JP2003028265A - Conveying mechanism using magnetic screw - Google Patents

Conveying mechanism using magnetic screw

Info

Publication number
JP2003028265A
JP2003028265A JP2001218115A JP2001218115A JP2003028265A JP 2003028265 A JP2003028265 A JP 2003028265A JP 2001218115 A JP2001218115 A JP 2001218115A JP 2001218115 A JP2001218115 A JP 2001218115A JP 2003028265 A JP2003028265 A JP 2003028265A
Authority
JP
Japan
Prior art keywords
magnetic
shaft
magnet
magnetic screw
nut block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001218115A
Other languages
Japanese (ja)
Other versions
JP2003028265A5 (en
JP4264868B2 (en
Inventor
Keitaro Yamashita
恵太郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Kiko Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Metals Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Metals Kiko Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001218115A priority Critical patent/JP4264868B2/en
Publication of JP2003028265A publication Critical patent/JP2003028265A/en
Publication of JP2003028265A5 publication Critical patent/JP2003028265A5/ja
Application granted granted Critical
Publication of JP4264868B2 publication Critical patent/JP4264868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clean and reliable magnetic screw mechanism accurately retaining a nut block part and a magnetic body shaft and not causing a problem such as dust generation even after use in long time linear motion. SOLUTION: In the magnetic screw mechanism composed of the cylindrical straight magnetic body shaft 1 formed with a spiral non-magnetic part 1-1 and the nut block part 3 arranged opposed to the shaft 1 with a designated interval and incorporating a magnet 2 having spiral magnetic pole at least into an opposing surface so as to form a magnetic circuit and the magnetic body shaft, and providing thrust in an axial direction by rotation of the magnetic body shaft, a linear motion guiding member 4 to allow only movement in parallel with the magnetic body shaft is arranged between the nut block 3 and a main body side of a conveying mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体製造装置など
や各種の精密機械に用いられる直線運動磁気ねじ機構の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a linear motion magnetic screw mechanism used in semiconductor manufacturing equipment and various precision machines.

【0002】[0002]

【従来の技術】従来より精密機械などにおいてXYテー
ブルを直線運動させる位置決め駆動としてボールねじが
多用されてきた。この方式は回転モータによってねじ軸
を回転し、ねじ軸にはめ込まれたナット部分を直線運動
させるものである。しかしながらボールねじ機構はねじ
軸とナットの間でシュウ動摩擦するため磨耗したり、磨
耗粉の飛散が発生したり、潤滑材としてグリースの塗布
を必要とするなど頻繁にメンテナンスが必要であり、ま
たクリーンルーム内部などの発塵を嫌う環境下で使用す
ることは困難であった。このようなボールねじの欠点を
補うため磁気ねじ機構を用いた従来技術が提案された。
2. Description of the Related Art Conventionally, ball screws have been widely used as positioning drives for linearly moving an XY table in precision machines and the like. In this method, a screw shaft is rotated by a rotary motor, and a nut portion fitted in the screw shaft is linearly moved. However, the ball screw mechanism requires frequent maintenance, such as wear due to shudder friction between the screw shaft and the nut, scattering of abrasion powder, and the need to apply grease as a lubricant. It was difficult to use the product in an environment where it is difficult to generate dust, such as inside. A conventional technique using a magnetic screw mechanism has been proposed to compensate for the drawbacks of the ball screw.

【0003】特開平7−280061には代表的な磁気
ねじ機構が示されている。この技術では螺旋状に機械的
な溝を形成した軸上を軸の螺旋に対応させた磁気回路の
ナットが適切な間隔を保持できるようにMCナイロン、
デルリン等の耐磨耗性、滑り性を有する合成樹脂材料な
ど非磁性材料よりなるガイドリングが提案されている。
しかしながら本技術では軸の溝コーナ部分とガイドリン
グの干渉による磨耗は避けられず磨耗した場合の交換手
段まで示されている。またスライドテーブルなどのナッ
ト側の荷重負荷などをこのガイドリングで支持すること
は不可能に近く別途スライド軸受とこれを支持する軸を
必要とした。
Japanese Patent Laid-Open No. 7-280061 discloses a typical magnetic screw mechanism. This technology uses MC nylon, which allows the nuts of the magnetic circuit to correspond to the spiral of the shaft on the shaft with mechanical grooves formed in a spiral shape to maintain an appropriate interval.
A guide ring made of a non-magnetic material such as a synthetic resin material having abrasion resistance and slipperiness such as Delrin has been proposed.
However, in the present technique, wear due to interference between the groove corner portion of the shaft and the guide ring is unavoidable, and even a replacement means in case of wear is shown. Moreover, since it is impossible to support the load load on the nut side of the slide table with this guide ring, a separate slide bearing and a shaft for supporting this are required.

【0004】特開平1−209222にはマグネットス
クリュースライダーとして他の磁気ねじ機構が提案され
ている。この技術では軸とナットブロック側の適切な間
隔を確保するためにこの軸と平行なスライド機構を別に
設けてナットの位置決めをおこなっている。しかしなが
ら軸に螺旋状に配置されたマグネットに磁性粉を吸着し
やすく、さらに軸とマグネットは一体ではないので長尺
にしたときに撓みを生じやすく中間点に支持部材が必要
になるなどの機構が複雑にならざるをえなかった。
Japanese Patent Laid-Open No. 1-209222 proposes another magnetic screw mechanism as a magnet screw slider. In this technique, a nut is positioned by separately providing a slide mechanism parallel to the shaft in order to secure an appropriate distance between the shaft and the nut block side. However, it is easy to attract the magnetic powder to the magnets arranged spirally on the shaft, and since the shaft and the magnets are not integrated, bending tends to occur when the magnet is made long, and a mechanism such as a support member is required at the intermediate point. It had to be complicated.

【0005】以上の改良技術として特開平11−166
607では強磁性体の軸に局部加熱により非磁性部を螺
旋状に形成し機械的な溝を省略した円柱状のストレート
軸と磁気回路を形成しているナットの組み合わせよりな
る磁気ねじ機構が示されている。
As a technique for improving the above, Japanese Patent Laid-Open No. 11-166
607 shows a magnetic screw mechanism composed of a combination of a cylindrical straight shaft in which a non-magnetic portion is spirally formed on a shaft of a ferromagnetic body by local heating and a mechanical groove is omitted, and a nut forming a magnetic circuit. Has been done.

【0006】[0006]

【発明が解決しようとする課題】しかしながら適切な間
隔で軸と対応するマグネットを有するナットブロック側
をどのようにして支持し適切な間隔を安定して確保し信
頼性のある磁気ねじ機構とすべきかの具体的な提案は無
く更なる改良が望まれていた。したがって本発明が解決
しようとする課題は、上記特開平11−166607の
改良にかかわり、特にナットブロック部と磁性体軸を精
度良く保持し長時間の直線運動の使用においても発塵な
どの問題を生ぜずクリーンで信頼性の高い磁気ねじ機構
を実現することにある。
However, how should a nut block side having a magnet corresponding to a shaft be supported at an appropriate interval so as to stably secure an appropriate interval and have a reliable magnetic screw mechanism? There was no concrete proposal of the above, and further improvement was desired. Therefore, the problem to be solved by the present invention relates to the improvement of the above-mentioned JP-A-11-166607, and in particular, a problem such as dust is generated even when the nut block portion and the magnetic material shaft are accurately held and long-time linear motion is used. It is to realize a magnetic screw mechanism that is clean and highly reliable.

【0007】近年、大きな直動力を得る要求が強く、こ
の対応のためにナットブロック部に強力な希土類マグネ
ットを用いようとするとマグネットが軸に吸着しようと
する力も強力になり僅かな偏心でも軸と直角方向の大き
な力となり不安定な状況を生じる。ところが磁性体軸と
マグネットとの位置関係の精度は円筒状またはR状のマ
グネットの寸法精度およびナットブロックへのマグネッ
ト組み込み精度、ナットブロックと位置決め案内部材の
寸法精度などが複雑に関係してくる。このうち最も高い
寸法精度の確保が困難なのはマグネットである。特に最
も高磁力を得る希土類焼結マグネットの内Nd-Fe-B系の
マグネットは耐食性が低いので研磨加工後に表面に樹脂
コーティングやめっきなどの防錆処理をして使用されて
おり一般加工部品に比較し多少大きな寸法公差を適用す
る必要がある。そのため、これらの寸法的なバラツキを
吸収し磁性体軸とマグネットの干渉を防止するためには
両者間の空隙をある程度大きな値に設定の必要がある。
従いマグネットが組み込まれたナットブロック部と磁性
体軸を精度良く位置決め保持するとともに滑らかな直線
運動を得る案内部材は磁気ねじを用いた搬送機構におい
て最も重要な部分である。さらに直線運動機構は長スト
ロークで使用されることが多く従来より長尺の搬送テー
ブル支持軸や磁気ねじ自体の剛性不足から撓みを生じ搬
送不良や搬送精度の低下などが問題となることもあっ
た。また、真空中や特殊なガス中での使用には駆動モー
タのシーリングなどに問題が多かった。
In recent years, there has been a strong demand for obtaining a large direct power, and if a strong rare earth magnet is used for the nut block portion in order to cope with this, the force of the magnet to attract the shaft becomes strong, and even a slight eccentricity causes the shaft to move. It becomes a large force in the direction of the right angle and causes an unstable situation. However, the accuracy of the positional relationship between the magnetic body shaft and the magnet is complicatedly related to the dimensional accuracy of the cylindrical or R-shaped magnet, the magnet mounting accuracy in the nut block, the dimensional accuracy of the nut block and the positioning guide member, and the like. Among them, it is the magnet that is difficult to secure the highest dimensional accuracy. Among the rare earth sintered magnets that obtain the highest magnetic force, the Nd-Fe-B magnets have low corrosion resistance, so they are used after being rust-proofed by resin coating or plating after polishing and used as general processed parts. In comparison, it is necessary to apply a slightly larger dimensional tolerance. Therefore, in order to absorb these dimensional variations and prevent interference between the magnetic axis and the magnet, it is necessary to set the gap between them to a relatively large value.
Therefore, the guide member that accurately positions and holds the nut block portion in which the magnet is incorporated and the magnetic body shaft and obtains a smooth linear motion is the most important part in the conveying mechanism using the magnetic screw. Further, the linear motion mechanism is often used with a long stroke, and there is a problem in that the conveyance table supporting shaft, which is longer than the conventional one, and the magnetic screw itself may be bent due to insufficient rigidity, resulting in poor conveyance or deterioration of conveyance accuracy. . Further, when used in a vacuum or in a special gas, there were many problems in sealing the drive motor.

【0008】[0008]

【課題を解決するための手段】上記課題を解決した本発
明は、複合磁性材料の軸材料に局部加熱により螺旋状に
非磁性部分を形成した円柱状のストレートな磁性体軸
(以後磁気ねじ軸とも称する)と前記磁気ねじ軸の強磁
性部と僅かな空隙を介して対向する磁極を有する永久磁
石を配したナットブロック部とを備えていると共に、ナ
ットブロック部は磁気ねじ軸方向に相対運動自在に支持
され、前記磁気ねじ軸の正逆回転により磁気的な推力を
得る磁気ねじ搬送機構であり、特に次の技術的な改良が
なされた磁気ねじ搬送機構である。なお本発明に適用で
きる複合磁性材料としては例えば特開2000−104
142および特開2001−26846に開示されてい
る合金鋼が適用できる。
DISCLOSURE OF THE INVENTION The present invention, which has solved the above-mentioned problems, provides a columnar straight magnetic body shaft (hereinafter referred to as a magnetic screw shaft) in which a non-magnetic portion is spirally formed on a shaft material of a composite magnetic material by local heating. (Also referred to as)) and a ferromagnetic block of the magnetic screw shaft, and a nut block part having a permanent magnet having magnetic poles facing each other with a slight gap therebetween, and the nut block part moves relatively in the magnetic screw shaft direction. This is a magnetic screw transport mechanism that is freely supported and obtains a magnetic thrust by forward and reverse rotations of the magnetic screw shaft. In particular, the magnetic screw transport mechanism has the following technical improvements. A composite magnetic material applicable to the present invention is, for example, Japanese Patent Application Laid-Open No. 2000-104.
142 and the alloy steels disclosed in JP 2001-26846A can be applied.

【0009】すなわち本願第一の発明は螺旋状に非磁性
部を形成した円柱状でストレートな磁性体軸と該軸と所
定間隔隔てて非接触に対向配置されて該磁性体軸と磁気
回路を形成する様に少なくとも対向面側に螺旋状の磁極
を有するマグネットが組み込まれたナットブロック部の
組み合わせよりなり磁性体軸の回転により軸方向の推力
を得る磁気ねじ機構において、ナットブロック部は該磁
性体軸と平行な移動のみが可能なごとく直動案内部材で
支持されることを特徴とする磁気ねじを用いた搬送機構
である。直動案内部材は搬送機構の本体上でナットブロ
ック部側に配置されることが望ましい。このような機構
が可能となったのは軸に適用する材料がいわゆる複合磁
性材料でありレーザなどの局部加熱で非磁性部分を形成
できるため軸に機械的な溝加工の必要は無く見かけ上、
円柱状のストレートであり剛性が高くて撓みにくい事と
ともに、その外径を研磨加工などにより精度良く仕上げ
ることが出来るためナットブロック側のマグネットとの
位置決めが直動案内部材による間接的なものであっても
精度よく行えることによる。本構造を適用することによ
り従来のボールねじ機構の如くの金属どうしの接触を用
いず完全非接触での直線駆動力を得ることができる。
That is, according to the first aspect of the present invention, a cylindrical straight magnetic body shaft having a non-magnetic portion formed in a spiral shape and a non-contact oppositely arranged at a predetermined distance from the shaft, the magnetic body shaft and the magnetic circuit are arranged. In a magnetic screw mechanism that obtains axial thrust by the rotation of a magnetic body shaft, which is composed of a combination of nut block parts in which a magnet having a spiral magnetic pole is incorporated at least on the opposite surface side so as to form, the nut block parts are A transport mechanism using a magnetic screw, characterized in that it is supported by a linear motion guide member so that it can move only parallel to the body axis. It is desirable that the linear motion guide member be arranged on the nut block side on the main body of the transport mechanism. Such a mechanism has become possible because the material applied to the shaft is a so-called composite magnetic material and it is possible to form the non-magnetic portion by local heating such as laser, so there is no need for mechanical grooving on the shaft,
Since it is a cylindrical straight that has high rigidity and is difficult to bend, and its outer diameter can be accurately finished by polishing etc., positioning with the magnet on the nut block side is indirect by the linear guide member. However, it depends on what can be done accurately. By applying this structure, it is possible to obtain a completely non-contact linear driving force without using contact between metals as in the conventional ball screw mechanism.

【0010】第二の発明は直動案内部材としてナットブ
ロック側に複数個のボール転動体が配置され本体側にス
ライドガイドが配置されることにより構成される磁気ね
じを用いた搬送機構である。本方式のスライドガイドは
本質的にボールの転がりによる直線運動であるので滑ら
かな運動を得ることができる。
A second aspect of the present invention is a conveying mechanism using a magnetic screw as a linear motion guide member, which is formed by arranging a plurality of ball rolling elements on the nut block side and a slide guide on the main body side. Since the slide guide of this method is essentially a linear motion due to the rolling of the ball, a smooth motion can be obtained.

【0011】第三の発明は直動案内部材としてナットブ
ロック側に磁性体軸と平行な支持軸が少なくとも2個所
スライド軸受部材を介して組み込まれており該磁性体軸
とマグネットとの相対間隔を確保すると共に長さ方向に
相対移動可能なことを特徴とする磁気ねじを用いた搬送
機構である。このような構造とすることにより精度がよ
く機械的な強度や硬さ、表面粗さなどを確保したスライ
ド軸受に適した信頼性の高い支持軸を選定することが容
易となる。
According to a third aspect of the present invention, a support shaft parallel to the magnetic shaft is incorporated on the nut block side as a linear guide member through at least two slide bearing members, and the relative distance between the magnetic shaft and the magnet is set. It is a conveyance mechanism using a magnetic screw, which is characterized in that it is secured and is relatively movable in the length direction. With such a structure, it becomes easy to select a highly reliable support shaft suitable for a slide bearing having high accuracy and mechanical strength, hardness, and surface roughness.

【0012】第四の発明はスライド軸受としてリニア玉
軸受であることを特徴とするものであり各種の接触型ス
ライド軸受のうち最も滑らかな運動を確保できる。
A fourth aspect of the invention is characterized in that the slide bearing is a linear ball bearing, and can ensure the smoothest movement among various contact type slide bearings.

【0013】第五の発明はスライド軸受として自己潤滑
性の樹脂または焼結金属よりなる滑り軸受であることを
特徴とするもので、無潤滑での使用も可能となりメンテ
ナンスなどの負荷低減に寄与する。
A fifth aspect of the invention is characterized in that the slide bearing is a sliding bearing made of a self-lubricating resin or a sintered metal, and can be used without lubrication, which contributes to reduction of load such as maintenance. .

【0014】第六の発明はスライド軸受は空気軸受であ
ることを特徴とするものである。このような構造により
直線運動部分全てが非接触な構造とすることが出来るの
で最も低発塵でクリーンな磁気ねじを用いた搬送機構を
得ることができる。
A sixth invention is characterized in that the slide bearing is an air bearing. With such a structure, it is possible to make all linear motion parts non-contact, so that it is possible to obtain a transport mechanism using a magnetic screw that is the least dust-generating and clean.

【0015】第七の発明は磁性体軸とマグネットの間に
は磁性流体が挿入されていることを特徴とする請求項1
〜6の磁気ねじ機構である。磁性流体とは、強磁性体の
微粒子を界面活性剤などを介して液体中に安定に分散さ
せた人工のコロイド溶液でありナット側のマグネットと
軸の間に挿入されると軸の磁性体部分とマグネットの磁
極部分で形成される磁気回路の空隙部分に磁気吸着し磁
気的なシールを形成する。この磁気シールは従来のゴム
シールやメカニカルシールとことなり摩擦が無いので磨
耗の問題はなく長寿命、高信頼性である。強力なマグネ
ットの磁界で十分なシール効果を得ることも可能であ
る。また、マグネットと軸の間の空隙を空気にかわって
磁性体が埋めるので磁気抵抗が減少し、より完全な磁気
回路状態となるので直進駆動力が増大する。
A seventh invention is characterized in that a magnetic fluid is inserted between the magnetic body shaft and the magnet.
6 is a magnetic screw mechanism. A magnetic fluid is an artificial colloidal solution in which ferromagnetic particles are stably dispersed in a liquid via a surfactant, etc.When inserted between the nut side magnet and the shaft, the magnetic part of the shaft And a magnetic seal is formed by magnetically adsorbing to the void portion of the magnetic circuit formed by the magnetic pole portion of the magnet. This magnetic seal has no friction unlike conventional rubber seals and mechanical seals, and therefore has no problem of wear and has a long life and high reliability. It is also possible to obtain a sufficient sealing effect with the magnetic field of a strong magnet. Further, since the magnetic substance fills the air gap between the magnet and the shaft in place of air, the magnetic resistance is reduced, and a more complete magnetic circuit state is achieved, so that the linear driving force is increased.

【0016】第八の発明は螺旋状の非磁性部を形成した
円柱状でストレートな磁性体軸およびこれと対になるマ
グネット部分を複数本並列配置させことを特徴とする請
求項1〜7の磁気ねじ機構である。このような構造を適
用することによりナットブロックの搬送力を2倍、3倍
と大巾に増大させ搬送速度と搬送重量の増大に対応する
ことができる。
An eighth aspect of the present invention is characterized in that a plurality of cylindrical and straight magnetic substance shafts having a spiral non-magnetic portion and magnet portions paired with the magnetic substance shafts are arranged in parallel. It is a magnetic screw mechanism. By applying such a structure, it is possible to greatly increase the carrying force of the nut block to twice or three times and cope with the increase in the carrying speed and the carrying weight.

【0017】第九の発明は請求項1〜8記載の磁気ねじ
機構を開閉部材の駆動源に適用したものである。磁気ね
じの特長として駆動力が磁気搬送力の限界を超えると脱
調しそれ以上の力がかからないため安全な開閉装置を実
現できる。また同様にロボットのつかみハンドルの機構
にも適用できる。
In a ninth aspect of the invention, the magnetic screw mechanism according to the first to eighth aspects is applied to a drive source of an opening / closing member. As a feature of the magnetic screw, if the driving force exceeds the limit of the magnetic transfer force, step out occurs and no further force is applied, so a safe switchgear can be realized. Similarly, it can be applied to the mechanism of the grip handle of the robot.

【0018】第十の発明は磁性体軸の回転駆動は磁性体
軸と駆動側の間に非磁性体の隔壁を介して磁気的に結合
された回転駆動装置により行われることを特徴とする請
求項1〜9の磁気ねじを用いた搬送機構である。このよ
うな構成により直線搬送部を真空中や特殊なガス中に配
置するにもかかわらず、これらの環境と遮断された外部
より隔壁を介して回転駆動させることが可能となる。
A tenth aspect of the present invention is characterized in that the rotational drive of the magnetic body shaft is performed by a rotational drive device magnetically coupled between the magnetic body shaft and the driving side via a non-magnetic partition wall. It is a conveyance mechanism using the magnetic screws of items 1 to 9. With such a configuration, it is possible to rotate and drive the linear transport section from the outside, which is isolated from these environments, through the partition wall, even though the linear transport section is arranged in a vacuum or a special gas.

【0019】第十一の発明は被駆動側である磁性体軸側
の複数個の磁極を有するマグネットと非磁性体を介して
対向し該磁性体軸側のマグネットと対応した磁極を有し
たマグネットにより構成され回転駆動部を有し両者が磁
気的に結合したいわゆる磁気カップリング方式の回転駆
動装置であることを特徴とする磁気ねじを用いた搬送装
置である。磁気カップリング方式にはステンレス鋼板な
どの平板状非磁性体隔壁を介して被駆動側と駆動側の円
盤状マグネットが対向するディスクタイプとリング状の
大小のマグネットが同じくリング状の隔壁を介して対向
するシリンダータイプの2種類があるが、そのどちらも
適用できる。
The eleventh aspect of the invention is a magnet having a plurality of magnetic poles on the side of the magnetic body, which is the driven side, and a magnet having a magnetic pole corresponding to the magnet on the side of the magnetic body, which is opposed to the magnet having a nonmagnetic body. Is a rotary drive device of a so-called magnetic coupling system having a rotary drive part and being magnetically coupled to each other, and is a conveying device using a magnetic screw. In the magnetic coupling method, a disc type and a ring-shaped large and small magnets in which the driven side and the drive side disk-shaped magnets face each other through a flat non-magnetic partition wall such as a stainless steel plate There are two types of cylinders that face each other, both of which can be applied.

【0020】第十二の発明は被駆動側である磁性体軸側
には螺旋状の非磁性部とは別に該磁性体軸に平行に複数
個の非磁性部を有しており非磁性体を介して対向した該
磁性体軸側の非磁性部と対応した磁極を有したマグネッ
トにより構成された回転駆動部を有し両者が磁気的に結
合した回転駆動装置であることを特徴とする磁気ねじを
用いた搬送装置である。このような構成によりシリンダ
ータイプ類似の磁気カップリングを構成することができ
る。磁性体軸側は一体品でシンプルな構造で複合磁性体
を効果的に回転駆動にも適用できるのである。
According to the twelfth aspect of the invention, the non-magnetic member has a plurality of non-magnetic members in parallel with the magnetic member axis on the side of the magnetic member, which is the driven side, in addition to the spiral non-magnetic member. A rotary drive unit composed of a magnet having a magnetic pole corresponding to the non-magnetic portion on the side of the magnetic body facing each other via a magnetic field It is a conveying device using screws. With such a structure, a magnetic coupling similar to a cylinder type can be formed. The magnetic body shaft side is an integrated product and has a simple structure, and the composite magnetic body can be effectively applied to rotational drive.

【0021】[0021]

【発明の実施の形態】以下本発明を図面により詳しく説
明する。図1は本願第一の発明を説明する磁気ナットを
用いた搬送装置の構造の例を示している。また図2は図
1のA-B断面部を示し複合磁性材の磁気ねじ軸1及びこ
れに対応したNSの螺旋状の内面着磁をしたマグネット
2、マグネットを組み込んだナットブロック3、ナット
ブロック側が磁気ねじ軸と平行方向に移動可能な如くに
配置され案内側が本体台座5に固定された直動案内部材
4の組み合わせ状態を示す。本発明は複合磁性材料の軸
材料1に局部加熱により螺旋状に非磁性部分1−1を形
成してある。本発明に適用される複合磁性材料の代表的
な組成はAlを0.1〜5.0%含有するFe-Cr-C系の合金で適
切な熱処理を施した材料は強磁性のフェライト相で残留
磁束密度Brが約1.0(T)、保持力約450(A/m)、比透磁率
μr約900(μm)である。これを1200℃〜溶融温度に加
熱後急冷することにより比透磁率μr約1.5(μm)の非
磁性のオーステナイト組織にすることが出来る。以下の
実施例では外径25ミリ長さ120ミリの複合磁性材の軸表
面を3kwのCO2レーザで局部加熱してピッチ5ミリ、リ
ード10ミリの2条非磁性部を螺旋状に形成したものを用
いた例である。非磁性部分は軸表面で約3ミリ巾で表面
より約4ミリ深さまでくさび状に形成されている。この
磁気ねじ軸の外径は研磨加工により所定の寸法公差に仕
上げられている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to the drawings. FIG. 1 shows an example of the structure of a conveying device using a magnetic nut for explaining the first invention of the present application. 2 is a cross-sectional view taken along line AB of FIG. 1 and shows a magnetic screw shaft 1 of a composite magnetic material and a corresponding magnet 2 having an inner surface spirally magnetized in NS, a nut block 3 incorporating the magnet, and a nut block side being magnetic. The combination state of the linear motion guide member 4 which is arranged so as to be movable in the direction parallel to the screw axis and whose guide side is fixed to the main body pedestal 5 is shown. In the present invention, the non-magnetic portion 1-1 is spirally formed on the shaft material 1 of the composite magnetic material by local heating. A typical composition of the composite magnetic material applied to the present invention is a Fe-Cr-C alloy containing 0.1 to 5.0% of Al and subjected to an appropriate heat treatment. The material is a ferromagnetic ferrite phase and has a residual magnetic flux density Br. Of about 1.0 (T), coercive force of about 450 (A / m), and relative permeability μr of about 900 (μm). By heating this to 1200 ° C. to the melting temperature and then rapidly cooling it, a non-magnetic austenite structure having a relative magnetic permeability μr of about 1.5 (μm) can be formed. In the following embodiments, the shaft surface of a composite magnetic material having an outer diameter of 25 mm and a length of 120 mm is locally heated by a CO2 laser of 3 kw to form a spiral shape of two non-magnetic parts having a pitch of 5 mm and leads of 10 mm. Is an example using. The non-magnetic part is formed in a wedge shape with a width of about 3 mm on the shaft surface and a depth of about 4 mm from the surface. The outer diameter of this magnetic screw shaft is finished to a predetermined dimensional tolerance by polishing.

【0022】磁気ねじ軸とマグネット内径との間隔δは
狭いほど磁気回路の効率が良く、直線駆動力も増加する
が磁気ねじおよびマグネットの加工精度の関係から数ミ
リから0.02ミリ程度の範囲から磁気ねじ軸とナットブロ
ック側の加工精度や使用目的などにより選定される。マ
グネットの材質はリング状または半月状の異方性フェラ
イトやNd-Fe-Bなどの希土類マグネットが適用でき直線
駆動力など必要とされる条件により適宜選定できる。一
例として空隙δは0.25ミリとした巾15ミリの半月形状の
Nd系希土類マグネット(日立金属製HS-30CR)に前記磁
気ねじと同じピッチ5ミリ、リード10ミリの2条の内面着
磁し表面ピーク磁束密度0.3(T)の磁気ナットと組合した
場合の最大軸方向駆動力は約1.0Kgfでこれ以上の負荷
が加わると脱調した。マグネット形状をリング状とし磁
気ねじ軸と対向する面積を2倍にすると最大軸方向駆動
力も2倍の2.0Kgfとなった。
The smaller the distance δ between the magnetic screw shaft and the magnet inner diameter, the better the efficiency of the magnetic circuit and the more the linear driving force increases. However, due to the processing accuracy of the magnetic screw and the magnet, from the range of several millimeters to 0.02 mm It is selected according to the machining accuracy of the shaft and nut block side and the purpose of use. The material of the magnet can be a ring-shaped or half-moon shaped anisotropic ferrite or a rare earth magnet such as Nd-Fe-B, and can be appropriately selected according to the required conditions such as linear driving force. As an example, the void δ has a width of 0.25 mm and a half-moon shape with a width of 15 mm.
Maximum when combining Nd type rare earth magnet (HS-30CR made by Hitachi Metals) with a magnetic nut of 2 threads with the same pitch as the above-mentioned magnetic screw, 5 mm pitch and 10 mm lead and surface peak magnetic flux density of 0.3 (T) The driving force in the axial direction was about 1.0 kgf. When the magnet shape was made into a ring shape and the area facing the magnetic screw shaft was doubled, the maximum axial driving force was also doubled to 2.0 Kgf.

【0023】なお、マグネットの内面の螺旋着磁仕様と
磁気ねじ軸側の螺旋非磁性部は必ずしも同一である必要
は無く片側が1条ねじの状態であったり多少のピッチ、
リードのずれがあっても効率は多少影響受けるが直進駆
動力を得ることは可能である。
The spiral magnetizing specifications on the inner surface of the magnet and the spiral non-magnetic portion on the magnetic screw shaft side do not necessarily have to be the same, and one side is in the state of single-thread screw or some pitch,
Even if the lead is deviated, the efficiency is affected to some extent, but it is possible to obtain a straight driving force.

【0024】上記のように本発明の磁気ねじ機構を用い
た直進駆動機構を構成する場合、磁気ナットの組み込ま
れたナットブロックよりなる移動テーブル搭載物の重量
負荷などはナットブロックに配置され磁気ねじ軸と平行
な動きを確保した直動案内側が受け持ち直動推力は磁気
ねじ軸側に負わせ荷重の積載と搬送をそれぞれ別々に分
担させることができる。またナットブロックの材質は非
磁性金属、磁性金属、セラミック、プラスチックなど各
種の材料が適用できるがSUMなどの磁性金属材料を用
いた場合磁気シールド効果により磁気ナット内に組み込
まれたマグネットからの磁束はほとんどが磁気ネジ軸と
の時期結合部のみに流れて外部には漏洩せず磁界を嫌う
電子ビーム装置などにも適用が可能である。
In the case of configuring the linear drive mechanism using the magnetic screw mechanism of the present invention as described above, the weight load of the moving table mounted object including the nut block in which the magnetic nut is incorporated is arranged in the nut block. The linear motion guide side which secures the movement parallel to the axis is supported, and the linear motion thrust is applied to the magnetic screw shaft side so that loading and carrying of the load can be shared separately. In addition, various materials such as non-magnetic metal, magnetic metal, ceramics, and plastics can be applied to the material of the nut block. However, when a magnetic metal material such as SUM is used, the magnetic flux from the magnet incorporated in the magnetic nut is reduced due to the magnetic shield effect. Most of them can be applied to electron beam devices, etc., which flow only to the time coupling part with the magnetic screw shaft and do not leak to the outside and do not like magnetic fields.

【0025】(比較例1) 上記複合材の磁気ねじ軸に
替えて強磁性一般構造用鋼SUM24に巾3ミリ、深さ4ミリ
の角溝を形成したねじ軸を組み込んだところ最大軸方向
駆動力は約1.2Kgでこれ以上の負荷が加わると脱調し
た。当然、非磁性部を角溝形状に確実に形成しているSU
M24軸のほうが最大軸方向駆動力は大きいが複合磁性材
に磁気ねじ軸においてもナット側のマグネット巾を約20
%アップの18ミリとしたところSUM24材と同等の1.2Kgの
最大軸方向駆動力を得ることが出来ることを確認した。
(Comparative Example 1) In place of the magnetic screw shaft of the above composite material, when a screw shaft having a square groove with a width of 3 mm and a depth of 4 mm was formed in the ferromagnetic general structural steel SUM24, the maximum axial drive was achieved. The force was about 1.2 Kg, and when the load was increased, it lost control. Naturally, the SU with the non-magnetic part is surely formed in the shape of a square groove.
The maximum driving force in the axial direction is larger with the M24 axis, but the magnet width on the nut side is approximately 20 even for the magnetic screw axis in the composite magnetic material.
It was confirmed that the maximum axial driving force of 1.2 kg, which is equivalent to SUM24 material, can be obtained when the increase is 18 mm.

【0026】(比較例2) 次にSUM24の角溝付の磁気
ねじ軸と複合磁性材のストレート磁気ねじを支点間100
ミリで保持し中央部に荷重を加えて中央部の最大たわみ
を測定したところ表1のごとくとなった。
(Comparative Example 2) Next, a magnetic screw shaft with a square groove of SUM24 and a straight magnetic screw of a composite magnetic material were used for supporting points 100
The maximum deflection of the central part was measured by holding the value in millimeters and applying a load to the central part.

【0027】[0027]

【表1】 [Table 1]

【0028】撓みに影響する縦弾性係数は両者で大きな
違いは無いから、表1の両者の撓み量の差は断面2次モ
ーメントの違いによることは明らかであり本例では磁気
ねじ軸外径が同じ25ミリであっても機械的な溝の有無は
軸の剛性に数倍の差を生じることが明らかである。した
がい本発明の機械的な溝の無い複合磁性材を用いた円柱
状ストレートの磁気ねじ軸は高い剛性を確保できるので
長尺の直線駆動装置に特に好適であることがわかる。
Since there is no great difference between the two in terms of the longitudinal elastic modulus that influences the flexure, it is clear that the difference in the flexure amount between the two in Table 1 is due to the difference in the second moment of area. It is clear that even with the same 25 mm, the presence or absence of mechanical grooves makes a difference in the rigidity of the shaft several times. Therefore, it can be seen that the cylindrical straight magnetic screw shaft using the composite magnetic material having no mechanical groove of the present invention can secure high rigidity, and thus is particularly suitable for a long linear drive device.

【0029】第二の発明は直動案内部材としてナットブ
ロック側3に複数個のボール転動体(図示省略)が配置さ
れ本体側にスライドガイド4が配置されることにより構
成される磁気ねじを用いた搬送機構である。本方式のス
ライドガイドは本質的にボールの転がりによる直線運動
であるので滑らかな運動を得ることができる。スライド
ガイドの例としてはTHK社製各種LMガイドなどを適
用することができる。
The second invention uses a magnetic screw as a linear motion guide member which is constituted by arranging a plurality of ball rolling elements (not shown) on the nut block side 3 and a slide guide 4 on the main body side. It was the transport mechanism. Since the slide guide of this method is essentially a linear motion due to the rolling of the ball, a smooth motion can be obtained. As an example of the slide guide, various LM guides manufactured by THK can be applied.

【0030】第三の発明は直動案内部材としてナットブ
ロック側に磁気ねじ軸1と平行な支持軸9が少なくとも
2個所スライド軸受部材10を介して組み込まれており
該磁性体軸とマグネットとの相対間隔を確保すると共に
長さ方向に相対移動可能なことを特徴とする磁気ねじを
用いた搬送機構である。図3に本発明の例としてナット
ブロック部の断面を示す。ナットブロック3−1にはマ
グネット2をはさんで両側にスライド軸受部材10−
1,10−2が配置されており適切なはめあい精度で支
持軸9−1,9−2が磁気ねじ軸と平行に配置されてい
る。このような構造とすることにより精度がよく機械的
な強度や硬さ、表面粗さなどを確保したスライド軸受に
適した信頼性の高い支持軸9の材質、加工、表面処理な
どを選定することが容易となる。
In the third aspect of the invention, as a linear guide member, at least a support shaft 9 parallel to the magnetic screw shaft 1 is provided on the nut block side.
A transport mechanism using a magnetic screw, which is incorporated via two slide bearing members 10 and is capable of ensuring a relative distance between the magnetic body shaft and a magnet and being relatively movable in the longitudinal direction. FIG. 3 shows a cross section of the nut block portion as an example of the present invention. Slide the bearings 10- on both sides of the nut block 3-1 with the magnet 2 in between.
1, 10-2 are arranged, and the support shafts 9-1, 9-2 are arranged in parallel with the magnetic screw shaft with appropriate fitting accuracy. With such a structure, it is possible to select a highly reliable material, processing, surface treatment, etc. of the support shaft 9 suitable for a slide bearing having high accuracy and mechanical strength, hardness, and surface roughness. Will be easier.

【0031】第四の発明はスライド軸受としてリニア玉
軸受であることを特徴とするものであり各種の接触型の
スライド軸受のうち最も滑らかな運動を確保できる。リ
ニア玉軸受の適用により磁気ねじ軸とナットブロック側
のマグネットとの位置決めが安定して行われ両者の空隙
が確実に確保できるとともに転がり軸受機構であり軸方
向の移動抵抗も非常に低減することが出来る。リニア玉
軸受の例としては光洋精工社製リニア玉軸受SDMシリ
ーズ、SDMFシリーズ、SDEシリーズなどが適用で
きる。軸径10ミリ用の標準型SDM10MGでは外径
19ミリ、長さ29ミリでありこれに対応する軸の推奨
公差の上級ではf6(−16〜−27μm)であり高周波焼
入れし研磨加工されたロックウェル硬さが60のSUS440
Cや無電解NiめっきされたSUM24材などが適用できる。
A fourth aspect of the invention is characterized in that the slide bearing is a linear ball bearing, and can ensure the smoothest movement of various contact type slide bearings. By applying a linear ball bearing, the magnetic screw shaft and the magnet on the nut block side can be positioned stably, a gap between them can be reliably secured, and the rolling bearing mechanism reduces axial movement resistance significantly. I can. As an example of the linear ball bearing, linear ball bearings SDM series, SDMF series, SDE series manufactured by Koyo Seiko Co., Ltd. can be applied. The standard SDM10MG for a shaft diameter of 10 mm has an outer diameter of 19 mm and a length of 29 mm, and the recommended tolerance of the corresponding shaft is f6 (-16 to -27 μm) at a high level, and the lock is induction hardened and polished. Well hardness 60 SUS440
C or electroless Ni-plated SUM24 material can be applied.

【0032】第五の発明はスライド軸受は自己潤滑性の
樹脂または金属焼結よりなる滑り軸受である。これに適
用できる軸受の例としてはNTN社製ふっ素樹脂系のル
ーロン滑り軸受やイグスジャパン製の各種無潤滑軸受が
ある。イグスジャパン社製の無潤滑軸受IG-Hタイプでは
10ミリ軸用(呼び番号HSM-1012-10)では外径12ミ
リ、長さ10ミリであり推奨軸公差はh9(+0/−43μ
mであり前記同様高周波焼入れしたSUS440CやNiめっき
したSUM24などの機械加工された円柱状支持軸に適用で
きる。通常の研磨加工によりこれらの支持軸材料の表面
粗さは滑り軸受に適するRz=1〜2μm(JIS B 0601規
定の10点平均粗さ)程度の良好な平滑面を容易に得るこ
とが出来る。
In a fifth aspect of the invention, the slide bearing is a slide bearing made of self-lubricating resin or metal sinter. Examples of bearings that can be applied to this are fluororesin-based Ruron sliding bearings manufactured by NTN and various unlubricated bearings manufactured by igus Japan. The non-lubricated bearing IG-H type manufactured by igus® Japan has an outer diameter of 12 mm and a length of 10 mm for a 10 mm shaft (nominal number HSM-1012-10), and the recommended shaft tolerance is h9 (+ 0 / -43μ).
m and can be applied to a machined columnar support shaft such as induction hardened SUS440C or Ni-plated SUM24 as described above. By ordinary polishing, a good smooth surface having a surface roughness of Rz = 1 to 2 μm (10-point average roughness defined by JIS B 0601) suitable for sliding bearings can be easily obtained by ordinary polishing.

【0033】第六の発明はスライド軸受は空気軸受であ
ることを特徴としている。この軸受の適用には軸とナッ
ト側の空隙は狭いほど効率よく、例えば福田交易(株)社
販売のニューウエイ社製エアベアリングでの軸推奨公差
は支持軸外径が13mm、20mmの両者の場合+0/-0.
007としているが前記の支持軸材料SUS440Cなどで研磨加
工により容易にこの精度を得ることができる。20mm支持
軸用の支持長さが約50mmのエアーベアリングでは供
給エア圧0.41MPaの場合113Nの負荷容量を得ることがで
きる。本方式は特に低負荷の直線駆動などの場合は軸受
部分の摩擦抵抗が非常に少ないから精度良い制御が出来
る。ナットブロック部分の構造は図3においてスライド
ベアリング10−1,10−2をエアーベアリングと
し、その外周部にエアー供給口を設けたシンプルなもの
となる。(図面省略)
The sixth invention is characterized in that the slide bearing is an air bearing. For this bearing, the narrower the gap between the shaft and the nut, the more efficient it is. For example, the recommended axial tolerance of the Newway air bearing sold by Fukuda Trading Co., Ltd. is that the outer diameter of the supporting shaft is 13 mm and 20 mm. Case + 0 / -0.
Although 007 is used, this precision can be easily obtained by polishing the support shaft material such as SUS440C. With an air bearing having a support length of about 50 mm for a 20 mm support shaft, a load capacity of 113 N can be obtained when the supply air pressure is 0.41 MPa. This method can perform accurate control because the frictional resistance of the bearing is very small especially in the case of low load linear drive. The structure of the nut block portion is a simple structure in which the slide bearings 10-1 and 10-2 in FIG. 3 are air bearings and an air supply port is provided on the outer peripheral portion thereof. (Drawing omitted)

【0034】第七の発明は軸とマグネットの間には磁性
流体が挿入されていることを特徴とする。シールの一例
として実施例1と同一の軸径25ミリの複合磁性材の磁気
ねじ軸と半月形のマグネットの組み合わせにおいて当初
条件では最大軸方向駆動力は約1.0Kgであったが0.25ミ
リの空隙部分にシグマハイケミカル社製磁性流体品番F
−210を充填したところ直進推力は1.1Kgと約10%
アップしシール性も十分であった。マグネットをリング
状として同様の磁性流体を挿入してを真空装置にセット
したところマグネットをはさんで両端のシール性は良好
で10−5Paまでの負圧に耐えることを確認した。ま
た磁気ねじ軸の少なくとも片側の支持軸部分を磁気シー
ルなどの適切なシールで隔壁に取り付けモータなどによ
る磁気ねじ軸の駆動は隔壁外から可能な如くして磁気ナ
ットブロック部分も磁気ねじと一緒に隔壁内に配置し、
例えば真空装置内で磁気ナットブロック付のテーブルを
直進運動させることも可能である。
The seventh invention is characterized in that a magnetic fluid is inserted between the shaft and the magnet. As an example of the seal, in the combination of the magnetic screw shaft of the composite magnetic material having the same shaft diameter of 25 mm as in Example 1 and the half-moon magnet, the maximum axial driving force was about 1.0 kg under the initial condition, but the air gap of 0.25 mm. Magnetic fluid part number F made by Sigma High Chemical Co., Ltd.
When -210 is filled, the straight thrust is 1.1Kg, which is about 10%.
It was up and the sealability was sufficient. When a magnet was formed into a ring shape and the same magnetic fluid was inserted and was set in a vacuum device, it was confirmed that the magnets were sandwiched and the sealability at both ends was good and that it could withstand a negative pressure of 10 −5 Pa. Also, at least one side of the magnetic screw shaft is attached to the bulkhead with a suitable seal such as a magnetic seal so that the motor can drive the magnetic screw shaft from outside the bulkhead so that the magnetic nut block part also works together with the magnetic screw. Place it in the partition,
For example, it is possible to move a table with a magnetic nut block in a straight line in a vacuum device.

【0035】第八の発明は螺旋状の非磁性部を形成した
円柱状でストレートな磁気ねじ軸およびこれと対になる
マグネット部分を複数本並列配置させ駆動推力の増大を
計ったものである。図4には磁気ねじ駆動機構を3組用
いたナットブロック部3−2の断面例を示す。磁気ねじ
軸1−1,1−2,1−3は本体側で同期して(各々の
磁気ねじ軸とこれに対応する磁気ナットは互いに磁気的
な結合状態にあり最大軸方向駆動力を得る位置などは両
者同期をとるような調整を必要としシンクロベルトや歯
車などで互いに結合されている。図示省略)駆動されこ
れと対になっているマグネット2−1,2−2,2−3
に推進駆動力を発生させる。このような構成により従来
の磁気ねじを1対用いた直線駆動機構に比較しで本例で
は3倍の直進駆動力を得ることができる。
An eighth aspect of the invention is to increase the driving thrust by arranging a plurality of cylindrical straight magnetic screw shafts having a spiral non-magnetic portion and a plurality of magnet portions paired with the magnetic screw shafts in parallel. FIG. 4 shows an example of a cross section of a nut block portion 3-2 using three sets of magnetic screw drive mechanisms. The magnetic screw shafts 1-1, 1-2, 1-3 are synchronized on the main body side (each magnetic screw shaft and the corresponding magnetic nut are in a magnetically coupled state with each other to obtain the maximum axial driving force. The positions and the like need to be adjusted so as to synchronize with each other, and they are connected to each other by a synchro belt, gears, etc. (not shown) Driven magnets 2-1, 2-2, 2-3
Generate propulsion driving force. With such a configuration, it is possible to obtain three times as much linear driving force in this example as compared with the conventional linear driving mechanism using a pair of magnetic screws.

【0036】第九の発明は請求項1〜8の磁気ねじ機構
をドアなどの開閉部やロボットのつかみハンドルなどの
開閉駆動源とすることを特長としている。図5にはこの
ような開閉機構の例を示す。開閉ドア15の上部には磁
気ナットブロック部3が取り付けられている。(本例で
は2箇所)ナットブロックの上部には開閉ドアおよびナ
ットブロックを懸架し開閉方向に直線移動可能な直動案
内部材4が配置されている。磁気ナットブロックのマグ
ネットと同心状に両端部が保持(詳細省略)された磁気
ねじ軸1が配置されている。磁気ねじ軸の片側には回転
駆動モータ8が取り付けられておりドア15の位置検出
やマニアル指示により回転方向、回転数を制御しドアの
開閉を滑らかに制御することができる。また図示矢印の
ごとく開状態(点線)より閉状態への動作においてドア
が相手部材16に接触しても磁気的に非接触な搬送方法
であるので最大の磁気搬送力以上の力は加わらないから
安全な開閉装置として例えば家庭用の自動ドアなどに適
用できる。ただしある程度のドア位置検出が設置併用さ
れることが理想である。また磁気ねじ軸の螺旋の方向を
例えば磁気ねじ中央から左右に逆方向で、これに対応す
る左右別々の開閉部材に取り付けた磁気ナットも同様に
左右逆向きとすれば両開きの安全な自動開閉装置を実現
することもできる。なお、従来の自動開閉装置は開閉部
材の位置検出などの安全装置を駆動部とは別に必要とし
ているが開閉駆動力の自動リミット機能は無いから故障
時などの安全確保には不完全なものであった。このよう
な機構は例えばロボットのつかみハンドルにも容易に応
用することができる。
The ninth invention is characterized in that the magnetic screw mechanism according to claims 1 to 8 is used as an opening / closing drive source such as an opening / closing part such as a door or a grip handle of a robot. FIG. 5 shows an example of such an opening / closing mechanism. The magnetic nut block portion 3 is attached to the upper portion of the opening / closing door 15. (Two places in this example) On the upper part of the nut block, there are arranged an opening / closing door and a linear motion guide member 4 suspending the nut block and linearly movable in the opening / closing direction. A magnetic screw shaft 1 whose both ends are held (details omitted) is arranged concentrically with the magnet of the magnetic nut block. A rotary drive motor 8 is attached to one side of the magnetic screw shaft, and the opening and closing of the door can be smoothly controlled by controlling the rotation direction and the number of rotations by detecting the position of the door 15 or a manual instruction. Further, as shown by the arrow in the drawing, even if the door comes into contact with the mating member 16 in the operation from the open state (dotted line) to the closed state, the method is a magnetically non-contacting method, so a force greater than the maximum magnetic carrying force is not applied. As a safe opening / closing device, it can be applied to, for example, a household automatic door. However, it is ideal that some degree of door position detection is installed and used together. In addition, if the direction of the spiral of the magnetic screw shaft is, for example, the opposite direction from the center of the magnetic screw to the left and right, and the corresponding magnetic nuts attached to the left and right separate opening and closing members are also reversed in the left and right directions, a safe automatic opening / closing device with double-opening is provided. Can also be realized. Note that the conventional automatic switchgear requires a safety device such as the position detection of the open / close member separately from the drive unit, but it does not have an automatic limit function of the opening / closing drive force, so it is incomplete in ensuring safety in the event of a failure. there were. Such a mechanism can be easily applied to a grip handle of a robot, for example.

【0037】第十の発明は磁気ねじ軸の回転駆動は磁気
ねじ軸の一部に配置され駆動側との間に非磁性体の隔壁
を介して磁気的に結合された回転駆動装置(磁気カップ
リング)により行われることを特徴とする請求項1〜9
の磁気ねじを用いた搬送機構である。このような構成に
より直線搬送部を真空中や特殊なガス中に配置するにも
かかわらず、これらの環境と遮断された外部より隔壁を
介して回転駆動させることが可能となる。
In a tenth aspect of the invention, the rotational drive of the magnetic screw shaft is arranged in a part of the magnetic screw shaft and is magnetically coupled to the drive side through a partition wall made of a non-magnetic material (magnetic cup). Ring) is used.
It is a transport mechanism using the magnetic screw of. With such a configuration, it is possible to rotate and drive the linear transport section from the outside, which is isolated from these environments, through the partition wall, even though the linear transport section is arranged in a vacuum or a special gas.

【0038】具体的な構成を図6に示す。磁気ねじ搬送
装置の本体部、すなわち磁気ねじ軸1、これと対応した
マグネット2、マグネット2を組み込んだナットブロッ
ク3、ナットブロックが磁気ねじ軸1と平行移動可能な
如く配置された直線駆動案内部材4は隔壁を有する密封
された部屋11内に配置される。磁気ねじ軸1は両端を軸
受部材7により支持されており、その一部分12は密封さ
れた部屋の一部(本例では部屋より外に飛び出してい
る)の隔壁を介して外部のマグネット部材13と時期的
な結合状態を形成する如くとなっている。図7には図6
における回転駆動部分CDの断面を示す。外部のマグネ
ット部材はハウジング14に組み込まれ回転駆動モータ
8につながっている。駆動モータにより外部マグネット
部13,14が回転するとこれと磁気的な結合状態にあ
る隔壁内の磁気結合部材12に回転駆動力を生じさせ磁
気ねじ軸を回転させる。これにより磁気ナットブロック
の直線運動を形成させることができる。なお、少なくと
も内外磁気結合させる部分の隔壁は非磁性のステンレス
が一般的に用いられるが渦電流によりステンレス内にロ
スを発生し問題になる場合は高電気抵抗の非磁性セラミ
ックなどの適用が効果的である。また図6の例では磁気
ねじ軸側と回転駆動側の磁気結合状態は同心状のいわゆ
るシリンダータイプであるが円盤状の面が隔壁を介して
対向するディスクタイプの適用も可能である。
A concrete structure is shown in FIG. Main body of magnetic screw conveying device, that is, magnetic screw shaft 1, magnet 2 corresponding thereto, nut block 3 incorporating magnet 2, linear drive guide member arranged so that nut block can move in parallel with magnetic screw shaft 1. 4 is placed in a sealed room 11 with a partition. Both ends of the magnetic screw shaft 1 are supported by bearing members 7, and a part 12 of the magnetic screw shaft 1 is connected to an external magnet member 13 via a partition wall of a part of a sealed room (which protrudes outside the room in this example). It seems to form a temporal binding state. FIG. 6 shows FIG.
3 shows a cross section of the rotary drive portion CD in FIG. An external magnet member is incorporated in the housing 14 and connected to the rotary drive motor 8. When the drive motor rotates the external magnet portions 13 and 14, a rotational driving force is generated in the magnetic coupling member 12 in the partition wall which is magnetically coupled to the external magnet portions 13 and 14 to rotate the magnetic screw shaft. This allows a linear movement of the magnetic nut block to be created. Non-magnetic stainless steel is generally used for at least the partition wall for the magnetic coupling between the inside and the outside. However, if loss occurs in the stainless steel due to eddy current and it becomes a problem, it is effective to use non-magnetic ceramic with high electrical resistance. Is. Further, in the example of FIG. 6, the magnetic coupling state between the magnetic screw shaft side and the rotation driving side is a concentric so-called cylinder type, but a disc type in which disk-shaped surfaces face each other through a partition wall is also applicable.

【0039】第十一の発明は図6および7において磁気
ねじ側12、回転駆動側13ともにたがいに磁気結合し
たマグネットであるものである。すなわち磁気ねじ側が
周方向にNSNSと90度4極の場合、回転駆動側も内面
4極着磁の状態となって互いのNS極が引き合い、互い
の同極が反撥して駆動し最も回転伝達駆動力をたかくと
れる。
The eleventh invention is a magnet in which both the magnetic screw side 12 and the rotation driving side 13 are magnetically coupled to each other in FIGS. 6 and 7. That is, when the magnetic screw side is NSNS and 90 degrees 4 poles in the circumferential direction, the rotary drive side is the inner
In the 4-pole magnetized state, the NS poles of each other attract each other, and the same poles of each other repel and drive, so that the most rotational transmission driving force can be exerted.

【0040】第十二の発明は図6および7において磁気
ねじ軸側の回転駆動力発生部12は磁気ねじ軸本体と同
一材質で一体的に構成されるとともに回転駆動側13の
磁気回路状態と適合する如くに非磁性部分を形成させた
ものである。すなわち磁気ねじ軸本体部はネジブロック
の直線運動駆動用に螺旋状に非磁性部分が形成され磁気
ねじ軸の回転駆動用にはこれと磁気結合した回転駆動側
の磁気回路と適合する如く磁気ねじ軸の軸方向に非磁性
部分が形成されるものであり回転駆動側のマグネットが
4極であれば少なくとも磁気ネジ軸の12部分には4極
に対応して軸方向に伸びた非磁性部が4箇所形成されて
いる。このような構成により磁気ねじ軸側の部品点数の
削減、寸法制度の確保、磁気ネジ軸側からのアウトガス
の発生源排除などの効果を得ることができる。なお本例
では複合磁性材の磁気ねじ軸を用いた直進駆動装置の駆
動部を詳細説明したがこれにリニアエンコーダまたはモ
ータをパルスモータと組み合わせて制御も含めての直進
駆動装置に拡大できることはもちろんである。
In the twelfth aspect of the invention, in FIGS. 6 and 7, the rotation driving force generating portion 12 on the magnetic screw shaft side is integrally formed of the same material as the magnetic screw shaft main body and the magnetic circuit state on the rotation driving side 13 is shown. A non-magnetic portion is formed so as to fit. That is, the magnetic screw shaft main body is formed with a non-magnetic portion in a spiral for driving the linear motion of the screw block, and for rotating the magnetic screw shaft, the magnetic screw shaft is magnetically coupled to the magnetic screw shaft so as to be compatible with the magnetic circuit on the rotation driving side. A non-magnetic portion is formed in the axial direction of the shaft, and if the rotation driving side magnet has four poles, at least 12 parts of the magnetic screw shaft have a non-magnetic portion extending in the axial direction corresponding to the four poles. It is formed in four places. With such a configuration, it is possible to obtain the effects of reducing the number of parts on the magnetic screw shaft side, ensuring the dimensional accuracy, and eliminating the source of outgas from the magnetic screw shaft side. In this example, the drive section of the linear drive device using the magnetic screw shaft of the composite magnetic material has been described in detail, but it goes without saying that a linear encoder or motor can be combined with a pulse motor to expand the linear drive device including control. Is.

【0041】[0041]

【発明の効果】本発明は上記述のような構成および作用
であるから、下記のような効果を奏し得る。 (1)複合磁性材を用いた円柱状のストレートな磁気ね
じを用いるので剛性が高く従来では不可能であった長尺
の直線駆動が各種の直線駆動案内と併用して実現でき
る。 (2)磁気ねじ軸とマグネットとの空隙に磁性流体を充
填しナット軸受部のシール性を確保して高圧、低圧の隔
壁を介した装置にも適用できまた空隙部の磁気結合状態
を向上させるので直進駆動力の増加に寄与できる。 (3)空気軸受の適用により直線運動方向において金属
や部材同士の接触を完全に無くすことができ低発塵、静
粛な直動装置を実現できる。 (4)磁気ねじ軸と磁気ナットの磁気的結合条件によっ
てきまる最大直進駆動力以上の力は発生せず本磁気ねじ
を用いた搬送装置の過負荷による破損を防止できると共
に安全な開閉装置を実現できる。 (5)磁気ねじ軸に回転駆動を非磁性体の隔壁を介して
磁気的に駆動させることにより真空中や特殊ガス中でも
使用することができる。 (6)磁気ナット内に組み込まれたマグネットからの磁
束はほとんどが磁気ねじ軸との磁気結合部のみに流れて
外部には漏洩せず磁界を嫌う電子ビーム装置などにも適
用が可能である。
EFFECTS OF THE INVENTION Since the present invention has the structure and operation as described above, the following effects can be obtained. (1) Since a cylindrical straight magnetic screw made of a composite magnetic material is used, it is possible to realize long linear drive which has a high rigidity and is impossible in the past in combination with various linear drive guides. (2) The gap between the magnetic screw shaft and the magnet is filled with magnetic fluid to secure the sealing performance of the nut bearing portion, which can be applied to a device through a high-pressure and low-pressure partition wall and improve the magnetic coupling state of the gap portion. Therefore, it is possible to contribute to the increase of the straight driving force. (3) By applying the air bearing, it is possible to completely eliminate the contact between metals and members in the linear movement direction, and it is possible to realize a silent direct drive device with low dust generation. (4) A force greater than the maximum linear driving force determined by the magnetic coupling condition of the magnetic screw shaft and the magnetic nut is not generated, and damage to the transport device using this magnetic screw due to overload can be prevented and a safe opening / closing device is realized. it can. (5) It can be used in vacuum or in a special gas by magnetically driving the magnetic screw shaft to rotate through a partition wall made of a non-magnetic material. (6) Most of the magnetic flux from the magnet incorporated in the magnetic nut flows only in the magnetic coupling portion with the magnetic screw shaft, and the magnetic flux is not leaked to the outside and can be applied to an electron beam apparatus which dislikes the magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気ねじ機構を用いた直線駆動装置を
示す概略図である。
FIG. 1 is a schematic view showing a linear drive device using a magnetic screw mechanism of the present invention.

【図2】本発明の磁気ねじ機構の磁気ねじ軸とナットブ
ロック側マグネットおよびスライド軸受の関係を示す説
明図である。
FIG. 2 is an explanatory view showing the relationship between the magnetic screw shaft of the magnetic screw mechanism of the present invention, the nut block side magnet, and the slide bearing.

【図3】本発明の他の例を示すナットブロック部の断面
説明図である。
FIG. 3 is a cross-sectional explanatory view of a nut block portion showing another example of the present invention.

【図4】磁気ねじ機構を複数組用いた本発明の他の例を
示すナットブロック部の断面説明図である。
FIG. 4 is a cross-sectional explanatory view of a nut block portion showing another example of the present invention using a plurality of magnetic screw mechanisms.

【図5】本発明の磁気ねじ機構を用いた開閉装置を示す
概略図である。
FIG. 5 is a schematic view showing an opening / closing device using the magnetic screw mechanism of the present invention.

【図6】本発明の磁気ねじ機構を隔壁を設けた室内に設
置した装置の説明図である。
FIG. 6 is an explanatory diagram of an apparatus in which the magnetic screw mechanism of the present invention is installed in a room provided with a partition wall.

【図7】本発明の磁気ねじ機構を隔壁を設けた室内に設
置した装置の回転駆動結合部を示す説明図である。
FIG. 7 is an explanatory diagram showing a rotary drive coupling portion of an apparatus in which the magnetic screw mechanism of the present invention is installed in a room provided with a partition wall.

【符号の説明】[Explanation of symbols]

1 磁気ねじ軸 1−1 磁気ねじ軸の螺旋状非磁性部 2 磁気ねじ軸に対応した螺旋状磁極を有するマグ
ネット 3 ナットブロック 4 直動案内部材 5 本体台座 6 磁気ねじ軸保持用ハウジング 7 軸受部材 8 駆動モータ 9 支持軸 10 スライドベアリング 11 隔壁 12 磁気ねじ軸の回転従動部 13 磁気ねじ軸の磁気的回転駆動部のマグネット 14 磁気ねじ軸の磁気的回転駆動部のハウジング 15 開閉部材(ドア) 16 相手部材
1 Magnetic Screw Shaft 1-1 Spiral Non-Magnetic Part of Magnetic Screw Shaft 2 Magnet Having Helical Magnetic Pole Corresponding to Magnetic Screw Shaft 3 Nut Block 4 Linear Motion Guide Member 5 Main Body Pedestal 6 Magnetic Screw Shaft Holding Housing 7 Bearing Member 8 Drive Motor 9 Support Shaft 10 Slide Bearing 11 Partition 12 Magnetic Screw Shaft Rotation Driven Part 13 Magnet of Magnetic Screw Shaft Magnetic Rotation Drive Unit 14 Housing of Magnetic Screw Shaft Magnetic Rotation Drive Unit 15 Opening / Closing Member (Door) 16 Counterpart member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J062 AA28 AB23 AC07 BA17 BA19 BA26 CD02 CD22 CD33 CD35 CD46 3J102 AA01 AA02 BA03 CA40 DA07 DA17 EA02 GA01 GA18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3J062 AA28 AB23 AC07 BA17 BA19                       BA26 CD02 CD22 CD33 CD35                       CD46                 3J102 AA01 AA02 BA03 CA40 DA07                       DA17 EA02 GA01 GA18

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 螺旋状に非磁性部を形成した円柱状でス
トレートな磁性体軸と該軸と所定間隔隔てて非接触に対
向配置されて該磁性体軸と磁気回路を形成する様に少な
くとも対向面側に螺旋状の磁極を有するマグネットが組
み込まれたナットブロック部の組み合わせよりなり磁性
体軸の回転により軸方向の推力を得る磁気ねじ機構にお
いて、ナットブロック部は該磁性体軸と平行な移動のみ
が可能なごとく直動案内部材で支持されることを特徴と
する磁気ねじを用いた搬送機構。
1. A columnar straight magnetic body shaft having a non-magnetic portion formed in a spiral shape, and a non-contact facing magnetic shaft arranged at a predetermined distance from the shaft so as to form a magnetic circuit with the magnetic shaft. In a magnetic screw mechanism including a combination of nut block parts in which a magnet having a spiral magnetic pole is incorporated on the opposite surface side, the nut block parts are parallel to the magnetic material shaft in a magnetic screw mechanism which obtains axial thrust by rotation of the magnetic material shaft. A conveyance mechanism using a magnetic screw, which is supported by a linear motion guide member so that it can be moved only.
【請求項2】 直動案内部材としてナットブロック側に
複数個のボール転動体が配置され本体側にスライドガイ
ドが配置されることにより構成される請求項1記載の磁
気ねじを用いた搬送機構。
2. The transport mechanism using a magnetic screw according to claim 1, wherein a plurality of ball rolling elements are arranged on the nut block side and slide guides are arranged on the main body side as the linear guide members.
【請求項3】 直動案内部材としてナットブロック側に
は少なくとも2個所のスライド軸受部材が組み込まれて
おり該磁性体軸とマグネットとの相対間隔を確保すると
共に磁性体軸の長さ方向に相対移動可能なごとく該スラ
イド軸受には支持軸部材が挿入された構造であることを
特徴とする請求項1記載の磁気ねじを用いた搬送機構。
3. A linear motion guide member is provided with at least two slide bearing members on the nut block side so as to secure a relative distance between the magnetic body shaft and the magnet and to make a relative movement in the longitudinal direction of the magnetic body shaft. 2. The transport mechanism using a magnetic screw according to claim 1, wherein a support shaft member is inserted in the slide bearing so as to be movable.
【請求項4】 スライド軸受はリニア玉軸受であること
を特徴とする請求項3記載の磁気ねじを用いた搬送機
構。
4. The transport mechanism using the magnetic screw according to claim 3, wherein the slide bearing is a linear ball bearing.
【請求項5】 スライド軸受は自己潤滑性の樹脂または
焼結金属よりなる滑り軸受であることを特徴とする請求
項3記載の磁気ねじを用いた搬送機構。
5. The conveying mechanism using a magnetic screw according to claim 3, wherein the slide bearing is a slide bearing made of self-lubricating resin or sintered metal.
【請求項6】 スライド軸受は空気軸受であることを特
徴とする請求項3記載の磁気ねじを用いた搬送機構。
6. The transport mechanism using a magnetic screw according to claim 3, wherein the slide bearing is an air bearing.
【請求項7】 磁性体軸とマグネットの間には磁性流体
が挿入されていることを特徴とする請求項1乃至6の何
れかに記載の磁気ねじを用いた搬送機構。
7. A transport mechanism using a magnetic screw according to claim 1, wherein a magnetic fluid is inserted between the magnetic shaft and the magnet.
【請求項8】 螺旋状の非磁性部を形成した円柱状でス
トレートな磁性体軸およびこれと対になるマグネット部
分を複数本並列配置させことを特徴とする請求項1乃至
7の何れかに記載の磁気ねじを用いた搬送機構。
8. A columnar straight magnetic body shaft having a spiral non-magnetic portion and a plurality of magnet portions paired therewith are arranged in parallel. A transport mechanism using the described magnetic screw.
【請求項9】 請求項1乃至8の何れかに記載の磁気ね
じを用いた搬送機構を開閉部材の駆動源とすることを特
徴とする開閉装置。
9. An opening / closing device, wherein the conveyance mechanism using the magnetic screw according to claim 1 is used as a drive source for the opening / closing member.
【請求項10】 磁性体軸の回転駆動は磁性体軸と駆動
側の間に非磁性体の隔壁を介して磁気的に結合された回
転駆動装置により行われることを特徴とする請求項1乃
至8の何れかに記載の磁気ねじを用いた搬送機構。
10. The rotation driving device of claim 1, wherein the rotation of the magnetic body shaft is performed by a rotation driving device magnetically coupled between the magnetic body shaft and the driving side via a non-magnetic partition wall. 8. A conveyance mechanism using the magnetic screw according to any one of 8.
【請求項11】 被駆動側である磁性体軸側に配置され
た複数個の磁極を有するマグネットと非磁性体を介して
対向し該磁性体軸側のマグネットと対応した磁極を有し
たマグネットにより構成され両者が磁気的に結合した回
転駆動装置であることを特徴とする請求項10記載の磁
気ねじを用いた搬送装置。
11. A magnet having a plurality of magnetic poles arranged on the side of the magnetic body shaft, which is the driven side, and having a magnetic pole corresponding to the magnet on the side of the magnetic body shaft, which is opposed to the magnet having a non-magnetic body. The transport device using a magnetic screw according to claim 10, wherein the transport device is configured and is a magnetically coupled rotary drive device.
【請求項12】 被駆動側である磁性体軸側には螺旋状
の非磁性部とは別に該磁性体軸に平行に複数個の非磁性
部を有しており非磁性体を介して対向した該磁性体軸側
の非磁性部と対応した磁極を有したマグネットにより構
成された回転駆動部を有し両者が磁気的に結合した回転
駆動装置であることを特徴とする請求項10記載の磁気
ねじを用いた搬送装置。
12. The magnetic body axis side, which is the driven side, has a plurality of nonmagnetic portions parallel to the magnetic body axis in addition to the spiral nonmagnetic portion, and opposes each other through the nonmagnetic body. 11. A rotary drive device comprising a rotary drive part composed of a magnet having a magnetic pole corresponding to the non-magnetic part on the side of the magnetic body axis, and the two being magnetically coupled to each other. Conveyor device that uses magnetic screws.
JP2001218115A 2001-07-18 2001-07-18 Conveying mechanism using magnetic screw Expired - Lifetime JP4264868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218115A JP4264868B2 (en) 2001-07-18 2001-07-18 Conveying mechanism using magnetic screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218115A JP4264868B2 (en) 2001-07-18 2001-07-18 Conveying mechanism using magnetic screw

Publications (3)

Publication Number Publication Date
JP2003028265A true JP2003028265A (en) 2003-01-29
JP2003028265A5 JP2003028265A5 (en) 2006-01-05
JP4264868B2 JP4264868B2 (en) 2009-05-20

Family

ID=19052344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218115A Expired - Lifetime JP4264868B2 (en) 2001-07-18 2001-07-18 Conveying mechanism using magnetic screw

Country Status (1)

Country Link
JP (1) JP4264868B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052537A1 (en) * 2005-11-04 2007-05-10 Maruyasu Kikai Co., Ltd. Process for manufacturing magnetic wheel and process for manufacturing magnetic coupling
US8757364B2 (en) 2010-07-12 2014-06-24 Von Ardenne Anlagentechnik Gmbh Substrate treatment system
JP2015169211A (en) * 2014-03-07 2015-09-28 プファイファー・ヴァキューム・ゲーエムベーハー Method for taking balance of rotor of vacuum pump or rotor of rotational unit for vacuum pump
WO2018011859A1 (en) * 2016-07-11 2018-01-18 アズビル株式会社 Conveyance device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052537A1 (en) * 2005-11-04 2007-05-10 Maruyasu Kikai Co., Ltd. Process for manufacturing magnetic wheel and process for manufacturing magnetic coupling
JP2007127214A (en) * 2005-11-04 2007-05-24 Ebatekku:Kk Manufacturing method for magnetic wheel and manufacturing method for magnetic coupling
US8757364B2 (en) 2010-07-12 2014-06-24 Von Ardenne Anlagentechnik Gmbh Substrate treatment system
JP2015169211A (en) * 2014-03-07 2015-09-28 プファイファー・ヴァキューム・ゲーエムベーハー Method for taking balance of rotor of vacuum pump or rotor of rotational unit for vacuum pump
WO2018011859A1 (en) * 2016-07-11 2018-01-18 アズビル株式会社 Conveyance device
CN109477562A (en) * 2016-07-11 2019-03-15 阿自倍尔株式会社 Conveying device
EP3483476A4 (en) * 2016-07-11 2020-03-18 Azbil Corporation Conveyance device
US10611581B2 (en) 2016-07-11 2020-04-07 Azbil Corporation Transfer apparatus

Also Published As

Publication number Publication date
JP4264868B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US6828041B2 (en) Rolling apparatus
JP4068848B2 (en) Linear motor
JP2005532516A (en) Thrust load relaxation device for rotor bearing system using permanent magnet
US20160312826A1 (en) Protective bearing, bearing unit, and vacuum pump
US20130009501A1 (en) Magnetic bearing structure and turbo machine having the same
KR20210084383A (en) Sputtering apparatus and control method thereof
JP4178956B2 (en) Magnetic fluid seal device
JP2003028265A (en) Conveying mechanism using magnetic screw
JP4930050B2 (en) Direct drive motor
JP2005253292A (en) High torque transmission non-contact gear
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
JP2002357256A (en) Magnetic screw conveyance structure and opening/closing device
CN206320304U (en) Concentric multiaxis magnetic fluid sealing structure
US20230323876A1 (en) Pump Arrangement
JP2003120780A (en) Magnetic screw carrying mechanism
JP2006275068A (en) Actuator
CN107068490A (en) A kind of starter electromagnetic switch and its starter
JP3124897B2 (en) Magnetic screw
JP2009038910A (en) Brushless motor
JP4613876B2 (en) Ball bearing
US7459820B2 (en) Magnetic belt and roller system
JP4618422B2 (en) Direct drive motor
JP2008167588A (en) Brushless motor
CN212886610U (en) Friction disc high accuracy processingequipment
US8555736B2 (en) Drive system for hermetic applications and device having such drive system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

R150 Certificate of patent or registration of utility model

Ref document number: 4264868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

EXPY Cancellation because of completion of term