JP2003013968A - Rolling bearing - Google Patents

Rolling bearing

Info

Publication number
JP2003013968A
JP2003013968A JP2001195676A JP2001195676A JP2003013968A JP 2003013968 A JP2003013968 A JP 2003013968A JP 2001195676 A JP2001195676 A JP 2001195676A JP 2001195676 A JP2001195676 A JP 2001195676A JP 2003013968 A JP2003013968 A JP 2003013968A
Authority
JP
Japan
Prior art keywords
alloy
inner ring
outer ring
metal
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001195676A
Other languages
Japanese (ja)
Inventor
Koichi Yamamoto
幸一 山本
Toyohisa Yamamoto
豊寿 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001195676A priority Critical patent/JP2003013968A/en
Publication of JP2003013968A publication Critical patent/JP2003013968A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rolling bearing having superior a corrosion-resistant and wear-resistant properties under no lubricating conditions. SOLUTION: Alloy films are provided on raceway surfaces of an inner ring and outer ring. This alloy film is metal-semi-metal alloy having composition in which chromium is contained at 50% or more of an amorphous ratio. A retainer is formed by a material having fluorocarbon resin as a main component.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、耐食性および耐摩
耗性に優れた転がり軸受に関する。 【0002】 【従来の技術】転がり軸受の使用環境は近年益々過酷に
なってきており、例えば、半導体素子製造機器や化学繊
維製造機械用の転がり軸受には、酸やアルカリ等の腐食
性溶液へ浸漬されたり、腐食性溶液の飛沫がかかった
り、腐食性溶液の蒸気に曝されたりするものがある。こ
のような腐食性環境下で使用される転がり軸受の材料と
して、従来より、窒化珪素(Si3 4 )、ジルコニア
(ZrO2 )、炭化珪素(SiC)、サイアロン(Si
−Al−O−N)等のセラミックス材料を使用すること
が検討されている。 【0003】 【発明が解決しようとする課題】しかしながら、上述の
セラミックス材料は、潤滑剤が存在している状態(潤滑
下)での耐摩耗性は非常に優れているが、潤滑剤が存在
していない状態(無潤滑下)では、摩擦係数が比較的大
きい(μ=0.3〜0.5)。そのため、潤滑剤が無く
なった時点で軌道輪と転動体との間に摩耗が生じて、振
動やトルクが大きくなる場合がある。 【0004】本発明は、耐食性が高いだけでなく、無潤
滑下での耐摩耗性にも優れた転がり軸受を提供すること
を課題とする。 【0005】 【課題を解決するための手段】上記課題を解決するため
に、本発明は、内輪および外輪の軌道面は、アモルファ
ス率が50体積%以上の金属−半金属系合金からなるこ
とを特徴とする転がり軸受を提供する。アモルファス金
属は、液体または気体状からの急冷現象により固化され
たことによって、結晶成長の時間的余裕がないため、物
質を構成する原子配置が結晶のような長周期規則性を持
たず、無秩序状態になっている金属である。現在知られ
ているアモルファス金属には、金属−半金属系アモルフ
ァス合金および金属−金属系アモルファス合金がある。
金属−半金属系アモルファス合金のアモルファス率(結
晶部分とアモルファス部分とを有する合金におけるアモ
ルファス部分の含有率)は、半金属の含有率によって変
化する。 【0006】本発明では、内輪および外輪の軌道面を、
アモルファス率が50体積%以上の金属−半金属系合金
を用いて形成することによって、内輪および外輪の軌道
面の無潤滑下での摩擦係数が高くなる。また、使用する
金属−半金属系合金の組成をCrを含有する組成とすれ
ば、耐食性が良好となる。内輪および外輪の軌道面を、
アモルファス率が50体積%以上の金属−半金属系合金
を用いて形成する方法としては、前記合金で内輪およ
び外輪の全体を形成する方法、表層部だけが前記合金
となっている素材を用いて内輪および外輪を形成する方
法、従来の軸受材料等を母材として内輪および外輪を
形成した後に、内輪および外輪の軌道面または軌道面を
含む表面全体に、前記合金からなる被膜を形成する方法
がある。およびの方法は難しいため、の方法を採
用することが好ましい。 【0007】の方法において、前記合金からなる被膜
を形成する方法としては溶射法が挙げられる。溶射法に
は、ワイヤー溶射法、超高速流溶射法、プラズマ溶射
法、ガス式パウダー溶射法、セラミック−ロッド溶射法
等がある。ワイヤー溶射法は、ワイヤー状の金属を、連
続的に自動供給しながら、溶射機先端のノズルの位置で
燃焼ガスまたはアークによって溶融し、この溶融金属を
圧縮エアーで霧状にし、この霧状の金属を被溶射面に吹
き付ける方法である。 【0008】超高速流溶射法は、燃焼室で圧縮空気とケ
ロシンを混合し、点火プラグにより着火して燃焼させ
る。これによって排出されたジェット火炎中に、粉末状
の溶射材を、窒素ガスによりノズルから超高速(140
0〜1500m/秒)で投入する。この方法では、ノズ
ル内で超高速に加速された溶射材の粒子が被溶射面に大
きなエネルギーで衝突するため、緻密な被膜が形成され
る。 【0009】の方法において、母材に使用する材料と
しては、機械構造用炭素鋼、クロム鋼、クロムモリブデ
ン鋼、各種工具鋼等が挙げられる。母材に使用する材料
は、内輪および外輪の大きさ(厚さ)等により焼き入れ
性等を考慮して選定する。母材で形成された内輪および
外輪の表面硬さはHv650以上であることが好まし
い。これにより、母材と被膜との界面に繰り返し応力が
作用した時に、母材は変形し難くなり、被膜はこの応力
に対して追従し易いため、被膜が母材から剥がれ難くな
る。 【0010】の方法において、合金被膜を溶射法で形
成する場合には、形成された合金薄膜に気孔が含まれる
ことが避けられないため、耐食性向上の観点から合金薄
膜の厚さを厚くする(例えば150μm以上)ことが好
ましい。合金薄膜の厚さのより好ましい値は200μm
以上である。ただし、合金被膜の厚さが厚くなり過ぎる
と、被膜中の残留応力が大きくなって母材との界面での
密着力が小さくなるため、被膜が母材から剥がれ易くな
る。そのため、合金被膜の厚さの上限値は例えば500
μmとすることが好ましく、より好ましくは450μm
とする。 【0011】 【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の一実施形態に相当する転が
り軸受を示す断面図である。この転がり軸受は、外輪1
と、内輪2と、玉(転動体)3と、保持器4とからな
る、呼び番号6000(外径26m、内径10mm、幅
8mm、玉の直径9.535mm)の玉軸受である。 【0012】先ず、耐食性試験用の試験体として、前述
のの方法により、この転がり軸受の外輪1を下記の表
1に示す7種類の構成で作製した。すなわち、先ず、鋼
A(Crの含有率が13.0重量%、Cの含有率が0.
45重量%、Nの含有率が0.13重量%である鉄鋼材
料)およびSUJ2により外輪を形成した。次に、No.
1−1のサンプルはそのままとし、これ以外のサンプル
は、その表面全体にアモルファス率の異なる合金被膜を
各膜厚で形成した。 【0013】合金被膜の形成方法としてはワイヤー溶射
法を採用した。ワイヤー状の溶射材としては、組成がシ
リコン(Si):1.4〜2.0%、クロム(Cr):
26.5〜30.0%、マンガン(Mn):1.2〜
2.2%、ボロン(B):0.5〜5.0%、鉄(F
e):残部(60.8〜70.4%)であって、ボロン
(半金属)の含有率を変化させてアモルファス率を変化
させたものを用意した。ボロンの含有率が少なくなるほ
どアモルファス率が小さくなる。 【0014】溶射膜の形成は具体的に以下のようにして
行った。すなわち、アーク電流800Å、アーク電圧2
0Vに調整されたアークで、溶射材であるワイヤーを溶
融させて、被溶射体の表面に、溶射金属粒子を約30k
g/時間の吹き付け速度で吹き付けることにより溶射膜
を形成した。このとき、溶射装置を固定し、被溶射体を
移動および回転させることで、被溶射体の表面に均一に
溶射膜を形成した。また、溶射金属粒子が噴射される方
向を自由に変えることができる溶射装置を用いることに
より、溶射し難い箇所(内輪および外輪の内側面等)へ
の溶射膜の形成を確実に行った。 【0015】各試験体を、濃度10体積%の塩酸(塩化
水素水溶液)が入った容器内に浸漬して、常温で(通常
の室内で加熱せずに)100時間保持する試験を行っ
た。この試験前後の各サンプルの重量減少量を腐食量と
して調べ、No. 1−1を「1」とした腐食量の比を算出
した。この結果を表1に併せて示す。 【0016】 【表1】 【0017】この結果から分かるように、アモルファス
率が50体積%以上の合金被膜を形成することによっ
て、合金被膜無しの場合および合金被膜のアモルファス
率が40%以下である場合よりも、耐食性を著しく高く
(25倍〜500倍に)することができる。次に、前述
のの方法により、この転がり軸受の外輪1と内輪2を
下記の表2に示す10種類の構成で作製した。すなわ
ち、鋼AおよびSUJ2により外輪および内輪を形成し
た後に、下記の条件で熱処理を行うことによって、軌道
面の表面硬さをHv650とした。 <熱処理条件>鋼A:焼入れ処理として1040〜10
60℃に保持後に油冷した後、焼き戻し処理として45
0〜500℃で2時間保持。 【0018】SUJ2:焼入れ処理として800〜83
0℃に保持後に油冷した後、焼き戻し処理として150
〜180℃で2時間保持。 次に、No. 2−1のサンプルはそのままとし、これ以外
のサンプルはその表面全体にアモルファス率の異なる合
金被膜を各膜厚で形成した。合金被膜は前記と同じ方法
で形成した。ただし、No. 2−2,2−3,2−6,2
−7は軌道面のみに合金被膜を形成した。 【0019】玉3は、全て窒化珪素焼結体により形成し
た。保持器4としては、チタン酸カリウムウイスカーを
20重量%含有するポリフッ化ビニリデン樹脂製の冠形
保持器を使用した。これら10種類のうち、表面全体に
合金被膜を形成した外輪1および内輪2(No. 2−1,
No. 2−4,No. 2−5,No. 2−8〜2−10)と、
前記と同じ玉3および保持器4とを用いて、前述の玉軸
受を組み立てて、各サンプルの腐食性溶液中での耐久性
を調べる回転試験を行った。回転試験機では、図2に示
すように、水平な基台Dに対して斜めに配置された回転
軸Sを、3個の玉軸受J,J1,J2で支持し、回転軸
Sの先端(基台D側)の玉軸受Jとして試験軸受を配置
した。 【0020】基台Dの上には、腐食性溶液51を入れた
容器5が設置されている。2個の玉軸受J1,J2の外
輪は、一つのハウジングHの軸方向両端部に固定されて
いる。回転軸Sは、容器5内の液体51に試験軸受Jの
外輪が浸漬するように配置されている。この試験軸受J
に径方向の荷重(ラジアル荷重)Rを付加しながら、潤
滑剤を供給せず、内輪回転で回転試験を行った。試験条
件は、ラジアル荷重:49N、回転速度:300rp
m、雰囲気温度:常温(25℃)、腐食性溶液:濃度1
0体積%の塩酸とした。 【0021】試験中に試験軸受Jに発生する振動を測定
し、振動値が試験開始時の2倍になった時点で回転を停
止し、その時点までの回転時間を調べ、各回転時間をN
o. 2−1(軌道面に合金被膜を形成していないサンプ
ル)の値を「1」とした値に換算し、その値を耐久性比
とした。その結果を表2に「腐食性溶液中の耐久性比」
として示す。 【0022】また、鋼Aにより外輪および内輪を形成し
た後、前記熱処理条件で熱処理を行うことにより、軌道
面の表面硬さをHv650とした後、前記と同じ方法に
より、表面全体にアモルファス率が70体積%である合
金被膜を各膜厚で形成した。これらの外輪1および内輪
2(外輪1および内輪2は同じ構成のものを使用)と、
前記と同じ玉3および保持器4とを用いて、前述の玉軸
受を組み立てて、各サンプルの腐食性溶液中での耐久性
を調べる回転試験を前記と同じ方法で行った。そして、
前記と同様にして回転時間を調べ、各回転時間をNo. 2
−1の値を「1」とした値に換算し、その値を耐久性比
とした。 【0023】得られた結果を図3にグラフで示す。図3
は、腐食性環境下での耐久性比と合金被膜の膜厚との関
係を示すグラフである。次に、前述の10種類の外輪1
および内輪2と、前記と同じ玉3および保持器4とを用
いて、前述の玉軸受を組み立てて、各サンプルの無潤滑
下での耐久性を調べる回転試験を行った。すなわち、潤
滑剤を供給しないとともに、図2で基台D上に容器5を
置かずに回転試験を行った。そして、試験中に試験軸受
Jに発生する振動を測定し、振動値が試験開始時の2倍
になった時点で回転を停止し、その時点までの回転時間
を調べ、各回転時間をNo. 2−1の値を「1」とした値
に換算し、その値を耐久性比とした。その結果を表2に
「無潤滑下での耐久性比」として示す。 【0024】 【表2】 【0025】なお、表2において、No. 2−6〜2−1
0は本発明の実施例に相当し、No.2−1〜2−5は本
発明の範囲外である。また、鋼Aにより外輪および内輪
を形成した後、前記熱処理条件で熱処理を行うことによ
り、軌道面の表面硬さをHv650とした後、表面全体
にアモルファス率の異なる合金被膜を200μm膜厚で
形成した。これらの外輪1および内輪2(外輪1および
内輪2は同じ構成のものを使用)と、前記と同じ玉3お
よび保持器4とを用いて、前述の玉軸受を組み立てて、
各サンプルの無潤滑下での耐久性を調べる回転試験を前
記と同じ方法で行った。そして、前記と同様にして回転
時間を調べ、各回転時間をNo. 2−1の値を「1」とし
た値に換算し、その値を耐久性比とした。 【0026】得られた結果を図4にグラフで示す。図4
は、無潤滑下での耐久性比と合金被膜のアモルファス率
との関係を示すグラフである。表2の結果から分かるよ
うに、本発明の実施例に相当するNo. 2−6〜2−10
は、本発明の範囲外であるNo. 2−1〜2−5よりも、
無潤滑下での耐久性(回転寿命)に優れている。また、
本発明の実施例に相当するNo. 2−8〜2−10は、本
発明の範囲外であるNo. 2−1,2−4,2−5より
も、腐食性環境下での耐久性(回転寿命)に優れてい
る。 【0027】また、図3のグラフから分かるように、ア
モルファス率が50体積%以上の合金被膜を軌道面に形
成することによって、転がり軸受の無潤滑下での耐久性
(回転寿命)を、合金被膜が形成されていない場合の1
0倍以上にすることができる。また、図4のグラフから
分かるように、アモルファス率が70体積%以上の合金
被膜を150μm以上500μm以下の膜厚で形成する
ことによって、転がり軸受の腐食性環境下での耐久性
(回転寿命)を、合金被膜が形成されていない場合の2
0倍以上にすることができる。特に、アモルファス率が
70体積%以上の合金被膜を200μm以上450μm
以下の膜厚で形成することによって、転がり軸受の腐食
性環境下での耐久性(回転寿命)を、合金被膜が形成さ
れていない場合の25倍以上にすることができる。 【0028】 【発明の効果】以上説明したように、本発明によれば、
耐食性および無潤滑下での耐摩耗性に優れた転がり軸受
が提供される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing having excellent corrosion resistance and wear resistance. 2. Description of the Related Art The operating environment of rolling bearings has become increasingly severe in recent years. For example, rolling bearings for semiconductor device manufacturing equipment and chemical fiber manufacturing machines have been used in corrosive solutions such as acids and alkalis. Some are immersed, splashed with corrosive solutions, or exposed to corrosive solution vapors. As materials for rolling bearings used in such a corrosive environment, conventionally, silicon nitride (Si 3 N 4 ), zirconia (ZrO 2 ), silicon carbide (SiC), and sialon (Si) have been used.
-Al-ON) and the like are being studied. [0003] However, the above-mentioned ceramic materials are extremely excellent in wear resistance in the presence of a lubricant (under lubrication), but the presence of a lubricant is not sufficient. In a non-lubricated state (under no lubrication), the coefficient of friction is relatively large (μ = 0.3 to 0.5). Therefore, when the lubricant runs out, wear may occur between the bearing ring and the rolling element, and vibration and torque may increase. An object of the present invention is to provide a rolling bearing which has not only high corrosion resistance but also excellent wear resistance under no lubrication. [0005] In order to solve the above-mentioned problems, the present invention relates to a method for manufacturing a vehicle, wherein the raceways of the inner ring and the outer ring are made of a metal-metalloid alloy having an amorphous ratio of 50% by volume or more. A rolling bearing is provided. Amorphous metal is solidified by the quenching phenomenon from liquid or gaseous state, so there is no time for crystal growth.Therefore, the atomic configuration of the material does not have the long-period regularity like crystals, and it is disordered. It is a metal that has become. Currently known amorphous metals include metal-metalloid amorphous alloys and metal-metal amorphous alloys.
The amorphous ratio of a metal-metalloid amorphous alloy (the content of the amorphous portion in an alloy having a crystalline portion and an amorphous portion) changes depending on the content of the metalloid. In the present invention, the raceways of the inner ring and the outer ring are
By using a metal-metalloid alloy having an amorphous ratio of 50% by volume or more, the friction coefficient of the raceway surfaces of the inner ring and the outer ring without lubrication increases. Further, if the composition of the metal-metalloid alloy used is a composition containing Cr, the corrosion resistance is improved. The inner and outer raceway surfaces
As a method of forming using a metal-metalloid alloy having an amorphous ratio of 50% by volume or more, a method of forming the entire inner ring and outer ring with the alloy, a method of using a material in which only the surface layer portion is the alloy. A method of forming the inner ring and the outer ring, a method of forming the inner ring and the outer ring using a conventional bearing material and the like as a base material, and then forming a coating made of the alloy on the entire raceway surface or the entire surface including the raceway surface of the inner ring and the outer ring. is there. Since the methods of and are difficult, it is preferable to adopt the method of. In the above method, a thermal spraying method may be used as a method of forming a film made of the alloy. Examples of the thermal spraying method include a wire thermal spraying method, an ultra-high speed flow thermal spraying method, a plasma thermal spraying method, a gas type powder thermal spraying method, and a ceramic rod thermal spraying method. In the wire spraying method, a wire-shaped metal is melted by a combustion gas or an arc at a nozzle position at the tip of the spraying machine while continuously supplying the metal, and the molten metal is atomized by compressed air. This is a method of spraying metal onto the surface to be sprayed. In the ultra-high-velocity flow thermal spraying method, compressed air and kerosene are mixed in a combustion chamber, ignited by a spark plug and burned. In the jet flame discharged by this, a powdery spray material is super-high speed (140
(0 to 1500 m / sec). In this method, the particles of the thermal spray material accelerated at a very high speed in the nozzle collide with the surface to be sprayed with a large energy, so that a dense film is formed. In the above method, the materials used for the base metal include carbon steel for machine structural use, chromium steel, chromium molybdenum steel, various tool steels and the like. The material used for the base metal is selected in consideration of the hardenability and the like according to the size (thickness) of the inner ring and the outer ring. The surface hardness of the inner ring and the outer ring formed of the base material is preferably Hv650 or more. Thus, when a stress is repeatedly applied to the interface between the base material and the coating, the base material is less likely to deform, and the coating is more likely to follow this stress, so that the coating is less likely to peel from the base material. In the above method, when the alloy film is formed by the thermal spraying method, it is inevitable that the formed alloy thin film contains pores, so that the thickness of the alloy thin film is increased from the viewpoint of improving corrosion resistance ( For example, it is preferably 150 μm or more. A more preferable value of the thickness of the alloy thin film is 200 μm.
That is all. However, when the thickness of the alloy coating is too large, the residual stress in the coating increases and the adhesion at the interface with the base material decreases, so that the coating is easily peeled off from the base material. Therefore, the upper limit of the thickness of the alloy film is, for example, 500
μm, more preferably 450 μm
And An embodiment of the present invention will be described below. FIG. 1 is a cross-sectional view showing a rolling bearing corresponding to one embodiment of the present invention. This rolling bearing is the outer ring 1
A ball bearing having a nominal number of 6000 (outer diameter: 26 m, inner diameter: 10 mm, width: 8 mm, ball diameter: 9.535 mm), comprising an inner ring, a ball (rolling element), and a cage. First, as test pieces for corrosion resistance tests, outer rings 1 of this rolling bearing were produced in the seven types shown in Table 1 below by the above-described method. That is, first, steel A (Cr content is 13.0% by weight and C content is 0.1% by weight.
An outer ring was formed by using 45% by weight, a steel material having a N content of 0.13% by weight) and SUJ2. Next, No.
The sample of 1-1 was left as it was, and the other samples were formed with alloy films having different amorphous ratios at respective film thicknesses on the entire surface. As a method for forming the alloy film, a wire spraying method was employed. As the wire-shaped thermal spray material, the composition is silicon (Si): 1.4 to 2.0%, chromium (Cr):
26.5-30.0%, manganese (Mn): 1.2-
2.2%, boron (B): 0.5 to 5.0%, iron (F
e): The remainder (60.8 to 70.4%) was prepared in which the amorphous ratio was changed by changing the boron (semimetal) content. The amorphous ratio decreases as the boron content decreases. The formation of the sprayed film was carried out specifically as follows. That is, arc current 800 °, arc voltage 2
With the arc adjusted to 0 V, the wire that is the thermal spray material is melted, and the thermal spray metal particles are sprayed on the surface of the thermal spray target for about 30 k.
The sprayed film was formed by spraying at a spray speed of g / hour. At this time, the spraying apparatus was fixed, and the object to be sprayed was moved and rotated to form a sprayed film uniformly on the surface of the object to be sprayed. In addition, by using a thermal spraying device capable of freely changing the direction in which the thermal sprayed metal particles are sprayed, the thermal spray coating was reliably formed on portions where thermal spraying is difficult (the inner surfaces of the inner and outer rings, etc.). A test was conducted in which each specimen was immersed in a container containing hydrochloric acid (aqueous hydrogen chloride solution) having a concentration of 10% by volume and kept at room temperature (without heating in a normal room) for 100 hours. The amount of weight loss of each sample before and after this test was examined as the amount of corrosion, and the ratio of the amount of corrosion with No. 1-1 set to "1" was calculated. The results are shown in Table 1. [Table 1] As can be seen from the results, the formation of an alloy film having an amorphous ratio of 50% by volume or more significantly reduces the corrosion resistance as compared with the case where no alloy film is present and the case where the amorphous ratio of the alloy film is 40% or less. It can be higher (25-500 times). Next, the outer ring 1 and the inner ring 2 of the rolling bearing were manufactured by the above-described method with ten kinds of configurations shown in Table 2 below. That is, after the outer ring and the inner ring were formed from steel A and SUJ2, heat treatment was performed under the following conditions to set the surface hardness of the raceway surface to Hv650. <Heat treatment conditions> Steel A: 1040 to 10 as quenching treatment
After holding at 60 ° C., oil-cooled, and then tempered for 45 minutes.
Hold at 0-500 ° C for 2 hours. SUJ2: 800-83 as quenching process
After holding at 0 ° C., oil-cooled, and then tempered for 150 minutes.
Hold at ~ 180 ° C for 2 hours. Next, the sample of No. 2-1 was left as it was, and the other samples were formed with alloy films having different amorphous ratios on the entire surface thereof in various thicknesses. The alloy film was formed by the same method as described above. However, No. 2-2, 2-3, 2-6, 2
For No.-7, an alloy film was formed only on the raceway surface. The balls 3 were all formed of a silicon nitride sintered body. As the cage 4, a crown-shaped cage made of polyvinylidene fluoride resin containing 20% by weight of potassium titanate whiskers was used. Out of these 10 types, the outer ring 1 and the inner ring 2 (No.
No. 2-4, No. 2-5, No. 2-8 to 2-10),
Using the same ball 3 and retainer 4 as described above, the above-described ball bearing was assembled, and a rotation test was performed to examine the durability of each sample in a corrosive solution. In the rotation tester, as shown in FIG. 2, a rotating shaft S that is obliquely arranged with respect to a horizontal base D is supported by three ball bearings J, J1, and J2, and the tip of the rotating shaft S ( A test bearing was arranged as a ball bearing J on the base D side). On the base D, a container 5 containing a corrosive solution 51 is provided. The outer rings of the two ball bearings J1 and J2 are fixed to both axial ends of one housing H. The rotating shaft S is arranged so that the outer ring of the test bearing J is immersed in the liquid 51 in the container 5. This test bearing J
While applying a radial load (radial load) R to the sample, a rotation test was performed by rotating the inner ring without supplying a lubricant. The test conditions were as follows: radial load: 49N, rotation speed: 300 rpm
m, ambient temperature: normal temperature (25 ° C.), corrosive solution: concentration 1
It was 0% by volume hydrochloric acid. The vibration generated in the test bearing J during the test is measured. When the vibration value becomes twice as large as that at the start of the test, the rotation is stopped, and the rotation time up to that point is examined.
o. The value of 2-1 (the sample in which the alloy film was not formed on the raceway surface) was converted to a value of "1", and the value was used as the durability ratio. The results are shown in Table 2 "Durability ratio in corrosive solution"
Shown as After the outer ring and the inner ring are formed from steel A, heat treatment is performed under the above heat treatment conditions to set the surface hardness of the raceway surface to Hv650, and the amorphous ratio is reduced over the entire surface by the same method as described above. An alloy film of 70% by volume was formed at each film thickness. These outer ring 1 and inner ring 2 (the outer ring 1 and inner ring 2 have the same configuration),
Using the same ball 3 and retainer 4 as described above, the above-described ball bearing was assembled, and a rotation test for examining the durability of each sample in a corrosive solution was performed by the same method as described above. And
The rotation time is checked in the same manner as described above.
The value of -1 was converted to a value of "1", and that value was used as the durability ratio. The results obtained are shown graphically in FIG. FIG.
Is a graph showing the relationship between the durability ratio in a corrosive environment and the thickness of the alloy film. Next, the above-mentioned ten kinds of outer rings 1
Using the inner ring 2 and the same ball 3 and cage 4 as described above, the above-described ball bearing was assembled, and a rotation test was performed to examine the durability of each sample without lubrication. That is, the rotation test was performed without supplying the lubricant and without placing the container 5 on the base D in FIG. Then, the vibration generated in the test bearing J during the test was measured, the rotation was stopped when the vibration value became twice as large as that at the start of the test, and the rotation time up to that point was checked. The value of 2-1 was converted to a value of "1", and that value was used as the durability ratio. The results are shown in Table 2 as "Durability ratio without lubrication". [Table 2] In Table 2, Nos. 2-6 to 2-1
0 corresponds to an example of the present invention, and Nos. 2-1 to 2-5 are out of the scope of the present invention. Further, after the outer ring and the inner ring are formed from steel A, the surface hardness of the raceway surface is set to Hv650 by performing a heat treatment under the above heat treatment conditions, and then an alloy film having a different amorphous ratio is formed to a thickness of 200 μm on the entire surface. did. Using the outer ring 1 and the inner ring 2 (the outer ring 1 and the inner ring 2 have the same configuration) and the same ball 3 and retainer 4 as described above, assembling the above-described ball bearing,
A rotation test for checking the durability of each sample without lubrication was performed in the same manner as described above. Then, the rotation time was examined in the same manner as described above, and each rotation time was converted to a value in which the value of No. 2-1 was set to "1", and the value was used as the durability ratio. FIG. 4 is a graph showing the obtained results. FIG.
Is a graph showing the relationship between the durability ratio without lubrication and the amorphous ratio of the alloy coating. As can be seen from the results in Table 2, Nos. 2-6 to 2-10 corresponding to the examples of the present invention.
Is more than No. 2-1 to 2-5 outside the scope of the present invention,
Excellent durability (rotational life) without lubrication. Also,
Nos. 2-8 to 2-10 corresponding to Examples of the present invention are more durable in a corrosive environment than Nos. 2-1 to 2-4, which are out of the scope of the present invention. (Rotational life). As can be seen from the graph of FIG. 3, by forming an alloy film having an amorphous ratio of 50% by volume or more on the raceway surface, the durability (rotation life) of the rolling bearing without lubrication can be improved. 1 when the film is not formed
It can be 0 times or more. Further, as can be seen from the graph of FIG. 4, the durability (rotation life) of the rolling bearing in a corrosive environment by forming an alloy film having an amorphous ratio of 70% by volume or more with a film thickness of 150 μm or more and 500 μm or less is obtained. In the case where the alloy film is not formed
It can be 0 times or more. In particular, an alloy film having an amorphous ratio of 70% by volume or more has a
By forming with the following film thickness, the durability (rotation life) of the rolling bearing in a corrosive environment can be made 25 times or more as long as the case where no alloy film is formed. As described above, according to the present invention,
A rolling bearing having excellent corrosion resistance and wear resistance under no lubrication is provided.

【図面の簡単な説明】 【図1】本発明の一実施形態に相当する転がり軸受を示
す断面図である。 【図2】実施形態で行った試験方法を示す図である。 【図3】実施形態で行った試験結果を示すグラフであ
る。 【図4】実施形態で行った試験結果を示すグラフであ
る。 【符号の説明】 1 外輪 2 内輪 3 玉(転動体) 4 保持器 5 腐食性溶液を入れた容器 51 腐食性溶液 D 基台 H ハウジング J1 玉軸受 J2 玉軸受 J 試験軸受 R ラジアル荷重 S 回転軸
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a rolling bearing according to an embodiment of the present invention. FIG. 2 is a diagram showing a test method performed in the embodiment. FIG. 3 is a graph showing test results performed in the embodiment. FIG. 4 is a graph showing test results performed in the embodiment. [Description of Signs] 1 Outer ring 2 Inner ring 3 Ball (rolling element) 4 Cage 5 Container containing corrosive solution 51 Corrosive solution D Base H Housing J1 Ball bearing J2 Ball bearing J Test bearing R Radial load S Rotating shaft

フロントページの続き Fターム(参考) 3J101 AA01 AA02 AA12 AA32 BA50 BA51 BA70 CA31 CA33 CA34 DA05 EA33 FA01 FA08 FA31 4K031 AA02 AB08 CB22 CB24 CB29 DA03 EA02 Continuation of front page    F term (reference) 3J101 AA01 AA02 AA12 AA32 BA50                       BA51 BA70 CA31 CA33 CA34                       DA05 EA33 FA01 FA08 FA31                 4K031 AA02 AB08 CB22 CB24 CB29                       DA03 EA02

Claims (1)

【特許請求の範囲】 【請求項1】 内輪および外輪の軌道面は、アモルファ
ス率が50体積%以上の金属−半金属系合金からなるこ
とを特徴とする転がり軸受。
Claims 1. A rolling bearing, wherein the raceway surfaces of an inner ring and an outer ring are made of a metal-metalloid alloy having an amorphous ratio of 50% by volume or more.
JP2001195676A 2001-06-28 2001-06-28 Rolling bearing Pending JP2003013968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001195676A JP2003013968A (en) 2001-06-28 2001-06-28 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001195676A JP2003013968A (en) 2001-06-28 2001-06-28 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2003013968A true JP2003013968A (en) 2003-01-15

Family

ID=19033618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001195676A Pending JP2003013968A (en) 2001-06-28 2001-06-28 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2003013968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161182A1 (en) * 2010-06-22 2011-12-29 The Swatch Group Research And Development Ltd Ball bearing
JP2021529890A (en) * 2018-08-14 2021-11-04 アトメタル テック ピーティーイー エルティーディーAttometal Tech Pte. Ltd. A pipe with an amorphous coated inner surface and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161182A1 (en) * 2010-06-22 2011-12-29 The Swatch Group Research And Development Ltd Ball bearing
JP2021529890A (en) * 2018-08-14 2021-11-04 アトメタル テック ピーティーイー エルティーディーAttometal Tech Pte. Ltd. A pipe with an amorphous coated inner surface and its manufacturing method

Similar Documents

Publication Publication Date Title
US20100087346A1 (en) Solid film lubricated high oxidation temperature rhenium material
JP2001330038A (en) Rolling supporting device
US7964239B2 (en) Bearing material coated slide member and method for manufacturing the same
JP2009052745A (en) Manufacturing method of press cage for rolling bearing
Ouyang et al. Microstructure and tribological properties of low-pressure plasma-sprayed ZrO2–CaF2–Ag2O composite coating at elevated temperature
JP2003013968A (en) Rolling bearing
JP2019137897A (en) Slide member and method for producing the same
JP2946272B2 (en) Rolling bearing
JP4513775B2 (en) Rolling device for rolling mill roll neck
JP2003138367A (en) Thermal spray coating, method for forming thermal spray coating, and thermal spray raw material powder
JP2006328463A (en) Sliding member
JP2019151913A (en) Sliding member and method for manufacturing the same
JP6915549B2 (en) Sliding member and its manufacturing method
JPH06306380A (en) Solid lubricant and formation of its film
JPH0741779A (en) Sliding member
EP3875630B1 (en) Thermally sprayed coating for sliding member and sliding device provided with said thermally sprayed coating for sliding member
JP2007177836A (en) Rolling bearing
JP2593426B2 (en) Melting zinc erosion resistant alloy and its manufacturing method and application
JP2002295486A (en) Rolling bearing for molten metal plating device
JP2019203557A (en) Rolling bearing
JP5485922B2 (en) Rolling device
JP2019163511A (en) Slide member and manufacturing method thereof
JP2009204078A (en) Rolling device
JP2021042435A (en) Slide member and manufacturing method of the same
JP2020056077A (en) Slide member and method for manufacturing the same