JP2003017064A - Additive for nickel electrode active material of alkaline storage battery - Google Patents

Additive for nickel electrode active material of alkaline storage battery

Info

Publication number
JP2003017064A
JP2003017064A JP2001197900A JP2001197900A JP2003017064A JP 2003017064 A JP2003017064 A JP 2003017064A JP 2001197900 A JP2001197900 A JP 2001197900A JP 2001197900 A JP2001197900 A JP 2001197900A JP 2003017064 A JP2003017064 A JP 2003017064A
Authority
JP
Japan
Prior art keywords
cobalt
additive
compound
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001197900A
Other languages
Japanese (ja)
Inventor
Toshiki Tanaka
俊樹 田中
Yoshikatsu Otani
佳克 大谷
Tatsuo Isoya
達雄 礒谷
Tsugio Nakazawa
次夫 中澤
Takashi Ito
伊藤  隆
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2001197900A priority Critical patent/JP2003017064A/en
Publication of JP2003017064A publication Critical patent/JP2003017064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel electrode active material of an alkaline storage battery containing nickel hydroxide and at least one of cobalt and a cobalt compound, enhancing charging efficiency under high temperature and high-rate discharging characteristics at the same time. SOLUTION: This additive for a nickel electrode active material is added to the nickel electrode active material of the alkaline storage battery containing nickel hydroxide and at least one of cobalt and a cobalt compound contains an oxidizing treatment compound obtained by oxidizing treating a raw compound containing at least one element selected from an element group comprising ytterbium, erbium, lutetium, thulium, yttrium, strontium, and bismuth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池の
ニッケル電極活物質用添加材、特に、水酸化ニッケル
と、コバルトおよびコバルト化合物のうちの少なくとも
1つとを含む、アルカリ蓄電池のニッケル電極活物質に
対して添加される添加材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an additive for a nickel electrode active material of an alkaline storage battery, and more particularly to a nickel electrode active material of an alkaline storage battery containing nickel hydroxide and at least one of cobalt and a cobalt compound. The present invention relates to an additive added to the above.

【0002】[0002]

【従来の技術とその課題】電動工具やハイブリッド電気
自動車(HEV)等の大電流を必要とする装置に用いら
れる充放電用電源として、ニッケル水素蓄電池、ニッケ
ルカドミウム蓄電池およびニッケル亜鉛蓄電池などのア
ルカリ蓄電池が使用されており、その需要が急伸してい
る。
2. Description of the Related Art Alkaline storage batteries such as nickel-hydrogen storage batteries, nickel-cadmium storage batteries and nickel-zinc storage batteries are used as a charging / discharging power source for electric power tools, hybrid electric vehicles (HEV) and other devices that require a large current. Are being used and the demand for them is growing rapidly.

【0003】このようなアルカリ蓄電池の正極には、ニ
ッケル電極が用いられている。ニッケル電極としては、
これまで、ニッケル等の粉末を焼結した極板に水酸化ニ
ッケルを析出させた焼結式電極が主として用いられてき
たが、上述のような大電流を必要とする使用目的下での
需要急伸に伴い、最近では、焼結式電極に比べ、容量を
高め易く、しかも製造が容易なことから、高密度の球状
水酸化ニッケル粉末(活物質)に増粘剤等の添加剤を混
合して調製したスラリーを穿孔鋼板や発泡基板などの電
極に塗布または充填した非焼結式電極が多く用いられる
ようになりつつある。
A nickel electrode is used for the positive electrode of such an alkaline storage battery. As a nickel electrode,
Until now, sintered electrodes in which nickel hydroxide is deposited on an electrode plate obtained by sintering powder of nickel or the like have been mainly used, but the demand rapidly grows under the intended use requiring a large current as described above. With this, recently, compared with the sintered electrode, the capacity can be easily increased and the production is easy. Therefore, a high density spherical nickel hydroxide powder (active material) is mixed with an additive such as a thickener. Non-sintered electrodes, in which the prepared slurry is applied or filled into electrodes such as perforated steel plates and foamed substrates, are becoming popular.

【0004】しかし、非焼結式電極は、電極と活物質と
の距離が大きく、また、活物質同士の接触が不十分なた
め、導電性が小さく、焼結式電極に比べて高率放電特性
が劣る。このため、非焼結式電極用の活物質として、水
酸化ニッケルにコバルトまたはコバルト化合物を添加し
たものが種々提案されている(例えば、特開昭62−2
56366号公報)。このような活物質を用いた非焼結
式電極は、アルカリ電解液中において、コバルトまたは
コバルト化合物からコバルトイオンが溶出する。そし
て、溶出したコバルトイオンは、水酸化ニッケル粉末粒
子間などに緻密な水酸化物として析出する。この析出物
質およびコバルトイオンが、初充電時に導電性を有する
オキシ水酸化コバルトに変化し、電極の導電性を高め
る。この結果、この非焼結式電極の高率放電特性は、焼
結式電極程度に高まることになる。
However, since the non-sintered electrode has a large distance between the electrode and the active material and the contact between the active materials is insufficient, the non-sintered electrode has a low conductivity and has a higher discharge rate than the sintered electrode. Poor characteristics. For this reason, various active materials for non-sintered electrodes in which cobalt or a cobalt compound is added to nickel hydroxide have been proposed (for example, JP-A-62-2).
56366). In a non-sintered electrode using such an active material, cobalt ions are eluted from cobalt or a cobalt compound in an alkaline electrolyte. Then, the eluted cobalt ions are precipitated as a dense hydroxide between the nickel hydroxide powder particles. The deposited substance and cobalt ions are converted into cobalt oxyhydroxide having conductivity at the time of initial charging, and the conductivity of the electrode is enhanced. As a result, the high rate discharge characteristics of this non-sintered electrode are improved to the level of the sintered electrode.

【0005】また、非焼結式電極を備えたアルカリ蓄電
池は、充放電時に電池温度が高まるが、特に、充放電を
大電流で繰り返した場合、冷却が不十分なままの状態で
次の充放電過程へ移行せざるを得ない場合が多い。つま
り、このアルカリ蓄電池は、高温環境での使用頻度が高
まることになる。ところが、アルカリ蓄電池は、高温環
境下で充電した場合、水酸化ニッケルの酸化電位と充電
末期における酸素発生電位との差が小さくなるため、酸
化反応と酸素発生反応とが競合し、充電効率が低下す
る。特に、ハイブリッド電気自動車のように、アルカリ
蓄電池を組合せた組電池を用いる装置の場合、各アルカ
リ蓄電池の温度が一定しにくくなり、充電効率が低下し
やすい。このため、非焼結式電極用の活物質には、上述
のコバルトまたはコバルト化合物に加え、高温下におけ
る正極の充電末期の酸素発生電位を貴にシフトさせる効
果を有する元素の化合物がさらに添加されている(例え
ば、特開平5−28992号公報、特開平6−1509
25号公報、特開平8−195198号公報および特開
平9−92279号公報参照)。
In addition, an alkaline storage battery provided with a non-sintered electrode has a high battery temperature during charging and discharging, but especially when the charging and discharging are repeated with a large current, the next charging is performed with insufficient cooling. In many cases, there is no choice but to shift to the discharge process. That is, this alkaline storage battery is used more frequently in a high temperature environment. However, when the alkaline storage battery is charged in a high temperature environment, the difference between the oxidation potential of nickel hydroxide and the oxygen generation potential at the end of charging becomes small, so that the oxidation reaction and the oxygen generation reaction compete and the charging efficiency decreases. To do. In particular, in the case of a device that uses an assembled battery in which alkaline storage batteries are combined, such as a hybrid electric vehicle, the temperature of each alkaline storage battery becomes difficult to keep constant, and the charging efficiency tends to decrease. Therefore, in addition to the above-mentioned cobalt or cobalt compound, the active material for the non-sintered electrode is further added with a compound of an element having an effect of nobly shifting the oxygen generation potential at the end of charging of the positive electrode under high temperature. (For example, JP-A-5-28992 and JP-A-6-1509.
25, JP-A-8-195198, and JP-A-9-92279).

【0006】ところが、正極の酸素発生電位を貴にシフ
トさせる効果を有する元素の中には、アルカリ電解液中
における上述のコバルトまたはコバルト化合物からのコ
バルトイオンの溶出を妨げるものがある。このため、そ
のような元素を含む電極は、高温下における充電効率が
高まるものの、高率放電特性が極端に低下してしまう。
However, among the elements having the effect of nobly shifting the oxygen generation potential of the positive electrode, there are elements that hinder the elution of cobalt ions from the above-mentioned cobalt or cobalt compound in the alkaline electrolyte. Therefore, an electrode containing such an element has a high charging efficiency at high temperature, but the high rate discharge characteristic is extremely deteriorated.

【0007】本発明の目的は、水酸化ニッケルと、コバ
ルトおよびコバルト化合物のうちの少なくとも1つとを
含む、アルカリ蓄電池のニッケル電極活物質について、
高率放電特性と高温下での充電効率とを同時に高めるこ
とにある。
An object of the present invention is to provide a nickel electrode active material for an alkaline storage battery, which contains nickel hydroxide and at least one of cobalt and a cobalt compound.
It is to improve the high rate discharge characteristics and the charging efficiency at high temperature at the same time.

【0008】[0008]

【課題を解決するための手段】本発明のニッケル電極活
物質用添加材は、水酸化ニッケルと、コバルトおよびコ
バルト化合物のうちの少なくとも1つとを含む、アルカ
リ蓄電池のニッケル電極活物質に対して添加される添加
材であり、イッテルビウム、エルビウム、ルテチウム、
ツリウム、イットリウム、ストロンチウムおよびビスマ
スからなる元素群から選択された少なくとも1つの元素
を含む原料化合物を酸化処理して得られる酸化処理化合
物を含んでいる。
The additive for a nickel electrode active material of the present invention is added to a nickel electrode active material of an alkaline storage battery containing nickel hydroxide and at least one of cobalt and a cobalt compound. It is an additive that is used, including ytterbium, erbium, lutetium,
It contains an oxidation treatment compound obtained by subjecting a raw material compound containing at least one element selected from the element group consisting of thulium, yttrium, strontium and bismuth to an oxidation treatment.

【0009】ここで、酸化処理化合物は、例えば、原料
化合物をアルカリ金属水酸化物の水溶液中に浸漬して酸
化処理したものである。
Here, the oxidation-treated compound is, for example, one obtained by immersing a raw material compound in an aqueous solution of an alkali metal hydroxide and subjecting it to an oxidation treatment.

【0010】本発明の他の観点に係るニッケル電極活物
質用添加材は、同じく水酸化ニッケルと、コバルトおよ
びコバルト化合物のうちの少なくとも1つとを含む、ア
ルカリ蓄電池のニッケル電極活物質に対して添加される
添加材である。この添加材は、イッテルビウム、エルビ
ウム、ルテチウムおよびツリウムからなる元素群から選
ばれた少なくとも1つの元素を含み、コバルトのKα線
によるX線回折図においてd=0.885±0.008
nm、d=0.838±0.01nmおよびd=0.7
59±0.007nmに回折ピークを有する化合物を含
んでいる。
An additive for a nickel electrode active material according to another aspect of the present invention is added to a nickel electrode active material of an alkaline storage battery which also contains nickel hydroxide and at least one of cobalt and a cobalt compound. It is an added material. This additive contains at least one element selected from the group of elements consisting of ytterbium, erbium, lutetium and thulium, and d = 0.885 ± 0.008 in the X-ray diffraction diagram of cobalt Kα line.
nm, d = 0.838 ± 0.01 nm and d = 0.7
It contains a compound having a diffraction peak at 59 ± 0.007 nm.

【0011】本発明のさらに他の観点に係るニッケル電
極活物質用添加材は、同じく水酸化ニッケルと、コバル
トおよびコバルト化合物のうちの少なくとも1つとを含
む、アルカリ蓄電池のニッケル電極活物質に対して添加
される添加材である。この添加材は、ストロンチウムを
含み、コバルトのKα線によるX線回折図の2θ=5〜
85°の範囲においてd=0.354±0.002nm
およびd=0.248±0.001nmにそれぞれ第1
強度の回折ピークおよび第2強度の回折ピークを有する
化合物を含んでいる。
The additive for a nickel electrode active material according to still another aspect of the present invention is the same as the nickel electrode active material for an alkaline storage battery, which also contains nickel hydroxide and at least one of cobalt and a cobalt compound. It is an additive material to be added. This additive contains strontium, and 2θ = 5 in the X-ray diffraction diagram by Kα line of cobalt.
D = 0.354 ± 0.002 nm in the range of 85 °
And d = 0.248 ± 0.001 nm, respectively.
It includes a compound having an intensity diffraction peak and a second intensity diffraction peak.

【0012】本発明のさらに他の観点に係るニッケル電
極活物質用添加材は、同じく水酸化ニッケルと、コバル
トおよびコバルト化合物のうちの少なくとも1つとを含
む、アルカリ蓄電池のニッケル電極活物質に対して添加
される添加材である。この添加材は、ビスマスを含み、
コバルトのKα線によるX線回折図の2θ=5〜85°
の範囲において、d=0.326±0.002nm、d
=0.269±0.001nmおよびd=0.256±
0.001nmにそれぞれ第1強度の回折ピーク、第2
強度の回折ピークおよび第3強度の回折ピークを有しか
つ前記第2強度の回折ピークが前記第1強度の回折ピー
クの1/2以上の強度である化合物を含んでいる。
The additive for a nickel electrode active material according to still another aspect of the present invention is the same as the nickel electrode active material for an alkaline storage battery, which also contains nickel hydroxide and at least one of cobalt and a cobalt compound. It is an additive material to be added. This additive contains bismuth,
2θ = 5 to 85 ° of X-ray diffraction diagram by Kα ray of cobalt
In the range of d = 0.326 ± 0.002 nm, d
= 0.269 ± 0.001 nm and d = 0.256 ±
The first intensity diffraction peak at 0.001 nm, the second
A compound having an intensity diffraction peak and a third intensity diffraction peak, and the second intensity diffraction peak having an intensity that is 1/2 or more of the intensity of the first intensity diffraction peak is included.

【0013】本発明のさらに他の観点に係るニッケル電
極活物質用添加材は、同じく水酸化ニッケルと、コバル
トおよびコバルト化合物のうちの少なくとも1つとを含
む、アルカリ蓄電池のニッケル電極活物質に対して添加
される添加材である。この添加材は、イットリウムを含
み、コバルトのKα線によるX線回折図の2θ=5〜8
5°の範囲において、d=0.544±0.006nm
およびd=0.313±0.002nmに回折ピークを
有しかつd=0.544±0.006nmの回折ピーク
が前記範囲における最強ピークである化合物を含んでい
る。
The additive for a nickel electrode active material according to still another aspect of the present invention is the same as the nickel electrode active material for an alkaline storage battery, which also contains nickel hydroxide and at least one of cobalt and a cobalt compound. It is an additive material to be added. This additive contains yttrium and 2θ = 5 to 8 in the X-ray diffraction diagram by Kα line of cobalt.
In the range of 5 °, d = 0.544 ± 0.006 nm
And a compound having a diffraction peak at d = 0.313 ± 0.002 nm and a diffraction peak at d = 0.544 ± 0.006 nm being the strongest peak in the above range.

【0014】[0014]

【発明の実施の形態】本発明に係るアルカリ蓄電池のニ
ッケル電極活物質用添加材は、イッテルビウム(Y
b)、エルビウム(Er)、ルテチウム(Lu)、ツリ
ウム(Tm)、イットリウム(Y)、ストロンチウム
(Sr)およびビスマス(Bi)からなる元素群から選
択された少なくとも1つの元素を含む化合物(以下、添
加材化合物という)を含んでいる。
BEST MODE FOR CARRYING OUT THE INVENTION The additive for a nickel electrode active material of an alkaline storage battery according to the present invention is ytterbium (Y
b), a compound containing at least one element selected from the element group consisting of erbium (Er), lutetium (Lu), thulium (Tm), yttrium (Y), strontium (Sr) and bismuth (Bi) (hereinafter, It is called an additive material compound).

【0015】この添加材化合物は、例えば、イッテルビ
ウム、エルビウム、ルテチウム、ツリウム、イットリウ
ム、ストロンチウムおよびビスマスからなる元素群から
選択された少なくとも1つの元素を含む化合物(原料化
合物)を酸化処理して得られる酸化処理化合物である。
This additive material compound is obtained, for example, by subjecting a compound (raw material compound) containing at least one element selected from the element group consisting of ytterbium, erbium, lutetium, thulium, yttrium, strontium and bismuth (raw material compound) to oxidation treatment. It is an oxidation treatment compound.

【0016】ここで用いられる原料化合物は、通常、上
記元素群から選ばれた少なくとも1つの元素を含む酸化
物や水酸化物である。すなわち、原料化合物は、通常、
上記元素群から選ばれた1つの元素の酸化物や水酸化
物、または上記元素群から選ばれた2つ以上の元素の複
合酸化物や複合水酸化物である。なお、このような原料
化合物は、2種以上のものが適宜併用されてもよい。
The raw material compound used here is usually an oxide or hydroxide containing at least one element selected from the above element group. That is, the raw material compound is usually
It is an oxide or hydroxide of one element selected from the above element group, or a composite oxide or composite hydroxide of two or more elements selected from the above element group. In addition, two or more kinds of such raw material compounds may be appropriately used in combination.

【0017】上記酸化処理化合物は、上述の原料化合物
を酸化処理すると得られる。ここで、原料化合物が上述
の酸化物若しくは水酸化物の場合、酸化処理は、通常、
原料化合物をアルカリ金属水酸化物水溶液中、例えば、
水酸化ナトリウムや水酸化カリウムの水溶液中に浸漬し
て放置すると達成することができる。なお、アルカリ金
属水酸化物水溶液の濃度は、通常、25重量%〜40重
量%に設定するのが好ましい。この酸化処理において、
アルカリ金属水酸化物の水溶液は、酸化処理を促進する
ために、適宜加熱してもよい。例えば、60℃に加熱さ
れた6.8規定の水酸化カリウム水溶液中に上述の酸化
物や水酸化物を浸漬して放置すると、通常、数時間から
数日で目的とする酸化処理化合物が得られる。
The above-mentioned oxidation-treated compound can be obtained by subjecting the above-mentioned starting compound to an oxidation treatment. Here, when the raw material compound is the above-mentioned oxide or hydroxide, the oxidation treatment is usually
A raw material compound in an aqueous alkali metal hydroxide solution, for example,
This can be achieved by immersing the sample in an aqueous solution of sodium hydroxide or potassium hydroxide and allowing it to stand. The concentration of the aqueous alkali metal hydroxide solution is usually preferably set to 25% by weight to 40% by weight. In this oxidation treatment,
The aqueous solution of alkali metal hydroxide may be appropriately heated in order to accelerate the oxidation treatment. For example, when the above oxide or hydroxide is immersed in an aqueous 6.8 N potassium hydroxide solution heated to 60 ° C. and left to stand, the target oxidation-treated compound is usually obtained in several hours to several days. To be

【0018】なお、上述のような酸化処理方法におい
て、アルカリ金属水酸化物の水溶液中には、例えば、次
亜塩素酸ナトリウム(NaClO)のような酸化剤を添
加したり、空気(酸素)を吹き込んでもよい。この場
合、原料化合物の酸化処理が促進され、目的とする酸化
処理化合物をより速やかに調製することができる。
In the above-mentioned oxidation treatment method, an oxidizing agent such as sodium hypochlorite (NaClO) is added to the aqueous solution of alkali metal hydroxide, or air (oxygen) is added. You can blow it. In this case, the oxidation treatment of the raw material compound is promoted, and the target oxidation treatment compound can be prepared more quickly.

【0019】上述の酸化処理化合物、すなわち添加材化
合物は、イッテルビウム、エルビウム、ルテチウムおよ
びツリウムからなる元素群から選ばれた少なくとも1つ
の元素を含む場合、コバルトのKα線(λ=0.178
896nm)によるX線回折図において、d=0.88
5±0.008nm、d=0.838±0.01nmお
よびd=0.759±0.007nmに特有の回折ピー
クを有する。一例として、イッテルビウムを含む添加材
化合物のX線回折図を図1に示す。図1から明らかなよ
うに、この酸化処理化合物は、酸化イッテルビウムや水
酸化イッテルビウムのX線回折図には現れない、d=
0.885nm(2θ=11.6°)、d=0.838
nm(2θ=12.3°)およびd=0.759nm
(2θ=13.5°)に特有の回折ピークを有してい
る。
When the above-mentioned oxidation treatment compound, that is, the additive material compound, contains at least one element selected from the group of elements consisting of ytterbium, erbium, lutetium and thulium, the Kα ray of cobalt (λ = 0.178).
896 nm) in the X-ray diffraction pattern, d = 0.88
It has characteristic diffraction peaks at 5 ± 0.008 nm, d = 0.838 ± 0.01 nm and d = 0.759 ± 0.007 nm. As an example, FIG. 1 shows an X-ray diffraction diagram of an additive material compound containing ytterbium. As is clear from FIG. 1, this oxidation-treated compound does not appear in the X-ray diffraction diagram of ytterbium oxide or ytterbium hydroxide, d =
0.885 nm (2θ = 11.6 °), d = 0.838
nm (2θ = 12.3 °) and d = 0.759 nm
It has a unique diffraction peak at (2θ = 13.5 °).

【0020】また、上述の酸化処理化合物、すなわち添
加材化合物は、ストロンチウムを含む場合、コバルトの
Kα線によるX線回折図の2θ=5〜85°の範囲にお
いて、d=0.354±0.002nmおよびd=0.
248±0.001nmにそれぞれ第1強度の回折ピー
クおよび第2強度の回折ピークを有している。例えば、
図2に示すように、ストロンチウムを含む添加材化合物
は、水酸化ストロンチウムのX線回折図において特有の
d=0.585nm(2θ=17.6°)の回折ピーク
が消失し、d=0.354nm(2θ=29.3°)お
よびd=0.248nm(2θ=42.3°)にそれぞ
れ第1強度の回折ピークおよび第2強度の回折ピークを
有している。
Further, when the above-mentioned oxidation treatment compound, that is, the additive material compound, contains strontium, d = 0.354 ± 0.0.5 in the range of 2θ = 5 to 85 ° in the X-ray diffraction diagram by the Kα line of cobalt. 002 nm and d = 0.
It has a diffraction peak of the first intensity and a diffraction peak of the second intensity at 248 ± 0.001 nm, respectively. For example,
As shown in FIG. 2, in the additive material containing strontium, the unique d = 0.585 nm (2θ = 17.6 °) diffraction peak disappeared in the X-ray diffraction pattern of strontium hydroxide, and d = 0. It has a diffraction peak of the first intensity and a diffraction peak of the second intensity at 354 nm (2θ = 29.3 °) and d = 0.248 nm (2θ = 42.3 °), respectively.

【0021】また、上述の酸化処理化合物、すなわち添
加材化合物は、ビスマスを含む場合、コバルトのKα線
によるX線回折図の2θ=5〜85°の範囲において、
d=0.326±0.002nm、d=0.269±
0.001nmおよびd=0.256±0.001nm
にそれぞれ第1強度の回折ピーク、第2強度の回折ピー
クおよび第3強度の回折ピークを有し、d=0.269
±0.001nmの第2強度の回折ピークがd=0.3
26±0.002nmの第1強度の回折ピークの1/2
以上の強度である。例えば、図3に示すように、ビスマ
スを含む添加材化合物は、酸化ビスマスのX線回折図に
おいて特有のd=0.295nm(2θ=35.3°)
の回折ピークが消失し、d=0.326nm(2θ=3
1.9°)、d=0.269nm(2θ=38.8°)
およびd=0.256nm(2θ=40.9°)にそれ
ぞれ第1強度の回折ピーク、第2強度の回折ピークおよ
び第3強度の回折ピークを有し、d=0.269nmの
第2強度の回折ピークがd=0.326nmの第1強度
の回折ピークの1/2以上の強度である。
Further, when the above-mentioned oxidation treatment compound, that is, the additive material compound contains bismuth, in the range of 2θ = 5 to 85 ° in the X-ray diffraction diagram by the Kα line of cobalt,
d = 0.326 ± 0.002 nm, d = 0.269 ±
0.001 nm and d = 0.256 ± 0.001 nm
Has a diffraction peak of the first intensity, a diffraction peak of the second intensity and a diffraction peak of the third intensity at d = 0.269
The diffraction peak of the second intensity of ± 0.001 nm is d = 0.3.
1/2 of the diffraction peak of the first intensity of 26 ± 0.002 nm
It is the above strength. For example, as shown in FIG. 3, the additive material compound containing bismuth has a characteristic d = 0.295 nm (2θ = 35.3 °) characteristic in the X-ray diffraction pattern of bismuth oxide.
Diffraction peak disappeared, and d = 0.326 nm (2θ = 3
1.9 °), d = 0.269 nm (2θ = 38.8 °)
And d = 0.256 nm (2θ = 40.9 °) have a diffraction peak of the first intensity, a diffraction peak of the second intensity and a diffraction peak of the third intensity, respectively, and a diffraction peak of the second intensity of d = 0.269 nm. The diffraction peak has an intensity of 1/2 or more of the diffraction peak of the first intensity at d = 0.326 nm.

【0022】さらに、上述の酸化処理化合物、すなわち
添加材化合物は、イットリウムを含む場合、コバルトの
Kα線によるX線回折図の2θ=5〜85°の範囲にお
いて、d=0.544±0.006nmおよびd=0.
313±0.002nmに回折ピークを有しており、d
=0.544±0.006nmの回折ピークが当該範囲
における最強ピークである。例えば、図4に示すよう
に、イットリウムを含む添加材化合物は、酸化イットリ
ウムや水酸化イットリウムのX線回折図において見られ
ないd=0.544nm(2θ=18.9°)およびd
=0.313nm(2θ=33.2°)に回折ピークを
有しており、2θ=5〜85°の範囲において、d=
0.544nmの回折ピークが最強ピークである。
Further, when the above-mentioned oxidation treatment compound, that is, the additive material compound, contains yttrium, d = 0.544 ± 0.0.5 in the range of 2θ = 5 to 85 ° in the X-ray diffraction diagram by the Kα line of cobalt. 006 nm and d = 0.
It has a diffraction peak at 313 ± 0.002 nm, and d
The diffraction peak at 0.544 ± 0.006 nm is the strongest peak in the range. For example, as shown in FIG. 4, the additive material compound containing yttrium is d = 0.544 nm (2θ = 18.9 °) and d which are not seen in the X-ray diffraction diagram of yttrium oxide or yttrium hydroxide.
Has a diffraction peak at 0.313 nm (2θ = 33.2 °), and in the range of 2θ = 5 to 85 °, d =
The diffraction peak at 0.544 nm is the strongest peak.

【0023】なお、添加材化合物は、上述のようなX線
回折図における特有の回折ピークのみにより特徴付ける
こともできる。すなわち、添加材化合物は、通常、上述
のような原料化合物を酸化処理することにより得られる
ものであるが、所要の元素を含みかつ上述のようなX線
回折図における特有の回折ピークを有するものであれ
ば、他の方法により製造されたものであってもよい。
The additive compound can also be characterized only by a unique diffraction peak in the above X-ray diffraction pattern. That is, the additive material compound is usually obtained by subjecting the above-mentioned raw material compound to oxidation treatment, but it contains the required elements and has a unique diffraction peak in the above-mentioned X-ray diffraction diagram. So long as it is manufactured by another method.

【0024】本発明のアルカリ蓄電池のニッケル電極活
物質用添加材は、必要に応じ、上述の添加材化合物の他
に、ニッケル電極活物質のスラリーまたはペーストを調
製するために通常用いられるバインダーおよびその他の
成分を適宜含んでいてもよい。
The additive for a nickel electrode active material of the alkaline storage battery of the present invention may optionally contain, in addition to the above-mentioned additive compound, a binder and other materials usually used for preparing a slurry or paste of the nickel electrode active material. The component of 1 may be included as appropriate.

【0025】本発明のアルカリ蓄電池のニッケル電極活
物質用添加材は、アルカリ蓄電池のニッケル電極活物質
用の添加材として用いられる。ここで、本発明の添加材
を添加する対象となるニッケル電極活物質は、水酸化ニ
ッケルと、コバルトおよびコバルト化合物のうちの少な
くとも1つとを含むものであれば特に限定されるもので
はない。このような活物質に含まれる水酸化ニッケル
は、例えば、高密度水酸化ニッケルである。この水酸化
ニッケルは、アルカリ蓄電池の充放電サイクル寿命を低
下させる原因となるγ型オキシ水酸化ニッケルの生成を
抑制するために、コバルトや亜鉛のような遷移金属元素
を固溶状態で含有していてもよい。一方、コバルト化合
物は、例えば、アルカリ蓄電池の電解液として用いられ
るアルカリ溶液中において電気化学的に酸化を受け得る
もの、特に、アルカリ溶液中においてコバルトイオンを
溶出可能な3価よりも価数の小さなコバルトを含む化合
物である。このようなコバルト化合物としては、例え
ば、α型水酸化コバルト、β型水酸化コバルトおよび一
酸化コバルトを挙げることができる。
The additive for nickel electrode active material of alkaline storage battery of the present invention is used as an additive for nickel electrode active material of alkaline storage battery. Here, the nickel electrode active material to which the additive of the present invention is added is not particularly limited as long as it contains nickel hydroxide and at least one of cobalt and a cobalt compound. The nickel hydroxide contained in such an active material is, for example, high density nickel hydroxide. This nickel hydroxide contains a transition metal element such as cobalt or zinc in a solid solution state in order to suppress the formation of γ-type nickel oxyhydroxide, which causes a decrease in the charge / discharge cycle life of an alkaline storage battery. May be. On the other hand, the cobalt compound has, for example, a valence smaller than trivalent that can be electrochemically oxidized in an alkaline solution used as an electrolytic solution of an alkaline storage battery, particularly, trivalent capable of eluting cobalt ions in the alkaline solution. It is a compound containing cobalt. Examples of such a cobalt compound include α-type cobalt hydroxide, β-type cobalt hydroxide and cobalt monoxide.

【0026】なお、上述のニッケル電極活物質は、水酸
化ニッケルの粉末とコバルトおよびコバルト化合物のう
ちの少なくとも1つの粉末とが混合されたものであって
もよいし、水酸化ニッケルの粉末粒子の表面にコバルト
およびコバルト化合物のうちの少なくとも1つが被覆さ
れたものであってもよい。
The above nickel electrode active material may be a mixture of nickel hydroxide powder and at least one powder of cobalt and a cobalt compound, or may be a mixture of nickel hydroxide powder particles. The surface may be coated with at least one of cobalt and a cobalt compound.

【0027】本発明のアルカリ蓄電池のニッケル電極活
物質用添加材を用いてニッケル電極活物質を製造する場
合は、先ず、上述の水酸化ニッケルと、コバルトおよび
コバルト化合物のうちの少なくとも1つとを含む活物質
を調製する。そして、この活物質にカルボキシメチルセ
ルロース等のバインダーを加えてスラリーまたはペース
トを調製し、このスラリーまたはペーストに本発明の添
加材を添加して均一に混合する。ここで、本発明の添加
材の添加量は、通常、水酸化ニッケルと、コバルトおよ
びコバルト化合物のうちの少なくとも1つとの合計量の
0.1〜10重量%に設定するのが好ましく、0.5〜
8.0重量%に設定するのがより好ましい。添加量が
0.1重量%未満の場合は、本発明の添加材を用いるこ
とによる所要の効果が達成できないおそれがある。逆
に、10重量%を超える場合は、質量エネルギー密度
(Wh/kg)の低下やコスト増加のおそれがある。な
お、ここでの添加量は、上述の添加材化合物換算の添加
量である。
When the nickel electrode active material is manufactured using the additive for nickel electrode active material of the alkaline storage battery of the present invention, first, the above nickel hydroxide and at least one of cobalt and a cobalt compound are contained. Prepare the active material. Then, a binder such as carboxymethyl cellulose is added to this active material to prepare a slurry or paste, and the additive of the present invention is added to this slurry or paste and mixed uniformly. Here, the addition amount of the additive of the present invention is usually preferably set to 0.1 to 10% by weight of the total amount of nickel hydroxide and at least one of cobalt and a cobalt compound, and is preferably 0.1. 5-
It is more preferable to set it to 8.0% by weight. If the amount added is less than 0.1% by weight, the desired effect of using the additive of the present invention may not be achieved. On the other hand, if it exceeds 10% by weight, the mass energy density (Wh / kg) may decrease and the cost may increase. The addition amount here is the addition amount in terms of the above-mentioned additive material compound.

【0028】水酸化ニッケルと、コバルトおよびコバル
ト化合物のうちの少なくとも1つとを含むニッケル電極
活物質を用いたアルカリ蓄電池において、酸素発生電位
を貴にシフトさせる効果を有する元素(通常は、イッテ
ルビウム、エルビウム、ルテチウム、ツリウム、イット
リウム、ストロンチウムおよびビスマス)の化合物を当
該ニッケル電極活物質に添加した場合、既述のように、
この化合物は、アルカリ蓄電池の高温下での充電効率を
高めることができる。
In an alkaline storage battery using a nickel electrode active material containing nickel hydroxide and at least one of cobalt and a cobalt compound, an element (usually ytterbium or erbium) having an effect of nobly shifting the oxygen generation potential. , Lutetium, thulium, yttrium, strontium, and bismuth) are added to the nickel electrode active material, as described above,
This compound can increase the charging efficiency of an alkaline storage battery at high temperatures.

【0029】また、この化合物は、電解液として用いら
れるアルカリ溶液中で極性を持ち、水分子やイオンを周
辺に引き付けた状態で安定しているものと考えられる。
一方、ニッケル電極活物質中に含まれるコバルトまたは
コバルト化合物から溶出するコバルトイオンも、アルカ
リ溶液中で水和物イオンを形成するが、この水和物イオ
ンは、当該化合物が同時に存在すると非常に安定にな
る。このため、既述の水酸化ニッケル粉末粒子間などに
緻密な水酸化物として析出する反応速度が減少する。従
って、新たなコバルトイオンの溶出が抑制され(すなわ
ち、コバルトイオンの溶出速度が減少し)、ニッケル電
極において導電性のネットワークが形成されにくくなる
結果、アルカリ蓄電池の高率放電特性が低下する。
It is considered that this compound has polarity in an alkaline solution used as an electrolytic solution and is stable in a state where water molecules and ions are attracted to the periphery.
On the other hand, cobalt ions eluted from cobalt or a cobalt compound contained in the nickel electrode active material also form hydrate ions in an alkaline solution, but these hydrate ions are very stable when the compound is present at the same time. become. For this reason, the reaction rate of precipitation as a dense hydroxide between the above-mentioned particles of nickel hydroxide powder is reduced. Therefore, the elution of new cobalt ions is suppressed (that is, the elution rate of cobalt ions is reduced), and it becomes difficult to form a conductive network at the nickel electrode. As a result, the high rate discharge characteristics of the alkaline storage battery are deteriorated.

【0030】これに対し、水酸化ニッケルと、コバルト
およびコバルト化合物のうちの少なくとも1つとを含む
ニッケル電極活物質に本発明の添加材を添加した場合、
コバルトイオンの溶出速度の減少は緩和され、アルカリ
溶液中へのコバルトイオンの溶出は阻害されにくくな
る。このため、本発明の添加材を含むニッケル電極で
は、導電性コバルト化合物による導電性ネットワークが
形成されやすくなる。したがって、このニッケル電極を
アルカリ蓄電池に用いれば、アルカリ蓄電池の高率放電
特性と高温下での充電効率とを同時に高めることができ
る。
On the other hand, when the additive of the present invention is added to a nickel electrode active material containing nickel hydroxide and at least one of cobalt and a cobalt compound,
The decrease in the elution rate of cobalt ions is moderated, and the elution of cobalt ions into the alkaline solution is less likely to be hindered. Therefore, in the nickel electrode containing the additive of the present invention, a conductive network of the conductive cobalt compound is easily formed. Therefore, if this nickel electrode is used in an alkaline storage battery, the high rate discharge characteristics of the alkaline storage battery and the charging efficiency at high temperature can be improved at the same time.

【0031】なお、コバルトが2価から3価に酸化され
る電位は、ニッケルが2価から3価に酸化される電位に
比べて卑である。したがって、本発明の添加材を用いた
ニッケル電極は、初充電時において、コバルトを3価以
上の価数まで完全に酸化させるのが好ましく、それを達
成するためには、コバルトの酸化反応における過電圧を
低下させることが必要になる。このため、このニッケル
電極は、初充電時において、40℃以上(好ましくは8
0℃以下)に設定されたアルカリ溶液中において、低率
の充電電流、例えば、水酸化ニッケル容量(1電子反
応)に対して0.05It(A)以下で充電するのが好
ましい。
The potential at which cobalt is oxidized from divalent to trivalent is baser than the potential at which nickel is oxidized from divalent to trivalent. Therefore, in the nickel electrode using the additive of the present invention, it is preferable to completely oxidize cobalt to a valence of 3 or more at the time of initial charging, and in order to achieve that, the overvoltage in the oxidation reaction of cobalt is required. Will need to be lowered. Therefore, this nickel electrode has a temperature of 40 ° C or higher (preferably 8
In an alkaline solution set to 0 ° C. or lower), it is preferable to charge at a low rate charging current, for example, 0.05 It (A) or less with respect to nickel hydroxide capacity (one-electron reaction).

【0032】[0032]

【実施例】実施例1 40重量%水酸化ナトリウム水溶液中に酸化イッテルビ
ウム(Yb23)を投入し、水酸化ナトリウム水溶液中
に酸素を吹き込みながら100℃で3時間攪拌した。こ
れにより、酸化イッテルビウムを酸化処理し、添加材化
合物を得た。この添加材化合物について、コバルトのK
α線によるX線回折を実施したところ、図1のX線回折
図が得られた。
Example 1 Ytterbium oxide (Yb 2 O 3 ) was added to a 40 wt% sodium hydroxide aqueous solution, and the mixture was stirred at 100 ° C. for 3 hours while blowing oxygen into the sodium hydroxide aqueous solution. Thereby, ytterbium oxide was subjected to an oxidation treatment to obtain an additive material compound. About this additive compound, K of cobalt
When X-ray diffraction with α rays was performed, the X-ray diffraction diagram of FIG. 1 was obtained.

【0033】実施例2 80℃に設定された、次亜塩素酸ナトリウム(NaOC
l)を含む40重量%水酸化ナトリウム水溶液中に酸化
イッテルビウム(Yb23)を投入し、4時間攪拌し
た。これにより、酸化イッテルビウムを酸化処理し、添
加材化合物を得た。この添加材化合物について、コバル
トのKα線によるX線回折を実施したところ、図1と同
様のX線回折図が得られた。
Example 2 Sodium hypochlorite (NaOC) set at 80 ° C.
Ytterbium oxide (Yb 2 O 3 ) was added to a 40% by weight aqueous sodium hydroxide solution containing 1), and the mixture was stirred for 4 hours. Thereby, ytterbium oxide was subjected to an oxidation treatment to obtain an additive material compound. When this additive material compound was subjected to X-ray diffraction using Kα ray of cobalt, the same X-ray diffraction diagram as in FIG. 1 was obtained.

【0034】実施例3 酸化イッテルビウムに替えて酸化ツリウム(Tm23
を用いた点を除き、実施例1と同様に操作して添加材化
合物を得た。この添加材化合物について、コバルトのK
α線によるX線回折を実施したところ、図1と同様に、
2θ=11.6°、12.3°および13.5°にピー
クを持つX線回折図が得られた。
Example 3 Instead of ytterbium oxide, thulium oxide (Tm 2 O 3 )
An additive material compound was obtained in the same manner as in Example 1 except that was used. About this additive compound, K of cobalt
When X-ray diffraction with α rays was performed, as in FIG.
X-ray diffraction patterns having peaks at 2θ = 11.6 °, 12.3 ° and 13.5 ° were obtained.

【0035】実施例4 酸化イッテルビウムに替えて酸化エルビウム(Er
)を用いた点を除き、実施例1と同様に操作して添加
材化合物を得た。この添加材化合物について、コバルト
のKα線によるX線回折を実施したところ、図1と同様
に、2θ=11.6°、12.3°および13.5°に
ピークを持つX線回折図が得られた。
EXAMPLE 4 Erbium oxide (Er 2 O) was used instead of ytterbium oxide.
An additive material compound was obtained in the same manner as in Example 1 except that 3 ) was used. When this additive material compound was subjected to X-ray diffraction using Kα ray of cobalt, an X-ray diffraction diagram having peaks at 2θ = 11.6 °, 12.3 ° and 13.5 ° was obtained as in FIG. Was obtained.

【0036】実施例5 酸化イッテルビウムに替えて酸化ルテチウム(Lu
23)を用いた点を除き、実施例1と同様に操作して添
加材化合物を得た。この添加材化合物について、コバル
トのKα線によるX線回折を実施したところ、図1と同
様に、2θ=11.6°、12.3°および13.5°
にピークを持つX線回折図が得られた。
Example 5 Lutetium oxide (Lu) was used instead of ytterbium oxide.
An additive material compound was obtained in the same manner as in Example 1 except that 2 O 3 ) was used. When this additive material compound was subjected to X-ray diffraction using Kα ray of cobalt, 2θ = 11.6 °, 12.3 ° and 13.5 ° as in FIG.
An X-ray diffraction pattern having a peak at was obtained.

【0037】実施例6 酸化イッテルビウムに替えて酸化イットリウム(Y
23)を用いた点を除いて実施例1と同様に操作し、添
加材化合物を得た。この添加材化合物について、コバル
トのKα線によるX線回折を実施したところ、図4のX
線回折図が得られた。
Example 6 Instead of ytterbium oxide, yttrium oxide (Y
The same operation as in Example 1 was carried out except that 2 O 3 ) was used to obtain an additive material compound. This additive material compound was subjected to X-ray diffraction using Kα line of cobalt.
A line diffraction pattern was obtained.

【0038】実施例7 酸化イッテルビウムに替えて水酸化ストロンチウム(S
r(OH)2)を用いた点を除いて実施例1と同様に操
作し、添加材化合物を得た。この添加材化合物につい
て、コバルトのKα線によるX線回折を実施したとこ
ろ、図2のX線回折図が得られた。
Example 7 Instead of ytterbium oxide, strontium hydroxide (S
An additive compound was obtained in the same manner as in Example 1 except that r (OH) 2 was used. When this additive material compound was subjected to X-ray diffraction with Kα ray of cobalt, the X-ray diffraction diagram of FIG. 2 was obtained.

【0039】実施例8 酸化イッテルビウムに替えて酸化ビスマス(Bi23
を用いた点を除いて実施例1と同様に操作し、添加材化
合物を得た。この添加材化合物について、コバルトのK
α線によるX線回折を実施したところ、図3のX線回折
図が得られた。
Example 8 Bismuth oxide (Bi 2 O 3 ) was used instead of ytterbium oxide.
Was operated in the same manner as in Example 1 except that was used to obtain an additive material compound. About this additive compound, K of cobalt
When X-ray diffraction with α rays was performed, the X-ray diffraction diagram of FIG. 3 was obtained.

【0040】評価1 高密度の球状水酸化ニッケル(亜鉛を3重量%固溶状態
で含むもの)粉末の粒子表面にβ型水酸化コバルトを7
重量%被覆したニッケル電極活物質を調製した。そし
て、このニッケル電極活物質にバインダーを加えてスラ
リーを調製し、これに実施例1〜8で得られた添加材化
合物のうちの1つを水酸化ニッケル量の3重量%加えて
混合した。このスラリーを目付け量が450g/m2
3次元発泡状ニッケル基板に充填し、長さ30mm、幅
30mm、厚さ0.25mmのニッケル電極(公称容量
=200mAh)を作成した。なお、このニッケル電極
には、電流線用および電圧線用として、長さ80mm、
幅3mm、厚さ0.15mmのニッケル線を2本溶接し
た。
Evaluation 1 β-type cobalt hydroxide was added to the surface of particles of high-density spherical nickel hydroxide (containing 3% by weight of zinc in a solid solution state) powder.
A nickel electrode active material coated with wt% was prepared. Then, a binder was added to this nickel electrode active material to prepare a slurry, and one of the additive material compounds obtained in Examples 1 to 8 was added thereto and mixed with 3% by weight of the amount of nickel hydroxide. A three-dimensional foamed nickel substrate having a basis weight of 450 g / m 2 was filled with this slurry to prepare a nickel electrode (nominal capacity = 200 mAh) having a length of 30 mm, a width of 30 mm and a thickness of 0.25 mm. The nickel electrode has a length of 80 mm for current lines and voltage lines.
Two nickel wires having a width of 3 mm and a thickness of 0.15 mm were welded.

【0041】比較のため、添加材化合物として酸化イッ
テルビウム(Yb23)を使用(比較例1)し、また、
水酸化ストロンチウム(Sr(OH)2)を使用(比較
例2)して、上述と同様のニッケル電極を作成した。ま
た、添加材化合物を用いずに、上述と同様のニッケル電
極を作成した(比較例3)。
For comparison, ytterbium oxide (Yb 2 O 3 ) was used as an additive compound (Comparative Example 1).
Using strontium hydroxide (Sr (OH) 2 ) (Comparative Example 2), a nickel electrode similar to the above was prepared. Further, a nickel electrode similar to the above was prepared without using the additive material compound (Comparative Example 3).

【0042】一方、公知の焼結式カドミウム電極(30
mAh/cm2)を長さ32mm、幅32mmに切断し
たものを用意し、その端部に電流線を溶接により接続し
て負極を得た。上述の各ニッケル電極をポリプロピレン
樹脂不織布で包み、その両面に負極を配置して所定の圧
力が加わるようにした電極群を作成した。この電極群を
電槽内に配置して水酸化カリウムを主成分とする電解液
を注入し、開放型電池を作成した。
On the other hand, known sintered cadmium electrodes (30
(mAh / cm 2 ) cut into a length of 32 mm and a width of 32 mm was prepared, and a current wire was connected to the end by welding to obtain a negative electrode. Each of the above nickel electrodes was wrapped with a polypropylene resin non-woven fabric, and a negative electrode was placed on both surfaces of the non-woven fabric to prepare an electrode group to which a predetermined pressure was applied. This electrode group was placed in a battery case and an electrolytic solution containing potassium hydroxide as a main component was injected to prepare an open battery.

【0043】得られた開放型電池を、40℃の温度雰囲
気下で12時間放置し、その後、同じ温度雰囲気下にお
いて5mAの電流で10時間充電した。続けて、この開
放型電池を、20℃の温度雰囲気下において、0.1C
で120%まで充電し、0.2CでHg/HgO参照電
極に対して0Vまで放電する充放電サイクルを5サイク
ル繰返した。
The open-type battery thus obtained was allowed to stand in a temperature atmosphere of 40 ° C. for 12 hours, and then charged in the same temperature atmosphere at a current of 5 mA for 10 hours. Subsequently, this open-type battery was exposed to 0.1 C under a temperature atmosphere of 20 ° C.
The charging / discharging cycle of charging to 120% with respect to the Hg / HgO reference electrode at 0.2 C was repeated 5 times.

【0044】次に、20℃の温度雰囲気下において、開
放型電池を0.5Cの電流で2時間12分間充電し、そ
の後、4Aの放電(20Cに相当)を実施し、Hg/H
gO参照電極に対して0Vまでの放電容量を測定した。
さらに、60℃の温度雰囲気下において、開放型電池を
0.1Cの電流で15時間充電した後、0.2CでHg
/HgO参照電極に対して0Vまで放電した。
Next, in an atmosphere of temperature of 20 ° C., the open-type battery was charged with a current of 0.5 C for 2 hours and 12 minutes, and then discharged at 4 A (corresponding to 20 C) to obtain Hg / H.
The discharge capacity up to 0 V was measured against the gO reference electrode.
Furthermore, after charging the open-type battery with a current of 0.1C for 15 hours in an atmosphere of a temperature of 60 ° C., Hg at 0.2C
Discharged to 0 V with respect to the / HgO reference electrode.

【0045】表1に、4Aで放電したときの放電容量を
理論容量で除した値(4A放電効率(%))と、60℃
における充電効率(放電容量を理論容量で除した値
(%))を示す。
Table 1 shows a value obtained by dividing the discharge capacity when discharged at 4 A by the theoretical capacity (4 A discharge efficiency (%)) and 60 ° C.
Shows the charging efficiency (value (%) obtained by dividing the discharge capacity by the theoretical capacity).

【0046】[0046]

【表1】 [Table 1]

【0047】表1より、実施例1〜8の添加材化合物を
含むニッケル電極を用いた開放型電池は、50%以上の
4A放電効率および40%以上の60℃充電効率が得ら
れていることがわかる。すなわち、実施例1〜8の添加
材化合物を含むニッケル電極を用いた開放型電池は、比
較例1〜3のニッケル電極を用いた開放型電池とは異な
り、高率放電特性と高温下での充電効率とが同時に高め
られていることがわかる。
From Table 1, it is shown that the open type batteries using the nickel electrodes containing the additive material compounds of Examples 1 to 8 have a discharge efficiency of 4A of 50% or more and a charging efficiency of 60 ° C of 40% or more. I understand. That is, the open type batteries using the nickel electrodes containing the additive material compounds of Examples 1 to 8 were different from the open type batteries using the nickel electrodes of Comparative Examples 1 to 3 in high rate discharge characteristics and high temperature. It can be seen that the charging efficiency is increased at the same time.

【0048】参考として、実施例1の添加材化合物を用
いたニッケル電極と、比較例1のニッケル電極とについ
て、初充電における正極電位(Hg/HgO参照電極基
準)を測定した結果を図5に示す。図5より、実施例1
の添加材化合物を用いたニッケル電極の初充電における
コバルトの酸化電位は、比較例1のニッケル電極の場合
に比べて卑にシフトしており、反応の過電圧が減少して
いることがわかる。比較例1のニッケル電極に比べて、
実施例1の添加材化合物を用いたニッケル電極では、コ
バルトの酸化反応が円滑に起り、かつオキシ水酸化コバ
ルトの生成量が増加していることが示唆される。
As a reference, the positive electrode potential (Hg / HgO reference electrode standard) of the nickel electrode using the additive material compound of Example 1 and the nickel electrode of Comparative Example 1 were measured and shown in FIG. Show. From FIG. 5, Example 1
It can be seen that the oxidation potential of cobalt in the initial charge of the nickel electrode using the additive material compound of No. 1 is shifted to the base as compared with the nickel electrode of Comparative Example 1, and the overvoltage of the reaction is reduced. Compared with the nickel electrode of Comparative Example 1,
It is suggested that in the nickel electrode using the additive compound of Example 1, the oxidation reaction of cobalt occurs smoothly and the production amount of cobalt oxyhydroxide increases.

【0049】評価2 高密度の球状水酸化ニッケル(亜鉛を3重量%固溶状態
で含むもの)粉末の粒子表面にβ型水酸化コバルトを7
重量%被覆したニッケル電極活物質を調製した。そし
て、このニッケル電極活物質にバインダーを加えてスラ
リーを調製し、これに実施例1で得られた添加材化合物
を水酸化ニッケル量の3重量%加えて混合した。このス
ラリーを目付け量が450g/m2の3次元発泡状ニッ
ケル基板に充填し、長さ650mm、幅50mm、厚さ
0.45mmのニッケル電極(正極:公称容量=8A
h)を作成した。なお、このニッケル電極の端部には、
幅1.5mmの余白部を設けた。
Evaluation 2 β-type cobalt hydroxide was added to the surface of particles of high-density spherical nickel hydroxide (containing 3% by weight of zinc in a solid solution state) powder.
A nickel electrode active material coated with wt% was prepared. Then, a binder was added to this nickel electrode active material to prepare a slurry, and the additive material compound obtained in Example 1 was added to and mixed with 3% by weight of the amount of nickel hydroxide. A three-dimensional foamed nickel substrate having a basis weight of 450 g / m 2 was filled with this slurry, and a nickel electrode having a length of 650 mm, a width of 50 mm and a thickness of 0.45 mm (positive electrode: nominal capacity = 8 A
h) was created. In addition, at the end of this nickel electrode,
A blank part having a width of 1.5 mm was provided.

【0050】比較のため、添加材化合物として酸化イッ
テルビウム(Yb23)を使用して、上述と同様のニッ
ケル電極(正極)を作成した(比較例4)。また、添加
材化合物を用いずに、上述と同様のニッケル電極(正
極)を作成した(比較例5)。
For comparison, a nickel electrode (positive electrode) similar to that described above was prepared using ytterbium oxide (Yb 2 O 3 ) as an additive material compound (Comparative Example 4). A nickel electrode (positive electrode) similar to that described above was prepared without using the additive material compound (Comparative Example 5).

【0051】一方、ランタン(La)、セリウム(C
e)、プラセオジム(Pr)、ネオジム(Nd)、アル
ミニウム(Al)、マンガン(Mn)、コバルト(C
o)およびニッケル(Ni)を主要元素とするAB5型
水素吸蔵合金粉末を用意し、これにバインダーを加えて
スラリーを調製した。このスラリーをニッケルメッキさ
れたパンチング鋼板に塗布し、長さ720mm、幅50
mm、厚さ0.3mmの水素吸蔵合金電極(負極:公称
容量=14Ah)を作成した。この水素吸蔵合金電極の
端部にも、幅1.5mmの余白部を設けた。
On the other hand, lanthanum (La), cerium (C
e), praseodymium (Pr), neodymium (Nd), aluminum (Al), manganese (Mn), cobalt (C)
AB5 type hydrogen storage alloy powder containing o) and nickel (Ni) as main elements was prepared, and a binder was added to this to prepare a slurry. This slurry is applied to a nickel-plated punched steel plate, and the length is 720 mm and the width is 50 mm.
mm, and a thickness of 0.3 mm, a hydrogen storage alloy electrode (negative electrode: nominal capacity = 14 Ah) was prepared. A blank portion having a width of 1.5 mm was also provided at the end portion of the hydrogen storage alloy electrode.

【0052】得られた正極と負極とを幅方向に1.5m
mずらせた状態で不織布を挟んで積層し、この積層体を
円筒形に巻き込んで最外周をテープにより固定した。こ
のようにして得られた電極群の負極端部および正極端部
に対し、それぞれ厚さ0.3mmのニッケル板(直径2
8mm)をシリーズ溶接により接合した。また、正極端
部に接合されたニッケル板に対し、厚み0.4mmの金
属リード片を溶接した。そして、この電極群をDサイズ
の電槽缶内に収容し、電槽缶の底部に対して負極端部側
のニッケル板をスポット溶接し、また、電池蓋に対して
正極から延びる金属リード片を溶接した。続いて、電槽
缶内に6.8規定の水酸化カリウムと0.8規定の水酸
化リチウムとからなる電解液を注入し、また、電槽缶の
開口部にガスケットと絶縁体とを配置した後、電槽缶の
開口部に対して電池蓋を溶接した。
The obtained positive electrode and negative electrode are 1.5 m in the width direction.
The non-woven fabrics were sandwiched in a shifted state, and the laminate was rolled into a cylindrical shape and the outermost periphery was fixed with tape. A nickel plate (diameter: 2 mm) with a thickness of 0.3 mm was respectively attached to the negative electrode end and the positive electrode end of the electrode group thus obtained.
8 mm) were joined by series welding. Further, a metal lead piece having a thickness of 0.4 mm was welded to the nickel plate joined to the positive electrode end portion. Then, this electrode group is housed in a D-sized battery case, a nickel plate on the negative electrode end side is spot-welded to the bottom of the battery case, and a metal lead piece extending from the positive electrode to the battery lid. Welded. Subsequently, an electrolytic solution composed of 6.8 N potassium hydroxide and 0.8 N lithium hydroxide was injected into the battery case, and a gasket and an insulator were placed in the opening of the battery case. After that, the battery lid was welded to the opening of the battery case.

【0053】以上のようにして得られた電池について、
40℃で12時間放置した後に160mAの電流を10
時間通電し、さらに所定の活性化サイクルを実施した。
そして、電池を満充電状態に設定した後、25℃の恒温
槽内で40A、80Aおよび120Aの放電を実施し、
その10秒後の電圧を測定した。なお、ここでの満充電
状態は、4Aの電流で2時間12分間充電した後、2時
間の休止をおいた状態である。結果を表2に示す。
Regarding the battery obtained as described above,
After leaving it at 40 ° C for 12 hours, apply a current of 160 mA to 10
After energizing for a time, a predetermined activation cycle was performed.
Then, after setting the battery to a fully charged state, discharge at 40A, 80A and 120A in a constant temperature bath at 25 ° C,
The voltage 10 seconds after that was measured. The fully-charged state here is a state in which the battery was charged with a current of 4 A for 2 hours and 12 minutes and then rested for 2 hours. The results are shown in Table 2.

【0054】[0054]

【表2】 [Table 2]

【0055】表2によると、実施例1の添加材化合物を
含む正極を用いた電池は、放電電流の増加に伴う電圧の
降下が、比較例5の正極を用いた電池を基準とした場
合、比較例4の正極を用いた電池に比べて小さい。これ
は、実施例1の添加材化合物を含む正極を用いた電池が
大電流放電に適していることを示している。
According to Table 2, in the battery using the positive electrode containing the additive compound of Example 1, the voltage drop with the increase of the discharge current was based on the battery using the positive electrode of Comparative Example 5, It is smaller than the battery using the positive electrode of Comparative Example 4. This indicates that the battery using the positive electrode containing the additive compound of Example 1 is suitable for large current discharge.

【0056】次に、上述の電池を満充電状態に設定した
後、25℃の恒温槽内において120Aの電流でセル電
圧が0.8Vになるまで放電し、その放電容量を測定し
た。その結果および放電容量を定格容量(8Ah)で除
した定格容量比(%)を表3に示す。
Next, after setting the above-mentioned battery to a fully charged state, the battery was discharged in a constant temperature bath at 25 ° C. at a current of 120 A until the cell voltage reached 0.8 V, and the discharge capacity was measured. Table 3 shows the result and the rated capacity ratio (%) obtained by dividing the discharge capacity by the rated capacity (8 Ah).

【0057】[0057]

【表3】 [Table 3]

【0058】表3によると、実施例1の添加材化合物を
含む正極を用いた電池は、比較例4の正極を用いた電池
のような、高率放電時における容量低下を起こしにく
く、比較例5の正極を用いた電池の場合と同等の容量特
性を維持できることがわかる。
According to Table 3, the battery using the positive electrode containing the additive compound of Example 1 is less likely to cause capacity reduction at high rate discharge like the battery using the positive electrode of Comparative Example 4, It can be seen that the same capacity characteristics as in the case of the battery using the positive electrode of No. 5 can be maintained.

【0059】次に、上述の電池を25℃、45℃および
60℃の各温度雰囲気下において4Aの電流で定格容量
の80%まで充電した後、同じ温度雰囲気下において4
Aの電流でセル電圧1Vまで放電した。各温度における
放電容量を充電容量で除した値(充電効率:%)を表4
に示す。
Next, the above-mentioned battery was charged to 80% of the rated capacity at a current of 4 A in each temperature atmosphere of 25 ° C., 45 ° C. and 60 ° C.
The current of A was discharged to a cell voltage of 1V. The value obtained by dividing the discharge capacity at each temperature by the charge capacity (charge efficiency:%) is shown in Table 4.
Shown in.

【0060】[0060]

【表4】 [Table 4]

【0061】表4より、実施例1の添加材化合物を含む
正極を用いた電池は、比較例4の正極を用いた電池と同
程度に高温での充電効率が良好であり、しかも温度変化
による充電効率の変動が少ないことがわかる。なお、比
較例5の正極を用いた電池は、45℃と60℃とで充電
効率が16%変動しているのに対し、実施例1の添加材
化合物を含む正極を用いた電池では3%である。この差
は、それぞれの電池を用いて組電池を構成した場合、よ
り顕著になるものと予想される。
From Table 4, it can be seen that the battery using the positive electrode containing the additive compound of Example 1 has a charging efficiency as good as that of the battery using the positive electrode of Comparative Example 4 at a high temperature, and also depends on the temperature change. It can be seen that there is little variation in charging efficiency. In the battery using the positive electrode of Comparative Example 5, the charging efficiency fluctuates by 16% at 45 ° C. and 60 ° C., while in the battery using the positive electrode containing the additive material compound of Example 1, 3%. Is. It is expected that this difference will become more remarkable when the assembled battery is constructed using the respective batteries.

【0062】以上の結果より、実施例1の添加材化合物
を含む正極を用いた電池は、比較例4または比較例5の
正極を用いた電池とは異なり、高率放電特性と高温下で
の充電効率とが同時に高められていることがわかる。
From the above results, the battery using the positive electrode containing the additive material compound of Example 1 was different from the battery using the positive electrode of Comparative Example 4 or Comparative Example 5 in high rate discharge characteristics and high temperature discharge. It can be seen that the charging efficiency is increased at the same time.

【0063】[0063]

【発明の効果】本発明の添加材は、上述のような特徴を
有するものであるため、水酸化ニッケルと、コバルトお
よびコバルト化合物のうちの少なくとも1つとを含む、
アルカリ蓄電池のニッケル電極活物質に添加された場
合、アルカリ蓄電池の高率放電特性と高温下での充電効
率とを同時に高めることができる。
Since the additive of the present invention has the characteristics as described above, it contains nickel hydroxide and at least one of cobalt and a cobalt compound.
When added to the nickel electrode active material of the alkaline storage battery, the high rate discharge characteristics of the alkaline storage battery and the charging efficiency at high temperature can be simultaneously enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】イッテルビウムを含む添加材化合物のX線回折
図。
FIG. 1 is an X-ray diffraction diagram of an additive material compound containing ytterbium.

【図2】ストロンチウムを含む添加材化合物のX線回折
図。
FIG. 2 is an X-ray diffraction diagram of an additive material compound containing strontium.

【図3】ビスマスを含む添加材化合物のX線回折図。FIG. 3 is an X-ray diffraction diagram of an additive material compound containing bismuth.

【図4】イットリウムを含む添加材化合物のX線回折
図。
FIG. 4 is an X-ray diffraction diagram of an additive material compound containing yttrium.

【図5】実施例1の添加材化合物を用いたニッケル電極
と、比較例1のニッケル電極とについて、初充電時の正
極電位を測定した結果を示すグラフ。
FIG. 5 is a graph showing the results of measuring the positive electrode potential at the time of initial charging for the nickel electrode using the additive material compound of Example 1 and the nickel electrode of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 礒谷 達雄 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 中澤 次夫 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 伊藤 隆 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 押谷 政彦 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H050 AA02 AA05 BA11 CA03 CB14 DA02 DA09 EA12 GA13 GA15 HA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsuo Isoya             2-32 Kosobe-cho, Takatsuki City, Osaka Prefecture Stock             Ceremony company Yuasa Corporation (72) Inventor Tsugio Nakazawa             2-32 Kosobe-cho, Takatsuki City, Osaka Prefecture Stock             Ceremony company Yuasa Corporation (72) Inventor Takashi Ito             2-32 Kosobe-cho, Takatsuki City, Osaka Prefecture Stock             Ceremony company Yuasa Corporation (72) Inventor Masahiko Oshiya             2-32 Kosobe-cho, Takatsuki City, Osaka Prefecture Stock             Ceremony company Yuasa Corporation F-term (reference) 5H050 AA02 AA05 BA11 CA03 CB14                       DA02 DA09 EA12 GA13 GA15                       HA13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケルと、コバルトおよびコバル
ト化合物のうちの少なくとも1つとを含む、アルカリ蓄
電池のニッケル電極活物質に対して添加される添加材で
あって、 イッテルビウム、エルビウム、ルテチウム、ツリウム、
イットリウム、ストロンチウムおよびビスマスからなる
元素群から選択された少なくとも1つの元素を含む原料
化合物を酸化処理して得られる酸化処理化合物を含む、
アルカリ蓄電池のニッケル電極活物質用添加材。
1. An additive material containing nickel hydroxide and at least one of cobalt and a cobalt compound, which is added to a nickel electrode active material of an alkaline storage battery, which is ytterbium, erbium, lutetium, thulium,
An oxidation treatment compound obtained by oxidizing a raw material compound containing at least one element selected from the group of elements consisting of yttrium, strontium and bismuth,
Additive for nickel electrode active material of alkaline storage battery.
【請求項2】前記酸化処理化合物は、前記原料化合物を
アルカリ金属水酸化物の水溶液中に浸漬して酸化処理し
たものである、請求項1に記載のアルカリ蓄電池のニッ
ケル電極活物質用添加材。
2. The additive for nickel electrode active material of an alkaline storage battery according to claim 1, wherein the oxidation treatment compound is obtained by immersing the raw material compound in an aqueous solution of an alkali metal hydroxide to perform oxidation treatment. .
【請求項3】水酸化ニッケルと、コバルトおよびコバル
ト化合物のうちの少なくとも1つとを含む、アルカリ蓄
電池のニッケル電極活物質に対して添加される添加材で
あって、 イッテルビウム、エルビウム、ルテチウムおよびツリウ
ムからなる元素群から選ばれた少なくとも1つの元素を
含み、コバルトのKα線によるX線回折図においてd=
0.885±0.008nm、d=0.838±0.0
1nmおよびd=0.759±0.007nmに回折ピ
ークを有する化合物を含む、アルカリ蓄電池のニッケル
電極活物質用添加材。
3. An additive containing nickel hydroxide and at least one of cobalt and a cobalt compound, the additive being added to a nickel electrode active material of an alkaline storage battery, which comprises ytterbium, erbium, lutetium and thulium. Containing at least one element selected from the group consisting of
0.885 ± 0.008 nm, d = 0.838 ± 0.0
An additive for a nickel electrode active material of an alkaline storage battery, which contains a compound having a diffraction peak at 1 nm and d = 0.759 ± 0.007 nm.
【請求項4】水酸化ニッケルと、コバルトおよびコバル
ト化合物のうちの少なくとも1つとを含む、アルカリ蓄
電池のニッケル電極活物質に対して添加される添加材で
あって、 ストロンチウムを含み、コバルトのKα線によるX線回
折図の2θ=5〜85°の範囲においてd=0.354
±0.002nmおよびd=0.248±0.001n
mにそれぞれ第1強度の回折ピークおよび第2強度の回
折ピークを有する化合物を含む、アルカリ蓄電池のニッ
ケル電極活物質用添加材。
4. An additive containing nickel hydroxide and at least one of cobalt and a cobalt compound, the additive being added to a nickel electrode active material of an alkaline storage battery, the strontium being included, and cobalt Kα radiation. In the range of 2θ = 5 to 85 ° in the X-ray diffraction diagram by d = 0.354
± 0.002 nm and d = 0.248 ± 0.001n
An additive material for a nickel electrode active material of an alkaline storage battery, which contains a compound having a diffraction peak of a first intensity and a diffraction peak of a second intensity in m.
【請求項5】水酸化ニッケルと、コバルトおよびコバル
ト化合物のうちの少なくとも1つとを含む、アルカリ蓄
電池のニッケル電極活物質に対して添加される添加材で
あって、 ビスマスを含み、コバルトのKα線によるX線回折図の
2θ=5〜85°の範囲において、d=0.326±
0.002nm、d=0.269±0.001nmおよ
びd=0.256±0.001nmにそれぞれ第1強度
の回折ピーク、第2強度の回折ピークおよび第3強度の
回折ピークを有しかつ前記第2強度の回折ピークが前記
第1強度の回折ピークの1/2以上の強度である化合物
を含む、アルカリ蓄電池のニッケル電極活物質用添加
材。
5. An additive containing nickel hydroxide and at least one of cobalt and a cobalt compound, the additive being added to a nickel electrode active material of an alkaline storage battery, containing bismuth, and Kα line of cobalt. In the range of 2θ = 5 to 85 ° in the X-ray diffraction diagram by d = 0.326 ±
0.002 nm, d = 0.269 ± 0.001 nm and d = 0.256 ± 0.001 nm respectively have a diffraction peak of a first intensity, a diffraction peak of a second intensity and a diffraction peak of a third intensity, and An additive material for a nickel electrode active material of an alkaline storage battery, comprising a compound having a second intensity diffraction peak with an intensity of ½ or more of the first intensity diffraction peak.
【請求項6】水酸化ニッケルと、コバルトおよびコバル
ト化合物のうちの少なくとも1つとを含む、アルカリ蓄
電池のニッケル電極活物質に対して添加される添加材で
あって、 イットリウムを含み、コバルトのKα線によるX線回折
図の2θ=5〜85°の範囲において、d=0.544
±0.006nmおよびd=0.313±0.002n
mに回折ピークを有しかつd=0.544±0.006
nmの回折ピークが前記範囲における最強ピークである
化合物を含む、アルカリ蓄電池のニッケル電極活物質用
添加材。
6. An additive containing nickel hydroxide and at least one of cobalt and a cobalt compound, the additive being added to a nickel electrode active material of an alkaline storage battery, the yttrium being included, and cobalt Kα radiation. In the range of 2θ = 5 to 85 ° in the X-ray diffraction diagram by d, d = 0.544
± 0.006 nm and d = 0.313 ± 0.002n
has a diffraction peak at m and d = 0.544 ± 0.006
An additive material for a nickel electrode active material of an alkaline storage battery, comprising a compound having a diffraction peak of nm which is the strongest peak in the above range.
JP2001197900A 2001-06-29 2001-06-29 Additive for nickel electrode active material of alkaline storage battery Pending JP2003017064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197900A JP2003017064A (en) 2001-06-29 2001-06-29 Additive for nickel electrode active material of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197900A JP2003017064A (en) 2001-06-29 2001-06-29 Additive for nickel electrode active material of alkaline storage battery

Publications (1)

Publication Number Publication Date
JP2003017064A true JP2003017064A (en) 2003-01-17

Family

ID=19035429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197900A Pending JP2003017064A (en) 2001-06-29 2001-06-29 Additive for nickel electrode active material of alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2003017064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018077A1 (en) * 2010-08-05 2012-02-09 株式会社Gsユアサ Alkali battery and method for manufacturing positive electrode material for alkali battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018077A1 (en) * 2010-08-05 2012-02-09 株式会社Gsユアサ Alkali battery and method for manufacturing positive electrode material for alkali battery
CN103053062A (en) * 2010-08-05 2013-04-17 株式会社杰士汤浅国际 Alkali battery and method for manufacturing positive electrode material for alkali battery
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery
JP5783178B2 (en) * 2010-08-05 2015-09-24 株式会社Gsユアサ Alkaline storage battery and method for producing positive electrode material for alkaline storage battery

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP4710225B2 (en) Method for producing nickel electrode material
JP6132279B2 (en) Nickel metal hydride secondary battery
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
KR100369217B1 (en) Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
US7029791B2 (en) Manufacturing method of positive active material for alkaline storage battery, nickel electrode using the same material and alkaline storage battery using the same nickel electrode
JP4458725B2 (en) Alkaline storage battery
JP3363670B2 (en) Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
KR100596117B1 (en) Alkaline Storage Battery and Process for the Production Thereof
JP4458713B2 (en) Alkaline storage battery
JP2009228096A (en) Hydrogen storage alloy
JPH0221098B2 (en)
JP4432285B2 (en) Nickel electrode active material for alkaline storage battery, nickel electrode for alkaline storage battery and alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP2003017064A (en) Additive for nickel electrode active material of alkaline storage battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP4115367B2 (en) Hydrogen storage alloy for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP2003346794A (en) Alkaline battery positive electrode active material, its manufacturing method, alkaline battery positive electrode using the same, and alkaline battery using positive electrode
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2003077468A (en) Manufacturing method of nickel electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202