JP2003020201A - Apparatus and element for generating hydrogen - Google Patents

Apparatus and element for generating hydrogen

Info

Publication number
JP2003020201A
JP2003020201A JP2001206235A JP2001206235A JP2003020201A JP 2003020201 A JP2003020201 A JP 2003020201A JP 2001206235 A JP2001206235 A JP 2001206235A JP 2001206235 A JP2001206235 A JP 2001206235A JP 2003020201 A JP2003020201 A JP 2003020201A
Authority
JP
Japan
Prior art keywords
hydrogen
aqueous solution
acidic aqueous
acid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001206235A
Other languages
Japanese (ja)
Inventor
Yoshiro Tanaka
好郎 田中
Yasuyuki Takatani
泰之 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001206235A priority Critical patent/JP2003020201A/en
Publication of JP2003020201A publication Critical patent/JP2003020201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generating apparatus having enhanced hydrogen generating efficiency. SOLUTION: The hydrogen generating apparatus is provided with a hydrogen producing tank 1 in which an acidic aqueous solution A can be stored so that a hydrogen generating element at least a part of which consists of a metal M1 having the ionization tendency higher than that of hydrogen can be immersed in the solution A. A liquid circulating path 3 is arranged for withdrawing the solution A from the upper part of the tank 1 to the outside and returning the withdrawn solution to the bottom of the tank 1. At least a part of the hydrogen generating element consisting of the metal M1 is immersed in a liquid fluidizing path of the solution A from the bottom of the tank 1 to the upper part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸性水溶液を貯留
可能で、且つ、少なくとも一部が水素よりもイオン化傾
向の大きな金属からなる水素発生体をその酸性水溶液中
に浸漬可能に構成される水素生成槽を、備える水素発生
装置、及び、その水素発生装置に使用する水素発生体に
関する。
TECHNICAL FIELD The present invention relates to hydrogen capable of storing an acidic aqueous solution and dipping a hydrogen generator made of a metal, at least a part of which has a greater ionization tendency than hydrogen, into the acidic aqueous solution. The present invention relates to a hydrogen generator including a production tank, and a hydrogen generator used in the hydrogen generator.

【0002】[0002]

【従来の技術】従来、この種の水素発生装置としては、
図14の概略図に示すように、単に、水素生成槽1内
に、硫酸等の酸性水溶液Aを所定量貯留しておき、水素
発生体として水素よりもイオン化傾向の大きな金属(例
えば亜鉛等)M1をその酸性水溶液A中に浸漬させて、
化学反応により酸性水溶液A内にて水素を生成させる。
そして、水素生成槽1内の酸性水溶液A中に生成された
水素の気泡が、自ずとその酸性水溶液Aと外気との接触
界面である液面まで浮上し酸性水溶液Aから分離される
ことにより、水素生成槽1にて生成された水素(H2
が水素生成槽1外に回収される。
2. Description of the Related Art Conventionally, as this type of hydrogen generator,
As shown in the schematic diagram of FIG. 14, a predetermined amount of acidic aqueous solution A such as sulfuric acid is simply stored in the hydrogen generation tank 1, and a metal having a larger ionization tendency than hydrogen (eg, zinc) is used as a hydrogen generator. Immerse M1 in the acidic aqueous solution A,
Hydrogen is generated in the acidic aqueous solution A by a chemical reaction.
Then, the bubbles of hydrogen generated in the acidic aqueous solution A in the hydrogen generating tank 1 naturally float up to the liquid surface which is the contact interface between the acidic aqueous solution A and the outside air and are separated from the acidic aqueous solution A, whereby Hydrogen (H 2 ) produced in the production tank 1
Is recovered outside the hydrogen production tank 1.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の水素発生装置によれば、水素を発生させるため
には、酸性水溶液中にて生成された水素が、単に自ずと
その酸性水溶液の液面まで浮上してくるまで待つだけで
あるため、水素の発生効率があまりよくないという問題
があった。
However, according to the above-mentioned conventional hydrogen generator, in order to generate hydrogen, the hydrogen generated in the acidic aqueous solution is not limited to the liquid surface of the acidic aqueous solution. There was a problem that the efficiency of hydrogen generation was not very good because it only waited until it surfaced.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、水素の発生効率を向上させるこ
とができる水素発生装置を提供するところにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a hydrogen generator capable of improving the hydrogen generation efficiency.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明の特
徴構成は、図1〜5に例示するごとく、酸性水溶液Aを
貯留可能、且つ、少なくとも一部が水素よりもイオン化
傾向の大きな金属M1からなる水素発生体をその酸性水
溶液中に浸漬可能に構成される水素生成槽1を、備える
水素発生装置であって、前記酸性水溶液Aを前記水素生
成槽1の上部から槽外へ取り出してから前記水素生成槽
1内の底部へと送る液循環路3を設け、前記水素生成槽
1内における前記底部から前記上部に至る前記酸性水溶
液Aの液流動路中に、前記水素発生体のうち前記金属M
1からなる部分の少なくとも一部を浸漬させてあるとこ
ろにある。
The features of the invention according to claim 1 are, as illustrated in FIGS. 1 to 5, capable of storing the acidic aqueous solution A and at least a part of which has a greater ionization tendency than hydrogen. A hydrogen generator comprising a hydrogen generation tank 1 configured so that a hydrogen generator consisting of M1 can be immersed in the acidic aqueous solution, wherein the acidic aqueous solution A is taken out of the upper part of the hydrogen generation tank 1 to the outside of the tank. Of the hydrogen generator in the liquid flow path of the acidic aqueous solution A from the bottom to the top in the hydrogen generation tank 1 is provided with a liquid circulation path 3 for feeding the hydrogen generation tank 1 to the bottom of the hydrogen generation tank 1. The metal M
At least a part of the part consisting of 1 is immersed.

【0006】〔作用効果〕酸性水溶液を水素生成槽の上
部から槽外へ取り出してから水素生成槽内の底部へと送
る液循環路を設けてあるため、自ずと水素生成槽内部に
おける酸性水溶液が流動し、水素生成槽内における底部
から上部に至る酸性水溶液の液流動路が形成されること
となる。そして、かかる液流動路中に前記水素発生体の
うち前記金属からなる部分の少なくとも一部を浸漬させ
てあるので、金属のまわりにて生成される水素は、液流
動路中の酸性水溶液の流動にともなって水素生成槽内に
おいて底部から上部に向かって流動するようになり、酸
性水溶液中の水素の気泡の液面への浮上作用が促進され
ることとなる。従って、本構成によれば従来に比べて、
酸性水溶液中にて生成された水素の気泡が液面まで浮上
し易くなるため、より水素生成槽から水素が発生し易く
なり、水素の発生効率を向上させることができるのであ
る。
[Function and Effect] Since the acidic aqueous solution is taken from the upper part of the hydrogen generating tank to the outside of the hydrogen generating tank and is sent to the bottom of the hydrogen generating tank, the acidic aqueous solution naturally flows inside the hydrogen generating tank. However, a liquid flow path of the acidic aqueous solution from the bottom to the top in the hydrogen generation tank is formed. Then, since at least a part of the portion made of the metal of the hydrogen generator is immersed in the liquid flow path, hydrogen generated around the metal is generated by the flow of the acidic aqueous solution in the liquid flow path. Accordingly, the hydrogen flows from the bottom to the top in the hydrogen generation tank, and the floating action of the bubbles of hydrogen in the acidic aqueous solution to the liquid surface is promoted. Therefore, according to this configuration,
Since hydrogen bubbles generated in the acidic aqueous solution easily float to the liquid surface, hydrogen is more likely to be generated from the hydrogen generation tank, and the hydrogen generation efficiency can be improved.

【0007】また、上述のように金属のまわりにて生成
した水素が液面まで浮上し易いため、従来に比べると金
属のまわりには水素が比較的滞留し難くなることも期待
できる。このため、金属のまわりに水素が滞留すること
により水素の生成作用が抑制されるような現象が緩和さ
れて、結果として、水素生成槽からの水素の発生効率を
より向上させることができるようにもなる。
Further, as described above, hydrogen generated around the metal easily floats up to the liquid surface, so that it can be expected that hydrogen is relatively hard to stay around the metal as compared with the conventional case. Therefore, the phenomenon that the hydrogen generation action is suppressed due to the retention of hydrogen around the metal is mitigated, and as a result, the hydrogen generation efficiency from the hydrogen generation tank can be further improved. Also becomes.

【0008】更に、従来の技術では、酸性水溶液中での
反応が進むにつれて溶液及び金属の表面が変化し、水素
の発生効率が低下するのであるが、本構成によれば、上
述のように水素生成槽内にて酸性水溶液が流動し循環す
ることにより、水素生成槽内における酸性水溶液の液質
は、水素生成槽内において金属表面付近と金属より離れ
た箇所であまり不均一なものになることのない比較的均
一なものとなり易く、また金属の表面も全体的に均一に
変化するようになり、結果として、水素生成槽からの水
素の発生効率を高く維持させることができるようになる
ことを期待することもできる。
Further, in the conventional technique, the surface of the solution and the metal change as the reaction proceeds in the acidic aqueous solution, and the hydrogen generation efficiency decreases. When the acidic aqueous solution flows and circulates in the hydrogen generation tank, the quality of the acidic aqueous solution in the hydrogen generation tank becomes very uneven near the metal surface in the hydrogen generation tank and at a location apart from the metal. It is easy to obtain a relatively uniform surface, and the surface of the metal also changes uniformly throughout.As a result, it is possible to maintain a high hydrogen generation efficiency from the hydrogen generation tank. You can also expect.

【0009】請求項2記載の発明の特徴構成は、前記請
求項1記載の特徴構成に加えて、図1〜3に例示するご
とく、前記液循環路3を設けるにあたり、前記水素生成
槽1内に貯留される酸性水溶液Aを、その水素生成槽1
の頂部からオーバーフロー可能に構成し、そのオーバー
フローさせた酸性水溶液Aを受け止めて貯留可能な受液
部16を、前記水素生成槽1の外周のまわりに設けると
ともに、前記受液部16に貯留された酸性水溶液Aを前
記水素生成槽1内の前記底部へと送る送り流路33を設
けてあるところにある。
In addition to the characteristic structure of the first aspect, the characteristic structure of the second aspect of the invention is such that the liquid circulation passage 3 is provided in the hydrogen generating tank 1 as illustrated in FIGS. The acidic aqueous solution A stored in the hydrogen generating tank 1
A liquid receiving portion 16 that is configured to be overflowable from the top of the hydrogen generating tank 1 and that can receive and store the overflowed acidic aqueous solution A is provided around the outer periphery of the hydrogen generating tank 1 and is stored in the liquid receiving portion 16. This is where a feed passage 33 is provided for sending the acidic aqueous solution A to the bottom of the hydrogen generating tank 1.

【0010】〔作用効果〕本構成によれば、水素生成槽
内の酸性水溶液中にて生成される水素の気泡が、液循環
路の酸性水溶液中に混入するおそれを低減させることが
できるため、先述の請求項1記載の作用効果をより確実
に享受して、水素発生効率をより確実に向上させること
ができる。
[Operation and Effect] According to this configuration, it is possible to reduce the possibility that bubbles of hydrogen produced in the acidic aqueous solution in the hydrogen production tank are mixed in the acidic aqueous solution in the liquid circulation path. The effect of claim 1 described above can be more reliably enjoyed, and the hydrogen generation efficiency can be more reliably improved.

【0011】つまり、水素生成槽内に貯留される酸性水
溶液は、その水素生成槽の頂部から一旦オーバーフロー
されてから、液循環路を構成する受液部に供給されるこ
ととなるため、水素生成槽内の酸性水溶液中にて生成さ
れる水素の気泡は、その酸性水溶液の液面まで浮上する
浮上作用があまり妨げられることなく、確実に液面まで
浮上し酸性水溶液中から分離されて、水素生成槽から水
素が発生され易くなる。このため、受液部に供給される
酸性水溶液中に水素の気泡が混入する割合は低下され、
液循環路中に水素の気泡が混入するおそれは低減される
のである。
That is, since the acidic aqueous solution stored in the hydrogen generating tank is once overflowed from the top of the hydrogen generating tank and then supplied to the liquid receiving portion constituting the liquid circulation path, the hydrogen generating solution is generated. The bubbles of hydrogen generated in the acidic aqueous solution in the tank float up to the liquid surface of the acidic aqueous solution without being significantly hindered and are reliably separated and separated from the acidic aqueous solution. Hydrogen is easily generated from the production tank. Therefore, the proportion of hydrogen bubbles mixed in the acidic aqueous solution supplied to the liquid receiving section is reduced,
The risk of hydrogen bubbles being mixed in the liquid circulation path is reduced.

【0012】しかも、かかる受液部は、水素生成槽から
オーバーフローさせた酸性水溶液を単に受け止めるだけ
ではなく、貯留可能に構成してあるので、受液部に供給
される酸性水溶液は、すぐに循環されることなくある程
度の期間かかる受液部にて貯留される。このため、仮に
水素生成槽からオーバーフローさせた酸性水溶液中に水
素の気泡が混入していたとしても、水素の気泡は、受液
部にて貯留される間に外気との接触界面である液面まで
浮上することにより、かかる酸性水溶液中からより多く
分離される。よって、液循環路中に混入した水素の気泡
を酸性水溶液中から分離することにより、液循環路中に
混入する水素の気泡の割合を低減できるとともに、受液
部からも水素を発生させることができるようになる。
Moreover, since the liquid receiving portion is constructed so as to store not only the acidic aqueous solution overflowed from the hydrogen generating tank but also the acidic aqueous solution supplied to the liquid receiving portion, it is immediately circulated. It is stored in the liquid receiving part that takes a certain period of time without being stored. Therefore, even if hydrogen bubbles are mixed in the acidic aqueous solution that overflows from the hydrogen generation tank, the hydrogen bubbles will remain on the liquid surface that is the contact interface with the outside air while being stored in the liquid receiving section. By being floated up to, more is separated from the acidic aqueous solution. Therefore, by separating the bubbles of hydrogen mixed in the liquid circulation path from the acidic aqueous solution, it is possible to reduce the proportion of bubbles of hydrogen mixed in the liquid circulation path and also to generate hydrogen from the liquid receiving section. become able to.

【0013】尚、受液部に貯留された酸性水溶液は、送
り流路により水素生成槽内の底部へと送られて循環され
るため、先述の如く、水素生成槽内では液流動路が形成
されることにより水素の気泡の液面への浮上作用が促進
される。
Since the acidic aqueous solution stored in the liquid receiving section is sent to the bottom of the hydrogen generating tank by the sending channel and circulated, a liquid flow path is formed in the hydrogen generating tank as described above. As a result, the floating action of hydrogen bubbles on the liquid surface is promoted.

【0014】従って、水素の気泡が液循環路の酸性水溶
液中に滞留するおそれを低減させて、水素発生効率をよ
り確実に向上させることができる。
Therefore, it is possible to reduce the possibility that hydrogen bubbles will stay in the acidic aqueous solution in the liquid circulation path, and to more reliably improve the hydrogen generation efficiency.

【0015】さらに、以上のように液循環路の酸性水溶
液中に水素の気泡が滞留するおそれを低減できるため、
例えば液循環路中の送り流路中に液循環用ポンプを設け
て酸性水溶液を循環させる場合には、次のような利点が
ある。つまり、かかる液循環用ポンプ中に酸性水溶液と
共に気泡が混入し難くなるため、所定設定量の酸性水溶
液を安定して循環することができ、また、循環用ポンプ
に気泡がからまり難くその回転を正常に維持することが
できる。その結果、高い水素発生効率を安定維持させる
ことができる。
Further, since it is possible to reduce the possibility that hydrogen bubbles stay in the acidic aqueous solution in the liquid circulation path as described above,
For example, when a liquid circulation pump is provided in the feed passage in the liquid circulation passage to circulate the acidic aqueous solution, there are the following advantages. That is, since bubbles are less likely to be mixed with the acidic aqueous solution in the liquid circulation pump, it is possible to stably circulate a predetermined set amount of the acidic aqueous solution, and it is difficult for bubbles to be entangled in the circulation pump to prevent its rotation. Can be maintained normally. As a result, the high hydrogen generation efficiency can be stably maintained.

【0016】請求項3記載の発明の特徴構成は、上記請
求項1又は2記載の特徴構成に加えて、図1〜5に例示
するごとく、前記水素発生体を前記酸性水溶液中に浸漬
させるにあたり、互いにイオン化傾向の異なる異種金属
M1,M2どうしを電気的に接続させた状態にて浸漬さ
せてあるところにある。
In addition to the characteristic constitution of the above-mentioned claim 1 or 2, the characteristic constitution of the invention according to claim 3 is such that, as illustrated in FIGS. 1 to 5, the hydrogen generator is immersed in the acidic aqueous solution. The dissimilar metals M1 and M2 having different ionization tendencies are immersed in a state of being electrically connected to each other.

【0017】〔作用効果〕このようなイオン化傾向の異
なる異種金属どうしを電気的に接続させた状態にて酸性
水溶液中に浸漬すると、それらのイオン化傾向の相違に
基づき、異種金属のうちよりイオン化傾向の小さい方で
酸化反応が促進される一方、イオン化傾向の大きい方で
は酸性水溶液からの水素生成の還元反応が促進されるこ
ととなる。故に、結果として、水素生成槽からの水素発
生を促進し、短時間に多量の水素を発生させることがで
きるようになる。
[Operation and Effect] When different metals having different ionization tendencies are immersed in an acidic aqueous solution in a state of being electrically connected to each other, the difference in ionization tendency causes a difference in ionization tendency among different metals. The smaller the value, the more the oxidation reaction is promoted, while the one having a larger ionization tendency accelerates the reduction reaction of hydrogen generation from the acidic aqueous solution. Therefore, as a result, hydrogen generation from the hydrogen generation tank can be promoted, and a large amount of hydrogen can be generated in a short time.

【0018】請求項4記載の発明の特徴構成は、上記請
求項1〜3の何れか1項に記載の特徴構成に加えて、前
記酸性水溶液として、クエン酸、グリシン、ケイ皮酸、
コハク酸、サリチル酸、ギ酸、グルタミン酸、アスコル
ビン酸、シュウ酸、酒石酸、乳酸、酢酸、硫酸、塩酸、
硝酸のうちの少なくとも1種を用いてあるところにあ
る。
In addition to the characterizing features according to any one of claims 1 to 3 above, the characterizing feature of the invention according to claim 4 is, as the acidic aqueous solution, citric acid, glycine, cinnamic acid,
Succinic acid, salicylic acid, formic acid, glutamic acid, ascorbic acid, oxalic acid, tartaric acid, lactic acid, acetic acid, sulfuric acid, hydrochloric acid,
It is where at least one of nitric acid is used.

【0019】〔作用効果〕酸性水溶液として、クエン
酸、グリシン、ケイ皮酸、コハク酸、サリチル酸、ギ
酸、グルタミン酸、アスコルビン酸、シュウ酸、酒石
酸、乳酸、酢酸、硫酸、塩酸、硝酸等の比較的に入手し
やすいものを利用することで、簡易にかつ経済的に水素
を発生させることができる。
[Action and effect] As an acidic aqueous solution, citric acid, glycine, cinnamic acid, succinic acid, salicylic acid, formic acid, glutamic acid, ascorbic acid, oxalic acid, tartaric acid, lactic acid, acetic acid, sulfuric acid, hydrochloric acid, nitric acid, etc. It is possible to easily and economically generate hydrogen by using a readily available material.

【0020】請求項5記載の発明の特徴構成は、請求項
1〜4の何れかに記載の水素発生装置に使用する水素発
生体であって、前記金属としてマグネシウム金属又はそ
の合金を備えるところにある。
According to a fifth aspect of the present invention, there is provided a hydrogen generator for use in the hydrogen generator according to any one of the first to fourth aspects, wherein magnesium metal or an alloy thereof is provided as the metal. is there.

【0021】〔作用効果〕前記金属としてマグネシウム
金属又はその合金を用いると、イオン化傾向が非常に大
きく、しかも、酸性水溶液と接触する金属表面が変質し
難いため長期的に安定して水素を発生し、その結果、他
の金属に比べると多量の水素発生量を得ることができる
(図9参照)。
[Operation and Effect] When magnesium metal or an alloy thereof is used as the above-mentioned metal, the ionization tendency is very large and the surface of the metal in contact with the acidic aqueous solution is hard to be modified, so that hydrogen is stably generated for a long period of time. As a result, a large amount of hydrogen can be obtained as compared with other metals (see FIG. 9).

【0022】尚、上述のように、図面との対照を便利に
するために符号を記したが、該記入により本発明は添付
図面の構成に限定されるものではない。
As mentioned above, the reference numerals are given for the sake of convenience in comparison with the drawings, but the present invention is not limited to the constructions of the accompanying drawings by the entry.

【0023】[0023]

【発明の実施の形態】以下に本発明に係る水素生成装置
の一実施形態について、図1,2を参照しながら説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a hydrogen generator according to the present invention will be described below with reference to FIGS.

【0024】前記水素発生装置は、図1,2に示すよう
に、酸性水溶液Aを貯留可能な貯留部(水素生成槽に相
当)1を備える装置本体2と、貯留部1に貯留される酸
性水溶液Aを貯留部1の上部から外へ取り出してから貯
留部1内の底部へと送る液循環路3と、その装置本体2
の上端側を気密に封止するための上蓋4と、装置本体2
の下端側を水密に封止するための下蓋5とを設けて、構
成される。
As shown in FIGS. 1 and 2, the hydrogen generator comprises an apparatus main body 2 having a storage portion (corresponding to a hydrogen generation tank) 1 capable of storing the acidic aqueous solution A, and an acid storage portion 1 A liquid circulation path 3 that takes out the aqueous solution A from the upper part of the storage part 1 to the outside and then to the bottom part in the storage part 1, and a device main body 2 thereof.
Upper lid 4 for hermetically sealing the upper end side of the
And a lower lid 5 for water-tightly sealing the lower end side of the.

【0025】まず、前記水素発生装置の構造について以
下説明する。
First, the structure of the hydrogen generator will be described below.

【0026】前記装置本体2は、図1に示すように、円
筒形状の第一周壁11と、その第一周壁を間隙を介して
取り囲む同じく円筒形状の第二周壁12と、第一周壁1
1の下部の一面にわたって形成される第一底壁13と、
第一周壁11と第二周壁12との間隙の下部にわたって
形成される第二底壁14とを設けて構成され、耐酸性材
料(例えばステンレス鋼やポリプロピレン樹脂やアクリ
ル樹脂やフッ素系樹脂やガラス等)から形成されてい
る。
As shown in FIG. 1, the apparatus main body 2 includes a cylindrical first peripheral wall 11, a second cylindrical peripheral wall 12 surrounding the first peripheral wall with a gap, and a first peripheral wall 12. Wall 1
A first bottom wall 13 formed over one surface of the lower part of 1,
A second bottom wall 14 that is formed over the lower part of the gap between the first peripheral wall 11 and the second peripheral wall 12 is provided, and an acid resistant material (for example, stainless steel, polypropylene resin, acrylic resin, fluorine resin, or glass) is used. Etc.).

【0027】前記貯留部(水素生成槽に相当)1は、図
1に示すように、第一周壁11と第一底壁13とから構
成され、第一周壁11及び第一底壁13とで囲まれた空
間に酸性水溶液を貯留することができ、図2に示すよう
に、かかる貯留部1に、酸性水溶液Aを貯留可能、且
つ、その酸性水溶液A中に水素発生体として水素よりも
イオン化傾向の大きな金属M1(例えば亜鉛)を浸漬可
能に構成してある。
As shown in FIG. 1, the storage part (corresponding to a hydrogen production tank) 1 is composed of a first peripheral wall 11 and a first bottom wall 13, and the first peripheral wall 11 and the first bottom wall 13 are formed. The acidic aqueous solution can be stored in the space surrounded by, and as shown in FIG. 2, the acidic aqueous solution A can be stored in the storage portion 1 and hydrogen can be stored in the acidic aqueous solution A as a hydrogen generator. Also, the metal M1 (for example, zinc) having a large ionization tendency can be immersed.

【0028】また、前記第一底壁13は、第一周壁11
の下部の一面にわたって設けてあれば如何なる形態でも
よく、例えば、第一周壁11の下端部分を結ぶように設
けてあってもよいが、図1,2に示す本実施形態の如
く、第一底壁13の下方に所定容積の隙間空間からなる
酸性水溶液の供給用空間を形成するとともに、第一底壁
13に多数の貫通孔15を形成する方がより好ましい。
The first bottom wall 13 is the first peripheral wall 11
Any form may be used as long as it is provided over the lower surface of the first peripheral wall 11, for example, it may be provided so as to connect the lower end portion of the first peripheral wall 11, but as in the present embodiment shown in FIGS. It is more preferable to form a space for supplying the acidic aqueous solution, which is a gap space having a predetermined volume, below the bottom wall 13 and form a large number of through holes 15 in the first bottom wall 13.

【0029】つまり、前記液循環路3により循環される
酸性水溶液を貯留部1の底部に供給するにあたり、本実
施形態では、後述するようにかかる循環された酸性水溶
液が第一底壁13の下方から供給されるため、一例とし
て、第一底壁13を、第一周壁11の下端と段違いとな
るよう第一周壁11の下端よりも少し高い位置に設けて
前記供給用空間を形成するとともに、第一底壁13自体
に同心円状に多数の貫通孔15を形成してある。このた
め、液循環路3により循環される酸性水溶液が貯留部1
内へ供給される際に、液循環路3により第一底壁13の
下方から供給される酸性水溶液は、そのまま貯留部1内
へ進行するのではなく、貫通孔15の形成されていない
箇所の第一底壁13が障壁となり、前記供給用空間中に
て適度に分散され、貫通孔15を介して第一底壁13全
体から均一に貯留部1内に酸性水溶液が供給され易くな
る。従って、貯留部1内の全体にて、その底部から上部
に至る酸性水溶液の液流動路が均一に形成され易くなる
ため、貯留部1内の容積を有効に利用しながら金属を酸
性水溶液の液流動路中に浸漬させることができるように
なり、結果として、水素の発生効率を一層向上させるこ
とができる。
That is, when the acidic aqueous solution circulated through the liquid circulation path 3 is supplied to the bottom of the reservoir 1, in the present embodiment, the circulated acidic aqueous solution is below the first bottom wall 13 as will be described later. Therefore, as an example, the first bottom wall 13 is provided at a position slightly higher than the lower end of the first peripheral wall 11 so as to be offset from the lower end of the first peripheral wall 11 to form the supply space. At the same time, a large number of through holes 15 are concentrically formed in the first bottom wall 13 itself. Therefore, the acidic aqueous solution circulated through the liquid circulation path 3 is stored in the storage unit 1.
When supplied to the inside, the acidic aqueous solution supplied from below the first bottom wall 13 by the liquid circulation path 3 does not proceed into the storage part 1 as it is, but at an area where the through hole 15 is not formed. The first bottom wall 13 serves as a barrier, is appropriately dispersed in the supply space, and facilitates the uniform supply of the acidic aqueous solution from the entire first bottom wall 13 to the storage portion 1 through the through holes 15. Therefore, the liquid flow path of the acidic aqueous solution from the bottom portion to the upper portion is easily formed uniformly in the entire storage portion 1, so that the volume of the storage portion 1 can be effectively used while the liquid of the acidic aqueous solution of the metal is used. It becomes possible to immerse in the flow path, and as a result, the hydrogen generation efficiency can be further improved.

【0030】さらに、当該実施形態では、前記第一周壁
11の上端の高さ位置を、前記第二外周壁12の上端よ
りも低い位置に形成することで、貯留部1に貯留される
酸性水溶液Aが貯留部1の容積を超えると、酸性水溶液
Aが貯留部1の頂部からオーバーフロー可能となるよう
に構成してある。そして、そのオーバーフローさせた酸
性水溶液Aは、貯留部1の外周のまわりに設けられた受
液部16により受け止めて貯留される。つまり、当該実
施形態では、前記受液部16は、第一周壁11と第二周
壁12と第二底壁14とから構成され、第一周壁11と
第二周壁12と第二底壁14とで囲まれた空間にて貯留
部1からオーバーフローされた酸性水溶液が受け止めら
れて、貯留されることとなる。
Further, in this embodiment, by forming the height position of the upper end of the first peripheral wall 11 at a position lower than the upper end of the second outer peripheral wall 12, the acid stored in the storage section 1 is stored. When the aqueous solution A exceeds the volume of the storage section 1, the acidic aqueous solution A can overflow from the top of the storage section 1. Then, the overflowed acidic aqueous solution A is received and stored by the liquid receiving portion 16 provided around the outer periphery of the storage portion 1. That is, in the embodiment, the liquid receiving portion 16 is composed of the first peripheral wall 11, the second peripheral wall 12 and the second bottom wall 14, and the first peripheral wall 11, the second peripheral wall 12 and the second bottom wall. The acidic aqueous solution overflowing from the storage unit 1 is received and stored in the space surrounded by 14.

【0031】また、前記第二周壁12には、前記受液部
16内に貯留された酸性水溶液Aを受液部16の外に排
出可能とする排出口31を設けてある。因みに、当該実
施形態では、前記排出口31を設けるにあたり、図1に
示すように、受液部16の下部(例えば第二底壁14の
上端付近の周壁12)に設けてあり、次のような作用効
果を期待することもできる。つまり、受液部16には、
貯留部(水素生成槽)1の頂部からオーバーフローされ
た酸性水溶液が供給されるため、受液部16に貯留され
る酸性水溶液中に水素の気泡が混入している場合には、
貯留部1の液面まで浮上してきた比較的気泡径の大きな
水素の気泡が混入している割合が高いものと予測され
る。よって、受液部16に貯留される酸性水溶液に混入
している水素の気泡は比較的短時間で液面まで浮上し易
く、液面に近い上部付近よりも、受液部16の下部より
酸性水溶液を排出させる方が、その排出される酸性水溶
液中に水素の気泡が混入するおそれを低減させることが
できる。また、酸性水溶液が排出口31の高さ位置より
も上に多量にあることで、排出口31より酸性水溶液を
排出させるために要するエネルギーを低減させることも
でき、経済的である。
Further, the second peripheral wall 12 is provided with a discharge port 31 through which the acidic aqueous solution A stored in the liquid receiving section 16 can be discharged to the outside of the liquid receiving section 16. Incidentally, in the embodiment, when the discharge port 31 is provided, as shown in FIG. 1, it is provided in the lower portion of the liquid receiving portion 16 (for example, the peripheral wall 12 near the upper end of the second bottom wall 14). It is possible to expect various operational effects. In other words, in the liquid receiving section 16,
Since the overflowed acidic aqueous solution is supplied from the top of the storage section (hydrogen generation tank) 1, when hydrogen bubbles are mixed in the acidic aqueous solution stored in the liquid receiving section 16,
It is predicted that a high proportion of hydrogen bubbles having a relatively large bubble diameter that have floated to the liquid surface of the reservoir 1 are mixed. Therefore, the hydrogen bubbles mixed in the acidic aqueous solution stored in the liquid receiving section 16 easily float to the liquid surface in a relatively short time, and are more acidic than the lower portion of the liquid receiving section 16 than near the upper portion near the liquid surface. Discharging the aqueous solution can reduce the possibility that hydrogen bubbles are mixed in the discharged acidic aqueous solution. Further, since the acidic aqueous solution is in a large amount above the height position of the discharge port 31, the energy required to discharge the acidic aqueous solution from the discharge port 31 can be reduced, which is economical.

【0032】そして、以上のように構成される装置本体
2の下端には、Oリング17を介して、下蓋5を締め付
け固定自在にしてある。前記下蓋5は、断面ほぼコの字
状に形成するとともに、第二周壁12の外周側に形成さ
れる雄ネジ部に蝶合する雌ねじ部を、下蓋5の内周側に
形成してあり、下蓋5を取り付け固定することで、装置
本体2の下端を水密に封止可能となるように構成されて
いる。
The lower lid 5 can be fastened and fixed to the lower end of the apparatus main body 2 constructed as described above through an O-ring 17. The lower lid 5 has a substantially U-shaped cross section, and has a female screw portion that engages with a male screw portion formed on the outer peripheral side of the second peripheral wall 12 on the inner peripheral side of the lower lid 5. It is configured such that the lower end of the apparatus main body 2 can be watertightly sealed by attaching and fixing the lower lid 5.

【0033】さらに、当該実施形態では、前記下蓋5の
ほぼ中央部分に酸性水溶液の循環用の供給口32を設け
て、そして、その供給口32と前記排出口31とを循環
用ポンプPやバルブV等を介して結ぶ送り流路33を設
けてあり、受液部16にて貯留された酸性水溶液は、前
記送り流路33を介して、貯留部1内の底部へと送られ
るのである。尚、前記バルブVは、酸性水溶液を、貯留
部1と送り流路33間で循環させるだけでなく、貯留部
1に貯留される酸性水溶液を、排出流路34を介して外
に排出することができるようにも構成してある。
Further, in this embodiment, a supply port 32 for circulating the acidic aqueous solution is provided in the substantially central portion of the lower lid 5, and the supply port 32 and the discharge port 31 are connected to the circulation pump P or A feed passage 33 connected via a valve V or the like is provided, and the acidic aqueous solution stored in the liquid receiving portion 16 is sent to the bottom of the storage portion 1 via the feed passage 33. . The valve V not only circulates the acidic aqueous solution between the storage unit 1 and the feed passage 33, but also discharges the acidic aqueous solution stored in the storage unit 1 to the outside through the discharge passage 34. It is also configured to allow

【0034】一方、装置本体2の上端は上蓋4により気
密に封止できるように構成されており、当該実施形態で
は、図1に示すように、装置本体2の上端と上蓋4の下
端の間にOリング18を介して、締め付け部材19によ
り装置本体2と上蓋4とを締め付け固定する。つまり、
前記締め付け部材19はリング状に形成するとともに、
その内周側には、装置本体2の上部の外側及び上蓋4の
外側に形成される雄ねじ部に螺合する雌ねじ部を形成し
てあり、装置本体2の上端側と上蓋4の下端側をつき合
わせ締め付け固定自在にしてある。
On the other hand, the upper end of the apparatus main body 2 is constructed so as to be hermetically sealed by the upper lid 4, and in this embodiment, as shown in FIG. 1, between the upper end of the apparatus main body 2 and the lower end of the upper lid 4. The device body 2 and the upper lid 4 are fastened and fixed by the fastening member 19 via the O-ring 18. That is,
The tightening member 19 is formed in a ring shape,
On the inner peripheral side thereof, a female screw portion that is screwed into a male screw portion formed on the outside of the upper portion of the device body 2 and on the outside of the upper lid 4 is formed, and the upper end side of the device body 2 and the lower end side of the upper lid 4 are formed. Butt tightening and fixing are possible.

【0035】そして、前記上蓋4には、貯留部1から発
生した水素を外に取り出すための取り出し管21と、貯
留部1内に新規な酸性分(例えば硫酸等)を補充するた
めの補充管22とを設けてある。
On the upper lid 4, a take-out pipe 21 for taking out hydrogen generated from the storage part 1 to the outside, and a replenishing pipe for replenishing the storage part 1 with a new acidic component (for example, sulfuric acid). And 22 are provided.

【0036】次に、以上のように構成される水素発生装
置の作動について、簡単に説明する。
Next, the operation of the hydrogen generator configured as described above will be briefly described.

【0037】まず、予め補充管22或いは排出流路34
から貯留部1に所定設定容量の硫酸(酸性水溶液の一
例)を供給しておき、その酸性水溶液は、貯留部1内の
頂部からオーバーフローされることで貯留部1外へ取り
出され、受液部16及び送り流路33とを設けてある液
循環路3を経て、貯留部1内の底部へと送りもどされる
ことで、循環される。かかる循環により貯留部1内の酸
性水溶液にはその底部から上部に至る液流動路が形成さ
れ、その液流動路中に前記水素発生体のうち前記金属M
1からなる部分の少なくとも一部を浸漬させることで、
酸性水溶液中に水素の気泡が生成される。水素の気泡
が、酸性水溶液の液面まで浮上し酸性水溶液から分離す
ることで、取り出し管21から水素(H2)ガスが取り
出される。そして、その取り出された水素ガスを洗浄水
や活性炭等の触媒による浄化操作を行って、SOxや水
分等を除去し、クリーンな水素ガスを得ることができ、
燃料電池・水素ガス駆動装置・水素自給式のターボ発電
機・水素自給式のターボ発電機を利用した電気自動車や
コージェネレーションシステム等に利用することができ
る。
First, the replenishment pipe 22 or the discharge flow path 34 is previously prepared.
A predetermined set volume of sulfuric acid (an example of an acidic aqueous solution) has been supplied from the storage unit 1 to the storage unit 1, and the acidic aqueous solution is taken out of the storage unit 1 by overflowing from the top of the storage unit 1 to receive the liquid receiving unit. The liquid is circulated by being returned to the bottom of the reservoir 1 via the liquid circulation path 3 provided with 16 and the feed passage 33. Due to such circulation, a liquid flow path from the bottom to the upper part is formed in the acidic aqueous solution in the storage part 1, and the metal M of the hydrogen generator is included in the liquid flow path.
By immersing at least a part of the part consisting of 1,
Hydrogen bubbles are generated in the acidic aqueous solution. Hydrogen (H 2 ) gas is taken out from the take-out pipe 21 by the bubbles of hydrogen floating up to the surface of the acidic aqueous solution and separating from the acidic aqueous solution. Then, the hydrogen gas taken out is subjected to a purification operation with a catalyst such as washing water or activated carbon to remove SOx, water and the like, and clean hydrogen gas can be obtained.
It can be used for fuel cells, hydrogen gas drive devices, hydrogen self-contained turbo generators, electric vehicles using hydrogen self-contained turbo generators, and cogeneration systems.

【0038】前記酸性水溶液Aとしては、硫酸水溶液に
限らず、その他の塩酸・硝酸等の無機酸や、クエン酸・
グリシン・ケイ皮酸・コハク酸・サリチル酸・ギ酸・グ
ルタミン酸・アスコルビン酸・シュウ酸・酒石酸・乳酸
・酢酸等の有機酸の酸性水溶液を用いてもよい。また、
無機酸や有機酸は2種以上用いても良く、無機酸と有機
酸とを組み合わせて用いてもよい。
The acidic aqueous solution A is not limited to the sulfuric acid aqueous solution, but other inorganic acids such as hydrochloric acid and nitric acid, and citric acid.
An acidic aqueous solution of an organic acid such as glycine, cinnamic acid, succinic acid, salicylic acid, formic acid, glutamic acid, ascorbic acid, oxalic acid, tartaric acid, lactic acid, and acetic acid may be used. Also,
Two or more kinds of inorganic acids and organic acids may be used, or an inorganic acid and an organic acid may be used in combination.

【0039】前記金属M1としては、水素よりもイオン
化傾向の大きな金属であれば如何なるものを用いてもよ
く、例えば、亜鉛、マグネシウム、アルミニウム、及び
それらの合金を用いればよい。また、水素発生体として
単に金属M1からなるものを酸性水溶液中に浸漬させて
もよいが、少なくとも一部が水素よりもイオン化傾向の
大きな金属M1からなるものであればよく、当該実施形
態では一例として、図1,2に示すように、互いにイオ
ン化傾向の異なる異種金属どうし、つまり前記金属M1
と、イオン化傾向が金属M1とは異なる金属M2と、を
電気的に接続させた状態にて浸漬させてある。尚、図示
しないが、当該実施形態では、異種金属M1,M2は水
素生成槽1内に固定配置してある。尚、前記金属M2と
しては、金属M1よりもイオン化傾向が小さいものであ
れば如何なるものでもよいが、水素よりもイオン化傾向
の小さいものがより好ましく、例えば、銅を用いればよ
い。尚、電気的に接続させた状態とは、金属M1,M2
間で電子の授受ができれば如何なる形態でもよく、例え
ば、図1,2に示すように、金属M1と金属M2とを接
触(或いは接合)させればよく、例えば、塗布やめっき
や溶射等の方法を採用すればよい。
As the metal M1, any metal may be used as long as it has a greater ionization tendency than hydrogen. For example, zinc, magnesium, aluminum and alloys thereof may be used. Further, as the hydrogen generator, a substance simply made of the metal M1 may be immersed in the acidic aqueous solution, but at least a part of the substance may be made of the metal M1 having a greater ionization tendency than hydrogen. As shown in FIGS. 1 and 2, dissimilar metals having different ionization tendencies, that is, the metal M1
And a metal M2 having an ionization tendency different from that of the metal M1 are immersed in a state of being electrically connected. Although not shown, in the present embodiment, the dissimilar metals M1 and M2 are fixedly arranged in the hydrogen generation tank 1. As the metal M2, any metal having an ionization tendency smaller than that of the metal M1 may be used, but one having an ionization tendency smaller than hydrogen is more preferable, and for example, copper may be used. In addition, the state of being electrically connected means the metal M1, M2.
Any form may be used as long as electrons can be exchanged between them. For example, as shown in FIGS. 1 and 2, the metal M1 and the metal M2 may be brought into contact (or joined), for example, a method such as coating, plating, or thermal spraying. Should be adopted.

【0040】尚、貯留部1内の酸性水溶液中にて水素が
発生するにともなって、その酸性水溶液のpHが高くな
ると、水素生成効率が低下するため、貯留部1内の酸性
水溶液のpHが一定値以下の酸性を示すように、適宜、
補充管22から酸性分(例えば硫酸等)を貯留部1へ滴
下して補充すればよい。
When hydrogen is generated in the acidic aqueous solution in the storage part 1 and the pH of the acidic aqueous solution increases, the hydrogen production efficiency decreases, so that the pH of the acidic aqueous solution in the storage part 1 decreases. As appropriate to show acidity below a certain value,
An acidic component (for example, sulfuric acid or the like) may be dropped into the reservoir 1 from the replenishment pipe 22 to replenish it.

【0041】また、所定設定量の水素ガスを発生させる
と、金属M1の消耗や酸性水溶液の劣化が生じるので、
金属M1や酸性水溶液をそっくり交換する必要がある
が、当該実施形態では、水素発生装置から、装置本体2
を取り外し自在であるため、装置本体2を取り外し、か
かる交換操作を行うことができ、簡便である。例えば、
酸性水溶液の劣化した廃液を排出流路34から排出して
から、装置本体2を取り外し、そして、排出した廃液は
電解により金属を再生し再利用でき、一方その廃液は新
しい酸性水溶液によりpH調整し再利用することができ
る。尚、貯留部(水素生成槽)1内に廃液が貯留された
状態のまま取り外せるように構成しても勿論よい。
If a predetermined amount of hydrogen gas is generated, the metal M1 will be consumed and the acidic aqueous solution will deteriorate.
Although it is necessary to completely replace the metal M1 and the acidic aqueous solution, in the embodiment, from the hydrogen generator to the device main body 2
Since the device can be detached, the device main body 2 can be removed and the replacement operation can be performed, which is simple. For example,
After discharging the deteriorated waste solution of the acidic aqueous solution from the discharge flow path 34, the apparatus main body 2 is removed, and the discharged waste solution can be regenerated by regenerating metal by electrolysis, while the pH of the waste solution is adjusted by a new acidic aqueous solution. Can be reused. It should be noted that the waste liquid may be removed as it is stored in the storage unit (hydrogen generation tank) 1.

【0042】〔別実施形態〕以下に他の実施形態を説明
する。 〈1〉 先の実施形態では、水素生成槽(貯留部)1と
装置本体2とを一体に設けてある構成例について説明し
たが、例えば、図3に示すように、それらを別体で設
け、装置本体2から水素生成槽1を取り外し自在となる
ように構成してもよい。この場合、酸性水溶液や金属を
交換する際、水素発生槽1を取り外せばよいので、かか
る交換操作を一層簡便に行うことができる。尚、図3に
例示した構成では、第一周壁11を2重壁11a、11
bとし、内周側の第一周壁内周部11aが外周側の第一
周壁外周部11bに摺接自在となるように構成してあ
る。
[Other Embodiments] Other embodiments will be described below. <1> In the above embodiment, the hydrogen generation tank (reservoir) 1 and the apparatus main body 2 have been described as an example of the configuration, but, for example, as shown in FIG. 3, they are provided separately. The hydrogen generation tank 1 may be detachable from the apparatus body 2. In this case, when exchanging the acidic aqueous solution or the metal, the hydrogen generation tank 1 may be removed, so that the exchange operation can be performed more easily. In the configuration illustrated in FIG. 3, the first peripheral wall 11 is replaced by the double walls 11a, 11
b, the first peripheral wall inner peripheral portion 11a on the inner peripheral side is configured to be slidably contactable with the first peripheral wall outer peripheral portion 11b on the outer peripheral side.

【0043】〈2〉 先の実施形態では、液循環路3を
設けるにあたり、水素生成槽内に貯留される酸性水溶液
を、その水素生成槽の頂部からオーバーフロー可能に構
成するとともに、受液部と送り流路とを設ける構成例
(以下、単にオーバーフロー形式と略称する)について
説明したが、そのような構成に限らず、酸性水溶液を水
素生成槽の上部から槽外へ取り出してからその水素生成
槽内の底部へと送るように構成してあれば如何なる形態
でもよい。また、上蓋や下蓋なども必ずしも設ける必要
はなく、適宜、必要に応じて設ければよい。例えば、図
4に示すように、単に円筒箱状の水素生成槽1を設ける
とともに、その上部から槽外へ酸性水溶液Aを取り出し
てから、単に、底壁側から水素生成槽1へと送りもどす
ように構成(以下、単に非オーバーフロー形式と略称す
る)してもよく、水素生成槽1内の酸性水溶液Aは、排
出口35から液循環路3へと取り出されて、供給口32
から水素生成槽内へ送りもどされる。尚、酸性水溶液は
水素生成槽内の底部に送られるように構成してあればよ
く、底壁の下方から酸性水溶液を水素生成槽へと送る形
態に限らず、図示しないが、例えば周壁(底壁)側の底
壁付近から酸性水溶液を送るように構成してもよい。
<2> In the above embodiment, when the liquid circulation path 3 is provided, the acidic aqueous solution stored in the hydrogen generating tank is configured to overflow from the top of the hydrogen generating tank, and the liquid receiving section is provided. Although a configuration example (hereinafter simply referred to as an overflow type) provided with the feed passage has been described, the present invention is not limited to such a configuration, and the acidic aqueous solution is taken out from the upper part of the hydrogen generating tank to the outside of the hydrogen generating tank. Any form may be used as long as it is configured to be sent to the inner bottom. Further, the upper lid and the lower lid are not necessarily provided, and may be provided appropriately and as needed. For example, as shown in FIG. 4, a hydrogen generating tank 1 in the form of a cylindrical box is simply provided, and the acidic aqueous solution A is taken out of the tank from the upper part thereof and then simply sent back from the bottom wall side to the hydrogen generating tank 1. (Hereinafter, simply referred to as non-overflow type), the acidic aqueous solution A in the hydrogen generation tank 1 is taken out from the discharge port 35 to the liquid circulation path 3 and supplied to the supply port 32.
Is sent back to the hydrogen production tank. The acidic aqueous solution may be sent to the bottom of the hydrogen generating tank, and the acidic aqueous solution is not limited to being sent to the hydrogen generating tank from below the bottom wall. The acidic aqueous solution may be fed from near the bottom wall on the (wall) side.

【0044】〈3〉 これまで例示した構成では、液循
環路3は、酸性水溶液を取り出した水素生成槽自体にそ
のまま酸性水溶液を送りもどす構成について説明した
が、そのうな構成に限らず、液循環路3は、酸性水溶液
を水素生成槽の上部から槽外へ取り出してから水素生成
槽内の底部へと送るように設けてあればよい。例えば、
図5に示すように、水素生成槽1(1a,1b,1c)
を複数設け、ひとつの水素生成槽1aの上部からその槽
外へ酸性水溶液Aを取り出してから、その取り出した酸
性水溶液Aをその他の水素生成槽1bの底部へと送るよ
うに設けてもよい。この場合、結果として、複数の水素
生成槽1a,1b,1c各々にて用いられる酸性水溶液
が共通のものとなるため、水素生成槽1a,1b,1c
に貯留される酸性水溶液の液質が均一なものとなり、複
数の水素生成槽からばらつきなく水素が生成され、安定
して水素を発生させることができるようになることを期
待できる。尚、図には循環用ポンプPを夫々の水素生成
槽間に設けてある例を示すが、このように複数設ける構
成に限らず、適宜必要に応じた個数設ければよい。
<3> In the configuration exemplified so far, the liquid circulation path 3 has been described as a configuration in which the acidic aqueous solution is directly sent back to the hydrogen generating tank itself from which the acidic aqueous solution is taken out, but the liquid circulation path 3 is not limited to such a configuration, and the liquid circulation is not limited thereto. The passage 3 may be provided so that the acidic aqueous solution is taken out from the upper part of the hydrogen generating tank to the outside of the tank and then sent to the bottom part in the hydrogen generating tank. For example,
As shown in FIG. 5, hydrogen production tank 1 (1a, 1b, 1c)
A plurality of hydrogen generating tanks 1a may be provided, and the acidic aqueous solution A may be taken out from the upper part of one hydrogen generating tank 1a to the outside of the tank, and then the taken acidic aqueous solution A may be sent to the bottom of the other hydrogen generating tank 1b. In this case, as a result, the acidic aqueous solution used in each of the plurality of hydrogen generation tanks 1a, 1b, 1c becomes common, and therefore the hydrogen generation tanks 1a, 1b, 1c.
It can be expected that the acidic aqueous solution stored in the tank will have a uniform quality, the hydrogen will be generated from the plurality of hydrogen generation tanks without variation, and the hydrogen can be stably generated. Although the drawing shows an example in which the circulation pumps P are provided between the respective hydrogen generation tanks, the number of the circulation pumps P is not limited to this, and the number may be appropriately provided as needed.

【0045】〈4〉 また、先の実施形態では上蓋4に
補充管22を設けて新規な酸成分を補充する構成例につ
いて説明したが、そのような構成に限らず、例えば液循
環路にて新規な酸成分が補充されるように構成しても勿
論よい。そして、水素生成槽の形状は、先の実施形態に
て例示した円筒状のものに限ることなく、適宜必要に応
じた形状にすればよいのはいうまでもない。
<4> Further, in the above embodiment, the configuration example in which the replenishment pipe 22 is provided in the upper lid 4 to replenish a new acid component has been described. Of course, it may be configured so that a new acid component is replenished. Needless to say, the shape of the hydrogen generation tank is not limited to the cylindrical shape illustrated in the above embodiment, and may be any shape as needed.

【0046】〈5〉 異種金属M1,M2とを電気的に
接続させるにあたっては、先の実施形態で説明したよう
に、単に金属M1と金属M2を直接的に接触させるよ
り、図6の概略図に示すように、金属M1と金属M2と
の間に離間空間を設けた状態にて互いを導線8で接続さ
せるの方が好ましい。尚、導線8は、酸性水溶液中に浸
漬させない方がより好ましい。一例に、金属M1として
Zn、金属M2としてCu、酸性水溶液として硫酸を用
いて、 ZnとCuとを直接接触させた状態で全体を硫酸中
に浸漬 ZnとCuを導線で接続し、夫々の導線との接続箇
所及び導線が硫酸より外に配置されるように、ZnとC
uを硫酸中に浸漬(図6参照)の2種類の浸漬状態で
の、水素発生量を比較する試験を行った。尚、その他の
試験条件は、とも同一となるように設定して試験を
行った。その結果を、図7にしめす。図7からわかるよ
うに、確かに、条件に比べ条件の方が、体積比で
1.3倍の量の水素を得ることができることが確認され
た。
<5> When electrically connecting the dissimilar metals M1 and M2 to each other, the metal M1 and the metal M2 are not directly brought into direct contact with each other as described in the above embodiment, but the schematic diagram of FIG. As shown in, it is preferable that the metal M1 and the metal M2 are connected to each other by the conductive wire 8 in the state where the separated space is provided. In addition, it is more preferable that the conductive wire 8 is not immersed in the acidic aqueous solution. As an example, Zn is used as the metal M1, Cu is used as the metal M2, and sulfuric acid is used as the acidic aqueous solution. The whole is immersed in sulfuric acid in a state where Zn and Cu are directly contacted. Zn and C so that the connection point and the lead wire are located outside the sulfuric acid.
A test was conducted to compare the amount of hydrogen generated in two types of immersion states of u in sulfuric acid (see FIG. 6). The other test conditions were set to be the same, and the test was conducted. The result is shown in FIG. As can be seen from FIG. 7, it was confirmed that under the conditions, it is possible to obtain 1.3 times the volume of hydrogen in terms of volume ratio.

【0047】〈6〉 また、水素発生体を設けるにあた
り、水素よりもイオン化傾向が大きく且つイオン化傾向
の異なる複数種の金属を組み合わせて備えさせれば、そ
の複数種の金属の酸性水溶液中への浸漬状態を調節する
ことで、水素の発生量を調節することができ、利便であ
る。例えば、図8に示すように、金属M1として、水素
よりもイオン化傾向の大きな第一金属M1a(例えばZ
n)と、その金属M1aよりもイオン化傾向の大きな第
二金属M1b(例えばMg)とを設け、例えば塗布やめ
っきや溶射等の方法により、第一金属M1aを酸性水溶
液Aへの浸漬方向側よりに、その反対側よりに第二金属
M1bを配設する。すると、水素を多量に必要とすると
きには、金属M1のうち第一金属M1aからなる部分に
加え、第二金属M1bからなる部分をも浸漬させればよ
く、水素をあまり必要としないときには、単に金属M1
を引き上げるだけでよく、簡単に水素の発生量を調節す
ることができ好適である。
<6> Further, in providing the hydrogen generator, if plural kinds of metals having a larger ionization tendency and different ionization tendency than hydrogen are provided in combination, the plural kinds of metals can be mixed in an acidic aqueous solution. By adjusting the immersion state, the amount of hydrogen generated can be adjusted, which is convenient. For example, as shown in FIG. 8, as the metal M1, a first metal M1a (for example, Z having a higher ionization tendency than hydrogen) is used.
n) and a second metal M1b (for example, Mg) having a greater ionization tendency than the metal M1a are provided, and the first metal M1a is immersed in the acidic aqueous solution A from the dipping direction side by, for example, a method such as coating, plating, or thermal spraying. Then, the second metal M1b is arranged on the opposite side. Then, when a large amount of hydrogen is required, not only the portion made of the first metal M1a in the metal M1 but also the portion made of the second metal M1b may be dipped. M1
Is preferable because the amount of hydrogen generated can be easily adjusted.

【0048】尚、図8では、一例として、第一金属M1
aを大径部と小径部とからなるように形成し、小径部の
うえに第二金属M1bを設けると共に、第一金属M1a
の小径部には、導線8をの一端を接続してある。
In FIG. 8, the first metal M1 is used as an example.
a is formed to have a large diameter portion and a small diameter portion, a second metal M1b is provided on the small diameter portion, and the first metal M1a
One end of the conductive wire 8 is connected to the small diameter portion of.

【0049】〈7〉 また、金属M1として、亜鉛(Z
n)金属を用いた場合と、マグネシウム(Mg)金属を
用いた場合とで、単位時間(min)あたりの水素発生
量を比較したところ、Mg金属はZn金属の場合よりも
約5.6倍の水素発生量を得られることが確認された
(酸性水溶液は硫酸を使用、どちらもCu金属と電気的
に接続した状態にて酸性水溶液に浸漬、図9参照)。
尚、Cu金属と電気的に接続せずに、Mg金属のみを酸
性水溶液に浸漬して場合でも、Zn金属とCu金属の組
み合わせの場合に比べて、5.6倍近くの水素発生量を
得られた。また、水素発生量1000mlに対して必要
となる金属の質量は、Mg金属の場合はZn金属の場合
の約1/3であり、Mg金属を用いると装置の軽量化を
図ることも可能となる。
<7> Further, as the metal M1, zinc (Z
n) When the amount of hydrogen generated per unit time (min) was compared between the case of using metal and the case of using magnesium (Mg) metal, Mg metal was about 5.6 times that in the case of Zn metal. It was confirmed that the hydrogen generation amount was obtained (sulfuric acid was used as the acidic aqueous solution, both were soaked in the acidic aqueous solution while electrically connected to Cu metal, see FIG. 9).
Even when only Mg metal was immersed in an acidic aqueous solution without electrically connecting to Cu metal, a hydrogen generation amount of about 5.6 times was obtained as compared with the case of combining Zn metal and Cu metal. Was given. Further, the mass of metal required for 1000 ml of hydrogen generation is about 1/3 of that of Zn metal in the case of Mg metal, and the use of Mg metal also makes it possible to reduce the weight of the device. .

【0050】〈8〉 図10に示すように、水素生成槽
1に貯留される酸性水溶液Aの液面又は液面近傍に、水
素ガスを透過し易い材質のもの(例えば不織布)からな
る液面安定膜10を設けてもよい。例えば、水素発生装
置を自動車等の移動体に搭載して用いる場合には、その
移動体の移動等にともなって水素発生装置が振動するこ
となどで、水素発生槽に貯留される酸性水溶液の液面が
変動してしまい、水素発生量の急激な低下が発生するお
それがあるが、上記のように液面安定膜10を設けてお
けば、酸性水溶液の液面の変動(例えば液面の上下動や
波立ちなど)が生じにくくなり、その酸性水溶液の水位
が変動することを抑制することができ、その結果、金属
M1(或いは異種金属M1,M2)と酸性水溶液との接
触面積を安定に維持させ、水素発生量を安定化させるこ
とができる。また、液面安定膜10を設けることで、取
り出し管21から取り出される水素に、酸性水溶液が混
入するおそれを低減し、より安定して水素を取り出すこ
とができるようにもなる。尚、この場合にも前記〈2〉
にて説明した如く、液循環路3を設けるにあたり、オー
バーフロー形式・非オーバーフロー形式のいずれの構成
にしてもよいが、例えば、オーバーフロー形式の場合に
は、前記液面安定膜10として酸性水溶液を透過性が高
い材質のものを採用すれば、より安定して酸性水溶液を
循環させることができ、一方、非オーバーフロー形式の
場合には、前記液面安定膜10として酸性水溶液を透過
性が低い材質のものを採用すれば、取り出し管21から
取り出される水素に酸性水溶液が混入するおそれをより
確実に低減させることができる。
<8> As shown in FIG. 10, the liquid surface of the acidic aqueous solution A stored in the hydrogen generating tank 1 or near the liquid surface is made of a material (for example, non-woven fabric) that easily permeates hydrogen gas. The stable film 10 may be provided. For example, when the hydrogen generator is used by being mounted on a moving body such as an automobile, the hydrogen generator vibrates as the moving body moves, and the like The surface may fluctuate, and the amount of hydrogen generated may drop sharply. However, if the liquid level stabilizing film 10 is provided as described above, fluctuations in the level of the acidic aqueous solution (for example, above and below the level). It is possible to suppress the fluctuation of the water level of the acidic aqueous solution, and as a result, the contact area between the metal M1 (or the dissimilar metals M1 and M2) and the acidic aqueous solution is stably maintained. It is possible to stabilize the hydrogen generation amount. Further, by providing the liquid surface stabilizing film 10, it is possible to reduce the risk that the acidic aqueous solution is mixed into the hydrogen taken out from the taking-out pipe 21, and to more stably take out the hydrogen. Even in this case, the above <2>
As described above, when the liquid circulation path 3 is provided, either the overflow type or the non-overflow type may be used. For example, in the case of the overflow type, the liquid surface stabilizing film 10 permeates an acidic aqueous solution. If a material having a high property is adopted, the acidic aqueous solution can be circulated more stably. On the other hand, in the case of the non-overflow type, the liquid surface stabilizing film 10 is made of a material having a low permeability. If one is adopted, it is possible to more surely reduce the risk that the acidic aqueous solution is mixed with hydrogen taken out from the taking-out pipe 21.

【0051】〈9〉 そして、水素発生槽中に貯留され
る酸性水溶液のpHと温度による水素発生速度の変化に
ついて調べた。その結果を図11,12に示す。図11
に異種金属Zn,Cuを電気的に接続した状態で酸性水
溶液中に浸漬した場合を、図12に異種金属Mg,Cu
を電気的に接続した状態で酸性水溶液中に浸漬した場合
を示す。尚、いずれも酸性水溶液の温度 20℃にて行
った。図11,12に示すように、酸性水溶液のpHが
高くなるほど、水素の発生速度は遅くなる傾向のあるこ
とがわかった。また、図11,12からわかるように、
酸性水溶液のpHが低いほど水素の発生速度が大きくな
るので、短時間に多量の水素を必要とする場合には、酸
性水溶液を比較的低いpH域に維持されるように制御す
ればよく、例えば、Zn金属のときには、pHを0.5
以下に、Mg金属のときには、pHを0.9以下に維持
すればよい(図11,12(イ)参照)。一方、長時間
にわたって一定量の水素を安定して必要とする場合に
は、酸性水溶液を比較的高いpH域に維持されるように
制御すれば、pHが変動しても水素発生速度があまり変
化しないため好適であり、例えば、Zn金属のときに
は、pHを0.5〜0.7の範囲に、Mg金属のときに
は、pHを1.04〜1.1の範囲に維持されるように
制御すればよい(図11,12(ロ)参照)。また、図
13に示すように、酸性水溶液の温度が、5℃,20
℃,30℃,60℃と高い方が、水素の発生速度は速く
なることがわかった(試験条件:異種金属Zn,Cuを
電気的に接続した状態で酸性水溶液中に浸漬、pH
0.5)。よって、各種の使用形態に応じて、酸性水溶
液のpHと温度を夫々所定の値に設定し、水素の発生速
度や発生量を調節することができる。
<9> Then, changes in the hydrogen generation rate depending on the pH and temperature of the acidic aqueous solution stored in the hydrogen generation tank were investigated. The results are shown in FIGS. Figure 11
When the dissimilar metals Zn and Cu are electrically connected to each other and immersed in an acidic aqueous solution, the dissimilar metals Mg and Cu are shown in FIG.
The figure shows the case where the sample is immersed in an acidic aqueous solution in a state of being electrically connected. In addition, in all cases, the temperature of the acidic aqueous solution was 20 ° C. As shown in FIGS. 11 and 12, it was found that the higher the pH of the acidic aqueous solution, the slower the hydrogen generation rate. Also, as can be seen from FIGS.
The lower the pH of the acidic aqueous solution, the higher the rate of hydrogen generation. Therefore, when a large amount of hydrogen is required in a short time, the acidic aqueous solution may be controlled to be maintained in a relatively low pH range. , Zn metal, the pH is 0.5
Below, in the case of Mg metal, the pH may be maintained at 0.9 or less (see FIGS. 11 and 12 (a)). On the other hand, when a certain amount of hydrogen is required stably over a long period of time, controlling the acidic aqueous solution to maintain a relatively high pH range will result in a significant change in the hydrogen generation rate even if the pH changes. Therefore, it is preferable that the pH of Zn metal is controlled in the range of 0.5 to 0.7, and that of Mg metal is controlled in the range of 1.04 to 1.1. All you have to do is (see Fig. 11 and 12 (b)). As shown in FIG. 13, the temperature of the acidic aqueous solution is 5 ° C., 20 ° C.
It was found that the higher the temperature was ℃, 30 ℃, 60 ℃, the higher the hydrogen generation rate (test conditions: different metals Zn and Cu were electrically connected, immersed in an acidic aqueous solution, pH
0.5). Therefore, the pH and the temperature of the acidic aqueous solution can be set to predetermined values respectively according to various usage patterns, and the generation rate and the generation amount of hydrogen can be adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水素発生装置の一実施形態を示す
説明図
FIG. 1 is an explanatory view showing an embodiment of a hydrogen generator according to the present invention.

【図2】本発明に係る水素発生装置の一実施形態を示す
断面図
FIG. 2 is a sectional view showing an embodiment of a hydrogen generator according to the present invention.

【図3】本発明に係る水素発生装置の別の実施形態を示
す断面図
FIG. 3 is a sectional view showing another embodiment of the hydrogen generator according to the present invention.

【図4】本発明に係る水素発生装置の別実施形態を示す
断面図
FIG. 4 is a sectional view showing another embodiment of the hydrogen generator according to the present invention.

【図5】本発明に係る水素発生装置の別実施形態を示す
概略説明図
FIG. 5 is a schematic explanatory view showing another embodiment of the hydrogen generator according to the present invention.

【図6】本発明に係る水素発生装置の別実施形態を示す
概略説明図
FIG. 6 is a schematic explanatory view showing another embodiment of the hydrogen generator according to the present invention.

【図7】金属と異種金属との電気的接続状態による水素
発生量の比較を示す説明図
FIG. 7 is an explanatory diagram showing a comparison of hydrogen generation amounts depending on an electrically connected state of metal and dissimilar metal.

【図8】金属を酸性水溶液中へ浸漬状態の別実施形態を
示す説明図
FIG. 8 is an explanatory view showing another embodiment in which a metal is immersed in an acidic aqueous solution.

【図9】金属による水素発生量の比較を示す説明図FIG. 9 is an explanatory diagram showing a comparison of hydrogen generation amounts due to metals.

【図10】本発明に係る水素発生装置の別実施形態を示
す概略説明図
FIG. 10 is a schematic explanatory view showing another embodiment of the hydrogen generator according to the present invention.

【図11】水素生成槽に貯留される酸性水溶液のpHと
水素発生速度との関係を示す説明図
FIG. 11 is an explanatory diagram showing the relationship between the pH of the acidic aqueous solution stored in the hydrogen generation tank and the hydrogen generation rate.

【図12】水素生成槽に貯留される酸性水溶液のpHと
水素発生速度との関係を示す説明図
FIG. 12 is an explanatory diagram showing the relationship between the pH of the acidic aqueous solution stored in the hydrogen generation tank and the hydrogen generation rate.

【図13】水素生成槽に貯留される酸性水溶液の温度
(℃)と水素発生速度との関係を示す説明図
FIG. 13 is an explanatory diagram showing the relationship between the temperature (° C.) of the acidic aqueous solution stored in the hydrogen production tank and the hydrogen generation rate.

【図14】従来の水素発生装置を示す概略説明図FIG. 14 is a schematic explanatory view showing a conventional hydrogen generator.

【符号の説明】[Explanation of symbols]

1 水素生成槽 3 液循環路 16 受液部 33 送り流路 A 酸性水溶液 M1 金属(異種金属) M2 異種金属 1 Hydrogen production tank 3 liquid circulation path 16 Liquid receiving part 33 feed channel A acidic aqueous solution M1 metal (dissimilar metal) M2 dissimilar metals

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸性水溶液を貯留可能で、且つ、少なく
とも一部が水素よりもイオン化傾向の大きな金属からな
る水素発生体をその酸性水溶液中に浸漬可能に構成され
る水素生成槽を、備える水素発生装置であって、 前記酸性水溶液を前記水素生成槽の上部から槽外へ取り
出してから前記水素生成槽内の底部へと送る液循環路を
設け、前記水素生成槽内における前記底部から前記上部
に至る前記酸性水溶液の液流動路中に、前記水素発生体
のうち前記金属からなる部分の少なくとも一部を浸漬さ
せてある水素発生装置。
1. Hydrogen comprising a hydrogen generation tank capable of storing an acidic aqueous solution, and at least a part of which is made of a metal having a greater ionization tendency than hydrogen, can be immersed in the acidic aqueous solution. A generator, which is provided with a liquid circulation path for extracting the acidic aqueous solution from the upper part of the hydrogen generation tank to the outside of the hydrogen generation tank, and providing a liquid circulation path from the bottom part to the upper part in the hydrogen generation tank. A hydrogen generator in which at least a part of the metal part of the hydrogen generator is immersed in the liquid flow path of the acidic aqueous solution leading to.
【請求項2】 前記液循環路を設けるにあたり、 前記水素生成槽内に貯留される酸性水溶液を、その水素
生成槽の頂部からオーバーフロー可能に構成し、そのオ
ーバーフローさせた酸性水溶液を受け止めて貯留可能な
受液部を、前記水素生成槽の外周のまわりに設けるとと
もに、 前記受液部に貯留された酸性水溶液を前記水素生成槽内
の前記底部へと送る送り流路を設けてある請求項1記載
の水素発生装置。
2. When the liquid circulation path is provided, the acidic aqueous solution stored in the hydrogen generating tank is configured to overflow from the top of the hydrogen generating tank, and the overflowed acidic aqueous solution can be received and stored. 2. A liquid receiving part is provided around the outer periphery of the hydrogen generating tank, and a feed channel for sending the acidic aqueous solution stored in the liquid receiving part to the bottom part in the hydrogen generating tank is provided. The hydrogen generator described.
【請求項3】 前記水素発生体を前記酸性水溶液中に浸
漬させるにあたり、互いにイオン化傾向の異なる異種金
属どうしを電気的に接続させた状態にて浸漬させてある
請求項1又は2記載の水素発生装置。
3. The hydrogen generation according to claim 1, wherein when the hydrogen generator is immersed in the acidic aqueous solution, different metals having different ionization tendencies are electrically connected to each other. apparatus.
【請求項4】 前記酸性水溶液として、クエン酸、グリ
シン、ケイ皮酸、コハク酸、サリチル酸、ギ酸、グルタ
ミン酸、アスコルビン酸、シュウ酸、酒石酸、乳酸、酢
酸、硫酸、塩酸、硝酸のうちの少なくとも1種を用いて
ある請求項1〜3の何れか1項に記載の水素発生装置。
4. The at least one of citric acid, glycine, cinnamic acid, succinic acid, salicylic acid, formic acid, glutamic acid, ascorbic acid, oxalic acid, tartaric acid, lactic acid, acetic acid, sulfuric acid, hydrochloric acid, and nitric acid as the acidic aqueous solution. The hydrogen generator according to any one of claims 1 to 3, wherein a seed is used.
【請求項5】 請求項1〜4の何れかに記載の水素発生
装置に使用する水素発生体であって、前記金属としてマ
グネシウム金属又はその合金を備える水素発生体。
5. A hydrogen generator used in the hydrogen generator according to claim 1, wherein the hydrogen generator comprises magnesium metal or an alloy thereof as the metal.
JP2001206235A 2001-07-06 2001-07-06 Apparatus and element for generating hydrogen Pending JP2003020201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206235A JP2003020201A (en) 2001-07-06 2001-07-06 Apparatus and element for generating hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206235A JP2003020201A (en) 2001-07-06 2001-07-06 Apparatus and element for generating hydrogen

Publications (1)

Publication Number Publication Date
JP2003020201A true JP2003020201A (en) 2003-01-24

Family

ID=19042400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206235A Pending JP2003020201A (en) 2001-07-06 2001-07-06 Apparatus and element for generating hydrogen

Country Status (1)

Country Link
JP (1) JP2003020201A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298704A (en) * 2005-04-21 2006-11-02 Uchiya Thermostat Kk Hydrogen production method and apparatus therefor
WO2006127775A2 (en) * 2005-05-25 2006-11-30 Sud-Chemie Inc. Method and device and pure hydrogen generation from acidic solution
WO2008086595A1 (en) * 2007-01-18 2008-07-24 Alternate Energy Corporation Process for manufacturing hydrogen and monosodium glutamate
JP2008275589A (en) * 2007-04-25 2008-11-13 Samsung Electro Mech Co Ltd Fluid production computing device using electromagnetic induction theory, and fluid producing device capable of computing fluid production
JP2008273827A (en) * 2007-04-25 2008-11-13 Samsung Electro Mech Co Ltd Hydrogen generator and fuel cell generating system
JP2008285756A (en) * 2007-05-16 2008-11-27 Samsung Electro Mech Co Ltd Hydrogen generation apparatus and fuel cell power generation system
JP2008290928A (en) * 2007-05-24 2008-12-04 Liangfeng Plastic Machinery Co Method for producing hydrogen by using different metal
WO2009031578A1 (en) * 2007-09-05 2009-03-12 Hitachi Maxell, Ltd. Hydrogen-generating material composition, hydrogen-generating material molded body, and method for producing hydrogen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298704A (en) * 2005-04-21 2006-11-02 Uchiya Thermostat Kk Hydrogen production method and apparatus therefor
WO2006127775A2 (en) * 2005-05-25 2006-11-30 Sud-Chemie Inc. Method and device and pure hydrogen generation from acidic solution
WO2006127775A3 (en) * 2005-05-25 2007-02-15 Sued Chemie Inc Method and device and pure hydrogen generation from acidic solution
WO2008086595A1 (en) * 2007-01-18 2008-07-24 Alternate Energy Corporation Process for manufacturing hydrogen and monosodium glutamate
JP2008275589A (en) * 2007-04-25 2008-11-13 Samsung Electro Mech Co Ltd Fluid production computing device using electromagnetic induction theory, and fluid producing device capable of computing fluid production
JP2008273827A (en) * 2007-04-25 2008-11-13 Samsung Electro Mech Co Ltd Hydrogen generator and fuel cell generating system
JP2008285756A (en) * 2007-05-16 2008-11-27 Samsung Electro Mech Co Ltd Hydrogen generation apparatus and fuel cell power generation system
JP2008290928A (en) * 2007-05-24 2008-12-04 Liangfeng Plastic Machinery Co Method for producing hydrogen by using different metal
WO2009031578A1 (en) * 2007-09-05 2009-03-12 Hitachi Maxell, Ltd. Hydrogen-generating material composition, hydrogen-generating material molded body, and method for producing hydrogen

Similar Documents

Publication Publication Date Title
USRE39123E1 (en) Plating apparatus
JP4484414B2 (en) Method and apparatus for adjusting metal ion concentration in an electrolyte fluid, method of using the method and method of using the apparatus
JP2009030118A (en) Continuous electrolytic copper plating method
US20150008133A1 (en) Electrochemical deposition apparatus and methods for controlling the chemistry therein
US10227707B2 (en) Inert anode electroplating processor and replenisher
TWI553168B (en) Method and regeneration apparatus for regenerating a plating composition
JP2003020201A (en) Apparatus and element for generating hydrogen
US9816197B2 (en) Sn alloy plating apparatus and Sn alloy plating method
JPS6121315B2 (en)
JP2005509745A (en) Methods and means for generating hydrogen and oxygen
JP2710532B2 (en) Method for synthesizing palladium amine hydroxide compound
JP2014001117A (en) Hydrogen production apparatus and power generator
JP2003020202A (en) Apparatus for generating hydrogen
JP2011195926A (en) Electrolytic deposition apparatus and electrolytic deposition method
JP6344857B2 (en) Electrolysis system
JP4154121B2 (en) Method and apparatus for adjusting the concentration of a substance in an electrolyte
US5176808A (en) High current density continuous wire plating cell
US809089A (en) Process of making caustic alkali.
JP2009185383A (en) Feed mechanism for copper plating solution, copper plating apparatus using the same, and copper film-forming method
JP2008303417A (en) Plating film forming apparatus and plating film forming method
JP3110444U (en) Electrolytic recovery device for metal and electrolytic plating system
JP2010084195A (en) Copper plating system and copper plating method, and method of manufacturing electroplating liquid
US2976226A (en) Method of cathodic protection of tanks filled with sea-water using an applied voltage and means for execution of the method
JP2008133534A (en) Composition control device and composition control method for copper plating liquid
JP3157678U (en) Electrolytic plating system