JP2003033656A - Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas - Google Patents

Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas

Info

Publication number
JP2003033656A
JP2003033656A JP2001224354A JP2001224354A JP2003033656A JP 2003033656 A JP2003033656 A JP 2003033656A JP 2001224354 A JP2001224354 A JP 2001224354A JP 2001224354 A JP2001224354 A JP 2001224354A JP 2003033656 A JP2003033656 A JP 2003033656A
Authority
JP
Japan
Prior art keywords
catalyst
synthesis gas
dimethyl ether
manufacturing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224354A
Other languages
Japanese (ja)
Inventor
Tsutomu Shikada
勉 鹿田
Yasuhiro Mogi
康弘 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001224354A priority Critical patent/JP2003033656A/en
Publication of JP2003033656A publication Critical patent/JP2003033656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which makes it possible to obtain synthesis gas from dimethyl ether at a reaction temperature of about 300 to 350 deg.C at a high yield and a method of manufacturing the synthesis gas. SOLUTION: The method of manufacturing the synthesis gas comprises acting the catalyst consisting of a material containing copper and a material having solid acidity on a gaseous mixture composed of the dimethyl ether and steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジメチルエーテル
と水蒸気が含まれる混合ガスから合成ガスを生成させる
触媒およびそれを用いた合成ガスの製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a catalyst for producing synthesis gas from a mixed gas containing dimethyl ether and steam, and a method for producing synthesis gas using the catalyst.

【0002】[0002]

【従来の技術】合成ガスは、一酸化炭素と水素からなる
ガスであり、直接、メタノール合成、オキソ合成、フィ
ッシャートロプシュ合成等の原料ガスに用いられるほ
か、アンモニア合成や各種化学製品の原料として広い用
途をもっている。
2. Description of the Related Art Syngas is a gas composed of carbon monoxide and hydrogen, and is used directly as a raw material gas for methanol synthesis, oxo synthesis, Fischer-Tropsch synthesis, etc., and is also widely used as a raw material for ammonia synthesis and various chemical products. Has a purpose.

【0003】従来、合成ガスを製造する方法はいくつか
知られている。例えば、(1)石炭のガス化による方法、
(2)天然ガス、LPG、ナフサなどを原料とする炭化水
素の水蒸気改質方法、(3)天然ガス、LPG、ナフサ、
重質油などを原料とする炭化水素の部分酸化方法などが
ある。
Heretofore, several methods for producing synthesis gas have been known. For example, (1) a method by gasification of coal,
(2) Steam reforming method for hydrocarbons using natural gas, LPG, naphtha, etc. as raw materials, (3) Natural gas, LPG, naphtha,
There is a partial oxidation method of hydrocarbons using heavy oil as a raw material.

【0004】しかしながら、上記(1)の石炭ガス化法に
おいては、極めて複雑でかつ高価な石炭ガス化炉が必要
であり、装置が大規模なプラントとなるなどの問題があ
った。また(2)の炭化水素の水蒸気改質方法において
は、反応が大きな吸熱であり、反応の進行に700〜1
200℃の高温を必要とするため、特殊な改質炉が必要
であり、また使用する触媒に高い耐熱性が要求されるな
どの問題があった。上記(3)の炭化水素の部分酸化方法
においても、1200〜1500℃の高温を必要とする
ために特殊な部分酸化炉が必要であり、また反応に伴っ
て大量のすすが生成するためその処理が問題となり、さ
らに触媒を使用する場合には触媒表面に炭素質物質が多
量に析出して触媒が劣化するなどの問題があった。
However, the above-mentioned (1) coal gasification method has a problem that an extremely complicated and expensive coal gasification furnace is required and the apparatus becomes a large-scale plant. Further, in the hydrocarbon steam reforming method of (2), the reaction has a large endotherm, and 700 to 1
Since a high temperature of 200 ° C. is required, there is a problem that a special reforming furnace is required and the catalyst used is required to have high heat resistance. Also in the above-mentioned method (3) for partial oxidation of hydrocarbons, a special partial oxidation furnace is required because a high temperature of 1200 to 1500 ° C. is required, and a large amount of soot is generated with the reaction, so the treatment thereof is required. However, when a catalyst is used, there is a problem that a large amount of carbonaceous material is deposited on the surface of the catalyst and the catalyst deteriorates.

【0005】本発明者らは、これらの問題点を解決した
合成ガスの製造方法を開発するべく鋭意検討を重ねた結
果、原料ガスとしてジメチルエーテルに着目するに至っ
た。そして、ジメチルエーテルと二酸化炭素の混合ガス
に銅触媒を作用させて合成ガスを製造する方法(特開平
10−174869号公報)、ジメチルエーテルと二酸
化炭素または水蒸気の混合ガスにコバルト触媒を作用さ
せて合成ガスを製造する方法(特開平10−17487
1号公報)、ジメチルエーテルと二酸化炭素または水蒸
気の混合ガスに塩基性を有する金属酸化物にパラジウム
を担持させた触媒を作用させて合成ガスを製造する方法
(特開平10−174865号公報)、ジメチルエーテ
ルと水蒸気の混合ガスにニッケル触媒を作用させて合成
ガスを製造する方法(特開平11−300205号公
報)、ジメチルエーテルと水蒸気の混合ガスにイリジウ
ム、白金、ロジウムまたはパラジウム担持金属酸化物と
固体酸性化合物を活性成分とする触媒を作用させて合成
ガスを製造する方法(特開2000−466号公報)な
どを開発してきた。
The present inventors have conducted intensive studies to develop a method for producing a synthetic gas that solves these problems, and as a result, have come to pay attention to dimethyl ether as a raw material gas. Then, a method of producing a synthesis gas by causing a copper catalyst to act on a mixed gas of dimethyl ether and carbon dioxide (JP-A-10-174869), and a synthesis gas by acting a cobalt catalyst on a mixed gas of dimethyl ether and carbon dioxide or water vapor Method for producing (JP-A-10-17487)
No. 1), a method of producing a synthetic gas by reacting a mixed gas of dimethyl ether and carbon dioxide or steam with a catalyst in which palladium is supported on a metal oxide having basicity (JP-A-10-174865), dimethyl ether. A method of producing a synthesis gas by causing a nickel catalyst to act on a mixed gas of water vapor and steam (Japanese Patent Laid-Open No. 11-300205), a metal oxide supporting iridium, platinum, rhodium or palladium and a solid acidic compound on a mixed gas of dimethyl ether and steam A method of producing a synthesis gas by causing a catalyst having an active ingredient of ## STR1 ## to act (Japanese Patent Laid-Open No. 2000-466) has been developed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
触媒は、合成ガス収率を高くするために反応温度を高く
する必要があった。
However, in the above catalyst, it was necessary to raise the reaction temperature in order to raise the synthesis gas yield.

【0007】本発明の目的は、より低い反応温度でジメ
チルエーテルから合成ガスを高い収率で得られる触媒と
合成ガスの製造方法を提供することにある。
[0007] It is an object of the present invention to provide a catalyst and a method for producing synthesis gas, which can obtain synthesis gas from dimethyl ether in a high yield at a lower reaction temperature.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するべくさらに検討を進めた結果、銅を含む物質
と固体酸性を有する物質を物理的に混合して得られる触
媒をジメチルエーテルと水蒸気の混合ガスに作用させる
と従来より低い温度でジメチルエーテルを高い収率で得
られることを見出し、本発明を完成することができた。
As a result of further study to solve the above problems, the present inventors have found that a catalyst obtained by physically mixing a substance containing copper with a substance having solid acidity is dimethyl ether. It was found that dimethyl ether can be obtained in a high yield at a lower temperature than before by acting on a mixed gas of water vapor and steam, and the present invention was completed.

【0009】すなわち、本発明は、銅を含む物質と固体
酸性を有する物質の混合物よりなる、ジメチルエーテル
と水蒸気から合成ガスを生成させる触媒と、ジメチルエ
ーテルと水蒸気を含有する混合ガスに上記の触媒を接触
させることを特徴とする合成ガスの製造方法に関するも
のである。
That is, according to the present invention, a catalyst comprising a mixture of a substance containing copper and a substance having a solid acidity for producing a synthesis gas from dimethyl ether and steam, and a mixed gas containing dimethyl ether and steam are contacted with the above catalyst. The present invention relates to a method for producing synthesis gas, which comprises:

【0010】[0010]

【発明の実施の形態】本発明の触媒における銅を含む物
質は、銅の金属および/または化合物またはこれらを含
有するものである。銅の化合物としては銅の酸化物が好
ましく、銅の酸化物は酸化第一銅(CuO)、酸化第
二銅(CuO)またはその混合物である。
BEST MODE FOR CARRYING OUT THE INVENTION The substance containing copper in the catalyst of the present invention is a metal and / or compound of copper or those containing these. The copper compound is preferably a copper oxide, and the copper oxide is cuprous oxide (Cu 2 O), cupric oxide (CuO) or a mixture thereof.

【0011】この銅を含む物質は、触媒担体に担持させ
たものとすることができる。好ましい触媒担体として
は、アルミナ、シリカゲル、シリカ・アルミナ、ゼオラ
イト、チタニア、ジルコニアなどの酸化物であるが、な
かでもアルミナが水素収率が高いので好ましい。銅を含
む物質中の銅の含有率は約1〜50重量%、好ましくは
2〜30重量%である。銅の含有率が約1重量%未満お
よび50重量%以上であると、合成ガスの収率が低下す
る。
The substance containing copper can be supported on a catalyst carrier. Preferred catalyst carriers are oxides of alumina, silica gel, silica-alumina, zeolite, titania, zirconia, etc. Among them, alumina is preferable because of high hydrogen yield. The content of copper in the material containing copper is about 1 to 50% by weight, preferably 2 to 30% by weight. When the copper content is less than about 1% by weight and 50% by weight or more, the yield of synthesis gas decreases.

【0012】また、この物質は、亜鉛を含まないことを
大きな特徴とするものであり、亜鉛を含まないことで高
いジメチルエーテル転化率が得られるとともに、二酸化
炭素の副生を押さえることが可能となる。そのため、こ
の物質における亜鉛の含有率は1.0重量%以下、好ま
しくは0.5重量%以下、特に好ましくは0.1重量%
以下とするのがよい。
Further, this substance is largely characterized by not containing zinc. By not containing zinc, a high conversion rate of dimethyl ether can be obtained, and carbon dioxide by-product can be suppressed. . Therefore, the content of zinc in this substance is 1.0% by weight or less, preferably 0.5% by weight or less, particularly preferably 0.1% by weight.
The following is recommended.

【0013】この銅を含む物質の製造には、一般的な触
媒の調製方法を適用できる。例えばこの物質の製造用原
料は、銅の化合物として、それぞれの硝酸塩、炭酸塩、
ハロゲン化物等の無機酸塩および酢酸銅、シュウ酸銅な
ど有機酸塩が使用される。また、触媒担体への銅の担持
操作には、通常の沈殿法、混練法、含浸法およびイオン
交換法などの技術が利用できる。このように調製された
触媒組成物は、必要があれば常法により焼成する。焼成
は、窒素中または空気中において、350〜800℃の
温度で1〜10時間加熱して行うのが好ましい。
A general catalyst preparation method can be applied to the production of the substance containing copper. For example, the raw material for the production of this substance, as the copper compound, each nitrate, carbonate,
Inorganic acid salts such as halides and organic acid salts such as copper acetate and copper oxalate are used. In addition, for the operation of supporting copper on the catalyst carrier, ordinary techniques such as a precipitation method, a kneading method, an impregnation method and an ion exchange method can be used. The catalyst composition thus prepared is calcined by a conventional method if necessary. The firing is preferably performed by heating in nitrogen or air at a temperature of 350 to 800 ° C. for 1 to 10 hours.

【0014】本発明の触媒を構成するもう一方の触媒成
分は、固体酸性を有する物質である。この固体酸性と
は、固体でありながらブレンステッド酸またはルイス酸
の特性を示すものであり、具体的には、アルミナ、シリ
カ・アルミナ、シリカ・チタニア、ゼオライト、燐酸ア
ルミニウム等である。なかでもアルミナが合成ガスの収
率が高いので好ましい。
The other catalyst component constituting the catalyst of the present invention is a substance having solid acidity. The solid acid is one that exhibits the characteristics of a Bronsted acid or a Lewis acid even though it is a solid, and specifically, it is alumina, silica-alumina, silica-titania, zeolite, aluminum phosphate or the like. Of these, alumina is preferred because it has a high synthesis gas yield.

【0015】上記2種類の触媒成分の混合方法は、両成
分をそれぞれペレット化したのち物理的に混合してもよ
く、また、両成分を粉末にして物理的に混合したのち圧
縮成形してペレット化してもよい。両成分の混合割合
は、特に限定されることなく、各成分の種類あるいは反
応条件等に応じて適宜選定すればよいが、通常は銅を含
む物質と固体酸性を有する物質との比率が重量比で1:
20〜10:1程度であり、好ましくは1:10〜5:
1程度である。銅を含む物質と固体酸性を有する物質の
粒径は0.005〜30mm程度、好ましくは0.01
〜20mm程度である。
In the method of mixing the above two kinds of catalyst components, both components may be pelletized and then physically mixed, or both components may be powdered and physically mixed and then compression-molded into pellets. May be turned into. The mixing ratio of both components is not particularly limited and may be appropriately selected according to the type of each component or reaction conditions, etc., but usually the ratio of the substance containing copper and the substance having solid acidity is the weight ratio. So 1:
It is about 20 to 10: 1, preferably 1:10 to 5:
It is about 1. The particle size of the substance containing copper and the substance having solid acidity is about 0.005 to 30 mm, preferably 0.01
It is about 20 mm.

【0016】このようにして調製された触媒にジメチル
エーテルと水蒸気の混合ガスを流通させることにより、
合成ガスが高収率で得られる。
By passing a mixed gas of dimethyl ether and water vapor through the catalyst thus prepared,
Syngas is obtained in high yield.

【0017】本発明においては、原料のジメチルエーテ
ルとともに水蒸気を供給する。供給する水蒸気は原料の
ジメチルエーテルに対して量論量または量論量より若干
過剰とすることが好ましく、1.0〜1.3モル倍、好
ましくは1.1〜1.2モル倍である。水蒸気の供給が
1モル倍より少ないと、高いジメチルエーテル転化率が
得られず、また1.3モル倍より多いと二酸化炭素の副
生割合が増大して好ましくない。この原料ガスには、ジ
メチルエーテルと水蒸気以外の成分も含むことができ
る。その他の成分としては、反応に不活性なガス、例え
ば窒素、不活性ガス等を含むことができる。これらの含
有量は30容量%以下が適当であり、これより多くなる
と反応速度の低下が問題になる。一方、空気(酸素)は
ジメチルエーテルが燃焼してしまうのでなるべく排除し
たほうがよく、許容含有量は空気として5%以下であ
る。
In the present invention, steam is supplied together with dimethyl ether as a raw material. It is preferable that the steam to be supplied be in a stoichiometric amount or slightly in excess of the stoichiometric amount with respect to dimethyl ether as a raw material, and 1.0 to 1.3 mol times, preferably 1.1 to 1.2 mol times. If the supply of water vapor is less than 1 mol times, a high dimethyl ether conversion cannot be obtained, and if it is more than 1.3 mol times, the carbon dioxide by-product ratio increases, which is not preferable. The raw material gas may contain components other than dimethyl ether and water vapor. Other components may include a gas inert to the reaction, such as nitrogen or an inert gas. It is appropriate that the content of these is 30% by volume or less, and if the content is more than 30% by volume, the decrease in reaction rate becomes a problem. On the other hand, air (oxygen) should be removed as much as possible because dimethyl ether burns, and the allowable content is 5% or less as air.

【0018】反応温度は、200〜500℃、好ましく
は250〜450℃である。反応温度が200℃より低
いと高いジメチルエーテル転化率が得られず、かつ二酸
化炭素の生成割合が増加して合成ガスの収率が低下す
る。また500℃より高いとメタンを主体とする炭化水
素の生成が顕著となり、生成物中の合成ガスの割合が低
下して好ましくない。
The reaction temperature is 200 to 500 ° C, preferably 250 to 450 ° C. If the reaction temperature is lower than 200 ° C., a high conversion rate of dimethyl ether cannot be obtained, and the production rate of carbon dioxide increases to lower the yield of synthesis gas. On the other hand, if the temperature is higher than 500 ° C., the production of hydrocarbons mainly composed of methane becomes remarkable, and the proportion of synthesis gas in the product decreases, which is not preferable.

【0019】反応圧力は常圧〜10kg/cmが好ま
しい。反応圧力が10kg/cmより高いとジメチル
エーテル転化率が低下する。
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 . When the reaction pressure is higher than 10 kg / cm 2 , the conversion rate of dimethyl ether decreases.

【0020】空間速度(触媒1mあたりの標準状態に
おける混合ガスの供給速度m/h)は、500〜10
000m/m・hが好ましい。空間速度が1000
0m /m・hより大きいとジメチルエーテル転化率
が低くなり、また500m/m・hより小さいと反
応器が極端に大きくなって経済的でない。
Space velocity (catalyst 1mThreePer standard condition
Supply rate of mixed gas mThree/ H) is 500 to 10
000mThree/ MThree・ H is preferable. Space velocity is 1000
0m Three/ MThree・ If greater than h, dimethyl ether conversion rate
Becomes lower and 500mThree/ MThree・ If less than h, anti
The reactor is extremely large and not economical.

【0021】なお、本発明の方法においては、固定床、
流動床のいずれの装置を用いてもよい。
In the method of the present invention, a fixed bed,
Any device of the fluidized bed may be used.

【0022】[0022]

【実施例】I.触媒の調製 実施例1,2 イオン交換水約200mlに硝酸銅(Cu(NO)
3HO)19.0gを溶解し、これに20〜40メッ
シュに整粒したアルミナ(日揮化学製,『N612』)
95gを投入した後、蒸発乾固した。次いで、このもの
を空気中、120℃で24時間乾燥した後、空気中35
0℃で3時間焼成した。さらに水素気流中、400℃で
3時間の処理を行って、物質Aを得た。物質Aの組成は
Cu:Al=5:95(重量比)であった。
EXAMPLE I. Preparation of catalyst Examples 1 and 2 Copper nitrate (Cu (NO) 3 ·
3H 2 O) 19.0 g was dissolved, and alumina was sized to 20 to 40 mesh (“N612” manufactured by JGC Chemical Co., Ltd.).
After adding 95 g, the mixture was evaporated to dryness. Then, this was dried in air at 120 ° C. for 24 hours, and then dried in air 35
It was calcined at 0 ° C. for 3 hours. Further, in a hydrogen stream, treatment was carried out at 400 ° C. for 3 hours to obtain a substance A. The composition of the substance A was Cu: Al 2 O 3 = 5: 95 (weight ratio).

【0023】次に、上記の物質Aと、20〜40メッシ
ュに整粒したアルミナBとを、重量比で1:2の割合で
物理的に混合して触媒を得た。
Next, the above substance A and alumina B, which had been sized to 20 to 40 mesh, were physically mixed in a weight ratio of 1: 2 to obtain a catalyst.

【0024】実施例3,4 実施例1,2の場合と同様に調製して得た物質Aと、2
0〜40メッシュに整粒したアルミナBとを、重量比で
1:1の割合で物理的に混合して触媒を得た。
Examples 3 and 4 Substance A obtained by preparing in the same manner as in Examples 1 and 2 and
Alumina B, which was sized to 0 to 40 mesh, was physically mixed at a weight ratio of 1: 1 to obtain a catalyst.

【0025】比較例1,2 実施例1,2の場合と同様に調製して得た物質Aのみを
触媒とした。
Comparative Examples 1 and 2 Only substance A prepared in the same manner as in Examples 1 and 2 was used as a catalyst.

【0026】II.反応方法 内径20mmのステンレス製反応管に所定量の上記触媒
を充填した。この反応管にジメチルエーテルと水蒸気を
所定量供給して、所定の温度で反応させた。
II. Reaction Method A stainless steel reaction tube having an inner diameter of 20 mm was filled with a predetermined amount of the above catalyst. Dimethyl ether and water vapor were supplied to the reaction tube in predetermined amounts and reacted at a predetermined temperature.

【0027】以上の操作により得られた反応生成物およ
び未反応物はガスクロマトグラフにより分析した。
The reaction products and unreacted products obtained by the above operation were analyzed by gas chromatography.

【0028】III.反応条件および実験結果 反応条件および実験結果を表1〜2に示す。III. Reaction conditions and experimental results The reaction conditions and experimental results are shown in Tables 1-2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】合成ガス収率(%)=(1/6×(CO生
成速度+H生成速度)/ジメチルエーテル供給速度)
×100 メタノール収率(%)=(1/2×メタノール生成速度
/ジメチルエーテル供給速度)×100 炭化水素収率(%)=(Σ[n/2×炭化水素(炭素数
n)生成速度]/ジメチルエーテル供給速度)×100 CO収率(%)=(1/2×CO生成速度/ジメチ
ルエーテル供給速度)×100 各速度の単位は全て[mol/g−cat・h]
Synthesis gas yield (%) = (1/6 × (CO production rate + H 2 production rate) / dimethyl ether feed rate)
× 100 Methanol yield (%) = (1/2 × methanol production rate / dimethyl ether supply rate) × 100 Hydrocarbon yield (%) = (Σ [n / 2 × hydrocarbon (carbon number n) production rate] / Dimethyl ether feed rate) × 100 CO 2 yield (%) = (1/2 × CO 2 production rate / dimethyl ether feed rate) × 100 All units of each rate are [mol / g-cat · h]

【0032】[0032]

【発明の効果】本発明の触媒を用いた合成ガスの製造方
法では、ジメチルエーテルと水蒸気の混合ガスを、30
0〜350℃程度の低温で、銅を含む物質と固体酸性を
有する物質とを物理的に混合した触媒に接触させること
によって、高い収率で合成ガスを得ることができる。
INDUSTRIAL APPLICABILITY In the method for producing synthesis gas using the catalyst of the present invention, a mixed gas of dimethyl ether and steam is mixed with 30
A synthesis gas can be obtained in high yield by contacting a catalyst in which a substance containing copper and a substance having solid acidity are physically mixed at a low temperature of about 0 to 350 ° C.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA01 EA06 EC01 4G069 AA03 AA08 BA01B BC31A BC31B CC40 DA05 EA02Y FA01 FA02 FB07 FB14 FB44   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G040 EA01 EA06 EC01                 4G069 AA03 AA08 BA01B BC31A                       BC31B CC40 DA05 EA02Y                       FA01 FA02 FB07 FB14 FB44

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅を含む物質と固体酸性を有する物質の
混合物よりなる、ジメチルエーテルと水蒸気から合成ガ
スを生成させる触媒
1. A catalyst for producing synthesis gas from dimethyl ether and water vapor, which comprises a mixture of a substance containing copper and a substance having solid acidity.
【請求項2】 ジメチルエーテルと水蒸気を含有する混
合ガスに請求項1記載の触媒を接触させることを特徴と
する合成ガスの製造方法
2. A method for producing a synthesis gas, which comprises contacting the catalyst according to claim 1 with a mixed gas containing dimethyl ether and steam.
JP2001224354A 2001-07-25 2001-07-25 Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas Pending JP2003033656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224354A JP2003033656A (en) 2001-07-25 2001-07-25 Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224354A JP2003033656A (en) 2001-07-25 2001-07-25 Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas

Publications (1)

Publication Number Publication Date
JP2003033656A true JP2003033656A (en) 2003-02-04

Family

ID=19057534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224354A Pending JP2003033656A (en) 2001-07-25 2001-07-25 Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas

Country Status (1)

Country Link
JP (1) JP2003033656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342543A (en) * 2003-05-20 2005-12-15 Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342543A (en) * 2003-05-20 2005-12-15 Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst

Similar Documents

Publication Publication Date Title
KR101529906B1 (en) Process for operating hts reactor
JP3010314B2 (en) Hydrocarbon preparation method
CN105899648A (en) Method for carbon dioxide hydrogenation of syngas
JP4713895B2 (en) Method for producing iodide
JPH11106770A (en) Method and apparatus for power generation with dimethyl ether modification gas
JP2003033656A (en) Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas
JPH09168740A (en) Carbon dioxide modifying catalyst and modifying method using the same
JPH10174870A (en) Catalyst for production of hydrogen and production of hydrogen
JP4163292B2 (en) Hydrocarbon reforming catalyst and reforming method
JPH01190638A (en) Production of hydrocarbon by hydrogenation of carbon dioxide
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP3613539B2 (en) Catalyst for producing synthesis gas, method for producing the same, and method for producing synthesis gas
JP2841500B2 (en) Method for producing propane by hydrogenation of carbon dioxide
JPH11106811A (en) Production of reduced iron and apparatus therefor
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JPH10174871A (en) Catalyst for production of synthesis gas and production of synthesis gas
JPH11300205A (en) Catalyst for production of synthetic gas and production of synthetic gas
EP0133778A2 (en) Methanol conversion process
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method
JP3742816B2 (en) Carbon monoxide hydrogenation using metal sulfide catalyst
JP2754843B2 (en) Method for producing high calorie gas
JP2000103604A (en) Preparation of reforming catalyst for hydrocarbon and molded product of magnesium oxide for forming the same catalyst support
JPH0347894B2 (en)
WO2023277188A1 (en) Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas
JPH10174869A (en) Catalyst for production of synthesis gas and production of synthesis gas