JP2003009412A - Polarity inversion equipment for layered electric double layer capacitor - Google Patents

Polarity inversion equipment for layered electric double layer capacitor

Info

Publication number
JP2003009412A
JP2003009412A JP2001193962A JP2001193962A JP2003009412A JP 2003009412 A JP2003009412 A JP 2003009412A JP 2001193962 A JP2001193962 A JP 2001193962A JP 2001193962 A JP2001193962 A JP 2001193962A JP 2003009412 A JP2003009412 A JP 2003009412A
Authority
JP
Japan
Prior art keywords
double layer
electric double
voltage
layer capacitor
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001193962A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2001193962A priority Critical patent/JP2003009412A/en
Publication of JP2003009412A publication Critical patent/JP2003009412A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarity inversion equipment for a layered electric double layer capacitor which can prevent an excess voltage drop of the electric double layer capacitor cell in which the self-discharge is large in the polarity inversion and extend the lifetime. SOLUTION: The polarity inversion equipment for the layered electric double layer capacitor has features that a sharing voltage of the electric double layer capacitor C is measured by voltage sensors VS1-VS5 and relays CR1-CR3, XR1 and XR2, the minimum voltage value is monitored in the sharing voltage and a polarity inversion indication circuit for the polarity inversion of the electric double layer capacitor is used when the minimum voltage value falls below the predetermined value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層型電気二重層
キャパシタ用極性反転装置に関する。詳しくは、積層型
電気二重層キャパシタの自己放電改善に関する技術であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarity reversal device for a laminated electric double layer capacitor. Specifically, it is a technique relating to improvement of self-discharge of a laminated electric double layer capacitor.

【0002】[0002]

【従来の技術】電気二重層キャパシタ(EDLC)は、
電解液を含浸したセパレータやゲル電解質と、そしてそ
れを対向して挟む電極と、電気を取り出すための集電極
とを主な構成物としてなるものである。電気二重層キャ
パシタは、セル当たりの耐電圧が2.5〜3.0V程度
であり、電気二重層キャパシタを用いて1セル当たりの
耐電圧以上に充電するためには電気二重層キャパシタを
複数個直列接続する必要がある。巻き回い型電気二重層
キャパシタの場合、直列接続は電気回路を付加して行
う。一方、積層型電気二重層キャパシタは一対の集電用
電極の他に(所用積層数−1)個だけバイポーラ型電極
を用いて積層している。
2. Description of the Related Art Electric double layer capacitors (EDLC) are
The main components are a separator or a gel electrolyte impregnated with an electrolytic solution, electrodes sandwiching the electrolyte and a gel electrolyte, and a collecting electrode for taking out electricity. The electric double layer capacitor has a withstand voltage of about 2.5 to 3.0 V per cell, and in order to charge the electric double layer capacitor at a voltage higher than the withstand voltage per cell, a plurality of electric double layer capacitors are used. Must be connected in series. In the case of a wound type electric double layer capacitor, series connection is performed by adding an electric circuit. On the other hand, the laminated type electric double layer capacitor is laminated by using only a pair of current collecting electrodes (the required number of laminated layers-1) and bipolar type electrodes.

【0003】[0003]

【発明が解決しようとする課題】直列接続した個々の電
気二重層キャパシタは、理想的には、充電電圧を直列接
続数で除した電圧(=充電電圧/直列接続数)を分担す
ることになる。しかし、現実には各電気二重層キャパシ
タ毎に静電容量と内部抵抗、そして自己放電特性にばら
つきがあり、特に自己放電特性のばらつきは、課電(一
定電圧での充電)したに電圧分担の差を生じさせること
になる。そのため、分担した電圧が高い電気二重層キャ
パシタセルから順番に劣化が進み、電気二重層キャパシ
タが持つ本来の寿命を短くする原因となっている。他に
は、以下に示すような問題点がある。
Ideally, the individual electric double layer capacitors connected in series share a voltage (= charging voltage / number of series connections) obtained by dividing the charging voltage by the number of series connections. . However, in reality, there are variations in capacitance, internal resistance, and self-discharge characteristics for each electric double layer capacitor. Especially, variations in self-discharge characteristics are due to voltage sharing after charging (charging at a constant voltage). It will make a difference. Therefore, the electric double layer capacitor cells having a higher shared voltage are sequentially deteriorated, which causes a reduction in the original life of the electric double layer capacitor. In addition, there are the following problems.

【0004】(1)積層した電気二重層キャパシタが持
つ自己放電特性による分担電圧のばらつきを抑えるため
に充電した電気二重層キャパシタを一回放電させ、陽極
と陰極を反転させて(以下、極性反転とよぶ)再び充電
することを繰り返すことによって分担電圧の上昇を抑え
ることが可能になる。但し、自己放電が大きいセルは一
定電圧での充電を行った後に他のセルよりも相対的に分
担電圧が下がり、極性反転したときにおよそ数時間の
間、所定の分担電圧よりも高い電圧を分担することにな
り、寿命が短くなるおそれがある。
(1) In order to suppress the variation in the shared voltage due to the self-discharge characteristics of the laminated electric double layer capacitors, the charged electric double layer capacitors are discharged once and the anode and the cathode are inverted (hereinafter, polarity inversion). It is possible to suppress the rise in the shared voltage by repeating charging again. However, a cell with a large self-discharge has a relatively lower sharing voltage than other cells after being charged at a constant voltage, and when the polarity is reversed, a voltage higher than the predetermined sharing voltage is maintained for about several hours. It will be shared and the life may be shortened.

【0005】例えば、4セルを直列に接続して構成され
た電気二重層キャパシタの充電電圧を10ボルトとする
と、各セルの分担電圧は、理想的には、2.5V(=1
0/4)となる。そのため、図7(a)に示すように、
電気二重層キャパシタを一定電圧(10V)で充電する
と、各セルには2.5Vまで印加されることになる。充
電後、時間の経過に伴い、自己放電が大きいセルについ
ては、図7(a)中に破線で示すように、同図中実線で
示す他のセルに比較し、電圧値が低下することになる。
例として、約0.5V低下するものとした。
For example, assuming that the charging voltage of an electric double layer capacitor constituted by connecting four cells in series is 10 V, the shared voltage of each cell is ideally 2.5 V (= 1.
0/4). Therefore, as shown in FIG.
When the electric double layer capacitor is charged with a constant voltage (10V), 2.5V is applied to each cell. After charging, with time, for cells with large self-discharge, as indicated by the broken line in FIG. 7A, the voltage value decreases as compared with other cells indicated by the solid line in the figure. Become.
As an example, it is assumed that the voltage drops by about 0.5V.

【0006】その後、電気二重層キャパシタを放電する
と、図7(a)中に示すように、他のセルは0Vになる
のに比較し、自己放電が大きいセルは−0.5Vとな
る。そして、図7(a)中に示すように、極性反転して
電気二重層キャパシタに充電すると、他のセルは−2.
5Vになるのに比較し、自己放電が大きいセルは−3.
0Vとなる。前述したように、各セル当たりの耐電圧は
2.5〜3.0ボルトであるので、、仮に、耐電圧が
2.5Vであるとすると、2.5Vを越えた時間に応
じ、図7(a)中斜線で入れて示す領域に比例して、寿
命が短くなることになる。しかも、このような、充電、
放電及び極性反転のサイクルを繰り返すと、上記傾向が
著しくなる。
After that, when the electric double layer capacitor is discharged, as shown in FIG. 7 (a), the self-discharge is large at -0.5V as compared with 0V at other cells. Then, as shown in FIG. 7 (a), when the electric double layer capacitor is charged by reversing the polarity, other cells are -2.
As compared with the case where the voltage becomes 5 V, the cell having a large self-discharge is -3.
It becomes 0V. As described above, the withstand voltage of each cell is 2.5 to 3.0 V. Therefore, assuming that the withstand voltage is 2.5 V, the voltage of FIG. (A) The life is shortened in proportion to the area indicated by the shaded area. Moreover, such charging,
The above tendency becomes remarkable when the cycle of discharge and polarity inversion is repeated.

【0007】(2)ゲル電解質を用いた積層型電気二重
層キャパシタでは製造時の不具合として、ゲル電解質
(電解質にポリマーを混ぜてゲル化したもの)にピンホ
ール(微小な貫通穴)が存在する場合には、セルは短絡
したような挙動を示すおそれがある。そのとき、セル内
部では電荷集中が発生し、異常に発熱することで、電気
二重層キャパシタの劣化が加速され、内部抵抗が上昇し
たり、発火したりする可能性がある。
(2) In a laminated type electric double layer capacitor using a gel electrolyte, there is a pinhole (a minute through hole) in the gel electrolyte (a gel obtained by mixing a polymer with an electrolyte) as a defect during manufacturing. In some cases, the cell may behave like a short circuit. At that time, electric charge concentration occurs inside the cell and abnormal heat is generated, which may accelerate deterioration of the electric double layer capacitor, increase internal resistance, or cause ignition.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係る積層型電気二重層キャパシタ用極性
反転装置は、電気二重層キャパシタの分担電圧をボルテ
ージセンサー及びリレーにより測定すると共に分担電圧
の中でも電圧最小値を監視し、該電圧最小値が所定値以
下となるときに前記電気二重層キャパシタの極性反転を
行う極性反転指示回路を用いることを特徴とする。
A polarity reversal device for a laminated type electric double layer capacitor according to claim 1 of the present invention which solves the above problems measures the shared voltage of the electric double layer capacitor by a voltage sensor and a relay. It is characterized by using a polarity reversal instruction circuit that monitors the minimum voltage value among the shared voltages and performs the polarity reversal of the electric double layer capacitor when the minimum voltage value becomes a predetermined value or less.

【0009】上記課題を解決する本発明の請求項2に係
る積層型電気二重層キャパシタ用極性反転装置は、電気
二重層キャパシタの放電時間を管理するタイマーを設け
ると共に前記電気二重層キャパシタの分担電圧の電圧最
小値となる時間が予め実験的又は経験的に求めて該タイ
マーに設定され、該タイマーにより前記電気二重層キャ
パシタの極性反転を行う極性反転指示回路を用いること
を特徴とする。
A polarity reversal device for a laminated electric double layer capacitor according to a second aspect of the present invention which solves the above-mentioned problems is provided with a timer for managing the discharge time of the electric double layer capacitor and the shared voltage of the electric double layer capacitor. The time when the voltage becomes the minimum value is experimentally or empirically obtained in advance and set in the timer, and a polarity reversal instruction circuit for reversing the polarity of the electric double layer capacitor is used by the timer.

【0010】上記課題を解決する本発明の請求項3に係
る積層型電気二重層キャパシタ用極性反転装置は、請求
項1におけるボルテージセンサー及びリレーに代えて、
コンピュータ及びリレーボードを用いることで、遠隔地
や別室での分担電圧の監視、制御を可能としたことを特
徴とする。
A polarity reversal device for a laminated electric double layer capacitor according to a third aspect of the present invention, which solves the above-mentioned problems, replaces the voltage sensor and the relay according to the first aspect,
By using a computer and a relay board, it is possible to monitor and control the shared voltage in a remote place or a separate room.

【0011】[0011]

【発明の実施の形態】上述の問題点を解決するため、分
担電圧が測定できる積層型電気二重層キャパシタを用
い、各セルの分担電圧を測定しながら一定電圧の充電を
行った。電気二重層キャパシタは、電解液が四級アンモ
ニウム塩であるテトラエチルアンモニウムテトラフロロ
ボレート、溶媒はプロピレンカーボネートであり、濃度
は0.97mol/Lとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above problems, a laminated electric double layer capacitor whose shared voltage can be measured was used to charge a constant voltage while measuring the shared voltage of each cell. In the electric double layer capacitor, the electrolytic solution was tetraethylammonium tetrafluoroborate, which is a quaternary ammonium salt, the solvent was propylene carbonate, and the concentration was 0.97 mol / L.

【0012】電極はフェノール樹脂繊維を原料とし、平
織りした後、賦活処理を施した比表面積1500〜25
00m2/gの活性炭繊維布である。活性炭繊維布は導
電性ペーストを用いて、集電用アルミ板の片面とバイポ
ーラ用アルミニウム箔の両面に接着し、集電極とした。
電極間のショートを防ぐための支持電解質は、電解液に
ポリアクリロニトリルを混合し、加熱溶解したゲル電解
質を用いた。溶解したゲル電解質は、放冷によりゲル化
する前にドクターブレードを用いて一定の厚さに成形し
た。
The electrode is made of phenolic resin fiber as a raw material, plain-woven, and then activated to give a specific surface area of 1500 to 25.
It is an activated carbon fiber cloth of 00 m 2 / g. A conductive paste was used as the activated carbon fiber cloth, and it was bonded to one side of the current collecting aluminum plate and both sides of the bipolar aluminum foil to form a collecting electrode.
As a supporting electrolyte for preventing a short circuit between electrodes, a gel electrolyte prepared by mixing polyacrylonitrile in an electrolytic solution and heating and dissolving it was used. The melted gel electrolyte was formed into a uniform thickness by using a doctor blade before being gelled by cooling.

【0013】〔実施例1〕本発明の第1の実施例を図1
に示す。本実施例は、ボルテージセンサーVS1〜VS
5と絶対値出力アイソレータ10を用いた極性反転回路
であり、測定中の分担電圧は電圧指示をボルテージセン
サーVS1〜VS5で取得し、分担電圧が一定値以下に
なったときに抵抗放電と極性切替えを指令できるように
した極性反転指示回路である。
[Embodiment 1] A first embodiment of the present invention is shown in FIG.
Shown in. In this embodiment, the voltage sensors VS1 to VS are used.
5 is a polarity reversal circuit using the absolute value output isolator 10. The shared voltage during measurement is obtained by the voltage sensors VS1 to VS5 for the shared voltage during measurement, and when the shared voltage becomes a certain value or less, resistance discharge and polarity switching. Is a polarity reversal instruction circuit capable of instructing.

【0014】ここで、主電源線P,Nには常に所定の電
圧がかかっているものとし、制御回路へ制御電線L1,
L2を用いて電気を供給したときは正極性回路がONし
ている状態とする。絶対値出力アイソレータ10は、電
圧の絶対値を検出するものであり、逆方向からの電流の
流れを遮断する機能を持つ。制御回路は主電源線P,N
のONと連動するものとする。電源投入時は、5セル積
層品の電気二重層キャパシタCには所定の電圧で充電が
なされる。
Here, it is assumed that a predetermined voltage is always applied to the main power supply lines P and N, and the control wires L1 and
When electricity is supplied using L2, the positive polarity circuit is in the ON state. The absolute value output isolator 10 detects the absolute value of the voltage, and has a function of interrupting the current flow from the opposite direction. The control circuit is the main power line P, N
Shall be interlocked with ON. When the power is turned on, the electric double layer capacitor C of the 5-cell laminated product is charged with a predetermined voltage.

【0015】ボルテージセンサーVS1〜VS5は、電
気二重層キャパシタCの分担電圧の絶対値を絶対値出力
アイソレータ10からモニターしており、論理和接続さ
れている。ボルテージセンサーVS1〜VS5は、分担
電圧が設定値以下になるとONするスイッチを有する。
自己放電特性の悪いセルの電圧が降下して、ボルテージ
センサーVS1〜VS5のいずれかがスイッチONの指
令を出すと、放電抵抗を駆動するスイッチSW1がON
になる。すると抵抗放電用リレーCR1がONし、抵抗
Rに電気二重層キャパシタCの電気を流すスイッチSW
8がONになって抵抗放電が始まる。
The voltage sensors VS1 to VS5 monitor the absolute value of the shared voltage of the electric double layer capacitor C from the absolute value output isolator 10 and are logically connected. Each of the voltage sensors VS1 to VS5 has a switch that is turned on when the shared voltage becomes equal to or lower than a set value.
When the voltage of a cell with poor self-discharge characteristics drops and any of the voltage sensors VS1 to VS5 issues a command to turn on the switch, the switch SW1 that drives the discharge resistance turns on.
become. Then, the resistance discharge relay CR1 is turned on, and the switch SW for flowing the electricity of the electric double layer capacitor C to the resistor R
8 is turned on and resistance discharge starts.

【0016】スイッチSW1のONに連動してインター
ロック用リレーXR1,XR2がOFFになる。インタ
ーロック用リレーXR1,XR2は正極性、逆極性を決
めるリレーCR2,CR3を強制的にOFFにするた
め、リレーCR2に接続れさた逆極性用スイッチSW
5,SW6がONとなり、また、リレーCR3に接続さ
れた正極性用スイッチSW4,SW7がOFFとなり、
その結果、主電源線P,Nを通じて電気二重層キャパシ
タCに供給される電気を遮断する。
The interlock relays XR1 and XR2 are turned off in conjunction with the turning on of the switch SW1. The interlock relays XR1 and XR2 are forced to turn off the relays CR2 and CR3 that determine the positive polarity and the reverse polarity, so the reverse polarity switch SW connected to the relay CR2.
5, SW6 is turned on, and the positive polarity switches SW4, SW7 connected to the relay CR3 are turned off,
As a result, electricity supplied to the electric double layer capacitor C through the main power supply lines P and N is cut off.

【0017】抵抗放電時の電気二重層キャパシタ電圧は
ボルテージセンサーVS6で監視しており、電気二重層
キャパシタCの電圧が一定値以下になるとON指令をだ
す機能とボルテージセンサーVS6自身をリセットする
機能を持つ。抵抗放電により電気二重層キャパシタ電圧
が所定電圧値以下になるとボルテージセンサーVS6が
ONし、ボルテージセンサーVS1〜VS5にリセット
をかける。リセットをかけられたボルテージセンサーV
S1〜VS5は、抵抗放電をやめるためにスイッチSW
1をOFFにし、抵抗Rによる放電をやめるのと同時に
インターロック用リレーXR1,XR2をONする。ボ
ルテージセンサーVS6からは、遅延回路20をはさん
で同時にONとOFFできないスイッチSW2,SW3
を切り替える指令を与える。そして、極性反転した状態
で再び充電を開始する。
The voltage of the electric double layer capacitor during resistance discharge is monitored by the voltage sensor VS6. When the voltage of the electric double layer capacitor C becomes a certain value or less, it has a function of issuing an ON command and a function of resetting the voltage sensor VS6 itself. To have. When the electric double layer capacitor voltage becomes equal to or lower than a predetermined voltage value due to resistance discharge, the voltage sensor VS6 is turned on, and the voltage sensors VS1 to VS5 are reset. Reset voltage sensor V
S1 to VS5 are switches SW to stop resistance discharge
When 1 is turned off and the discharge by the resistor R is stopped, the interlock relays XR1 and XR2 are turned on at the same time. From the voltage sensor VS6, switches SW2 and SW3 that cannot be turned on and off at the same time with the delay circuit 20 in between.
Give a command to switch. Then, charging is started again in the state where the polarity is reversed.

【0018】このように説明したように、本実施例で
は、積層型電気二重層キャパシタの分担電圧における下
限電圧が検出できるようになり、また、極性反転リレー
の動作間隔を変更することも可能である。そのため、極
性反転時の過電圧を防ぐことができ、一定時間で極性反
転を行う従来技術と比較し、電気二重層キャパシタの長
寿命化が可能になる。例えば、図7(b)に示すよう
に、各セルの分担電圧が、2.5Vであるとしたとき、
充電後時間の経過に伴い、自己放電が大きいセルについ
ては、図中に破線で示すように、同図中実線で示す他の
セルに比較し、電圧値が低下することになる。
As described above, in this embodiment, the lower limit voltage in the shared voltage of the laminated electric double layer capacitor can be detected, and the operation interval of the polarity reversal relay can be changed. is there. Therefore, overvoltage at the time of polarity reversal can be prevented, and the life of the electric double layer capacitor can be extended as compared with the conventional technique in which the polarity reversal is performed in a fixed time. For example, as shown in FIG. 7B, when the shared voltage of each cell is 2.5V,
As the time after charging elapses, the cell having a large self-discharge has a voltage value lower than that of other cells indicated by the solid line in the figure, as indicated by the broken line in the figure.

【0019】ここで、ボルテージセンサーVS1〜VS
5に対して、設定電圧として0.2Vを設定しておけ
ば、分担電圧の電圧最小値が2.3V(=2.5−0.
2)となったときに、放電を開始することとなる。その
ため、図7(b)中に示すように、自己放電が大きいセ
ルは放電時に−0.2Vとなり、そして、極性反転時に
は−2.7Vとなる。
Here, the voltage sensors VS1 to VS
5, if 0.2V is set as the set voltage, the minimum voltage value of the shared voltage is 2.3V (= 2.5-0.
When the condition 2) is reached, discharging will be started. Therefore, as shown in FIG. 7B, a cell having a large self-discharge has a voltage of −0.2V at the time of discharging and a voltage of −2.7V at the time of polarity reversal.

【0020】ここで、仮に、耐電圧が2.5Vであると
すると、2.5Vを越えた時間に応じ、図7(b)中斜
線で入れて示す領域に比例して、本来の寿命が短くなる
ことになることは避けられない。但し、図7(a)に示
す従来技術に比較し、本実施例では、2.5Vを越えた
時間が少なくなり、図中破線で示す領域が減少する結
果、電気二重層キャパシタの寿命が延長するという利点
がある。従って、本実施例に係る電気二重層キャパシタ
は、従来技術に係る比較例に対して、図6に示すよう
に、課電時間に対する容量変化の減少が低減するという
メリットがある。
Here, assuming that the withstand voltage is 2.5 V, the original life is proportional to the area shown by the hatched area in FIG. It is inevitable that it will become shorter. However, as compared with the conventional technique shown in FIG. 7A, in this embodiment, the time over 2.5 V is reduced, and the area shown by the broken line in the figure is reduced, resulting in extension of the life of the electric double layer capacitor. There is an advantage of doing. Therefore, the electric double layer capacitor according to the present embodiment has an advantage over the comparative example according to the related art in that the decrease in capacitance change with respect to the voltage application time is reduced as shown in FIG.

【0021】〔実施例2〕本発明の第2の実施例を図2
に示す。本実施例は、リレーA接点とB接点を用いた極
性反転指示回路である。即ち、実施例1では正極性と逆
極性の切替えは独立したスイッチSW2、SW3を用い
たが、本実施例では、図2に示すように、一つのリレー
TR1のA接点とB接点に接続するものである。リレー
TR1は中性点で0.1秒〜0.5秒程度静止すること
ができるものを用いる。その他の構成は、前述した実施
例1と同様であり、同様な効果を奏する。
[Embodiment 2] A second embodiment of the present invention is shown in FIG.
Shown in. The present embodiment is a polarity reversal instruction circuit using relay A contacts and B contacts. That is, in the first embodiment, the switches SW2 and SW3 which are independent of each other are used to switch between the positive polarity and the reverse polarity, but in the present embodiment, as shown in FIG. 2, the relays are connected to the A contact and the B contact of the relay TR1. It is a thing. As the relay TR1, a relay TR1 which can stand still for about 0.1 to 0.5 seconds at a neutral point is used. Other configurations are similar to those of the above-described first embodiment, and have similar effects.

【0022】このように説明したように、本実施例で
は、実施例1と同様な効果を奏する他、極性反転リレー
の動作間隔に特別な条件指定がない場合には、二つのス
イッチSW2、SW3に代えて一つのリレーTR1を用
いるため、部品点数を減らすことができる。
As described above, in this embodiment, in addition to the same effect as that of the first embodiment, two switches SW2 and SW3 are provided if no special condition is specified for the operation interval of the polarity reversing relay. Instead of using one relay TR1, the number of parts can be reduced.

【0023】〔実施例3〕本発明の第3の実施例を図3
に示す。本実施例はシーケンサ30による極性反転指示
回路である。即ち、実施例1及び2では外部リレー回路
を組んだが、本実施例では、図3に示すようなリレーシ
ーケンスの代替としてシーケンサ30を用いて実現し
た。その他の構成は、実施例1及び2と同様である。
[Embodiment 3] A third embodiment of the present invention is shown in FIG.
Shown in. The present embodiment is a polarity inversion instruction circuit by the sequencer 30. That is, although the external relay circuit is assembled in the first and second embodiments, the present embodiment is realized by using the sequencer 30 as an alternative to the relay sequence shown in FIG. Other configurations are similar to those of the first and second embodiments.

【0024】従って、本実施例では、実施例1,2と同
様な効果を奏する他、積層数が多い電気二重層キャパシ
タを製造したときの分担電圧測定に必要な部品点数が大
幅に減り、その結果極性反転回路を含めた電気二重層キ
ャパシタユニットや電力変換盤を小型化することが可能
になる。
Therefore, in this embodiment, in addition to the same effects as in the first and second embodiments, the number of components required for measuring the shared voltage when an electric double layer capacitor having a large number of laminated layers is manufactured is significantly reduced. As a result, the electric double layer capacitor unit including the polarity reversing circuit and the power conversion board can be downsized.

【0025】〔実施例4〕本発明の第4の実施例を図4
に示す。本実施例は、シーケンサ内部タイマー回路を用
いた極性反転指示回路である。即ち、図4に示すよう
に、各セル用のボルテージセンサーの代わりに所定時間
が経過したときにON指令をだし、ホールドできるタイ
マーTM1〜3をつけて極性反転指令とするものであ
る。
[Embodiment 4] A fourth embodiment of the present invention is shown in FIG.
Shown in. The present embodiment is a polarity reversal instruction circuit using a sequencer internal timer circuit. That is, as shown in FIG. 4, an ON command is issued instead of the voltage sensor for each cell when a predetermined time has elapsed, and timers TM1 to TM3 that can hold the signals are attached to give a polarity reversal command.

【0026】そのとき、タイマーTM1〜3か同時に動
作することがないように一つのタイマーがONしたとき
に、他のタイマーをOFFするようなインターロックを
かけて誤動作を防止している。各タイマーTM1〜3に
は、電気二重層キャパシタの分担電圧の電圧最小値が設
定値以下となる時間として、実験的又は経験的に求めた
値が設定されている。
At this time, when one of the timers TM1 to TM3 is turned on so that the timers TM1 to TM3 do not operate at the same time, the other timers are turned off to prevent an erroneous operation. In each of the timers TM1 to TM3, an experimentally or empirically obtained value is set as the time during which the minimum voltage value of the shared voltage of the electric double layer capacitor is equal to or less than the set value.

【0027】従って、本実施例では、ボルテージセンサ
ーとそれに付随する分担電圧測定回路を減らすことがで
き、その結果、部品点数が減少するため電気二重層キャ
パシタユニット全体の小型化が可能になる。即ち、実施
例1〜3までは各セルの分担電圧をモニターして極性反
転指令を出していたが、定電圧課電試験等により分担電
圧の時間変化が明確化されていれば、分担電圧の代わり
に時間を管理することで極性反転指令を出すこともでき
る。
Therefore, in this embodiment, it is possible to reduce the voltage sensor and the shared voltage measuring circuit associated therewith, and as a result, the number of parts is reduced, so that the electric double layer capacitor unit as a whole can be downsized. That is, in Examples 1 to 3, the shared voltage of each cell was monitored and the polarity reversal command was issued, but if the time change of the shared voltage is clarified by the constant voltage charging test, the shared voltage Alternatively, the polarity reversal command can be issued by managing the time.

【0028】〔実施例5〕本発明の第5の実施例を図5
に示す。本実施例は、データロガーとコンピュータを用
いた極性反転指示回路である。本実施例では、実施例1
〜4におけるシーケンサやタイマー等の外部機器の代わ
りに、図5に示すようなパソコン及びオンボードマイコ
ンのようなコンピュータ40とそれに付属のパラレルI
Oポート、そしてリレーを組み合わせて極性反転ができ
るようにした。
[Embodiment 5] A fifth embodiment of the present invention is shown in FIG.
Shown in. The present embodiment is a polarity reversal instruction circuit using a data logger and a computer. In this embodiment, the first embodiment
4 instead of an external device such as a sequencer or a timer, a computer 40 such as a personal computer and an on-board microcomputer as shown in FIG.
The polarity can be reversed by combining O port and relay.

【0029】従って、本実施例では、電気二重層キャパ
シタユニットと極性反転制御部を分離することができ、
その結果、遠隔地での分担電圧測定と極性反転の制御が
可能になることに加え電源操作室等での監視、制御が可
能になる。
Therefore, in this embodiment, the electric double layer capacitor unit and the polarity reversal control section can be separated.
As a result, it becomes possible to measure the shared voltage and control the polarity reversal at a remote place, and also to monitor and control the power supply operating room.

【0030】[0030]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明の請求項1に係る電気二重層キャパシ
タ用極性反転装置では、電気二重層キャパシタの分担電
圧をボルテージセンサー及びリレーにより測定すると共
に分担電圧の中でも電圧最小値を監視し、該電圧最小値
が所定値以下となるときに極性反転指示回路により前記
電気二重層キャパシタの極性反転を行うため、極性反転
したときに自己放電の大きな電気二重層キャパシタセル
の電圧の下がり過ぎを防止し寿命を延長することが可能
となる。
As described above in detail with reference to the embodiments, in the polarity reversal device for an electric double layer capacitor according to claim 1 of the present invention, the shared voltage of the electric double layer capacitor is divided into a voltage sensor and a relay. In addition, the minimum voltage value is monitored among the shared voltage, and when the minimum voltage value becomes a predetermined value or less, the polarity inversion instruction circuit performs polarity inversion of the electric double layer capacitor. It is possible to prevent the voltage of the electric double layer capacitor cell, which is greatly discharged, from dropping too much, and to extend the life.

【0031】また、本発明の請求項2に係る電気二重層
キャパシタ用極性反転装置では、電気二重層キャパシタ
の放電時間を管理するタイマーを設けると共に前記電気
二重層キャパシタの分担電圧の電圧最小値となる時間が
予め実験的又は経験的に求めて該タイマーに設定され、
該タイマーに設定された時間に従い前記電気二重層キャ
パシタの極性反転を行う極性反転指示回路を用いるた
め、極性反転したときに自己放電の大きな電気二重層キ
ャパシタセルの電圧の下がり過ぎを防止し寿命を延長す
ることが可能となる。
Further, in the polarity reversing device for an electric double layer capacitor according to claim 2 of the present invention, a timer for managing the discharge time of the electric double layer capacitor is provided and the minimum voltage value of the shared voltage of the electric double layer capacitor is set. Is set in the timer by experimentally or empirically in advance,
Since the polarity reversal instruction circuit for reversing the polarity of the electric double layer capacitor according to the time set in the timer is used, the voltage of the electric double layer capacitor cell, which causes a large self-discharge when the polarity is reversed, is prevented from being excessively lowered and the life is improved. It can be extended.

【0032】また、本発明の請求項3に係る電気二重層
キャパシタ用極性反転装置では、請求項1におけるボル
テージセンサー及びリレーに代えて、コンピュータ及び
リレーボードを用いるため、請求項1と同様な効果を奏
する他、遠隔地や別室での分担電圧の監視、制御を可能
となる。
Further, in the polarity reversing device for an electric double layer capacitor according to claim 3 of the present invention, a computer and a relay board are used instead of the voltage sensor and the relay according to claim 1, and therefore the same effect as that of claim 1 is obtained. In addition to the above, it becomes possible to monitor and control the shared voltage in a remote place or a separate room.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係るボルテージセンサ
ー及び絶対値出力アイソレータを用いた極性反転回路図
である。
FIG. 1 is a polarity reversing circuit diagram using a voltage sensor and an absolute value output isolator according to a first exemplary embodiment of the present invention.

【図2】本発明の第2の実施例に係るリレーA接点とB
接点を用いた極性反転回路図である。
FIG. 2 is a relay A contact and B according to a second embodiment of the present invention.
It is a polarity reversal circuit diagram using a contact.

【図3】本発明の第3の実施例に係るシーケンサによる
極性反転指示回路図である。
FIG. 3 is a polarity inversion instruction circuit diagram by a sequencer according to a third embodiment of the present invention.

【図4】本発明の第4の実施例に係るシーケンサ内部タ
イマー回路を用いた極性反転指示回路図である。
FIG. 4 is a polarity inversion instruction circuit diagram using a sequencer internal timer circuit according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例に係るデータロガーとコ
ンピュータを用いた極性反転指示回路図である。
FIG. 5 is a polarity inversion instruction circuit diagram using a data logger and a computer according to a fifth embodiment of the present invention.

【図6】課電時間に対する電気二重層キャパシタの容量
変化を示すグラフである。
FIG. 6 is a graph showing a change in capacitance of the electric double layer capacitor with respect to a charging time.

【図7】充電、放電及び極性反転時における各セルの分
担電圧の時間的変化を示すグラフである。
FIG. 7 is a graph showing a temporal change in a shared voltage of each cell at the time of charging, discharging, and polarity reversal.

【符号の説明】[Explanation of symbols]

10 絶対値出力アイソレータ 20 遅延回路 VS1〜VS6 ボルテージセンサー SW1〜SW8 スイッチ CR1〜CR3 リレー XR1,XR2 インターロック用リレー L1,L2 制御電線 P,N 主電源線 R 抵抗 10 Absolute value output isolator 20 delay circuit VS1 to VS6 voltage sensor SW1 to SW8 switches CR1 to CR3 relay XR1, XR2 Interlock relay L1, L2 control wire P, N Main power line R resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気二重層キャパシタの分担電圧をボル
テージセンサー及びリレーにより測定すると共に分担電
圧の中でも電圧最小値を監視し、該電圧最小値が所定値
以下となるときに前記電気二重層キャパシタの極性反転
を行う極性反転指示回路を用いることを特徴とする積層
型電気二重層キャパシタ用極性反転装置。
1. A shared voltage of an electric double layer capacitor is measured by a voltage sensor and a relay, a minimum voltage value is monitored among the shared voltage, and when the minimum voltage value is equal to or less than a predetermined value, the electric double layer capacitor A polarity reversal device for a laminated electric double layer capacitor, characterized by using a polarity reversal instruction circuit for reversing the polarity.
【請求項2】 電気二重層キャパシタの放電時間を管理
するタイマーを設けると共に前記電気二重層キャパシタ
の分担電圧の電圧最小値となる時間が予め実験的又は経
験的に求めて該タイマーに設定され、該タイマーにより
前記電気二重層キャパシタの極性反転を行う極性反転指
示回路を用いることを特徴とする積層型電気二重層キャ
パシタ用極性反転装置。
2. A timer for managing the discharge time of the electric double layer capacitor is provided, and the time at which the voltage minimum value of the shared voltage of the electric double layer capacitor becomes the minimum value is experimentally or empirically obtained in advance and set in the timer. A polarity reversing device for a laminated electric double layer capacitor, which uses a polarity reversal instruction circuit for reversing the polarity of the electric double layer capacitor by the timer.
【請求項3】 請求項1におけるボルテージセンサー及
びリレーに代えて、コンピュータ及びリレーボードを用
いることで、遠隔地や別室での分担電圧の監視、制御を
可能としたことを特徴とする電気二重層キャパシタ用極
性反転装置。
3. An electric double layer, wherein a computer and a relay board are used in place of the voltage sensor and the relay according to claim 1, so that the shared voltage can be monitored and controlled in a remote place or a separate room. Polarity inversion device for capacitors.
JP2001193962A 2001-06-27 2001-06-27 Polarity inversion equipment for layered electric double layer capacitor Withdrawn JP2003009412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193962A JP2003009412A (en) 2001-06-27 2001-06-27 Polarity inversion equipment for layered electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193962A JP2003009412A (en) 2001-06-27 2001-06-27 Polarity inversion equipment for layered electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2003009412A true JP2003009412A (en) 2003-01-10

Family

ID=19032158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193962A Withdrawn JP2003009412A (en) 2001-06-27 2001-06-27 Polarity inversion equipment for layered electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2003009412A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336040B2 (en) 2004-04-15 2012-12-18 Raytheon Company System and method for topology-aware job scheduling and backfilling in an HPC environment
WO2014144845A2 (en) * 2013-03-15 2014-09-18 Esionic Es, Inc. Methods of enhancing electrochemical double layer capacitor (edlc) performance and edlc devices formed therefrom
WO2015139049A1 (en) * 2014-03-14 2015-09-17 Esionic Corp. Methods of enhancing edlc performance
WO2019058738A1 (en) * 2017-09-21 2019-03-28 国立研究開発法人産業技術総合研究所 Circuit containing relay-switch and control method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336040B2 (en) 2004-04-15 2012-12-18 Raytheon Company System and method for topology-aware job scheduling and backfilling in an HPC environment
US9594600B2 (en) 2004-04-15 2017-03-14 Raytheon Company System and method for topology-aware job scheduling and backfilling in an HPC environment
US9928114B2 (en) 2004-04-15 2018-03-27 Raytheon Company System and method for topology-aware job scheduling and backfilling in an HPC environment
US10621009B2 (en) 2004-04-15 2020-04-14 Raytheon Company System and method for topology-aware job scheduling and backfilling in an HPC environment
US11093298B2 (en) 2004-04-15 2021-08-17 Raytheon Company System and method for topology-aware job scheduling and backfilling in an HPC environment
WO2014144845A2 (en) * 2013-03-15 2014-09-18 Esionic Es, Inc. Methods of enhancing electrochemical double layer capacitor (edlc) performance and edlc devices formed therefrom
WO2014144845A3 (en) * 2013-03-15 2014-10-30 Esionic Es, Inc. Methods of enhancing electrochemical double layer capacitor (edlc) performance and edlc devices formed therefrom
CN105378871A (en) * 2013-03-15 2016-03-02 伊赛欧尼克公司 Methods of enhancing electrochemical double layer capacitor (EDLC) performance and EDLC devices formed therefrom
WO2015139049A1 (en) * 2014-03-14 2015-09-17 Esionic Corp. Methods of enhancing edlc performance
WO2019058738A1 (en) * 2017-09-21 2019-03-28 国立研究開発法人産業技術総合研究所 Circuit containing relay-switch and control method therefor

Similar Documents

Publication Publication Date Title
US8779718B2 (en) Electrical systems and battery assemblies
Pell et al. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes
KR100564974B1 (en) Power source circuit for cell and cell pack
EP1172916A2 (en) Power control device with electric double layer capacitor unit cells
JP5974849B2 (en) Battery monitoring device
US20120205984A1 (en) Power supply device
JP2001178008A (en) Cell balance adjusting method and circuit thereof, irregular cell voltage detecting circuit, and method therefor
WO2006003785A1 (en) Capacitor deterioration judgment method
JP4171049B2 (en) Apparatus and method for measuring individual cell voltages of cells of a cell stack of an energy store
JP2006287174A (en) High-voltage electric double-layer capacitor
EP1724797A2 (en) Electric double layer capacitor, control method thereof, and energy storage system using the same
JP2011232219A (en) Motor device and electric tool
JP2003009412A (en) Polarity inversion equipment for layered electric double layer capacitor
JPH0915311A (en) Failure detection device for battery set
US10656215B2 (en) Short circuit detection device
US20180031640A1 (en) Monitoring a state variable of at least one battery cell of a battery
JPWO2005025029A1 (en) Power storage device and wiring pattern
JP2002142369A (en) Cell voltage equalizing method for electric double-layer capacitor
JP3383716B2 (en) Hybrid power control device
JP2021023098A (en) Monitoring device of multi-cell battery pack
JP4395966B2 (en) Multilayer electric double layer capacitor
JP2010158086A (en) Cell voltage equalization control circuit and capacitor module equipped with this equalization control circuit
JP2020098141A (en) Ground fault detector
JPH06225463A (en) Secondary cell apparatus
JP3602250B2 (en) Power storage device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902