。一方、溶接終了側では、溶
接トーチとの相対位置がビード始端境界位置(P2点)か
ら所定距離(L)通過した地点(P3)又はこのP3点に到
達するまでの所要時間が経過した後に、パルスアーク溶
接の平均電流Ia3・電圧Ea3を減少させて所定時間(T4)だ
け保持した後か又は所定距離通過後に、回転走行を停止
すると同時にアークを停止(P4点)する。或いは回転走
行を停止して遅延時間(T5−T4)の経過後にアークを停止
する。シールドガスのアフター時間(T6)が経過したら密
閉形圧縮機の溶接が終了となる。このように簡便な条件
制御を行うことで、溶接開始時に生じ易い大気の巻き込
みによるアーク切れやスパッタの発生や溶接不良のない
良好なアークスタート及び溶接ビード始端部を得ること
ができる。また、溶接終了側では、ビード始端部に適正
量のビード重ねをしてからパルスアークの平均電流・電
圧の減少及び回転走行の停止制御を行うことで、融合不
良や凹みのない溶接ビード終端部を得ることができる。
FIG. 11 is an example of a condition control block diagram required for pulse arc welding for sealing the circumferential joint between the cylindrical container 1 and the lid caps 2a and 2b of the hermetic compressor, and the time on the horizontal axis. The vertical axis represents the wire feed speed W
f (m / min), welding average current Ia (A), average voltage Ea
(V), welding speed Vs (mm / min), and shield gas flow rate SG are shown respectively. That is, at the start of welding, a pre-flow time (T1) of at least 1 second or more is provided to flow the shield gas, and the average value is a small current Ia1 in the gas atmosphere.
A pulse arc of voltage Ea1 is generated at point P1 to form the initial molten pool at T2 hours. After the lapse of T2, the average current Ia2 and voltage Ea2 of the steady welding are transferred to a pulse arc, and the hermetic compressor is rotated (welding speed Vs) to perform steady welding. On the other hand, on the welding end side, after the relative position with the welding torch has passed a predetermined distance (L) from the bead start edge boundary position (P2 point) (P3) or the time required to reach this P3 point, After the average current Ia3 and voltage Ea3 of the pulse arc welding are reduced and held for a predetermined time (T4) or after passing a predetermined distance, the rotary traveling is stopped and the arc is stopped (point P4). Alternatively, the rotation traveling is stopped and the arc is stopped after the delay time (T5-T4) has elapsed. When the after time (T6) of the shield gas has passed, the welding of the hermetic compressor is completed. By performing the simple condition control in this way, it is possible to obtain a good arc start and a weld bead start end portion without arc breakage or spatter generation due to the entrainment of the atmosphere that tends to occur at the start of welding, spatter generation, or welding failure. In addition, on the welding end side, by overlapping the appropriate amount of bead on the bead start end, then reducing the average current and voltage of the pulse arc and controlling the rotation stop, the weld bead end without defective fusion or dents Can be obtained.

【0042】図12は密閉形圧縮機の部品組立工程から
フタキャップの仮付け工程、本番の密閉溶接工程及び検
査工程に至るまでの手順概要を示す一実施例である。本
番の密閉溶接を行う工程45、46の前に、円筒容器1
と左右のフタキャップ2a、2bを仮付け接合する工程
44を設けて、TIG溶接などの非消耗電極方式のアー
ク溶接で継手部の複数箇所(例えば3個所)に各々仮付け
接合32を行うようにしている。仮付け接合32を行う
姿勢については、本溶接の時と同じ姿勢か又は接合し易
い姿勢で、上部側と下部側のフタキャップ2a、2bを
2回に分けて3個所づつ同時にもしくは個別にそれぞれ
行えば良い。円筒容器1とフタキャップの2a、2bと
の円周継手部を密閉する本溶接の工程45、46では、
前工程44で仮付け接合32した所定位置よりパルスア
ーク溶接を行うと良い。仮付け接合32及びその箇所か
ら本溶接を行う45、46ことで、溶接による微少な変
形や隙間の変動を抑制することができ、また、円筒容器
1内部へのスパッタ28の侵入をより確実に防止するこ
とができる。
FIG. 12 is an embodiment showing an outline of the procedure from the parts assembling process of the hermetic compressor to the temporary attaching process of the lid cap, the actual hermetic welding process and the inspection process. Before the steps 45 and 46 of performing the actual hermetic welding, the cylindrical container 1
A step 44 for temporarily joining the left and right lid caps 2a, 2b is provided, and temporary joining 32 is performed at a plurality of places (for example, 3 places) of the joint portion by non-consumable electrode type arc welding such as TIG welding. I have to. Regarding the attitude of the temporary joining 32, the upper and lower lid caps 2a and 2b are divided into two parts at the same position as in the main welding or in a position in which it is easy to join. Just go. In the steps 45 and 46 of the main welding for sealing the circumferential joint between the cylindrical container 1 and the lid caps 2a and 2b,
It is preferable to perform pulse arc welding from the predetermined position where the temporary joining 32 is performed in the previous step 44. By performing the temporary welding 45 and the main welding 45 and 46 from that portion, it is possible to suppress the minute deformation and the variation of the gap due to the welding, and more surely the intrusion of the spatter 28 into the cylindrical container 1 is ensured. Can be prevented.

【0043】以上述べたように本実施例によれば、円筒
容器とフタキャップとの円周継手部を密閉するパルスア
ーク溶接でスパッタの発生をなくすことができ、また、
溶接による微少な変形や隙間の変動が抑制でき、円筒容
器内へのスパッタの侵入防止によって、密閉形圧縮機の
摺動部や回転部のスパッタによる損傷、ロック不良が回
避でき、密閉形圧縮機の信頼性を高めることができる。
また、高速溶接が可能であるばかりでなく、アンダーカ
ットなどの溶接欠陥のない良好な溶接ビード外観及び溶
け込み形状を得ることができ、溶接時間の短縮、生産性
及び溶接品質の向上に寄与することができる。さらに、
溶接後の温度上昇を抑止することで、所定の高温度下で
機能劣化が懸念される電極部品や樹脂部品などを確実に
保護することができ、密閉形圧縮機の部品の損傷防止、
信頼性向上に寄与することができる。
As described above, according to this embodiment, the generation of spatter can be eliminated by the pulse arc welding that seals the circumferential joint between the cylindrical container and the lid cap, and
Microdeformation and gap variation due to welding can be suppressed, and by preventing spatter from entering the cylindrical container, damage and lock failure due to spatter on the sliding and rotating parts of the hermetic compressor can be avoided, and hermetic compressor The reliability of can be increased.
Moreover, not only high-speed welding is possible, but also good weld bead appearance and welded shape without welding defects such as undercut can be obtained, which contributes to shortening of welding time, improvement of productivity and welding quality. You can further,
By suppressing the temperature rise after welding, it is possible to reliably protect electrode parts, resin parts, etc. that may be functionally deteriorated under a predetermined high temperature, and prevent damage to the parts of the hermetic compressor.
It can contribute to the improvement of reliability.

【0044】[0044]

【発明の効果】本発明によれば、スクロール圧縮機、ロ
ータリー圧縮機など各種の密閉形圧縮機における円筒容
器の密閉溶接でスパッタの発生及び円筒容器内への侵入
をなくすと共に、品質の良い溶接部を得るのに好適な密
閉形圧縮機及びその溶接方法並びに自動溶接装置を提供
することができる。
EFFECTS OF THE INVENTION According to the present invention, in the hermetic welding of the cylindrical container in various hermetic compressors such as scroll compressors and rotary compressors, spatter generation and penetration into the cylindrical container are eliminated, and high quality welding is performed. It is possible to provide a hermetic compressor suitable for obtaining parts, a welding method thereof, and an automatic welding device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す密封形圧縮機の溶接装
置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a welding device for a hermetic compressor showing an embodiment of the present invention.

【図2】密閉形圧縮機内部の概略構造の一例を示す断面
図である。
FIG. 2 is a cross-sectional view showing an example of a schematic structure inside a hermetic compressor.

【図3】密閉形圧縮機の円筒容器とフタキャップとの間
に形成される重ねすみ肉継手部9の一部を拡大した断面
図である。
FIG. 3 is an enlarged cross-sectional view of a part of a lap fillet joint portion 9 formed between a cylindrical container and a lid cap of a hermetic compressor.

【図4】継手形状が他の突合せ継手構造から成る一実施
例を示す断面図である。
FIG. 4 is a sectional view showing an embodiment in which the joint shape is another butt joint structure.

【図5】本発明のパルスアーク溶接方法の一実施例であ
り、スパッタの発生をなくすためのパルスアーク溶接の
電圧・電流波形及びワイヤ先端の溶滴移行の概要を示す
説明図である。
FIG. 5 is an explanatory view showing an embodiment of the pulse arc welding method of the present invention and showing an outline of voltage / current waveforms of pulse arc welding for eliminating spatter generation and droplet transfer at the wire tip.

【図6】溶接中にスパッタが発生する模式図である。FIG. 6 is a schematic diagram in which spatter is generated during welding.

【図7】パルス期間中に移行する溶滴がスパッタとなっ
て飛散するパルス溶接波形を示す説明図である。
FIG. 7 is an explanatory diagram showing a pulse welding waveform in which droplets transferred during a pulse period become spatters and are scattered.

【図8】本発明の溶接方法を示す一実施例の説明図であ
る。
FIG. 8 is an explanatory diagram of an example showing a welding method of the present invention.

【図9】パルスアーク溶接を行った時の溶接平均電流I
aと平均電圧Eaの関係を示す一実施例である。
FIG. 9: Welding average current I when performing pulse arc welding
It is one Example which shows the relationship between a and average voltage Ea.

【図10】円筒容器とフタキャップとの円周継手部を密
閉溶接した後にフタキャップ2a中央部分の最高温度の
測定を行った結果の一実施例である。
FIG. 10 is an example of the result of measuring the maximum temperature of the central portion of the lid cap 2a after hermetically welding the circumferential joint portion of the cylindrical container and the lid cap.

【図11】本発明の溶接方法に関わる条件制御ブロック
線図の一実施例である。
FIG. 11 is an example of a condition control block diagram relating to the welding method of the present invention.

【図12】密閉形圧縮機の部品組立工程からフタキャッ
プの仮付け工程、本番の封止溶接工程及び検査工程に至
るまでの手順概要を示す一実施例である。
FIG. 12 is an embodiment showing an outline of the procedure from the parts assembling process of the hermetic compressor to the temporary attaching process of the lid cap, the actual sealing welding process and the inspection process.

【符号の説明】[Explanation of symbols]

1…円筒容器、2a、2b、2c…フタキャップ、3…
回転装置、4…溶接装置、5…ワイヤ、7…直流パルス
溶接電源、8…ワイヤ送給装置、10…制御盤、12…
クランク軸、15…シリンダ、19…重ねすみ肉継手、
20a、20b…重ねすみ肉円周溶接部、21…アー
ク、22、23…突き合せ継手、22a、23a…突き
合せ円周溶接部、24a…隙間、24b…スパッタ侵入
路、25…裏当てインナーリング材、26…ワイヤ溶
滴、27…溶融プール、28…スパッタ、32…仮付け
接合部。
1 ... Cylindrical container, 2a, 2b, 2c ... Lid cap, 3 ...
Rotating device, 4 ... Welding device, 5 ... Wire, 7 ... DC pulse welding power source, 8 ... Wire feeding device, 10 ... Control panel, 12 ...
Crankshaft, 15 ... Cylinder, 19 ... Overlap fillet joint,
20a, 20b ... lap fillet circumferential weld, 21 ... arc, 22,23 ... butt joint, 22a, 23a ... butt circumferential weld, 24a ... gap, 24b ... spatter penetration path, 25 ... backing inner Ring material, 26 ... Wire droplet, 27 ... Molten pool, 28 ... Sputter, 32 ... Temporary joining portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽田 光明 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 立花 浩隆 栃木県下都賀郡大平町大字富田800番地 株式会社日立栃木テクノロジー内 (72)発明者 関口 浩一 栃木県下都賀郡大平町大字富田800番地 株式会社日立栃木テクノロジー内 (72)発明者 高田 英成 栃木県下都賀郡大平町大字富田800番地 株式会社日立栃木テクノロジー内 (72)発明者 鹿島 孝之 神奈川県海老名市上今泉2100番地 日立ビ アメカニクス株式会社内 (72)発明者 斉藤 秀弥 神奈川県海老名市上今泉2100番地 日立ビ アメカニクス株式会社内 Fターム(参考) 3H003 AA02 AB01 AC03 CD01 CE02 CE06 4E081 YM10 4E082 AA01 AB02 BA04 EF02 EF07   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuaki Haneda             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Hirotaka Tachibana             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Tochigi Technology Co., Ltd. (72) Inventor Koichi Sekiguchi             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Tochigi Technology Co., Ltd. (72) Inventor Hidenari Takada             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Tochigi Technology Co., Ltd. (72) Inventor Takayuki Kashima             Hitachi Bi, 2100 Kamiimazumi, Ebina City, Kanagawa Prefecture             Inside Amechanics Co., Ltd. (72) Inventor Hideya Saito             Hitachi Bi, 2100 Kamiimazumi, Ebina City, Kanagawa Prefecture             Inside Amechanics Co., Ltd. F term (reference) 3H003 AA02 AB01 AC03 CD01 CE02                       CE06                 4E081 YM10                 4E082 AA01 AB02 BA04 EF02 EF07

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】クランク軸を回転させるモータ部品、この
クランク軸の駆動によって冷媒を圧縮する圧縮機部品を
収納した円筒容器と、この円筒容器の上端部又は下端部
或いは両方の端部に圧入したフタキャップと、この円筒
容器とフタキャップとの円周継手部を溶接ワイヤ溶融式
のパルスアーク溶接を行うことで密閉する密閉形圧縮機
において、前記円筒容器とフタキャップとの継手形状を
重ねすみ肉又は突き合せの円周継手とし、この円周継手
部の溶接を、臨界電流よりも高いパルス電流と低いベー
ス電流を交互に繰り返し出力する溶接ワイヤ溶融式の直
流パルス溶接電源を用いて、パルス電流・電圧の期間中
に溶融させたワイヤ先端に溶滴を形成させ、このパルス
期間の終了直後又はベース電流・電圧の期間前半にワイ
ヤ溶滴を溶融プール側へ離脱移行させるように設定され
たパルス溶接波形とし、前記ワイヤ溶滴の移行時に短絡
移行が生じない程度のアーク長を保持し得る溶接平均電
圧と前記継手部の溶融に見合う溶接平均電流に設定され
たパルスアーク溶接とした密閉形圧縮機。
1. A cylindrical container accommodating a motor part for rotating a crankshaft, a compressor part for compressing a refrigerant by driving the crankshaft, and an upper end portion or a lower end portion or both end portions of the cylindrical container. In a hermetic compressor that hermetically seals a lid cap and a circumferential joint portion of the cylindrical container and the lid cap by performing welding arc fusion type pulse arc welding, the joint shape of the cylindrical container and the lid cap is overlapped. Using a welding wire melting type DC pulse welding power source that alternately outputs a pulse current higher than the critical current and a base current lower than the critical current by using a meat or butt joint A droplet is formed on the tip of the melted wire during the current / voltage period, and the wire droplet is melted immediately after the end of this pulse period or in the first half of the base current / voltage period. With a pulse welding waveform set so as to shift away to the side, a welding average voltage that can hold an arc length that does not cause a short-circuit transition during the transfer of the wire droplets and a welding average current commensurate with melting of the joint portion Hermetic compressor with pulse arc welding set.
【請求項2】請求項1において、前記パルスアーク溶接
におけるシールドガスはアルゴンと炭酸ガス、またはア
ルゴンと炭酸ガスと酸素である密閉形圧縮機。
2. The hermetic compressor according to claim 1, wherein the shield gas in the pulse arc welding is argon and carbon dioxide, or argon, carbon dioxide and oxygen.
【請求項3】請求項1において、前記円筒容器とフタキ
ャップとの重ねすみ肉円周継手は、円筒容器の端面内側
にその内径より小さい外径のフタキャップ端面側を圧入
して形成されたものであり、又は円筒容器の端面外側に
その外径より大きい内径のフタキャップ端面側を圧入し
て形成されたものである密閉形圧縮機。
3. The lap fillet circumferential joint between the cylindrical container and the lid cap according to claim 1, wherein the end face side of the lid cap having an outer diameter smaller than the inner diameter thereof is press-fitted inside the end face of the cylindrical container. A hermetic compressor, which is formed by press-fitting an end surface side of a lid cap having an inner diameter larger than the outer diameter thereof into the outside of the end surface of a cylindrical container.
【請求項4】請求項1において、前記円筒容器とフタキ
ャップとの突き合せ円周継手は、フタキャップ内面の端
面側に予め接合した裏当てインナーリング材を円筒容器
の端面内側に圧入して、このフタキャップ端面と円筒容
器端面の間に突き合せ継手部を形成し、又は円筒容器の
内径より小さい外径の絞り成形加工を施したフタキャッ
プ端面を円筒容器の端面内側に圧入して、このフタキャ
ップ外側面と円筒容器端面の間に突き合せ継手部を形成
した後に、前記パルスアーク溶接を行って突き合せ円周
溶接部を得るようにした密閉形圧縮機。
4. The butt circumferential joint between the cylindrical container and the lid cap according to claim 1, wherein a backing inner ring material pre-bonded to an end surface side of an inner surface of the lid cap is press-fitted inside the end surface of the cylindrical container. , A butt joint portion is formed between the end surface of the lid cap and the end surface of the cylindrical container, or the end surface of the cylindrical container is press-fitted into the end surface of the cylindrical container by press-drawing the end surface of the outer surface of which the outer diameter is smaller than the inner diameter of the cylindrical container. A hermetic compressor in which a butt joint portion is formed between the outer surface of the lid cap and the end surface of the cylindrical container, and then the pulse arc welding is performed to obtain a butt circumferential weld portion.
【請求項5】クランク軸を回転させるモータ部品、この
クランク軸の駆動によって冷媒を圧縮する圧縮機部品を
収納した円筒容器と、この円筒容器の上端部又は下端部
或いは両方の端部に圧入したフタキャップと、この円筒
容器とフタキャップとの円周継手部を溶接ワイヤ溶融式
のパルスアーク溶接を行うことで密閉する密閉形圧縮機
の溶接方法において、臨界電流よりも高いパルス電流と
低いベース電流を交互に繰り返し出力する溶接ワイヤ溶
融式の直流パルス溶接電源を用いて、パルス電流・電圧
の期間中に溶融させたワイヤ先端に溶滴を形成させ、こ
のパルス期間の終了直後又はベース電流・電圧の期間前
半にワイヤ溶滴を溶融プール側へ離脱移行させるように
設定されたパルス溶接波形とし、前記ワイヤ溶滴の移行
時に短絡移行が生じない程度のアーク長を保持し得る溶
接平均電圧と前記継手部の溶融に見合う溶接平均電流に
設定し、前記密閉形圧縮機側又は溶接トーチ側を回転走
行させながらパルスアーク溶接を行い、重ねすみ肉円周
溶接部又は突き合せ円周溶接部を得るようにした密閉形
圧縮機の溶接方法。
5. A cylindrical container accommodating a motor part for rotating a crankshaft, a compressor part for compressing a refrigerant by driving the crankshaft, and an upper end portion or a lower end portion or both end portions of the cylindrical container. In the welding method of the hermetic compressor that seals the lid cap and the circumferential joint between this cylindrical container and the lid cap by performing welding arc fusion welding pulse arc welding, a pulse current higher than the critical current and a low base A welding wire melting type DC pulse welding power supply that alternately outputs current is used to form droplets at the tip of the melted wire during the pulse current / voltage period, and immediately after the end of this pulse period or the base current / In the first half of the voltage period, the pulse welding waveform is set so that the wire droplets are separated and transferred to the molten pool side, and a short circuit transfer occurs when the wire droplets are transferred. Set the welding average voltage that can maintain an arc length of no extent and the welding average current commensurate with the melting of the joint, perform pulse arc welding while rotating the hermetic compressor side or the welding torch side, and overlap. A method for welding a hermetic compressor, which is adapted to obtain a meat circumference welded portion or a butt circumference welded portion.
【請求項6】請求項5において、前記パルスアーク溶接
におけるシールドガスはアルゴンと炭酸ガス、またはア
ルゴンと炭酸ガスと酸素である密閉形圧縮機の溶接方
法。
6. The welding method for a hermetic compressor according to claim 5, wherein the shield gas in the pulse arc welding is argon and carbon dioxide gas, or argon, carbon dioxide gas and oxygen.
【請求項7】請求項5において、密閉形圧縮機のフタキ
ャップ側又は円筒容器側の溶け込みが深くても板厚半分
以下の浅い形状となる溶接入熱に必要な溶接平均電流及
び溶接速度を設定して前記パルスアーク溶接を行うよう
にした密閉形圧縮機の溶接方法。
7. The welding average current and welding speed required for welding heat input in claim 5, wherein even if the penetration on the lid cap side or the cylindrical container side of the hermetic compressor is deep, the welding heat input becomes a shallow shape with a plate thickness of half or less. A welding method for a hermetic compressor, which is set to perform the pulse arc welding.
【請求項8】請求項5において、前記円筒容器が概ね水
平姿勢又は水平方向から概ね50度までの傾斜姿勢とな
るように密閉形圧縮機を回転装置へ設置すると共に、ア
ーク点直下の溶融プールが下進姿勢の位置に形成するよ
うに溶接トーチを配置及びワイヤ位置決めをした後に、
密閉形圧縮機を回転走行させながら前記パルスアーク溶
接を行うようにした密閉形圧縮機の溶接方法。
8. The hermetic compressor according to claim 5, wherein the hermetic compressor is installed in the rotating device such that the cylindrical container has a substantially horizontal posture or an inclined posture of approximately 50 degrees from the horizontal direction, and the molten pool immediately below the arc point. After arranging the welding torch and positioning the wire so that is formed in the position of the downward posture,
A method for welding a hermetic compressor, wherein the pulse arc welding is performed while the hermetic compressor is rotated.
【請求項9】請求項5、6、7または8において、前記
密閉形圧縮機の溶接開始時には、少なくとも1秒以上の
プリーフロー時間を設けたシールドガス雰囲気内で、平
均値が小電流・電圧のパルスアークを発生させて初期の
溶融プールが形成後に、定常溶接の平均電流・電圧のパ
ルスアークに移行させると共に、密閉形圧縮機又は溶接
トーチを回転走行させながら定常溶接を行い、また、溶
接終了側では、溶接トーチとの相対位置がビード始端境
界位置から所定距離通過した地点か、又はこの地点に到
達するまでの所要時間が経過した後に、パルスアーク溶
接の平均電流・電圧を減少させて所定距離又は所定時間
だけ保持した後に、回転走行の停止とほぼ同時にアーク
を停止するか、又は回転走行を停止して所定の遅延時間
経過後にアークを停止して溶接終了するようにした密閉
形圧縮機の溶接方法。
9. The method according to claim 5, 6, 7 or 8, wherein at the start of welding of the hermetic compressor, an average value is a small current / voltage in a shield gas atmosphere provided with a preflow time of at least 1 second or more. Pulse arc is generated to form a molten pool in the initial stage, and then it is transferred to a pulse arc with an average current and voltage for steady welding, and steady welding is performed while rotating the hermetic compressor or welding torch while rotating. On the end side, decrease the average current / voltage of pulse arc welding after the point where the relative position with the welding torch has passed a predetermined distance from the bead start end boundary position, or after the time required to reach this point has elapsed. After holding for a predetermined distance or for a predetermined time, the arc is stopped almost at the same time as the rotation traveling is stopped, or the arc is stopped after the rotation delay and a predetermined delay time has elapsed. Welding method of hermetic compressor so as to end welding shut.
【請求項10】請求項5において、パルスアーク溶接が
終了した後か又はその溶接終了後に密閉形圧縮機を搬送
する過程で、溶接部分又は電極部分を含む領域にエアー
を吹付けるようにした密閉形圧縮機の溶接方法。
10. The hermetically sealed structure according to claim 5, wherein air is blown to a region including a welded portion or an electrode portion in the process of transporting the hermetic compressor after the pulse arc welding is completed or after the welding is completed. Welding method for compact compressor.
【請求項11】請求項5において、前記密閉形圧縮機の
本溶接を行う以前に仮付け接合の工程を設け、TIG溶
接など非消耗電極方式のアーク溶接で重ねすみ肉継手円
周部又は突き合せ継手円周部の複数箇所に仮付け接合を
行うようにした密閉形圧縮機の溶接方法。
11. The method according to claim 5, wherein a temporary joining step is provided before the main welding of the hermetic compressor is performed, and a lap fillet joint circumferential portion or protrusion is formed by non-consumable electrode type arc welding such as TIG welding. Welding method for hermetic compressors in which temporary joining is performed at multiple points on the circumference of the mate joint.
【請求項12】請求項5または11において、前記密閉
形圧縮機の本溶接の工程で、事前に仮付け接合した所定
位置よりパルスアーク溶接を開始するようにした密閉形
圧縮機の溶接方法。
12. The welding method for a hermetic compressor according to claim 5 or 11, wherein in the main welding step of the hermetic compressor, pulse arc welding is started from a predetermined position where temporary joining is performed in advance.
【請求項13】クランク軸を回転させるモータ部品、こ
のクランク軸の駆動によって冷媒を圧縮する圧縮機部品
を収納した円筒容器と、この円筒容器の上端部又は下端
部或いは両方の端部に圧入したフタキャップと、この円
筒容器とフタキャップとの間に形成される重ねすみ肉継
手円周部又は突き合せ継手円周部を溶接ワイヤ溶融式の
パルスアーク溶接を行う溶接装置において、パルス電流
値又はこの電流を出力させるパルス電圧値とパルス時間
の調整可能で、少なくともベース時間の増減制御によっ
て溶接平均電圧や平均電流を増減し得る直流パルス溶接
電源と、前記密閉形圧縮機の脱着固定及び回転走行が可
能な回転装置と、ワイヤ送給装置を介してパルス溶接電
源に接続され、密閉形圧縮機の継手部へのトーチ位置決
め及び回避移動が可能な可動軸手段に固定された溶接ト
ーチと、前記パルス溶接電源及び回転装置の動作を制御
する制御盤とを備え、前記直流パルス溶接電源の設定
を、臨界電流よりも高いパルス電流と低いベース電流を
交互に繰り返し出力するようにし、パルス電流・電圧の
期間中に溶融させたワイヤ先端に溶滴を形成し、このパ
ルス期間の終了直後又はベース電流・電圧の期間前半に
ワイヤ溶滴が溶融プール側へ離脱移行するパルス溶接波
形となるようにし、前記ワイヤ溶滴の移行時に短絡移行
が生じない程度のアーク長を保持し得る溶接平均電圧と
前記継手部の溶融に見合う溶接平均電流とし、前記密閉
形圧縮機を回転走行させながら重ねすみ肉継手円周部又
は突き合せ継手円周部を密閉するようにした密閉形圧縮
機の溶接装置。
13. A cylindrical container accommodating a motor component for rotating a crankshaft, a compressor component for compressing a refrigerant by driving the crankshaft, and an upper end portion or a lower end portion or both end portions of the cylindrical container. In the welding device for performing the welding arc melting type pulse arc welding of the lap fillet joint circumferential portion or the butt joint circumferential portion formed between the lid cap and the cylindrical container and the lid cap, the pulse current value or The pulse voltage value and pulse time for outputting this current can be adjusted, and at least the DC pulse welding power source that can increase or decrease the welding average voltage or average current by the increase / decrease control of the base time, and the detachable fixation and rotation running of the hermetic compressor. It is connected to a pulse welding power source via a rotating device capable of moving and a wire feeding device, and torch positioning and avoidance movement to the joint part of the hermetic compressor are possible. Equipped with a welding torch fixed to a movable movable shaft means and a control panel for controlling the operations of the pulse welding power source and the rotating device, and setting the DC pulse welding power source to a pulse current higher than a critical current and a low base. By alternately outputting the current alternately, a droplet is formed on the tip of the melted wire during the pulse current / voltage period, and the wire droplet melts immediately after the end of this pulse period or in the first half of the base current / voltage period. So as to have a pulse welding waveform that shifts away to the pool side, and a welding average voltage that can hold an arc length that does not cause a short circuit shift when the wire droplets shift and a welding average current that is commensurate with melting of the joint portion, A welding device for a hermetic compressor, wherein the lap fillet joint circumferential portion or the butt joint circumferential portion is hermetically sealed while the hermetic compressor is rotated.
【請求項14】臨界電流よりも高いパルス電流と低いベ
ース電流を交互に繰り返し出力する溶接ワイヤ溶融式の
直流パルス溶接電源を用いて、パルス電流・電圧の期間
中に溶融させたワイヤ先端に溶滴を形成させ、このパル
ス期間の終了直後又はベース電流・電圧の期間前半にワ
イヤ溶滴を溶融プール側へ離脱移行させるように設定さ
れたパルス溶接波形とし、前記ワイヤ溶滴の移行時に短
絡移行が生じない程度のアーク長を保持し得る溶接平均
電圧と前記継手部の溶融に見合う溶接平均電流に設定し
てパルスアーク溶接を行いことで溶接部を得るようにし
た溶接方法。
14. A welding wire melting type DC pulse welding power source, which alternately outputs a pulse current higher than the critical current and a base current lower than the critical current, is used to melt the wire tip melted during the period of the pulse current / voltage. A pulse welding waveform is set so that droplets are formed and the droplets are transferred to the molten pool side immediately after the end of this pulse period or in the first half of the base current / voltage period. A welding method in which a welded portion is obtained by performing pulse arc welding by setting a welding average voltage capable of maintaining an arc length to the extent that does not occur and a welding average current commensurate with melting of the joint portion.
【請求項15】請求項14において、前記パルスアーク
溶接におけるシールドガスはアルゴンと炭酸ガス、また
はアルゴンと炭酸ガスと酸素である溶接方法。
15. The welding method according to claim 14, wherein the shield gas in the pulse arc welding is argon and carbon dioxide, or argon, carbon dioxide and oxygen.
JP2001222400A 2001-07-24 2001-07-24 Hermetic compressor Expired - Fee Related JP4867095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222400A JP4867095B2 (en) 2001-07-24 2001-07-24 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222400A JP4867095B2 (en) 2001-07-24 2001-07-24 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2003033872A true JP2003033872A (en) 2003-02-04
JP4867095B2 JP4867095B2 (en) 2012-02-01

Family

ID=19055881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222400A Expired - Fee Related JP4867095B2 (en) 2001-07-24 2001-07-24 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP4867095B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226611A (en) * 2004-02-16 2005-08-25 Sanyo Electric Co Ltd Method of manufacturing sealed vessel for compressor, sealed vessel for compressor and compressor
JP2005349404A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Manufacturing method for fluid machine, and fluid machine
JP2009024676A (en) * 2007-07-23 2009-02-05 Daikin Ind Ltd Welding method for compressor
JP2011132817A (en) * 2009-12-22 2011-07-07 Mitsubishi Electric Corp Hermetic compressor, and welding method
KR101400374B1 (en) * 2014-03-18 2014-05-27 주식회사 코스 Refrigerant pipe welding device of compressor tank for air conditioning system
CN107206525A (en) * 2015-02-12 2017-09-26 杰富意钢铁株式会社 Lap fillet welding arc-welded joint
WO2019207719A1 (en) * 2018-04-26 2019-10-31 三菱電機株式会社 Circumferential welding method and circumferential welding device
CN111805107A (en) * 2019-04-11 2020-10-23 上海海立电器有限公司 Compressor and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115966A (en) * 1999-10-19 2001-04-27 Daikin Ind Ltd Closed-type compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115966A (en) * 1999-10-19 2001-04-27 Daikin Ind Ltd Closed-type compressor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226611A (en) * 2004-02-16 2005-08-25 Sanyo Electric Co Ltd Method of manufacturing sealed vessel for compressor, sealed vessel for compressor and compressor
JP2005349404A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Manufacturing method for fluid machine, and fluid machine
JP4572586B2 (en) * 2004-06-08 2010-11-04 パナソニック株式会社 Fluid machinery
JP2009024676A (en) * 2007-07-23 2009-02-05 Daikin Ind Ltd Welding method for compressor
JP2011132817A (en) * 2009-12-22 2011-07-07 Mitsubishi Electric Corp Hermetic compressor, and welding method
KR101400374B1 (en) * 2014-03-18 2014-05-27 주식회사 코스 Refrigerant pipe welding device of compressor tank for air conditioning system
CN107206525A (en) * 2015-02-12 2017-09-26 杰富意钢铁株式会社 Lap fillet welding arc-welded joint
EP3257612A4 (en) * 2015-02-12 2018-08-29 JFE Steel Corporation Lap fillet arc-welded joint
CN107206525B (en) * 2015-02-12 2019-06-25 杰富意钢铁株式会社 Lap fillet welding arc-welded joint
US10590974B2 (en) 2015-02-12 2020-03-17 Jfe Steel Corporation Lap fillet arc-welded joint
WO2019207719A1 (en) * 2018-04-26 2019-10-31 三菱電機株式会社 Circumferential welding method and circumferential welding device
CN112074369A (en) * 2018-04-26 2020-12-11 三菱电机株式会社 Circumferential welding method and circumferential welding device
CN111805107A (en) * 2019-04-11 2020-10-23 上海海立电器有限公司 Compressor and method

Also Published As

Publication number Publication date
JP4867095B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
KR102090841B1 (en) Dc electrode negative rotating arc welding method and system
US20060289394A1 (en) TIG welding or braze welding with metal transfer via a liquid bridge
KR102134045B1 (en) Adaptable rotating arc welding method and system
EP0584643B1 (en) Welding method and welding robot
US20050011868A1 (en) Hybrid laser-arc welding method with gas flow rate adjustment
JP2009208137A (en) Plasma mig welding method
JP4867095B2 (en) Hermetic compressor
EP3342523B1 (en) Welding methods and arc welding device
KR20140064764A (en) Metal cored welding method and system using rotating electrode
CN108453351B (en) Aluminum pipe welding method
CN105710549B (en) A kind of transformer forced air cooler stainless steel cooling pipe and Tube-sheet Welding technique
JP2018024019A (en) Process and apparatus for welding workpiece having heat sensitive material
JP2007105754A (en) Laser irradiation arc welding method
JP5608115B2 (en) Gas shield arc welding method and welding apparatus
JP2001113373A (en) Method for controlling of tandem arc welding
JP5153301B2 (en) Method for producing reservoir container of hermetic compressor and hermetic compressor
US20030111444A1 (en) Ceramic weld insulator and metal weld gear combination for an improved micro weld head component of an orbital tube welding apparatus
JPH08323469A (en) High speed horizontal fillet welding method
JP3365720B2 (en) Swing type plasma torch
JP2005111551A (en) Hot wire tig welding method, part to be welded by the method, and hot wire tig welding equipment
KR20010063741A (en) Hinge types arc welding torch
JP2748835B2 (en) Automatic arc welding equipment for rebar
JPH08323468A (en) High speed horizontal fillet welding method
JPH08243747A (en) Wire filling mig welding method
SU1449274A1 (en) Method of unilateral two-arc welding with nonconsumable electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees