JP2003010685A - Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method - Google Patents

Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method

Info

Publication number
JP2003010685A
JP2003010685A JP2001194881A JP2001194881A JP2003010685A JP 2003010685 A JP2003010685 A JP 2003010685A JP 2001194881 A JP2001194881 A JP 2001194881A JP 2001194881 A JP2001194881 A JP 2001194881A JP 2003010685 A JP2003010685 A JP 2003010685A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
copper
dimethyl ether
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001194881A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mogi
康弘 茂木
Tsutomu Shikada
勉 鹿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001194881A priority Critical patent/JP2003010685A/en
Publication of JP2003010685A publication Critical patent/JP2003010685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst capable of manufacturing hydrogen in a high yield by a reduced amount of the catalyst, and to provide a hydrogen manufacturing method. SOLUTION: Hydrogen is manufactured by allowing the catalyst, which is obtained by integrally bonding a copper-containing solid catalyst and a solid acid catalyst through a binder, to act on mixed gas of dimethyl ether and steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素を製造するた
めの触媒、およびその触媒の製造方法、ならびにその触
媒にジメチルエーテルと水蒸気の混合ガスを流通させて
水素を含むガスを製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst for producing hydrogen, a method for producing the catalyst, and a method for producing a gas containing hydrogen by passing a mixed gas of dimethyl ether and steam through the catalyst. Is.

【0002】[0002]

【従来の技術】従来、触媒の存在下で、ジメチルエーテ
ルと水蒸気の混合ガスから水素を含むガスを製造する方
法、およびその触媒はいくつか知られている。
2. Description of the Related Art Heretofore, there have been known some methods for producing a gas containing hydrogen from a mixed gas of dimethyl ether and steam in the presence of a catalyst, and catalysts therefor.

【0003】例えば、特許第3124035号公報に
は、少なくとも20%の銅を含みアルカリ金属を含んで
いない触媒を用いて、水素を含むガスを製造する方法が
開示されている。また、特開平9−118501号公報
には、固体酸類からなる群から選択されたエーテル水和
触媒、およびメタノール分解触媒の存在下に、ジメチル
エーテルと水蒸気を反応させ、水素を含むガスを製造す
る方法が開示されている。
For example, Japanese Patent No. 3124035 discloses a method for producing a gas containing hydrogen by using a catalyst containing at least 20% of copper and containing no alkali metal. Further, JP-A-9-118501 discloses a method for producing a gas containing hydrogen by reacting dimethyl ether with steam in the presence of an ether hydration catalyst selected from the group consisting of solid acids and a methanol decomposition catalyst. Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特許第
3124035号公報に開示された方法では、350℃
以上の高温でないとジメチルエーテルの転化率が上がら
ない問題がある。また、特開平9−118501号公報
に開示された方法では、350℃以下の低温で反応が進
行しているが、反応原料であるジメチルエーテルの流量
あたりの触媒量をあらわすW/F(g−触媒*hr/m
ol−DME)が約86と非常に高い値であり、実用的
でない。
However, in the method disclosed in Japanese Patent No. 3124035, 350 ° C.
There is a problem that the conversion rate of dimethyl ether does not increase unless the temperature is higher than the above. Further, in the method disclosed in Japanese Patent Application Laid-Open No. 9-118501, the reaction proceeds at a low temperature of 350 ° C. or lower, but W / F (g-catalyst) showing the amount of catalyst per flow rate of dimethyl ether as a reaction raw material. * Hr / m
(ol-DME) is a very high value of about 86, which is not practical.

【0005】本発明は、上記従来の問題点を解決し、少
ない触媒量で高収率の水素を製造するための触媒および
水素の製造方法を提供することを目的とする。
It is an object of the present invention to solve the above conventional problems and provide a catalyst and a method for producing hydrogen for producing high yield hydrogen with a small amount of catalyst.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するためになされたもので、本発明者らは銅を含有する
固体触媒と固体酸触媒を共粉砕した後、バインダーを使
用して一体化させた触媒を開発するに至り、またこの触
媒を少量使用することにより、ジメチルエーテルと水蒸
気の混合ガスから、水素を高い収率で製造し得ることを
見出し、本発明を完成した。
The present invention has been made in order to achieve the above-mentioned object. The present inventors have used a binder after co-milling a solid catalyst containing copper and a solid acid catalyst. The present inventors have completed the present invention by developing an integrated catalyst and finding that hydrogen can be produced at a high yield from a mixed gas of dimethyl ether and steam by using a small amount of this catalyst.

【0007】すなわち、本発明の水素製造用触媒は、銅
を含有する固体触媒と固体酸触媒がバインダーを使用し
て一体化されていることを特徴として構成されている。
That is, the catalyst for hydrogen production of the present invention is characterized in that a solid catalyst containing copper and a solid acid catalyst are integrated by using a binder.

【0008】また、本発明の水素製造方法は、ジメチル
エーテルと水蒸気の混合ガスから、水素を製造する方法
において、銅を含有する固体触媒と固体酸触媒がバイン
ダーを介して接合一体化されている触媒を使用すること
を特徴として構成されている。
The method for producing hydrogen according to the present invention is a method for producing hydrogen from a mixed gas of dimethyl ether and water vapor, in which a solid catalyst containing copper and a solid acid catalyst are joined and integrated via a binder. Is configured to be used.

【0009】この本発明の特徴は、銅を含有する固体触
媒と固体酸触媒をバインダーを使用して一体化する点に
ある。これは、各種触媒を反応中に分離させることな
く、それらの触媒の距離を著しく接近させることによ
り、以下に述べる反応サイクルを速やかに進行させ、水
素の収率を向上させるためである。本発明の触媒による
ジメチルエーテルと水蒸気から水素を生成させる反応は
次のように進行する。まず、ジメチルエーテルが固体酸
触媒の存在下、下記の式に従い水和される。 CH3OCH3 + H2O → 2CH3OH (1)
The feature of the present invention resides in that a solid catalyst containing copper and a solid acid catalyst are integrated by using a binder. This is because by making the distances of the various catalysts extremely close to each other without separating the various catalysts during the reaction, the reaction cycle described below rapidly proceeds and the hydrogen yield is improved. The reaction of producing hydrogen from dimethyl ether and steam by the catalyst of the present invention proceeds as follows. First, dimethyl ether is hydrated according to the following formula in the presence of a solid acid catalyst. CH 3 OCH 3 + H 2 O → 2CH 3 OH (1)

【0010】次いで、メタノールが銅含有触媒の存在
下、下記式に従い水蒸気と反応する。 2CH3OH + 2H2O → 2CO2 + 6H2 (2)
Next, methanol reacts with water vapor in the presence of a copper-containing catalyst according to the following formula. 2CH 3 OH + 2H 2 O → 2CO 2 + 6H 2 (2)

【0011】全体の反応として、下記式となる。 CH3OCH3 + 3H2O → 2CO2 + 6H2 (3)The overall reaction is given by the following equation. CH 3 OCH 3 + 3H 2 O → 2CO 2 + 6H 2 (3)

【0012】[0012]

【発明の実施の形態】本発明で使用される触媒は、銅を
含有する固体触媒と固体酸触媒を一体化したものであ
る。銅を含有する固体触媒としては、銅の金属および/
または化合物を含有するものであり、アルミナ、シリ
カ、チタニアなどの酸化物に銅を担持した触媒、銅−亜
鉛触媒、銅−亜鉛−アルミナ触媒などである。銅の化合
物としては銅の酸化物が好ましく、銅の酸化物は酸化第
一銅(Cu2O)、酸化第二銅(CuO)またはその混
合物である。なかでもアルミナに銅を担持した触媒が水
素収率が高いので好ましい。この触媒中の銅の含有率は
約1〜50重量%、好ましくは2〜30重量%である。
銅の含有率が約1重量%未満および50重量%以上であ
ると、水素の収率が低下する。銅を含有する固体触媒の
粒径は、平均粒径で0.001〜50mm程度、好まし
くは0.005〜30mm程度、特に好ましくは0.0
10〜20mm程度である。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst used in the present invention is an integrated solid catalyst containing copper and a solid acid catalyst. The solid catalyst containing copper includes copper metal and / or
Alternatively, a catalyst containing a compound, such as an alumina, silica, or titania oxide supporting copper, a copper-zinc catalyst, a copper-zinc-alumina catalyst, or the like. The copper compound is preferably a copper oxide, and the copper oxide is cuprous oxide (Cu 2 O), cupric oxide (CuO), or a mixture thereof. Of these, a catalyst in which copper is supported on alumina is preferable because of high hydrogen yield. The copper content in this catalyst is about 1 to 50% by weight, preferably 2 to 30% by weight.
If the copper content is less than about 1% by weight and 50% by weight or more, the yield of hydrogen decreases. The average particle size of the solid catalyst containing copper is about 0.001 to 50 mm, preferably about 0.005 to 30 mm, and particularly preferably 0.0.
It is about 10 to 20 mm.

【0013】この銅を含む物質の製造には、一般的な触
媒の調製方法を適用できる。例えばこの物質の製造用原
料は、銅の化合物として、それぞれの硝酸塩、炭酸塩、
ハロゲン化物等の無機酸塩および酢酸銅、シュウ酸銅な
ど有機酸塩が使用される。また、触媒担体への銅の担持
操作には、通常の沈殿法、混練法、含浸法およびイオン
交換法などの技術が利用できる。このように調製された
触媒組成物は、必要があれば常法により焼成する。焼成
は、窒素中または空気中において、350〜800℃の
温度で1〜10時間加熱して行うのが好ましい。
A general catalyst preparation method can be applied to the production of the substance containing copper. For example, the raw material for the production of this substance, as the copper compound, each nitrate, carbonate,
Inorganic acid salts such as halides and organic acid salts such as copper acetate and copper oxalate are used. In addition, for the operation of supporting copper on the catalyst carrier, ordinary techniques such as a precipitation method, a kneading method, an impregnation method and an ion exchange method can be used. The catalyst composition thus prepared is calcined by a conventional method if necessary. The firing is preferably performed by heating in nitrogen or air at a temperature of 350 to 800 ° C. for 1 to 10 hours.

【0014】本発明の触媒を構成するもう一方の触媒成
分は、固体酸触媒である。この固体酸とは、固体であり
ながらブレンステッド酸またはルイス酸の特性を示すも
のであり、具体的には、アルミナ、シリカ・アルミナ、
シリカ・チタニア、ゼオライト、燐酸アルミニウム等で
ある。なかでもアルミナが水素の収率が高いので好まし
い。
The other catalyst component constituting the catalyst of the present invention is a solid acid catalyst. This solid acid is one that exhibits the characteristics of a Bronsted acid or a Lewis acid while being a solid, and specifically, alumina, silica-alumina,
Examples include silica / titania, zeolite, and aluminum phosphate. Of these, alumina is preferable because it has a high hydrogen yield.

【0015】銅を含有する固体触媒と固体酸触媒の混合
割合は、各成分の種類あるいは反応条件等に応じて適宜
選定すればよいが、通常は前者と後者の重量比で1:4
から4:1である。
The mixing ratio of the solid catalyst containing copper and the solid acid catalyst may be appropriately selected according to the type of each component or the reaction conditions, but usually the weight ratio of the former to the latter is 1: 4.
To 4: 1.

【0016】触媒の一体化方法は、上記触媒を混合し、
好ましくは共粉砕した後、これにバインダーを加えて混
練し、さらに乾燥、焼成して行う。共粉砕の程度は前記
粒径になるように行えばよい。バインダーとしては、ア
ルミナゾル、粘土などがある。また、触媒とバインダー
との比率は、重量比で触媒1に対しバインダー0.00
1〜1、好ましくは0.005〜0.50、特に好まし
くは0.01〜0.30の範囲が望ましい。
The catalyst is integrated by mixing the above catalysts,
Preferably, after co-milling, a binder is added to this and kneaded, followed by drying and firing. The degree of co-grinding may be carried out so that the above particle size is obtained. Examples of the binder include alumina sol and clay. Further, the ratio of the catalyst to the binder is 0.001 by weight of the binder with respect to the catalyst by weight.
The range of 1 to 1, preferably 0.005 to 0.50, particularly preferably 0.01 to 0.30 is desirable.

【0017】上記触媒は、バインダーを加えて混練した
後に、ペレット化してから乾燥、焼成してもよく、また
混練、乾燥、焼成後に粉砕して使用してもよい。この接
合一体化された触媒の粒径は、平均粒径で0.01〜5
0mm程度、特に0.05〜20mm程度が好ましい。
The above catalyst may be kneaded by adding a binder, pelletized and then dried and calcined, or kneaded, dried and calcined and then crushed and used. The particle size of the catalyst integrated and joined is 0.01 to 5 as an average particle size.
It is preferably about 0 mm, particularly about 0.05 to 20 mm.

【0018】このようにして形成された触媒に、ジメチ
ルエーテルと水蒸気の混合ガスを流通させることによ
り、水素が高収率で得られる。ジメチルエーテルと水蒸
気の混合割合は、量論としては(3)式より、水蒸気が
ジメチルエーテルに対して3倍であるが、量論量または
量論量よりも若干過剰が好ましく、3〜7倍、より好ま
しくは3〜5倍である。また、このジメチルエーテルと
水蒸気の混合ガスに、他の成分を含むことができる。そ
の他の成分として反応に不活性なガス、例えば窒素、不
活性ガス、等を含むことができる。これらの含有量は3
0容量%以下が適当であり、これより多くなると反応速
度の低下が問題となる。一方、空気(酸素)はジメチル
エーテルが燃焼してしまうのでなるべく排除したほうが
よく、許容含有量は空気として5%以下である。
By passing a mixed gas of dimethyl ether and water vapor through the catalyst thus formed, hydrogen can be obtained in a high yield. Regarding the mixing ratio of dimethyl ether and water vapor, the amount of water vapor is 3 times as much as that of dimethyl ether according to the formula (3), but it is preferable that the amount of water vapor be slightly stoichiometric or slightly more than the amount stoichiometric. It is preferably 3 to 5 times. Further, the mixed gas of dimethyl ether and steam may contain other components. Other components may include a gas inert to the reaction, such as nitrogen or an inert gas. The content of these is 3
The content of 0% by volume or less is suitable, and if it is more than this, the reaction rate is lowered. On the other hand, air (oxygen) should be removed as much as possible because dimethyl ether burns, and the allowable content is 5% or less as air.

【0019】反応温度は200〜350℃が好ましく、
特に200〜300℃の範囲が好ましい。反応温度が2
00℃より低いと、高いジメチルエーテル転化率が得ら
れず、350℃より高いとメタンの生成が多くなり水素
の収率が低下し、また得られた水素含有ガスを燃料電池
などに使用する場合には燃料電池の触媒を毒する一酸化
炭素の生成が増え、好ましくない。
The reaction temperature is preferably 200 to 350 ° C.,
The range of 200 to 300 ° C. is particularly preferable. Reaction temperature is 2
If the temperature is lower than 00 ° C, a high conversion rate of dimethyl ether cannot be obtained. If the temperature is higher than 350 ° C, the production of methane increases and the yield of hydrogen decreases, and when the obtained hydrogen-containing gas is used in a fuel cell or the like. Is unfavorable because it increases the production of carbon monoxide that poisons the catalyst of the fuel cell.

【0020】反応圧力は常圧〜10kg/cm2が好ま
しい。反応圧力が10kg/cm2より高いと、ジメチ
ルエーテル転化率が低下する。
The reaction pressure is preferably atmospheric pressure to 10 kg / cm 2 . When the reaction pressure is higher than 10 kg / cm 2 , the conversion rate of dimethyl ether decreases.

【0021】反応原料であるジメチルエーテルの流量あ
たりの触媒量をあらわすW/F(g−触媒*hr/mo
l−DME)は、0.1〜50g・hr/molが好ま
しく、特に1〜20g・hr/molである。W/Fが
0.1g・hr/molより小さいと、ジメチルエーテ
ル転化率が低くなり、50g・hr/molより大きい
と使用触媒量が多く、また反応器が極端に大きくなり経
済的でない。
W / F (g-catalyst * hr / mo) showing the amount of catalyst per flow rate of dimethyl ether as a reaction raw material
1-DME) is preferably 0.1 to 50 g · hr / mol, particularly 1 to 20 g · hr / mol. When W / F is less than 0.1 g · hr / mol, the conversion rate of dimethyl ether is low, and when it is more than 50 g · hr / mol, the amount of catalyst used is large and the reactor becomes extremely large, which is not economical.

【0022】[0022]

【実施例】I.触媒の調製 1)Cu−Al23触媒の調製 イオン交換水約200mlに酢酸銅(Cu(CH3CO
O)2・H2O)15.7gを溶解し、これにγ−アルミ
ナ(日揮化学製,『N612』)95gを投入した後、
蒸発乾固した。ついで、このものを空気中、120℃で
24時間乾燥した後、空気中450℃で4時間焼成し
た。さらに、水素気流中、400℃で3時間処理して触
媒を得た。このものの組成は、Cu:Al23=5:9
5(重量比)であった。
EXAMPLE I. Preparation of catalyst 1) Preparation of Cu-Al 2 O 3 catalyst About 200 ml of deionized water was added with copper acetate (Cu (CH 3 CO 3
After dissolving 15.7 g of O) 2 · H 2 O) and adding 95 g of γ-alumina (“N612” manufactured by JGC Chemical Co., Ltd.) to this,
Evaporated to dryness. Then, this was dried in air at 120 ° C. for 24 hours and then calcined in air at 450 ° C. for 4 hours. Further, it was treated at 400 ° C. for 3 hours in a hydrogen stream to obtain a catalyst. The composition of this is Cu: Al 2 O 3 = 5: 9
It was 5 (weight ratio).

【0023】2)CuO−ZnO−Al23触媒の調製 硝酸銅(Cu(NO32・3H2O)185g、硝酸亜
鉛(Zn(NO32・6H2O)117g、および硝酸
アルミニウム(Al(NO33・9H2O)52gをイ
オン交換水約1lに溶解した。この水溶液と、炭酸ナト
リウム(Na2CO3)約1.4kgをイオン交換水約1
lに溶解した水溶液とを、約60℃に保温したイオン交
換水約3lの入ったステンレス製容器中に、pHが7.
0±0.5に保持されるように調節しながら、約2時間
かけて滴下した。滴下終了後、そのまま約1時間保持し
て熟成を行った。なお、この間にpHが7.0±0.5
から外れるようであれば、約1mol/lの硝酸水溶液
または約1mol/lの炭酸ナトリウム水溶液を滴下し
て、pHを7.0±0.5にあわせた。次に、生成した
沈殿を濾過した後、洗浄液に硝酸イオンが検出されなく
なるまでイオン交換水を用いて洗浄した。得られたケー
キを120℃で24時間乾燥した後、さらに空気中35
0℃で5時間焼成して目的の触媒を得た。
[0023] 2) CuO-ZnO-Al 2 O 3 catalyst prepared copper nitrate (Cu (NO 3) 2 · 3H 2 O) 185g, zinc nitrate (Zn (NO 3) 2 · 6H 2 O) 117g, and nitric acid aluminum (Al (NO 3) 3 · 9H 2 O) 52g was dissolved in deionized water of about 1l. About 1.4 kg of this aqueous solution and sodium carbonate (Na 2 CO 3 ) was added to about 1 part of deionized water.
The pH of the solution prepared by dissolving the aqueous solution of 7.1 in a stainless steel container containing about 3 1 of ion-exchanged water kept at about 60 ° C.
The solution was added dropwise over about 2 hours while adjusting it so that it was maintained at 0 ± 0.5. After the completion of dropping, the mixture was kept for about 1 hour for aging. During this period, the pH is 7.0 ± 0.5.
If it comes out of the range, an about 1 mol / l nitric acid aqueous solution or an about 1 mol / l sodium carbonate aqueous solution was added dropwise to adjust the pH to 7.0 ± 0.5. Next, the generated precipitate was filtered and then washed with ion-exchanged water until nitrate ions were not detected in the washing liquid. The cake obtained was dried at 120 ° C. for 24 hours, and then dried in air 35
The target catalyst was obtained by calcination at 0 ° C. for 5 hours.

【0024】得られた触媒の組成は、CuO:ZnO:
Al23=61:32:7(重量比)であった。
The composition of the resulting catalyst was CuO: ZnO:
Al 2 O 3 = 61: 32: 7 (weight ratio).

【0025】3)Cu−SiO2触媒の調製 イオン交換水約200mlに酢酸銅(Cu(CH3CO
O)2・H2O)15.7gを溶解し、これにシリカゲル
(富士シリシアン化学製,『Q−10』)95gを投入
した後、蒸発乾固した。ついで、このものを空気中、1
20℃で24時間乾燥した後、空気中450℃で4時間
焼成した。さらに、水素気流中、400℃で3時間処理
して触媒を得た。このものの組成は、Cu:SiO2
5:95(重量比)であった。
3) Preparation of Cu-SiO 2 catalyst In about 200 ml of ion-exchanged water, copper acetate (Cu (CH 3 CO 2
O) 2 · H 2 O) (15.7 g) was dissolved, silica gel (Fuji Silysian Chemicals, “Q-10”) 95 g was added thereto, and then evaporated to dryness. Then, this thing in the air, 1
After drying at 20 ° C. for 24 hours, it was calcined in air at 450 ° C. for 4 hours. Further, it was treated at 400 ° C. for 3 hours in a hydrogen stream to obtain a catalyst. The composition of this is Cu: SiO 2 =
It was 5:95 (weight ratio).

【0026】実施例1,2,3(触媒A) 上記のCu−Al23触媒100g、市販のアルミナ
(日揮化学製,『N612』)200gを、ボールミル
中で約3時間共粉砕して、約20μm以下の微粉末状に
した。ついで、これにアルミナゾル(日産化学製,『ア
ルミナゾル−520』)15gを加えて均一に混合した
後、空気中120℃で24時間乾燥し、さらに空気中4
50℃で3時間焼成して一体化した。さらに、このもの
を0.5〜1mmに粉砕して触媒Aを得た。
Examples 1, 2 and 3 (Catalyst A) 100 g of the above Cu—Al 2 O 3 catalyst and 200 g of commercially available alumina (“N612” manufactured by JGC Chemical Co., Ltd.) were co-ground for about 3 hours in a ball mill. The powder was made into a fine powder of about 20 μm or less. Next, 15 g of alumina sol (manufactured by Nissan Kagaku, “Alumina sol-520”) was added to and uniformly mixed, followed by drying in air at 120 ° C. for 24 hours, and further in air 4
It integrated by baking at 50 degreeC for 3 hours. Further, this was crushed to 0.5 to 1 mm to obtain a catalyst A.

【0027】実施例4,5,6(触媒B) 上記のCuO−ZnO−Al23触媒100g、市販の
アルミナ(日揮化学製,『N612』)200gを、ボ
ールミル中で約3時間共粉砕して、約20μm以下の微
粉末状にした。ついで、これにアルミナゾル(日産化学
製,『アルミナゾル−520』)15gを加えて均一に
混合した後、空気中120℃で24時間乾燥し、さらに
空気中450℃で3時間焼成して一体化した。さらに、
このものを0.5〜1mmに粉砕して触媒Bを得た。
[0027] Examples 4, 5, 6 (Catalyst B) above CuO-ZnO-Al 2 O 3 catalyst 100 g, commercially available alumina (Nikki Chemical Co., "N612") to 200 g, about 3 hours co milled in a ball mill Then, it was made into a fine powder of about 20 μm or less. Then, 15 g of alumina sol (manufactured by Nissan Chemical Co., Ltd., “Alumina sol-520”) was added and uniformly mixed, followed by drying in air at 120 ° C. for 24 hours and further firing in air at 450 ° C. for 3 hours to be integrated. . further,
This was crushed to 0.5 to 1 mm to obtain a catalyst B.

【0028】実施例7(触媒C) 上記のCu−Al23触媒150g、市販のアルミナ
(日揮化学製,『N612』)150gを、ボールミル
中で約3時間共粉砕して、約20μm以下の微粉末状に
した。ついで、これにアルミナゾル(日産化学製,『ア
ルミナゾル−520』)15gを加えて均一に混合した
後、空気中120℃で24時間乾燥し、さらに空気中4
50℃で3時間焼成して一体化した。さらに、このもの
を0.5〜1mmに粉砕して触媒Cを得た。
Example 7 (Catalyst C) 150 g of the above Cu—Al 2 O 3 catalyst and 150 g of commercially available alumina (“N612” manufactured by JGC Chemical Co., Ltd.) were co-ground for about 3 hours in a ball mill to give a particle size of about 20 μm or less. Was made into a fine powder. Next, 15 g of alumina sol (manufactured by Nissan Kagaku, “Alumina sol-520”) was added to and uniformly mixed, followed by drying in air at 120 ° C. for 24 hours, and further in air 4
It integrated by baking at 50 degreeC for 3 hours. Further, this was crushed to 0.5 to 1 mm to obtain a catalyst C.

【0029】実施例8(触媒D) 上記のCu−SiO2触媒100g、市販のアルミナ
(日揮化学製,『N612』)200gを、ボールミル
中で約3時間共粉砕して、約20μm以下の微粉末状に
した。ついで、これにアルミナゾル(日産化学製,『ア
ルミナゾル−520』)15gを加えて均一に混合した
後、空気中120℃で24時間乾燥し、さらに空気中4
50℃で3時間焼成して一体化した。さらに、このもの
を0.5〜1mmに粉砕して触媒Dを得た。
Example 8 (Catalyst D) 100 g of the above Cu—SiO 2 catalyst and 200 g of commercially available alumina (“N612” manufactured by JGC Chemical Co., Ltd.) were co-ground in a ball mill for about 3 hours to give fine particles of about 20 μm or less. It was made into powder. Next, 15 g of alumina sol (manufactured by Nissan Kagaku, “Alumina sol-520”) was added to and uniformly mixed, followed by drying in air at 120 ° C. for 24 hours, and further in air 4
It integrated by baking at 50 degreeC for 3 hours. Further, this was crushed to 0.5 to 1 mm to obtain a catalyst D.

【0030】実施例9(触媒E) 上記のCu−Al23触媒100g、市販のゼオライト
(東ソー製,『モルデナイト HSZ−640HO
A』)200gを、ボールミル中で約3時間共粉砕し
て、約20μm以下の微粉末状にした。ついで、これに
アルミナゾル(日産化学製,『アルミナゾル−52
0』)15gを加えて均一に混合した後、空気中120
℃で24時間乾燥し、さらに空気中450℃で3時間焼
成して一体化した。さらに、このものを0.5〜1mm
に粉砕して触媒Eを得た。
Example 9 (Catalyst E) 100 g of the above Cu-Al 2 O 3 catalyst and a commercially available zeolite (manufactured by Tosoh Corp., “Mordenite HSZ-640HO”
A ″) 200 g was co-ground in a ball mill for about 3 hours to form a fine powder of about 20 μm or less. Then, add alumina sol (manufactured by Nissan Chemical Co., Ltd., “Alumina sol-52
0 ″) and adding 15 g to mix evenly, 120 in air
After being dried at ℃ for 24 hours, it was further calcined in air at 450 ℃ for 3 hours to be integrated. Furthermore, this one is 0.5-1mm
It was pulverized to obtain a catalyst E.

【0031】比較例1,2,3(触媒F) 0.5〜1mmに粉砕した上記のCuO−Al23触媒
100g、0.5〜1mmに粉砕した市販のアルミナ
(日揮化学製,『N612』)200gを、V型固体混
合器で物理混合して触媒Fを得た。
Comparative Examples 1, 2 and 3 (Catalyst F) 100 g of the above CuO-Al 2 O 3 catalyst crushed to 0.5 to 1 mm, and commercially available alumina crushed to 0.5 to 1 mm (manufactured by JGC Chemicals, " N612 ″) was physically mixed in a V-type solid mixer to obtain a catalyst F.

【0032】比較例4,5,6(触媒G) 0.5〜1mmに粉砕した上記のCuO−ZnO−Al
23触媒100g、0.5〜1mmに粉砕した市販のア
ルミナ(日揮化学製,『N612』)200gを、V型
固体混合器で物理混合して触媒Gを得た。
Comparative Examples 4, 5, 6 (Catalyst G) The above CuO-ZnO-Al pulverized to 0.5 to 1 mm.
100 g of 2 O 3 catalyst and 200 g of commercially available alumina (manufactured by JGC Chemical Co., Ltd., “N612”) pulverized to 0.5 to 1 mm were physically mixed with a V-type solid mixer to obtain a catalyst G.

【0033】II.反応方法 内径20mmのステンレス製反応管に所定量の上記触媒
を充填した。この反応管にジメチルエーテルと水蒸気を
所定量供給して、所定の温度で反応させた。
II. Reaction Method A stainless steel reaction tube having an inner diameter of 20 mm was filled with a predetermined amount of the above catalyst. Dimethyl ether and water vapor were supplied to the reaction tube in predetermined amounts and reacted at a predetermined temperature.

【0034】以上の操作により、得られた反応生成物お
よび未反応物はガスクロマトグラフにより分析した。
The reaction product and the unreacted product obtained by the above operation were analyzed by gas chromatography.

【0035】III.反応条件および実験結果 反応条件および実験結果を表1〜5に示す。III. Reaction conditions and experimental results The reaction conditions and experimental results are shown in Tables 1-5.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】水素収率(%)=(1/6×H2生成速度
/ジメチルエーテル供給速度)×100 CO2収率(%)=(1/2×CO2生成速度/ジメチル
エーテル供給速度)×100 CO収率(%)(1/2×CO生成速度/ジメチルエー
テル供給速度)×100 CH4収率(%)=(1/2×CH4生成速度/ジメチル
エーテル供給速度)×100 各速度の単位は全て[mol/g−cat・h]
Hydrogen yield (%) = (1/6 × H 2 production rate / dimethyl ether supply rate) × 100 CO 2 yield (%) = (1/2 × CO 2 production rate / dimethyl ether supply rate) × 100 CO yield (%) (1/2 × CO production rate / dimethyl ether feed rate) × 100 CH 4 yield (%) = (1/2 × CH 4 production rate / dimethyl ether feed rate) × 100 units of each speed All [mol / g-cat · h]

【0042】[0042]

【発明の効果】本発明の水素製造用触媒は、メタノール
合成触媒、メタノール脱水触媒および水性ガスシフト触
媒をバインダーを使用して一体化し、それらの触媒の距
離を著しく接近させるように構成したので、各触媒が反
応中に分離することがなく、したがって反応サイクルが
円滑に進行し、高い水素収率を得ることができる効果を
有する。
EFFECTS OF THE INVENTION Since the catalyst for hydrogen production of the present invention is constructed such that a methanol synthesis catalyst, a methanol dehydration catalyst and a water gas shift catalyst are integrated by using a binder and the distances between these catalysts are remarkably close to each other, Since the catalyst is not separated during the reaction, the reaction cycle can proceed smoothly and a high hydrogen yield can be obtained.

【0043】また、本発明のジメチルエーテルの製造方
法は、銅を含有する固体触媒、および固体酸触媒をバイ
ンダーを使用して一体化して、それらの触媒の距離を著
しく接近させるように構成した触媒をジメチルエーテル
と水蒸気の混合ガスに接触させることにより、高い水素
収率を得ることができる効果を有する。
In addition, the method for producing dimethyl ether of the present invention provides a solid catalyst containing copper and a solid acid catalyst which are integrated by using a binder so that the distance between these catalysts can be significantly reduced. By bringing it into contact with a mixed gas of dimethyl ether and steam, it is possible to obtain a high hydrogen yield.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA01 EA06 EC01 EC05 4G069 AA03 AA08 BA01A BA01B BA02A BA02B BA07A BA07B BC31A BC31B BC35A BC35B CC00 CC25 EA02Y FA02 FB07 FB13 FC05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G040 EA01 EA06 EC01 EC05                 4G069 AA03 AA08 BA01A BA01B                       BA02A BA02B BA07A BA07B                       BC31A BC31B BC35A BC35B                       CC00 CC25 EA02Y FA02                       FB07 FB13 FC05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 銅を含有する固体触媒と固体酸触媒がバ
インダーを介して接合一体化されている、ジメチルエー
テルと水蒸気から水素を製造する触媒
1. A catalyst for producing hydrogen from dimethyl ether and water vapor, in which a solid catalyst containing copper and a solid acid catalyst are bonded and integrated through a binder.
【請求項2】 銅を含有する固体触媒が銅以外の成分と
してアルミニウムを含むことを特徴とする、請求項1に
記載の触媒
2. The catalyst according to claim 1, wherein the solid catalyst containing copper contains aluminum as a component other than copper.
【請求項3】 銅を含有する固体触媒が銅以外の成分と
して亜鉛を含むことを特徴とする、請求項2に記載の触
3. The catalyst according to claim 2, wherein the solid catalyst containing copper contains zinc as a component other than copper.
【請求項4】 固体酸触媒がアルミナ、シリカ・アルミ
ナ、ゼオライトまたはそれらの混合物であることを特徴
とする、請求項1に記載の触媒
4. Catalyst according to claim 1, characterized in that the solid acid catalyst is alumina, silica-alumina, zeolites or mixtures thereof.
【請求項5】 銅を含有する固体触媒と固体酸触媒を接
合するバインダーがアルミナゾルまたは粘土であること
を特徴とする、請求項1に記載の水素製造用触媒の製造
方法
5. The method for producing a catalyst for hydrogen production according to claim 1, wherein the binder for joining the solid catalyst containing copper and the solid acid catalyst is alumina sol or clay.
【請求項6】 請求項1に記載の触媒に、ジメチルエー
テルと水蒸気を含有する混合ガスを200〜350℃で
接触させることを特徴とする、水素の製造方法
6. A method for producing hydrogen, which comprises contacting the catalyst according to claim 1 with a mixed gas containing dimethyl ether and steam at 200 to 350 ° C.
JP2001194881A 2001-06-27 2001-06-27 Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method Pending JP2003010685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194881A JP2003010685A (en) 2001-06-27 2001-06-27 Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194881A JP2003010685A (en) 2001-06-27 2001-06-27 Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method

Publications (1)

Publication Number Publication Date
JP2003010685A true JP2003010685A (en) 2003-01-14

Family

ID=19032936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194881A Pending JP2003010685A (en) 2001-06-27 2001-06-27 Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method

Country Status (1)

Country Link
JP (1) JP2003010685A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087566A1 (en) * 2003-04-01 2004-10-14 Haldor Topsøe A/S Process for the preparation of a hydrogen-rich stream
JP2005342543A (en) * 2003-05-20 2005-12-15 Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system
CN1331731C (en) * 2003-04-01 2007-08-15 赫多特普索化工设备公司 Process for the preparation of a hydrogen-rich stream.
JP2007222748A (en) * 2006-02-22 2007-09-06 Osaka Gas Co Ltd Steam reforming catalyst for reforming dimethylether and method for preparing hydrogen-containing gas using the same
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087566A1 (en) * 2003-04-01 2004-10-14 Haldor Topsøe A/S Process for the preparation of a hydrogen-rich stream
CN1331731C (en) * 2003-04-01 2007-08-15 赫多特普索化工设备公司 Process for the preparation of a hydrogen-rich stream.
US7517374B2 (en) 2003-04-01 2009-04-14 Haldor Topsoe A/S Process for the preparation of a hydrogen-rich stream
JP2005342543A (en) * 2003-05-20 2005-12-15 Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system
JP2007222748A (en) * 2006-02-22 2007-09-06 Osaka Gas Co Ltd Steam reforming catalyst for reforming dimethylether and method for preparing hydrogen-containing gas using the same
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
KR101486095B1 (en) * 2007-04-11 2015-01-23 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst

Similar Documents

Publication Publication Date Title
JP4520036B2 (en) Chemical industry raw material and high-octane fuel synthesis method and high-octane fuel composition
KR101772247B1 (en) Improved mixed metal oxide ammoxidation catalysts
JP5303033B2 (en) Methanol synthesis catalyst from synthesis gas and method for producing the same
CN1070468C (en) A catalyst for the production of acrylic acid
KR101772249B1 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
JP5432434B2 (en) Method for producing catalyst for synthesis of dimethyl ether from synthesis gas containing carbon dioxide
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
IE52463B1 (en) Oxychlorination process and catalyst therefor
JP2003010685A (en) Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
CN113262806B (en) Method for producing heteropolyacid compound, and method for producing methacrylic acid
US4092372A (en) Catalyst for the production of isoprene
JP3322308B2 (en) Synthetic method of zeolite
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method
EP0902001A1 (en) Process for the preparation of unsaturated ketones
EP0130068A2 (en) A process for producing formaldehyde
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP2002504915A (en) Method for producing enol ether
JPH0456015B2 (en)
JP4497457B2 (en) Method for producing catalyst for production of methacrylic acid ester
KR101629003B1 (en) Catalyst for dehydration of glycerin, method of preparing the same, and preparing method of acrolein
JP2003010699A (en) Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
JP4895251B2 (en) Method for producing catalyst for production of methacrylic acid ester
JPH09173848A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JPH08283186A (en) Production of alcohols
JPH08157414A (en) Catalyst for methacrylic acid production and production of methacrylic acid