JP2003007150A - Minimizing method of alternating current loss of high- temperature superconductive wire - Google Patents

Minimizing method of alternating current loss of high- temperature superconductive wire

Info

Publication number
JP2003007150A
JP2003007150A JP2001190745A JP2001190745A JP2003007150A JP 2003007150 A JP2003007150 A JP 2003007150A JP 2001190745 A JP2001190745 A JP 2001190745A JP 2001190745 A JP2001190745 A JP 2001190745A JP 2003007150 A JP2003007150 A JP 2003007150A
Authority
JP
Japan
Prior art keywords
magnetic field
temperature
temperature superconducting
loss
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001190745A
Other languages
Japanese (ja)
Inventor
Osami Tsukamoto
修巳 塚本
Naoyuki Amamiya
尚之 雨宮
Satoshi Fukui
福井  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama TLO Co Ltd
Original Assignee
Yokohama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama TLO Co Ltd filed Critical Yokohama TLO Co Ltd
Priority to JP2001190745A priority Critical patent/JP2003007150A/en
Publication of JP2003007150A publication Critical patent/JP2003007150A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of minimizing alternating-current loss of a high- temperature superconductive wire. SOLUTION: The method is proposed to minimize alternating current loss of a high-temperature superconductive wire consisting of a high-temperature superconductive material. A magnetic field component is applied along the vertical direction to the high-temperature superconductive material so that a composite magnetic field component, which is produced by a vertical magnetic field component and a circumferential magnetic field component caused by an electric current flow, is formed in the direction approximately parallel to the direction of extrusion of the high-temperature superconductive material. The high-temperature superconductive wire is tape-shaped and consists of a metal coating and a plurality of high-temperature superconductive materials in a filament state which lay in the metal coating. Each high-temperature superconductive material is a twisted wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温超電導線材に
おける交流損失を低減する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for reducing AC loss in a high temperature superconducting wire.

【0002】[0002]

【従来の技術】商用周波数交流超電導線材として優れた
特性を有する極細多芯線は、超電導ケーブル、全超電導
発電機、超電導変圧器などの交流電力機器への応用が期
待されている。これらの電力機器への応用を考えた場
合、線材設計において特に重要なことは超電導線の交流
損失特性である。
2. Description of the Related Art Extra fine multi-core wire having excellent characteristics as a commercial frequency AC superconducting wire is expected to be applied to AC power equipment such as superconducting cables, all superconducting generators and superconducting transformers. Considering the application to these electric power devices, the AC loss characteristic of the superconducting wire is particularly important in the wire rod design.

【0003】図2にはマルチフィラメント銀シーステー
プ線材にかかる交流磁界成分が示してある。Bexxは
線材の幅広面に垂直の磁界成分(垂直成分)、Bexy
は幅広面に平行な横断方向成分(横断磁界成分)、Be
xzは線材の長さ方向の成分(縦磁界成分)である。ま
た、Bsfは通電電流によって作られる周方向磁界であ
る。
FIG. 2 shows the AC magnetic field component applied to the multifilament silver sheath tape wire. Bexx is a magnetic field component (vertical component) perpendicular to the wide surface of the wire, Bexy
Is the transverse component (transverse magnetic field component) parallel to the wide surface, Be
xz is a component in the length direction of the wire (longitudinal magnetic field component). Further, Bsf is a circumferential magnetic field created by the applied current.

【0004】超電導体に外部交流磁界が印加されると、
発生する損失密度は超電導体の太さに比例する。したが
って、外部磁界Bexyに対して交流損失を小さくする
ためには超電導フィラメントの厚さdを小さくする必要
がある。Bexxに対して交流損失を小さくするために
は超電導フィラメント巾wを小さくする必要がある。こ
のような理由から交流用超電導線材はマルチフィラメン
ト型になっている。しかしながら、マルチフィラメント
化しただけでは外部交流磁界に対して母材の銀を介して
フィラメント間に電磁誘導による結合電流が流れてしま
うため、多数のフィラメントが太い一本の超電導体とし
てふるまい交流損失低減を妨げる。このため、線材に撚
りを施し結合電流ループを小さくし、さらにフィラメン
ト間の垂直抵抗を大きくしてフィラメント同士の結合を
抑える必要がある。
When an external AC magnetic field is applied to the superconductor,
The generated loss density is proportional to the thickness of the superconductor. Therefore, it is necessary to reduce the thickness d of the superconducting filament in order to reduce the AC loss with respect to the external magnetic field Bexy. In order to reduce the AC loss with respect to Bexx, it is necessary to reduce the superconducting filament width w. For these reasons, the AC superconducting wire is of the multifilament type. However, if only a multifilament is used, a coupling current due to electromagnetic induction will flow between the filaments through the silver of the base material against the external AC magnetic field, so many filaments behave as one thick superconductor, reducing AC loss. Interfere with. For this reason, it is necessary to twist the wire to reduce the coupling current loop and to increase the vertical resistance between the filaments to suppress the coupling between the filaments.

【0005】従来、外部交流磁界に対して線材そのもの
の交流損失を低減する有効な方法としては、超電導体を
フィラメント化し多数束ねた常電導金属母材(Bi系線
材の場合は銀)に埋め込んだマルチフィラメント線材を
作り、それに撚りを施すことが採用されている。この場
合であっても、外部交流磁界に対してフィラメント同士
が母材を介して起こす電磁気的な結合を抑制しないと交
流損失は減らない。また、Bi系銀シース線材では熱処
理過程で超電導体が母材を突き破り結晶成長し、フィラ
メント同士が超電導的に結合するブリッジング現象が発
生する。このようなフィラメント同士の結合を抑えるた
めにはブリッジングの発生を無くすと共に、フィラメン
ト間の電気抵抗(垂直抵抗)を大きくする必要がある。
垂直抵抗を大きくする方法として母材を銀合金に代わる
ものとして、高抵抗あるいは絶縁材料からなる薄いバリ
ア層をフィラメント間に挿入したBi系銀シースバリア
線材が登場してきた。
Conventionally, as an effective method for reducing the AC loss of the wire itself against an external AC magnetic field, a superconducting conductor was embedded in a normal conductive metal base material (silver in the case of a Bi-based wire material) which was bundled into a large number. It is adopted to make multifilament wire and twist it. Even in this case, the AC loss cannot be reduced unless the electromagnetic coupling between the filaments via the base material is suppressed against the external AC magnetic field. In the case of a Bi-based silver sheath wire, a superconductor breaks through the base material and undergoes crystal growth in the heat treatment process, and a bridging phenomenon occurs in which filaments are superconductively coupled. In order to suppress such coupling between filaments, it is necessary to eliminate the occurrence of bridging and increase the electrical resistance (vertical resistance) between the filaments.
As a method of increasing the vertical resistance, a Bi-based silver sheath barrier wire in which a thin barrier layer of high resistance or an insulating material is inserted between filaments has appeared as a substitute for the base material of silver alloy.

【0006】しかしながら、このようなバリア線材を用
いても、交流損失は線材や線材を集合させた導体が曝さ
れる磁界によって、さらに、線材の断面構造や導体の構
造、巻線構造によって大きく影響を受ける。また、低温
超電導交流線材の交流損失特性においては、磁界と線材
のピッチあるいは配向等との関係が研究されているが、
交流用高温超電導線材についてはそのような研究はあま
り行なわれていなかった。また、高温超電導線材につい
ては、通電電流によって生じる周方向磁界Bsfに対し
ては、線材を撚ってもフィラメント間の結合は避けられ
ないと一般に考えられており、通電電流に対する損失の
低減にマルチフィラメント化の効果はないと考えられて
きた。
However, even when such a barrier wire is used, the AC loss is greatly affected by the magnetic field to which the wire or the conductor in which the wire is assembled is exposed, and further by the cross-sectional structure of the wire, the structure of the conductor, and the winding structure. Receive. Regarding the AC loss characteristics of low-temperature superconducting AC wire, the relationship between the magnetic field and the pitch or orientation of the wire has been studied.
Such research has not been carried out much for high-temperature superconducting wires for AC. In addition, regarding high-temperature superconducting wire, it is generally considered that the filaments cannot be avoided from being coupled with each other even when the wire is twisted, with respect to the circumferential magnetic field Bsf generated by the applied current. It has been considered that there is no filamentation effect.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高温超電導
線材における交流損失を低減することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to reduce AC loss in high temperature superconducting wire.

【0008】[0008]

【課題を解決するための手段】本発明が採用した技術手
段は、高温超電導体を有する高温超電導線の交流損失低
減法であって、該高温超電導体に縦磁界成分を加えるこ
とで、通電電流によって生じる周方向磁界と縦磁界成分
との合成磁界成分が該高温超電導体の延出方向と同方向
に延出するようにしたことを特徴とするものである。好
ましくは、合成磁界成分が高温超電導体の延出方向に対
して前後40度以内の角度で延出するものである。さら
に好ましくは、該合成磁界成分が該高温超電導体の延出
方向と略平行状に延出するものである。
The technical means adopted by the present invention is a method for reducing AC loss in a high temperature superconducting wire having a high temperature superconductor, wherein a longitudinal magnetic field component is added to the high temperature superconductor to obtain a current flow. The synthetic magnetic field component of the circumferential magnetic field and the longitudinal magnetic field component generated by the magnetic field is extended in the same direction as the extending direction of the high temperature superconductor. Preferably, the composite magnetic field component extends at an angle within 40 degrees in the front-back direction with respect to the extension direction of the high-temperature superconductor. More preferably, the composite magnetic field component extends substantially parallel to the extending direction of the high temperature superconductor.

【0009】一つの最も好ましい態様では、高温超電導
線材は、ツイスト状の多数のフィラメント状高温超電導
体を備えたテープ状線材である。そして、周方向磁界成
分と縦磁界成分の合成磁界成分は、該ツイスト状のフィ
ラメントと同方向に延出するものである。また、他の態
様では、線状の超電導線材を複数本撚り合わせてツイス
ト状の集合導体を形成したものでもよい。具体的な例を
挙げると、テープ状ではなく細い超電導線材を複数用意
し、これらを束ねて半田等の金属、またはプラスチック
などの含浸材を線の隙間に充填して集合導体を形成し、
これに撚りを施したものである。あるいは、超電導線材
は、超電導素線を複数本撚り合わせて一次撚線を構成
し、該一次撚線を複数本撚り合わせて二次撚線を構成
し、順次同様に撚り合わせて高次撚線を構成していくも
のでもよい。
In one most preferred embodiment, the high temperature superconducting wire is a tape-shaped wire provided with a large number of twisted filamentary high temperature superconductors. The combined magnetic field component of the circumferential magnetic field component and the vertical magnetic field component extends in the same direction as the twisted filament. In another aspect, a plurality of linear superconducting wires may be twisted together to form a twisted aggregate conductor. To give a specific example, a plurality of thin superconducting wire rods are prepared instead of a tape, and these are bundled to form a collective conductor by filling a wire gap with a metal such as solder or an impregnating material such as plastic,
This is twisted. Alternatively, the superconducting wire is formed by twisting a plurality of superconducting element wires to form a primary twisted wire, and twisting a plurality of the primary twisted wires to form a secondary twisted wire, which are sequentially twisted in the same manner as a higher order twisted wire. May be configured.

【0010】本発明における超電導線材では、複数の超
電導体間の電磁気的結合(超電導的結合)が有効に抑制
されることが望ましい。図4(b)はバリア線材を示し
ており、超電導フィラメント間に高抵抗材料あるいは絶
縁材料の薄い層を挿入することで、ブリッジングの抑制
と高垂直抵抗化を図っている。このようなバリア線材に
おいては、フィラメント同士の電磁気的結合が抑制され
る。このような線材は例えば特開平11−312420
号に開示されている。フィラメント間の電磁気的結合を
有効に抑制するためにはフィラメント間の抵抗を高めれ
ばよく、その手段は、高抵抗体をフィラメント間に挿入
する、フィラメント表面を高抵抗体で被覆することの他
に、フィラメント間隔を大きくすることが挙げられる。
フィラメントの寸法は、厚さ10μm程度幅数十μm〜
100μm程度のリボン状であり、テープ線材では、こ
のようなフィラメントが数十から100本程度母材(銀
等)中に入っており、テープ線材の寸法は幅4mm前
後、厚さ0.2〜0.3mm程度である。このような超
電導線材において、フィラメントの間隔は少なくとも1
μm以上に保つことが必要であると考えられる。
In the superconducting wire according to the present invention, it is desirable that electromagnetic coupling (superconducting coupling) between a plurality of superconductors be effectively suppressed. FIG. 4 (b) shows a barrier wire, in which a thin layer of a high resistance material or an insulating material is inserted between the superconducting filaments to suppress bridging and increase the vertical resistance. In such a barrier wire, electromagnetic coupling between filaments is suppressed. Such a wire is disclosed in, for example, Japanese Patent Laid-Open No. 11-312420.
No. In order to effectively suppress the electromagnetic coupling between the filaments, the resistance between the filaments may be increased. The means include inserting a high resistance material between the filaments and coating the filament surface with the high resistance material. Another example is to increase the filament interval.
The filament has a thickness of about 10 μm and a width of several tens of μm.
It has a ribbon shape of about 100 μm, and in a tape wire, several tens to 100 such filaments are contained in a base material (silver etc.), and the tape wire has a width of about 4 mm and a thickness of 0.2 to It is about 0.3 mm. In such a superconducting wire, the spacing between filaments is at least 1.
It is thought that it is necessary to keep the thickness above μm.

【0011】本発明の原理について図1に基づいて説明
する。交流電力機器等の巻線中の交流超電導線が曝され
る交流磁界は、横方向、縦方向、および周方向磁界の成
分に分けられ、これらの磁界成分は導体自体の通電電流
によって発生する磁界(自己磁界)と外部磁界がある。
自己磁界について補足すると、マルチフィラメント線が
撚ってあると(フィラメント自身が螺旋状の小さなコイ
ルを形成すると考えられる)、通電電流は超電導フィラ
メント中を流れるので線内に自己縦磁界が生じる。この
自己縦磁界はフィラメントのツイストピッチの影響を受
ける。交流通電によって線材表面に発生する周方向磁界
と、外部より超電導線の軸方向に印加した縦磁界との合
成磁界の方向を変化させることが可能である(実際に
は、合成磁界成分には自己縦磁界の影響もあると考えら
れるが)。超電導線は楕円形状をしていると考え、フィ
ラメントの撚り方向と超電導線の表面に発生する合成磁
界成分の関係を図1に示す。図1(a)では縦磁界成分
が小さく、合成磁界は線軸に対して垂直に近くなりフィ
ラメントと大きな角度を持ち、フィラメント内に磁束が
侵入しにくくなると考えられる。また図1(c)のよう
に縦磁界成分が大きい場合には、合成磁界は線軸に対し
て平行に近くなりフィラメントに磁束が侵入しにくくな
る。図1(b)のように合成磁界成分がフィラメントと
平行になる場合には磁束が侵入しやすく損失が低減でき
ると考えられる。尚、図1は説明のための概念図であ
り、実際には、図1(a),(c)の場合も合成磁界が
フィラメントと同方向に延出するものと考えられ、交流
損失低減の効果を有するものと考えられる。
The principle of the present invention will be described with reference to FIG. The AC magnetic field to which the AC superconducting wire in the winding of AC power equipment is exposed is divided into transverse, longitudinal, and circumferential magnetic field components, and these magnetic field components are the magnetic fields generated by the conducting current of the conductor itself. There are (self-magnetic field) and external magnetic field.
To supplement the self-magnetic field, when the multifilament wire is twisted (it is considered that the filament itself forms a small coil in a spiral shape), a current flowing in the superconducting filament causes a self-longitudinal magnetic field in the wire. This self-longitudinal magnetic field is affected by the twist pitch of the filament. It is possible to change the direction of the combined magnetic field of the circumferential magnetic field generated on the surface of the wire by alternating current and the longitudinal magnetic field applied from the outside in the axial direction of the superconducting wire. It is thought that there is also an influence of the longitudinal magnetic field). It is considered that the superconducting wire has an elliptical shape, and the relationship between the twisting direction of the filament and the composite magnetic field component generated on the surface of the superconducting wire is shown in FIG. In FIG. 1A, the longitudinal magnetic field component is small, the combined magnetic field is close to perpendicular to the line axis and has a large angle with the filament, and it is considered that the magnetic flux is less likely to enter the filament. Further, when the vertical magnetic field component is large as shown in FIG. 1C, the combined magnetic field becomes nearly parallel to the line axis, and it becomes difficult for magnetic flux to enter the filament. When the combined magnetic field component is parallel to the filament as shown in FIG. 1 (b), it is considered that the magnetic flux easily enters and the loss can be reduced. It should be noted that FIG. 1 is a conceptual diagram for explanation. In fact, in the cases of FIGS. 1A and 1C as well, it is considered that the synthetic magnetic field extends in the same direction as that of the filament, and the AC loss is reduced. It is considered to have an effect.

【0012】実際の構成では、集合導体からなる超電導
ケーブルや超電導コイルにおいて、高温超電導体の撚り
方向やピッチあるいは積層構造等のパラメータを好適に
選択することで、合成磁界と高温超電導体の延出方向を
同方向とすることができる。
In an actual configuration, in a superconducting cable or a superconducting coil made of a collective conductor, the synthetic magnetic field and the extension of the high temperature superconductor can be obtained by suitably selecting parameters such as the twisting direction and pitch of the high temperature superconductor or the laminated structure. The directions can be the same.

【0013】[0013]

【発明の実施の形態】図3において、テープ状の線材
は、母材と母材内をスパイラル状に母材の長さ方向に延
出する複数のフィラメント(酸化物超電導体)から構成
されている。出願人が鋭意研究を行なったところ、線材
に縦方向磁界成分Bexzが加わると通電損失を大幅に
減少できることがわかった。BexzとBsfは合成す
ると線材の回りのスパイラル状の磁界となり、スパイラ
ル状の磁界のピッチと方向がフィラメントの撚り方向と
ピッチに一致すると、磁界は線材中に超電導フィラメン
トを横切らずに侵入することができる。このためフィラ
メントの電磁的結合が抑制される。したがって、マルチ
フィラメントの撚りピッチと方向を適性に選択すること
で、通電損失を大幅に抑制することが可能である。巻線
内部ではBsfとBexzは共に通電電流に比例するの
で通電電流が変わってもスパイラル状の磁界のピッチは
変わらない。
BEST MODE FOR CARRYING OUT THE INVENTION In FIG. 3, a tape-shaped wire is composed of a base material and a plurality of filaments (oxide superconductors) spirally extending in the length direction of the base material. There is. As a result of diligent research by the applicant, it was found that the conduction loss can be significantly reduced when the longitudinal magnetic field component Bexz is applied to the wire. When Bexz and Bsf are combined, they form a spiral magnetic field around the wire, and when the pitch and direction of the spiral magnetic field match the twisting direction and pitch of the filament, the magnetic field may enter the wire without traversing the superconducting filament. it can. Therefore, the electromagnetic coupling of the filament is suppressed. Therefore, by properly selecting the twist pitch and the direction of the multifilament, it is possible to significantly suppress the conduction loss. Since both Bsf and Bexz are proportional to the energizing current inside the winding, the pitch of the spiral magnetic field does not change even if the energizing current changes.

【0014】高温超電導線材は、超電導ケーブルや超電
導コイルとして構成され、集合導体、巻線の構造方法を
設計することで、線材に縦磁界成分を加えることができ
る。合成磁界と高温超電導体の延出方向を同方向とする
ためのパラメータは、ツイスト状の高温超電導体の撚り
方向、ピッチ、高温超電導線材が撚られる場合には、そ
の撚り方向、ピッチ、また、高温超電導線材が集合導体
を形成する場合には、その撚り方向、ピッチ、積層構
造、隣接線材の存在等が挙げられる。これらのパラメー
タを好適に選択することで、合成磁界と高温超電導体の
延出方向を平行に近づけることができ、交流損失を低減
することができる。図5は高温超電導線材の集合導体を
例示するものであって、(a)(b)は超電導ケーブ
ル、(c)は超電導コイルを示す概略図である。図5
(a)(b)は共にテープ状酸化物超電導線材を芯材あ
るいはフォーマーにスパイラル状あるいは螺旋状に巻装
して第一層を形成し、さらに第二層、第三層を積層させ
て構成されたものを示し、(a)巻回方向が各層間で同
一なもの、(b)は巻回方向が隣位の層間で互いに異な
るものを示している。このような超電導ケーブルにおい
て、巻きのピッチや延出方向、あるいは積層構造等のパ
ラメータを選択することで、適切な縦磁界を超電導体に
付与することができる。図5(c)に示す超電導コイル
においても、巻きのピッチや延出方向等のパラメータを
選択することで、適切な縦磁界を超電導体に付与するこ
とができる。
The high-temperature superconducting wire is constructed as a superconducting cable or a superconducting coil, and a longitudinal magnetic field component can be added to the wire by designing the structure method of the collective conductor and the winding. Parameters for making the extending direction of the synthetic magnetic field and the high temperature superconductor the same direction, the twisting direction of the twisted high temperature superconductor, the pitch, when the high temperature superconducting wire is twisted, the twisting direction, the pitch, When the high-temperature superconducting wire forms an aggregate conductor, its twisting direction, pitch, laminated structure, existence of adjacent wire, and the like are mentioned. By appropriately selecting these parameters, the synthetic magnetic field and the extending direction of the high-temperature superconductor can be made close to parallel, and the AC loss can be reduced. FIG. 5 illustrates a collective conductor of high-temperature superconducting wires, (a) and (b) are superconducting cables, and (c) is a schematic view showing a superconducting coil. Figure 5
(A) and (b) are both formed by winding a tape-shaped oxide superconducting wire around a core or a former in a spiral or spiral shape to form a first layer, and further laminating a second layer and a third layer. 3A shows the same winding direction, and (a) shows the same winding direction between the layers, and (b) shows the winding direction different between adjacent layers. In such a superconducting cable, an appropriate longitudinal magnetic field can be applied to the superconductor by selecting parameters such as the winding pitch, the extending direction, and the laminated structure. Also in the superconducting coil shown in FIG. 5C, an appropriate longitudinal magnetic field can be applied to the superconductor by selecting parameters such as the winding pitch and the extending direction.

【0015】[0015]

【実施例】Z撚りのツイスト線とツイストされていない
線に縦磁界を印加することにより、合成磁界の方向を変
え通電損失測定を行った.ここで、損失の低減を比較す
るため、まったく同じ大きさの磁界方向を反対に印加し
縦磁界による効果を比較した。縦磁界の効果について比
較を行ったワイドスペースのツイストされていない線(S
ample A)とZ撚りのツイスト線(Sample B)の諸元を表1
に示す。表1に示す臨界電流値Icは,液体窒素中で無磁
界下において直流通電を行ったときに生じる電界が1cm
あたり1μV発生する電流値とした。高温超電導線材は
Bi/2223銀シース線材であり、銀からなる母材と
母材中に含まれる61芯のフィラメントからなる。
[Example] By applying a longitudinal magnetic field to the twisted Z-twisted wire and the untwisted wire, the direction of the composite magnetic field was changed and the conduction loss was measured. Here, in order to compare the reduction of loss, the effects of the longitudinal magnetic field were compared by applying the same magnetic field directions in the opposite direction. Wide-space untwisted lines (S
Table 1 shows the specifications of ample A) and twisted Z-stranded wire (Sample B).
Shown in. The critical current value I c shown in Table 1 is that the electric field generated when direct current is applied in liquid nitrogen under no magnetic field is 1 cm.
The current value is 1 μV. The high-temperature superconducting wire is a Bi / 2223 silver sheath wire, which is composed of a base material made of silver and a 61-core filament contained in the base material.

【表1】 [Table 1]

【0016】それぞれの線材に縦磁界方向に交流縦磁界
の波高値Bpが0,5,10,15,20[mT]を印加し、マグネットと
コンデンサの組み合わせより求めた共振周波数63.7Hzの
交流通電時の交流通電損失測定を行った。また,交流通
電電流に対して同方向(Same)と逆方向(Opposite)に交流
磁界を印加した。
An alternating current with a resonance frequency of 63.7 Hz obtained from a combination of a magnet and a capacitor was applied to each wire in the direction of the longitudinal magnetic field in which the peak value B p of the alternating magnetic field was 0, 5, 10, 15, 20 [mT]. The AC conduction loss was measured during energization. An alternating magnetic field was applied in the same direction (Same) and the opposite direction (Opposite) with respect to the alternating current.

【0017】交流通電損失の交流外部磁界依存性を示し
た測定結果を図6のa)にSample A、b)にSample Bを示
す。これらのグラフは横軸に通電電流の波高値Ipをそれ
ぞれの臨界電流値Icで割り,縦軸は交流通電電流1サイ
クルあたりの交流通電損失を臨界電流値Icの2乗で正規
化したグラフである。ここで、用いる臨界電流値は直流
外部磁界中における臨界電流値を用いた。また、実線
は,目安としてNorrisの楕円モデルによる値を示してい
る。
Measurement results showing the dependence of the AC conduction loss on the AC external magnetic field are shown in FIG. 6 a) Sample A and b) Sample B. In these graphs, the abscissa is the peak value I p of the energizing current divided by each critical current value I c , and the ordinate is the AC energizing loss per cycle of the alternating energizing current normalized by the square of the critical current I c . It is a graph. The critical current value used here is the critical current value in a DC external magnetic field. The solid line indicates the value by the Norris elliptic model as a guide.

【0018】図6より、ツイストされていない線では,
交流通電電流に対して同方向と逆方向に交流外部磁界を
印加した場合に、ほぼ等しい損失が得られる。一方、Z
撚りのツイスト線は,それぞれのグラフで小さい値を示
している。具体的に15mTを印加し、0.4Icの場合に、損
失は通電電流に対して磁界が同方向の場合に逆方向に比
べ1/5になっている。また図6より、外部磁界が大き
くなるに従い、損失の差が発生する電流値も大きくな
る。これは、Z撚りの場合に、通電電流が作る磁界と外
部磁界の合成磁界が超電導フィラメントに対して平行に
なるので,フィラメント間に磁束が侵入しやすくなるこ
とが考えられる。
From FIG. 6, in the untwisted line,
When an AC external magnetic field is applied in the same direction and in the opposite direction with respect to the AC current, almost equal loss is obtained. On the other hand, Z
The twisted twisted wire shows a small value in each graph. Specifically, when 15 mT is applied and 0.4 I c is applied, the loss is ⅕ when the magnetic field is in the same direction with respect to the applied current as compared with the opposite direction. Further, from FIG. 6, as the external magnetic field increases, the current value at which the loss difference occurs also increases. This is because in the case of Z twisting, the magnetic field created by the energizing current and the composite magnetic field of the external magnetic field are parallel to the superconducting filaments, and it is considered that the magnetic flux easily enters between the filaments.

【0019】交流通電電流と外部縦磁界が同相交流の場
合における,ツイスト線の交流通電損失の縦磁界効果に
ついて示した。ツイストされていない線では、交流通電
電流に対して同方向と逆方向に交流外部磁界を印加した
場合に、ほぼ等しい損失が得られる。一方、ツイスト線
は、通電電流が作る磁界と外部磁界の合成磁界が超電導
フィラメントに対してほぼ平行になる場合に、損失が減
少することが測定により示された。このことにより、ケ
ーブルなどの設計を行う場合に、ツイストピッチとそれ
に伴う縦磁界の影響も考慮に入れることにより通電損失
の低減が可能である。
The effect of the longitudinal magnetic field on the AC energization loss of the twisted wire when the AC energizing current and the external longitudinal magnetic field are in-phase AC is shown. In the untwisted wire, almost equal loss is obtained when an AC external magnetic field is applied in the opposite direction to the AC energizing current. On the other hand, in the twisted wire, the loss is reduced when the combined magnetic field of the applied current and the external magnetic field is almost parallel to the superconducting filament. Accordingly, when designing a cable or the like, it is possible to reduce the conduction loss by taking into consideration the influence of the twist pitch and the longitudinal magnetic field associated therewith.

【図面の簡単な説明】[Brief description of drawings]

【図1】縦磁界成分と周方向成分の合成磁界と超電導フ
ィラメントの関係を説明する概念図である。
FIG. 1 is a conceptual diagram illustrating a relationship between a composite magnetic field of a longitudinal magnetic field component and a circumferential component and a superconducting filament.

【図2】マルチフィラメント銀シーステープ線材にかか
る磁界を説明する図である。
FIG. 2 is a diagram illustrating a magnetic field applied to a multifilament silver sheath tape wire.

【図3】外部縦磁界と周方向磁界の合成によるスパイラ
ル状磁界と線材のツイストされたフィラメントの位置関
係を示す図である。
FIG. 3 is a diagram showing a positional relationship between a spiral magnetic field produced by combining an external longitudinal magnetic field and a circumferential magnetic field and a twisted filament of a wire.

【図4】(a)はマルチフィラメント銀シース線材にお
けるブリッジングを示す図である。(b)はバリアの挿
入によるブリッジングの防止と高垂直抵抗化を示す図で
ある。
FIG. 4A is a diagram showing bridging in a multifilament silver sheath wire. FIG. 7B is a diagram showing prevention of bridging and high vertical resistance by inserting a barrier.

【図5】(a)、(b)は集合導体としての超電導ケー
ブル、(c)は集合導体としてのコイルを示す概略図で
ある。
5A and 5B are schematic diagrams showing a superconducting cable as a collective conductor, and FIG. 5C showing a coil as a collective conductor.

【図6】通電電流と縦磁界が同相交流のときの通電損失
特性を示す図であり(Bp=5)、上がサンプルA(ツ
イストなし)、下がサンプルB(ツイスト線)である。
FIG. 6 is a diagram showing conduction loss characteristics when the conduction current and the longitudinal magnetic field are in-phase AC (Bp = 5), the upper portion is sample A (without twist), and the lower portion is sample B (twist line).

【図7】通電電流と縦磁界が同相交流のときの通電損失
特性を示す図であり(Bp=10)、上がサンプルA
(ツイストなし)、下がサンプルB(ツイスト線)であ
る。
FIG. 7 is a diagram showing conduction loss characteristics when the conduction current and the longitudinal magnetic field are in-phase AC (Bp = 10), and the upper part is sample A.
(No twist), the bottom is sample B (twist line).

【図8】通電電流と縦磁界が同相交流のときの通電損失
特性を示す図であり(Bp=15)、上がサンプルA
(ツイストなし)、下がサンプルB(ツイスト線)であ
る。
FIG. 8 is a diagram showing conduction loss characteristics when the conduction current and the longitudinal magnetic field are in-phase AC (Bp = 15), and the upper portion is sample A.
(No twist), the bottom is sample B (twist line).

【図9】通電電流と縦磁界が同相交流のときの通電損失
特性を示す図であり(Bp=20)、上がサンプルA
(ツイストなし)、下がサンプルB(ツイスト線)であ
る。
FIG. 9 is a diagram showing conduction loss characteristics when the conduction current and the longitudinal magnetic field are in-phase alternating current (Bp = 20), and the upper portion is sample A.
(No twist), the bottom is sample B (twist line).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福井 聡 新潟県新潟市坂井867 リバティープラザ 新大駅前405 Fターム(参考) 5G321 BA01 BA03 CA11 CA18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Fukui             867 Sakai Liberty Plaza, Niigata City, Niigata Prefecture             Shinodaekimae 405 F-term (reference) 5G321 BA01 BA03 CA11 CA18

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】高温超電導体を有する高温超電導線の交流
損失低減法であって、該高温超電導体に縦磁界成分を加
えることで、通電電流によって生じる周方向磁界と縦磁
界成分との合成磁界成分が該高温超電導体の延出方向と
同方向に延出するようにしたことを特徴とする高温超電
導線の交流損失低減法。
1. A method for reducing AC loss in a high-temperature superconducting wire having a high-temperature superconductor, which comprises adding a longitudinal magnetic field component to the high-temperature superconductor to produce a combined magnetic field of a circumferential magnetic field and a longitudinal magnetic field component generated by an energizing current. A method for reducing AC loss in a high-temperature superconducting wire, characterized in that a component extends in the same direction as the extending direction of the high-temperature superconductor.
【請求項2】請求項1において、該合成磁界成分が該高
温超電導体の延出方向に対して前後40度以内の角度で
延出することを特徴とする高温超電導線の交流損失低減
法。
2. The method for reducing AC loss of a high temperature superconducting wire according to claim 1, wherein the composite magnetic field component extends at an angle within 40 degrees with respect to the extending direction of the high temperature superconductor.
【請求項3】請求項2において、該合成磁界成分が該高
温超電導体の延出方向と略平行状に延出することを特徴
とする高温超電導線の交流損失低減法。
3. A method for reducing AC loss in a high-temperature superconducting wire according to claim 2, wherein the composite magnetic field component extends substantially parallel to the extending direction of the high-temperature superconductor.
【請求項4】請求項1乃至3いずれかにおいて、該高温
超電導体および該合成磁界成分はスパイラル状に延出す
るものであることを特徴とする高温超電導線の交流損失
低減法。
4. The method for reducing AC loss in a high-temperature superconducting wire according to claim 1, wherein the high-temperature superconductor and the composite magnetic field component extend in a spiral shape.
【請求項5】請求項4において、複数の該高温超電導体
は該高温超電導線内を所定ピッチでスパイラル状に延出
しており、該ピッチを選択することで前記合成磁界の延
出方向を規定するようにしたことを特徴とする高温超電
導線の交流損失低減法。
5. The high-temperature superconductor according to claim 4, wherein the plurality of high-temperature superconductors extend spirally in the high-temperature superconducting wire at a predetermined pitch, and by selecting the pitch, the extending direction of the composite magnetic field is defined. A method for reducing AC loss in high-temperature superconducting wires, characterized in that
【請求項6】請求項1乃至5いずれかにおいて、該高温
超電導線はテープ状であることを特徴とする高温超電導
線の交流損失低減法。
6. The method for reducing AC loss in a high temperature superconducting wire according to claim 1, wherein the high temperature superconducting wire has a tape shape.
【請求項7】請求項1乃至6いずれかにおいて、各高温
超電導体間の電磁気的結合が抑制されていることを特徴
とする高温超電導線の交流損失低減法。
7. A method for reducing AC loss in a high-temperature superconducting wire according to claim 1, wherein electromagnetic coupling between the high-temperature superconductors is suppressed.
【請求項8】請求項7において、各高温超電導体間には
高抵抗体を設けたことを特徴とする高温超電導線の交流
損失低減法。
8. A method for reducing AC loss in a high-temperature superconducting wire according to claim 7, wherein a high-resistor is provided between each high-temperature superconductor.
【請求項9】請求項7において、各高温超電導体間の間
隔を、高温超電導体間で超電導的結合が抑制されるよう
な大きさに選択したことを特徴とする高温超電導線の交
流損失低減法。
9. The AC loss reduction of a high-temperature superconducting wire according to claim 7, wherein the distance between the high-temperature superconductors is selected to a size such that superconducting coupling between the high-temperature superconductors is suppressed. Law.
【請求項10】請求項1乃至9いずれかにおいて、該高
温超電導線は集合導体を形成しており、該集合導体の構
成を選択することによって、該高温超電導線に所定の外
部縦磁界を加えるようにしたことを特徴とする高温超電
導線の交流損失低減法。
10. The high-temperature superconducting wire according to claim 1, wherein the high-temperature superconducting wire forms a collective conductor, and a predetermined external longitudinal magnetic field is applied to the high-temperature superconducting wire by selecting a configuration of the collective conductor. A method for reducing AC loss in high-temperature superconducting wires, characterized in that
【請求項11】請求項10において、該集合導体はテー
プ状高温超電導線材を巻装したものを積層構造としたも
のであることを特徴とする高温超電導線の交流損失低減
法。
11. The method for reducing AC loss of a high temperature superconducting wire according to claim 10, wherein the assembly conductor has a laminated structure in which a tape-shaped high temperature superconducting wire is wound.
【請求項12】請求項1乃至9いずれかにおいて、該高
温超電導線はコイルを形成しており、該コイルの構成を
選択することによって、該高温超電導線に所定の外部縦
磁界を加えるようにしたことを特徴とする高温超電導線
の交流損失低減法。
12. The high temperature superconducting wire according to claim 1, wherein the high temperature superconducting wire forms a coil, and a predetermined external longitudinal magnetic field is applied to the high temperature superconducting wire by selecting a configuration of the coil. A method for reducing AC loss in high-temperature superconducting wires, characterized in that
【請求項13】請求項1乃至12いずれかにおいて、該
高温超電導線は金属被覆体と該金属被覆体内に埋設され
た複数のフィラメント状の高温超電導体から構成され、
各高温超電導体はツイスト線であることを特徴とする高
温超電導線の交流損失低減法。
13. The high-temperature superconducting wire according to claim 1, comprising a metal-coated body and a plurality of filament-shaped high-temperature superconductors embedded in the metal-coated body,
A method for reducing AC loss in high-temperature superconducting wires, characterized in that each high-temperature superconductor is a twisted wire.
【請求項14】請求項1乃至4いずれかにおいて、複数
の高温超電導線を束ねて集合導体を形成し、該集合導体
に撚りを施したことを特徴とする高温超電導線の交流損
失低減法。
14. A method for reducing AC loss in a high-temperature superconducting wire according to claim 1, wherein a plurality of high-temperature superconducting wires are bundled to form a collective conductor, and the collective conductor is twisted.
JP2001190745A 2001-06-25 2001-06-25 Minimizing method of alternating current loss of high- temperature superconductive wire Pending JP2003007150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190745A JP2003007150A (en) 2001-06-25 2001-06-25 Minimizing method of alternating current loss of high- temperature superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190745A JP2003007150A (en) 2001-06-25 2001-06-25 Minimizing method of alternating current loss of high- temperature superconductive wire

Publications (1)

Publication Number Publication Date
JP2003007150A true JP2003007150A (en) 2003-01-10

Family

ID=19029477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190745A Pending JP2003007150A (en) 2001-06-25 2001-06-25 Minimizing method of alternating current loss of high- temperature superconductive wire

Country Status (1)

Country Link
JP (1) JP2003007150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013095A (en) * 2005-05-30 2007-01-18 Toshiba Corp Superconductive coil device
WO2011043376A1 (en) * 2009-10-07 2011-04-14 国立大学法人九州工業大学 Superconductor cable and ac power transmission cable
JP2012038476A (en) * 2010-08-04 2012-02-23 Sumitomo Electric Ind Ltd Superconducting apparatus
JP2013004196A (en) * 2011-06-13 2013-01-07 Chugoku Electric Power Co Inc:The Drift current suppression method and superconductive cable

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325665A (en) * 1992-05-26 1993-12-10 Toshiba Corp Oxide superconductive multi-conductor wire rod
JPH08124433A (en) * 1994-10-19 1996-05-17 Furukawa Electric Co Ltd:The Superconducting element wire and superconducting stranded cable
JPH1050153A (en) * 1996-05-10 1998-02-20 Furukawa Electric Co Ltd:The Oxide supreconductive wire for alternating current, and cable
JPH1097815A (en) * 1996-09-20 1998-04-14 Fumio Sumiyoshi Bismuth oxide multicore superconducting wire and its manufacture
JPH10321058A (en) * 1997-03-17 1998-12-04 Sumitomo Electric Ind Ltd Superconducting conductor for alternating current
JPH11506261A (en) * 1995-06-06 1999-06-02 シーメンス アクチエンゲゼルシヤフト AC cable with two concentric conductor arrangements of twisted individual conductors
JP2001265845A (en) * 2000-01-13 2001-09-28 Sumitomo Electric Ind Ltd Method for analyzing superconducting cable
JP2001326396A (en) * 2000-05-12 2001-11-22 Nippon Steel Corp Current limiting element and current limiter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325665A (en) * 1992-05-26 1993-12-10 Toshiba Corp Oxide superconductive multi-conductor wire rod
JPH08124433A (en) * 1994-10-19 1996-05-17 Furukawa Electric Co Ltd:The Superconducting element wire and superconducting stranded cable
JPH11506261A (en) * 1995-06-06 1999-06-02 シーメンス アクチエンゲゼルシヤフト AC cable with two concentric conductor arrangements of twisted individual conductors
JPH1050153A (en) * 1996-05-10 1998-02-20 Furukawa Electric Co Ltd:The Oxide supreconductive wire for alternating current, and cable
JPH1097815A (en) * 1996-09-20 1998-04-14 Fumio Sumiyoshi Bismuth oxide multicore superconducting wire and its manufacture
JPH10321058A (en) * 1997-03-17 1998-12-04 Sumitomo Electric Ind Ltd Superconducting conductor for alternating current
JP2001265845A (en) * 2000-01-13 2001-09-28 Sumitomo Electric Ind Ltd Method for analyzing superconducting cable
JP2001326396A (en) * 2000-05-12 2001-11-22 Nippon Steel Corp Current limiting element and current limiter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013095A (en) * 2005-05-30 2007-01-18 Toshiba Corp Superconductive coil device
WO2011043376A1 (en) * 2009-10-07 2011-04-14 国立大学法人九州工業大学 Superconductor cable and ac power transmission cable
CN102549678A (en) * 2009-10-07 2012-07-04 国立大学法人九州工业大学 Superconductor cable and AC power transmission cable
US8600465B2 (en) 2009-10-07 2013-12-03 Kyushu Institute Of Technology Superconductor cable and AC power transmission cable
CN102549678B (en) * 2009-10-07 2014-06-25 国立大学法人九州工业大学 Superconductor cable and AC power transmission cable
JP5967752B2 (en) * 2009-10-07 2016-08-10 国立大学法人九州工業大学 Superconducting cable and AC transmission cable
KR101775444B1 (en) 2009-10-07 2017-09-06 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 Superconductor cable and ac power transmission cable
JP2012038476A (en) * 2010-08-04 2012-02-23 Sumitomo Electric Ind Ltd Superconducting apparatus
JP2013004196A (en) * 2011-06-13 2013-01-07 Chugoku Electric Power Co Inc:The Drift current suppression method and superconductive cable

Similar Documents

Publication Publication Date Title
JP6270175B2 (en) Superconducting cable
EP1467382A2 (en) Superconducting cable
JP2960481B2 (en) Method for reducing eddy current in superconductor tape and superconductor device
Choi et al. Magnetization loss measurement of twisted stacked tape cable and comparison with CORC
Sumption et al. AC losses of coated conductors in perpendicular fields and concepts for twisting
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JP3933253B2 (en) Oxide superconducting wire and cable for AC
JPH08148327A (en) Superconducting magnet and particle accelerator with the superconducting magnet
WO2022244409A1 (en) Superconducting conductor and winding
JP3628589B2 (en) Superconducting cable
RU2334293C1 (en) Superconducting multi-cored strip conductor for alternating and direct current
JPH0146963B2 (en)
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
Carr AC Loss in a Composite Hyperconductor
JP5771509B2 (en) Superconducting cable
JP2005129458A (en) Superconductive cable for ac
JP3568745B2 (en) Oxide superconducting cable
Eckelmann et al. AC losses in perpendicular external magnetic fields in ring bundle barrier multifilamentary BSCCO (2223) tapes with a central resistive barrier
JPH06139839A (en) Ac superconducting cable
JPH04346207A (en) Device for monitoring superconductive coil for ac
JP3119514B2 (en) Superconducting conductor
JP2001325837A (en) Superconducting cable
JP2003007151A (en) Superconductive wire material and superconductive material
JP2001256841A (en) Superconductive cable and magnet using the same
JPH0696626A (en) Ac superconductive wire and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110404