JP2003021476A - Method for manufacturing heat exchanger - Google Patents

Method for manufacturing heat exchanger

Info

Publication number
JP2003021476A
JP2003021476A JP2001207525A JP2001207525A JP2003021476A JP 2003021476 A JP2003021476 A JP 2003021476A JP 2001207525 A JP2001207525 A JP 2001207525A JP 2001207525 A JP2001207525 A JP 2001207525A JP 2003021476 A JP2003021476 A JP 2003021476A
Authority
JP
Japan
Prior art keywords
heat exchanger
water passage
refrigerant passages
refrigerant
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001207525A
Other languages
Japanese (ja)
Inventor
Yoshitaka Yamamoto
善貴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001207525A priority Critical patent/JP2003021476A/en
Publication of JP2003021476A publication Critical patent/JP2003021476A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of part items and costs. SOLUTION: A tubular member 1 which is provided with a water channel 2 at the center and a plurality of refrigerant channels 3, etc., each having a circular cross section smaller than that of the channel 2, is manufactured by continuous casting. Since a brazing process and a brazing filler are unnecessary, the number of part items and costs are reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、水と冷媒とを熱
交換させるための熱交換器(例えば、ヒートポンプ式給
湯機に用いられる水熱交換器)の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heat exchanger for exchanging heat between water and a refrigerant (for example, a water heat exchanger used in a heat pump type water heater).

【0002】[0002]

【従来の技術】従来から良く知られている給湯機用熱交
換器としては、水が流通する内管と、冷媒が流通する外
管とからなり、長円形状に屈曲形成して多数の段数重ね
合わせてなる二重管式熱交換器がある。
2. Description of the Related Art A well-known heat exchanger for a water heater comprises an inner tube through which water flows and an outer tube through which a refrigerant flows, and is bent into an elliptical shape and has a large number of stages. There is a double-tube heat exchanger that is superposed.

【0003】この二重管式熱交換器の場合、内管に腐食
による穴が空くと、水と冷媒とがまざりあってしまうた
め、水の漏洩を検知して、装置の運転を停止する必要が
あった。そこで、内管の外側に内管から漏洩した水を導
く漏洩検知溝を有する漏洩検知管を設け、水の漏洩をい
ち早く検知するようにしていた。つまり、実質的には、
内管、漏洩検知管および外管からなる三重管により構成
されることとなっているのである。従って、製造工程が
複雑化するとともに、コストの増大を免れがたいという
問題があった。
In the case of this double-tube heat exchanger, if the inner tube has a hole due to corrosion, the water and the refrigerant are mixed with each other. Therefore, it is necessary to detect the leakage of water and stop the operation of the apparatus. was there. Therefore, a leak detecting pipe having a leak detecting groove for guiding water leaking from the inner pipe is provided outside the inner pipe so that the leak of water can be detected promptly. So, in effect,
It consists of a triple pipe consisting of an inner pipe, a leak detection pipe, and an outer pipe. Therefore, there is a problem that the manufacturing process is complicated and the cost is unavoidably increased.

【0004】そこで、給湯機用熱交換器として、長い芯
管の外周にキャピラリチューブ等からなる巻管を所定ピ
ッチで螺旋状に巻き付け、これを、長円形状に屈曲形成
して多数の段数重ね合わせ、その後、鑞付けを施すこと
により一体形状とし、芯管側を水通路とし、巻管側を冷
媒通路とするように構成したものが開発されている。
Therefore, as a heat exchanger for a water heater, a winding tube made of a capillary tube or the like is spirally wound around the outer periphery of a long core tube at a predetermined pitch, and this is bent into an elliptical shape to form a large number of stacked stages. A structure has been developed in which the core tube side is made into a water passage and the winding side is made into a refrigerant passage by combining them and then brazing them.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記構成の
ものの場合、芯管への巻管の鑞付けを前提とした複数部
品からなっているため、個々の部品の組立および鑞付け
工程が必要となるとともに、鑞付けのための鑞材が必要
となり、部品点数が多くなり且つコストダウンにも限界
があるという不具合があった。
However, in the case of the above-mentioned structure, since it is composed of a plurality of parts on the assumption that the winding tube is brazed to the core tube, the steps of assembling and brazing the individual parts are required. In addition, there is a problem that a brazing material is required for brazing, the number of parts is increased, and cost reduction is limited.

【0006】本願発明は、上記の点に鑑みてなされたも
ので、部品点数の低減とコストダウンを図り得るように
することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to reduce the number of parts and cost.

【0007】[0007]

【課題を解決するための手段】請求項1の発明では、上
記課題を解決するための方法として、中心部に形成され
た水通路2と、該水通路2の周囲に形成され、前記水通
路2より小さな通路断面積を有する断面円形の複数の冷
媒通路3,3・・とを備えた1本の管状部材1を連続鋳
造法により製造するようにしている。
According to a first aspect of the present invention, as a method for solving the above-mentioned problems, a water passage 2 formed in a central portion and the water passage formed around the water passage 2 are provided. One tubular member 1 having a plurality of refrigerant passages 3, 3 ... Having a circular cross-section having a passage cross-sectional area smaller than 2 is manufactured by a continuous casting method.

【0008】上記のような方法としたことにより、水通
路2と冷媒通路3,3・・とが1本の管状部材1に形成
できるところから、鑞付け工程が不要となる。従って、
鑞材も不要となる結果、部品点数が低減し且つコストダ
ウンを図ることができる。また、得られた熱交換器にお
いて、冷媒通路3,3・・における耐圧性能が増大する
こととなり、冷媒として高圧冷媒(例えば、炭酸ガス
等)を採用することができる。
By adopting the above method, the water passage 2 and the refrigerant passages 3, 3, ... Can be formed in one tubular member 1, so that the brazing step is not required. Therefore,
As a result of eliminating the brazing material, the number of parts can be reduced and the cost can be reduced. Further, in the obtained heat exchanger, the pressure resistance performance in the refrigerant passages 3, 3, ... Is increased, and a high pressure refrigerant (for example, carbon dioxide gas) can be adopted as the refrigerant.

【0009】請求項2の発明におけるように、請求項1
記載の熱交換器の製造方法において、前記冷媒通路3,
3・・同士の周方向間隔を等しくした場合、得られた熱
交換器において、冷媒通路3,3・・を流れる冷媒から
水通路2を流れる水への熱伝達が周方向に均等となり、
熱交換効率が向上する。
As in the invention of claim 2, claim 1
In the heat exchanger manufacturing method described above, the refrigerant passages 3,
When the circumferential intervals of the three ... Are made equal, in the obtained heat exchanger, the heat transfer from the refrigerant flowing through the refrigerant passages 3, 3, ... To the water flowing through the water passage 2 becomes even in the circumferential direction,
Heat exchange efficiency is improved.

【0010】請求項3の発明におけるように、請求項1
および2のいずれか一項記載の熱交換器の製造方法にお
いて、前記冷媒通路3,3・・を、前記水通路2の中心
に対して所定の捩り角度αを有する螺旋形状となした場
合、得られた熱交換器において、冷媒通路3,3・・か
ら水通路2への熱伝達面積が飛躍的に増大することとな
り、熱交換効率が大幅に増大する。
As in the invention of claim 3, claim 1
In the method for manufacturing a heat exchanger according to any one of 1 and 2, when the refrigerant passages 3, 3, ... Have a spiral shape having a predetermined twist angle α with respect to the center of the water passage 2, In the obtained heat exchanger, the heat transfer area from the refrigerant passages 3, 3, ... To the water passage 2 is dramatically increased, and the heat exchange efficiency is significantly increased.

【0011】請求項4の発明におけるように、請求項3
記載の熱交換器の製造方法において、前記冷媒通路3,
3・・を、前記水通路2の外周に突出する形状とすると
ともに、前記冷媒通路3,3・・相互間に、螺旋形状の
凹溝4,4・・を形成した場合、水通路2から凹溝4,
4・・への水漏れにより漏洩検知を容易に行うことがで
きる。
As in the invention of claim 4, claim 3
In the heat exchanger manufacturing method described above, the refrigerant passages 3,
.. is formed so as to project to the outer periphery of the water passage 2, and spiral grooves 4, 4 ... Are formed between the refrigerant passages 3, 3 ,. Groove 4,
Leakage can be easily detected due to water leakage to 4 ...

【0012】請求項5、6あるいは7の発明におけるよ
うに、請求項1、2、3および4のいずれか一項記載の
熱交換器の製造方法において、前記水通路2の断面形状
を円形としたり、多角形としたり、あるいは前記冷媒通
路3,3・・相互間に外向き角部2a,2a・・を臨ま
せてなる星形とすることもできる。なお、前記水通路2
の断面形状を、前記冷媒通路3,3・・相互間に外向き
角部2a,2a・・を臨ませてなる星形とした場合に
は、冷媒通路3,3・・相互間に外向き角部2a,2a
・・が臨ましめられているため、水通路2から冷媒通路
3,3・・への伝熱効率が向上することとなる。
[0012] As in the invention of claim 5, 6 or 7, in the method of manufacturing a heat exchanger according to any one of claims 1, 2, 3 and 4, the water passage 2 has a circular cross-sectional shape. It may be polygonal, or star-shaped with the outward corners 2a, 2a ... Between the refrigerant passages 3, 3 ,. The water passage 2
When the cross-sectional shape of each of the refrigerant passages 3, 3, ... Is a star-shaped configuration with outward facing corners 2a, 2a. Corners 2a, 2a
.. is provided, the heat transfer efficiency from the water passage 2 to the refrigerant passages 3, 3 ,.

【0013】[0013]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の幾つかの好適な実施の形態について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0014】第1の実施の形態 図1および図2には、本願発明の第1の実施の形態にか
かる熱交換器の製造方法で製造された熱交換器が示され
ている。
First Embodiment FIGS. 1 and 2 show a heat exchanger manufactured by a method for manufacturing a heat exchanger according to a first embodiment of the present invention.

【0015】この熱交換器は、中心部に形成された断面
形状が円形の水通路2と、該水通路2の周囲に形成さ
れ、前記水通路2より小さな通路断面積を有する断面形
状が円形の複数(例えば、6本)の冷媒通路3,3・・
とを備えた1本の管状部材1によって構成されている。
本実施の形態においては、前記水通路2および前記冷媒
通路3,3・・は、管軸方向に平行に形成されている。
また、前記冷媒通路3,3・・は、周方向に等間隔で形
成されている。
In this heat exchanger, a water passage 2 formed in the central portion and having a circular cross-sectional shape, and a circular cross-sectional shape formed around the water passage 2 and having a passage cross-sectional area smaller than the water passage 2 are circular. Multiple (for example, 6) refrigerant passages 3, 3, ...
It is constituted by one tubular member 1 provided with.
In the present embodiment, the water passage 2 and the refrigerant passages 3, 3, ... Are formed parallel to the pipe axis direction.
Further, the refrigerant passages 3, 3, ... Are formed at equal intervals in the circumferential direction.

【0016】上記のような管状部材1は、例えば、特開
昭58−97463号公報に開示されている銅の連続鋳
造法により製造される。この連続鋳造法では、銅の溶湯
を鋳型を通して連続鋳造する際に、該鋳型における溶湯
と接触する壁面の温度を鋳造金属の凝固温度以上に保持
するようにしている。
The tubular member 1 as described above is manufactured, for example, by the continuous casting method of copper disclosed in JP-A-58-97463. In this continuous casting method, when the molten copper is continuously cast through the mold, the temperature of the wall surface in contact with the molten metal in the mold is maintained at the solidification temperature of the cast metal or higher.

【0017】上記方法により得られた熱交換器において
は、次のような作用効果が得られる。
In the heat exchanger obtained by the above method, the following operational effects can be obtained.

【0018】即ち、水通路2と冷媒通路3,3・・とが
1本の管状部材1に形成できるところから、従来例の熱
交換器において必要とされていた鑞付け工程が不要とな
る。従って、鑞材も不要となる結果、部品点数が低減し
且つコストダウンを図ることができる。
That is, since the water passage 2 and the refrigerant passages 3, 3, ... Can be formed in one tubular member 1, the brazing process required in the conventional heat exchanger is not required. Therefore, as a result of eliminating the brazing material, the number of parts can be reduced and the cost can be reduced.

【0019】また、本実施の形態においては、前記冷媒
通路3,3・・同士の周方向間隔を等しくしているの
で、冷媒通路3,3・・を流れる冷媒から水通路2を流
れる水への熱伝達が周方向に均等となり、熱交換効率が
向上することとなる。
Further, in the present embodiment, since the circumferential intervals of the refrigerant passages 3, 3, ... Are made equal, the refrigerant flowing in the refrigerant passages 3, 3 ,. Of heat is evenly distributed in the circumferential direction, and heat exchange efficiency is improved.

【0020】さらに、前記冷媒通路3,3・・の断面形
状を円形としているので、冷媒通路3,3・・における
耐圧性能が増大することとなり、冷媒として高圧冷媒
(例えば、炭酸ガス等)を採用することができることと
なる。
Further, since the cross-sectional shape of the refrigerant passages 3, 3, ... Is circular, the pressure resistance performance in the refrigerant passages 3, 3, ... Is increased, and a high pressure refrigerant (for example, carbon dioxide gas) is used as the refrigerant. It can be adopted.

【0021】ところで、本実施の形態にかかる熱交換器
の製造方法により製造される熱交換器は、図3および図
4に示すように、水通路2の断面形状を六角形としても
よく、六角形以外の多角形(例えば、四角形、五角形
等)としてもよい。また、図5および図6に示すよう
に、水通路2の断面形状を、前記冷媒通路3,3・・相
互間に外向き角部2a,2a・・を臨ませてなる星形と
することもできる。このようにすると、冷媒通路3,3
・・相互間に外向き角部2a,2a・・が臨ましめられ
ることとなり、水通路2から冷媒通路3,3・・への伝
熱効率が向上することとなる。
By the way, in the heat exchanger manufactured by the method for manufacturing the heat exchanger according to the present embodiment, as shown in FIGS. 3 and 4, the water passage 2 may have a hexagonal cross section. A polygon other than a polygon (for example, a quadrangle, a pentagon, etc.) may be used. As shown in FIGS. 5 and 6, the water passage 2 has a star-shaped cross-section with the outward corners 2a, 2a ... Between the refrigerant passages 3, 3 ... You can also In this way, the refrigerant passages 3, 3
.. Since the outward corners 2a, 2a .. are exposed to each other, the heat transfer efficiency from the water passage 2 to the refrigerant passages 3, 3 ..

【0022】なお、上記実施の形態においては、いずれ
の場合も、6本の冷媒通路3,3・・を有するようにさ
れているが、水通路2が星形のものを除いて、冷媒通路
3の本数は任意に選定できる。
In any of the above embodiments, the six refrigerant passages 3, 3, ... Are provided, but the refrigerant passages except the water passage 2 are star-shaped. The number of 3 can be arbitrarily selected.

【0023】第2の実施の形態 図7および図8には、本願発明の第2の実施の形態にか
かる熱交換器の製造方法により製造された熱交換器が示
されている。
Second Embodiment FIGS. 7 and 8 show a heat exchanger manufactured by a method for manufacturing a heat exchanger according to a second embodiment of the present invention.

【0024】この場合、2本の冷媒通路3,3が、水通
路2の中心Oに対して所定の捩り角度αを有する螺旋形
状とされている。前記冷媒通路3,3・・を、前記水通
路2の外周に突出する形状とするとともに、前記冷媒通
路3,3・・相互間には、所定の周方向幅の底面を有す
る螺旋形状の凹溝4,4・・が形成されている。そし
て、この凹溝4の底面と前記水通路2との間の肉厚t1
は、前記各冷媒通路3と前記水通路2との間の肉厚t2
より薄くなるように構成されている。しかも、各冷媒通
路3の周囲の肉部分3aは円弧形状とされており、各冷
媒通路3の周囲の肉厚がほぼ均等となるようにされてい
る。この場合にも、管状部材1は、例えば、第1の実施
の形態におけると同様に、銅の連続鋳造法により製造さ
れるが、鋳造時において捩りを加える必要がある。この
ようにすると、冷媒通路3,3から水通路2への熱伝達
面積が飛躍的に増大することとなり、熱交換効率が大幅
に増大する。また、水通路2の周りに腐食等が発生した
場合、水通路2から冷媒通路3,3・・へと腐食が進行
する前に、水通路3,3・・から凹溝4,4・・底面へ
と腐食が進行することとなり、当該部位から水が漏れる
ことで漏洩検知が行えることとなる。その他の構成およ
び作用効果は、第1の実施の形態におけると同様なので
説明を省略する。
In this case, the two refrigerant passages 3 and 3 have a spiral shape having a predetermined twist angle α with respect to the center O of the water passage 2. The refrigerant passages 3, 3, ... Have a shape protruding toward the outer periphery of the water passage 2, and a spiral-shaped recess having a bottom surface of a predetermined circumferential width between the refrigerant passages 3, 3 ,. Grooves 4, 4, ... Are formed. The wall thickness t 1 between the bottom surface of the groove 4 and the water passage 2 is
Is the wall thickness t 2 between the refrigerant passages 3 and the water passages 2.
It is configured to be thinner. Moreover, the wall portion 3a around each refrigerant passage 3 has an arc shape, and the wall thickness around each refrigerant passage 3 is made substantially equal. Also in this case, the tubular member 1 is manufactured by, for example, a continuous copper casting method as in the first embodiment, but it is necessary to add a twist during casting. By doing so, the heat transfer area from the refrigerant passages 3, 3 to the water passage 2 is dramatically increased, and the heat exchange efficiency is significantly increased. When corrosion or the like occurs around the water passage 2, before the corrosion progresses from the water passage 2 to the refrigerant passages 3, 3, ..., From the water passage 3, 3 ,. Corrosion progresses to the bottom surface, and leak detection can be performed by leaking water from the site. Other configurations and effects are the same as those in the first embodiment, and the description thereof will be omitted.

【0025】ところで、上記第2の実施の形態において
は、水通路2および冷媒通路3の断面形状を円形として
いるが、水通路2は、四角形、六角形等の多角形形状あ
るいは星形等の異形形状とすることができる。また、冷
媒通路3の本数も任意とすることができる。
In the second embodiment, the water passages 2 and the refrigerant passages 3 have a circular cross section, but the water passages 2 have a polygonal shape such as a quadrangle, a hexagon, or a star shape. It can have an irregular shape. Further, the number of the refrigerant passages 3 can be set arbitrarily.

【0026】[0026]

【発明の効果】請求項1の発明によれば、中心部に形成
された水通路2と、該水通路2の周囲に形成され、前記
水通路2より小さな通路断面積を有する断面円形の複数
の冷媒通路3,3・・とを備えた1本の管状部材1を連
続鋳造法により製造するようにしているので、水通路2
と冷媒通路3,3・・とが1本の管状部材1に形成でき
るところから、鑞付け工程が不要となり、鑞材も不要と
なる結果、部品点数が低減し且つコストダウンを図るこ
とができるという効果がある。また、得られた熱交換器
において、冷媒通路3,3・・における耐圧性能が増大
することとなり、冷媒として高圧冷媒(例えば、炭酸ガ
ス等)を採用することができるという効果もある。
According to the first aspect of the present invention, the water passage 2 formed in the central portion and a plurality of circular cross-sections formed around the water passage 2 and having a passage cross-sectional area smaller than that of the water passage 2. Since the single tubular member 1 having the refrigerant passages 3, 3, ... Is manufactured by the continuous casting method, the water passage 2
Since the refrigerant passages 3, 3, ... Can be formed in one tubular member 1, the brazing step is unnecessary and the brazing material is also unnecessary. As a result, the number of parts can be reduced and the cost can be reduced. There is an effect. Further, in the obtained heat exchanger, the pressure resistance performance in the refrigerant passages 3, 3, ... Is increased, and there is an effect that a high pressure refrigerant (for example, carbon dioxide gas) can be adopted as the refrigerant.

【0027】請求項2の発明におけるように、請求項1
記載の熱交換器の製造方法において、前記冷媒通路3,
3・・同士の周方向間隔を等しくした場合、得られた熱
交換器において、冷媒通路3,3・・を流れる冷媒から
水通路2を流れる水への熱伝達が周方向に均等となり、
熱交換効率が向上する。
As in the invention of claim 2, claim 1
In the heat exchanger manufacturing method described above, the refrigerant passages 3,
When the circumferential intervals of the three ... Are made equal, in the obtained heat exchanger, the heat transfer from the refrigerant flowing through the refrigerant passages 3, 3, ... To the water flowing through the water passage 2 becomes even in the circumferential direction,
Heat exchange efficiency is improved.

【0028】請求項3の発明におけるように、請求項1
および2のいずれか一項記載の熱交換器の製造方法にお
いて、前記冷媒通路3,3・・を、前記水通路2の中心
に対して所定の捩り角度αを有する螺旋形状となした場
合、得られた熱交換器において、冷媒通路3,3・・か
ら水通路2への熱伝達面積が飛躍的に増大することとな
り、熱交換効率が大幅に増大する。
As in the invention of claim 3, claim 1
In the method for manufacturing a heat exchanger according to any one of 1 and 2, when the refrigerant passages 3, 3, ... Have a spiral shape having a predetermined twist angle α with respect to the center of the water passage 2, In the obtained heat exchanger, the heat transfer area from the refrigerant passages 3, 3, ... To the water passage 2 is dramatically increased, and the heat exchange efficiency is significantly increased.

【0029】請求項4の発明におけるように、請求項3
記載の熱交換器の製造方法において、前記冷媒通路3,
3・・を、前記水通路2の外周に突出する形状とすると
ともに、前記冷媒通路3,3・・相互間に、螺旋形状の
凹溝4,4・・を形成した場合、水通路2から凹溝4,
4・・への水漏れにより漏洩検知を容易に行うことがで
きる。
As in the invention of claim 4, claim 3
In the heat exchanger manufacturing method described above, the refrigerant passages 3,
.. is formed so as to project to the outer periphery of the water passage 2, and spiral grooves 4, 4 ... Are formed between the refrigerant passages 3, 3 ,. Groove 4,
Leakage can be easily detected due to water leakage to 4 ...

【0030】請求項5、6あるいは7の発明におけるよ
うに、請求項1、2、3および4のいずれか一項記載の
熱交換器の製造方法において、前記水通路2の断面形状
を円形としたり、多角形としたり、あるいは前記冷媒通
路3,3・・相互間に外向き角部2a,2a・・を臨ま
せてなる星形とすることもできる。なお、前記水通路2
の断面形状を、前記冷媒通路3,3・・相互間に外向き
角部2a,2a・・を臨ませてなる星形とした場合に
は、冷媒通路3,3・・相互間に外向き角部2a,2a
・・が臨ましめられているため、水通路2から冷媒通路
3,3・・への伝熱効率が向上することとなる。
As in the invention of claim 5, 6 or 7, in the method for manufacturing a heat exchanger according to any one of claims 1, 2, 3 and 4, the water passage 2 has a circular cross-sectional shape. It may be polygonal, or star-shaped with the outward corners 2a, 2a ... Between the refrigerant passages 3, 3 ,. The water passage 2
When the cross-sectional shape of each of the refrigerant passages 3, 3, ... Is a star-shaped configuration with outward facing corners 2a, 2a. Corners 2a, 2a
.. is provided, the heat transfer efficiency from the water passage 2 to the refrigerant passages 3, 3 ,.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の第1の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器を示す斜視図であ
る。
FIG. 1 is a perspective view showing a heat exchanger manufactured by a method of manufacturing a heat exchanger according to a first embodiment of the present invention.

【図2】本願発明の第1の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の断面図である。
FIG. 2 is a cross-sectional view of a heat exchanger manufactured by the heat exchanger manufacturing method according to the first embodiment of the present invention.

【図3】本願発明の第1の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の変形例を示す斜
視図である。
FIG. 3 is a perspective view showing a modified example of the heat exchanger manufactured by the method for manufacturing the heat exchanger according to the first embodiment of the present invention.

【図4】本願発明の第1の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の変形例を示す断
面図である。
FIG. 4 is a cross-sectional view showing a modified example of the heat exchanger manufactured by the method for manufacturing a heat exchanger according to the first embodiment of the present invention.

【図5】本願発明の第1の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の変形例の他の例
を示す斜視図である。
FIG. 5 is a perspective view showing another example of the modification of the heat exchanger manufactured by the method for manufacturing the heat exchanger according to the first embodiment of the present invention.

【図6】本願発明の第1の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の変形例の他の例
を示す断面図である。
FIG. 6 is a cross-sectional view showing another example of a modified example of the heat exchanger manufactured by the method for manufacturing the heat exchanger according to the first embodiment of the present invention.

【図7】本願発明の第2の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の斜視図である。
FIG. 7 is a perspective view of a heat exchanger manufactured by the heat exchanger manufacturing method according to the second embodiment of the present invention.

【図8】本願発明の第2の実施の形態にかかる熱交換器
の製造方法により製造された熱交換器の断面図である。
FIG. 8 is a sectional view of a heat exchanger manufactured by the method for manufacturing a heat exchanger according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は管状部材、2は水通路、2aは角部、3は冷媒通
路、4は凹溝、αは捩り角度。
1 is a tubular member, 2 is a water passage, 2a is a corner portion, 3 is a refrigerant passage, 4 is a groove, and α is a twist angle.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28F 1/04 F28F 1/04 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) F28F 1/04 F28F 1/04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 中心部に形成された水通路(2)と、該
水通路(2)の周囲に形成され、前記水通路(2)より
小さな通路断面積を有する断面円形の複数の冷媒通路
(3),(3)・・とを備えた1本の管状部材(1)を
連続鋳造法により製造することを特徴とする熱交換器の
製造方法。
1. A water passage (2) formed in a central portion, and a plurality of refrigerant passages formed around the water passage (2) and having a circular cross-section having a passage cross-sectional area smaller than that of the water passage (2). A method for manufacturing a heat exchanger, characterized in that one tubular member (1) having (3), (3), ... Is manufactured by a continuous casting method.
【請求項2】 前記冷媒通路(3),(3)・・同士の
周方向間隔を等しくしたことを特徴とする前記請求項1
記載の熱交換器。
2. The refrigerant passages (3), (3) ,.
The heat exchanger described.
【請求項3】 前記冷媒通路(3),(3)・・を、前
記水通路(2)の中心に対して所定の捩り角度(α)を
有する螺旋形状となしたことを特徴とする前記請求項1
および2のいずれか一項記載の熱交換器の製造方法。
3. The refrigerant passages (3), (3), ... Have a spiral shape having a predetermined twist angle (α) with respect to the center of the water passage (2). Claim 1
3. The method for manufacturing a heat exchanger according to claim 2.
【請求項4】 前記冷媒通路(3),(3)・・を、前
記水通路(2)の外周に突出する形状とするとともに、
前記冷媒通路(3),(3)・・相互間には、螺旋形状
の凹溝(4),(4)・・を形成したことを特徴とする
前記請求項3記載の熱交換器の製造方法。
4. The refrigerant passages (3), (3), ... Have a shape protruding to the outer periphery of the water passage (2),
The manufacturing of the heat exchanger according to claim 3, wherein spiral grooves (4), (4), ... Are formed between the refrigerant passages (3), (3). Method.
【請求項5】 前記水通路(2)の断面形状を円形とし
たことを特徴とする前記請求項1、2、3および4のい
ずれか一項記載の熱交換器。
5. The heat exchanger according to claim 1, wherein the water passage (2) has a circular cross-sectional shape.
【請求項6】 前記水通路(2)の断面形状を多角形と
したことを特徴とする前記請求項1、2、3および4の
いずれか一項記載の熱交換器。
6. The heat exchanger according to claim 1, wherein the water passage (2) has a polygonal cross-sectional shape.
【請求項7】 前記水通路(2)の断面形状を、前記冷
媒通路(3),(3)・・相互間に外向き角部(2
a),(2a)・・を臨ませてなる星形としたことを特
徴とする前記請求項1、2、3および4のいずれか一項
記載の熱交換器。
7. A cross-sectional shape of the water passage (2) has an outward corner (2) between the refrigerant passages (3), (3).
The heat exchanger according to any one of claims 1, 2, 3 and 4, wherein the heat exchanger has a star shape facing a), (2a) ...
JP2001207525A 2001-07-09 2001-07-09 Method for manufacturing heat exchanger Pending JP2003021476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207525A JP2003021476A (en) 2001-07-09 2001-07-09 Method for manufacturing heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207525A JP2003021476A (en) 2001-07-09 2001-07-09 Method for manufacturing heat exchanger

Publications (1)

Publication Number Publication Date
JP2003021476A true JP2003021476A (en) 2003-01-24

Family

ID=19043498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207525A Pending JP2003021476A (en) 2001-07-09 2001-07-09 Method for manufacturing heat exchanger

Country Status (1)

Country Link
JP (1) JP2003021476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512247A (en) * 2006-12-14 2010-04-22 シーティーエー・テクノロジー・プロプリエタリー・リミテッド Multi-channel copper pipe manufacturing method and apparatus for manufacturing the pipe
WO2013114435A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Heat exchanger and heat pump system
EP3285039A1 (en) * 2016-08-16 2018-02-21 Hamilton Sundstrand Corporation Heat exchangers with multiple flow channels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512247A (en) * 2006-12-14 2010-04-22 シーティーエー・テクノロジー・プロプリエタリー・リミテッド Multi-channel copper pipe manufacturing method and apparatus for manufacturing the pipe
US8336604B2 (en) 2006-12-14 2012-12-25 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
KR101280173B1 (en) 2006-12-14 2013-06-28 미츠비시 마테리알 가부시키가이샤 Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
US8869874B2 (en) 2006-12-14 2014-10-28 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
WO2013114435A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Heat exchanger and heat pump system
EP3285039A1 (en) * 2016-08-16 2018-02-21 Hamilton Sundstrand Corporation Heat exchangers with multiple flow channels
US11346611B2 (en) 2016-08-16 2022-05-31 Hamilton Sundstrand Corporation Heat exchangers with multiple flow channels
EP4220063A1 (en) * 2016-08-16 2023-08-02 Hamilton Sundstrand Corporation A method of forming a heat exchanger and heat exchanger

Similar Documents

Publication Publication Date Title
FI83564B (en) VAERMEOEVERFOERINGSROER MED INVAENDIGA AOSAR OCH FOERFARANDE FOER FRAMSTAELLNING DAERAV.
JP2001201275A (en) Double tube heat exchanger
JP2007170717A (en) Heat exchanger
JP2003329376A (en) Double tube type heat exchanger
JP2012097920A (en) Heat exchanger
JP2003021476A (en) Method for manufacturing heat exchanger
JPH10176892A (en) Noded plate fin type heat exchanger
KR20140023301A (en) Heat transfer pipe for heat exchanger
JP4414199B2 (en) Double tube heat exchanger
JPH05164483A (en) Double pipe type heat exchanger
JP2009264644A (en) Heat exchanger
JP2005090926A (en) Double pipe type heat exchanger
JP2002318086A (en) Heat exchanger tube
JP2003156291A (en) Heat exchanger
JPS63220091A (en) Coil type passage for heat exchanger and heat exchanging coil unit employing said passage
JP4414197B2 (en) Double tube heat exchanger
JP2003021474A (en) Heat exchanger
JP2000266484A (en) Heat exchanger
JP2005351520A (en) Heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JPS5855335Y2 (en) Double pipe heat exchanger for liquids
JP4206712B2 (en) Heat exchanger and manufacturing method thereof
JP4414196B2 (en) Double tube heat exchanger
JP2011085355A (en) Heat exchanger
JP2005024109A (en) Heat exchanger