JP2003004566A - Capacitive pressure sensor and its manufacturing method - Google Patents

Capacitive pressure sensor and its manufacturing method

Info

Publication number
JP2003004566A
JP2003004566A JP2001182841A JP2001182841A JP2003004566A JP 2003004566 A JP2003004566 A JP 2003004566A JP 2001182841 A JP2001182841 A JP 2001182841A JP 2001182841 A JP2001182841 A JP 2001182841A JP 2003004566 A JP2003004566 A JP 2003004566A
Authority
JP
Japan
Prior art keywords
conductive
substrate
fixed electrode
conductive layer
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001182841A
Other languages
Japanese (ja)
Inventor
Haruzo Miyashita
治三 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP2001182841A priority Critical patent/JP2003004566A/en
Publication of JP2003004566A publication Critical patent/JP2003004566A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method capable of manufacturing various capacitive pressure sensors with optimum sensitivity for measuring arbitrary range of pressure using a set of photomasks, and to provide the capacitive pressure sensor with superior mass-productivity and high measurement accuracy. SOLUTION: The capacitive pressure sensor includes a fixed electrode and a diaphragm electrode arranged to be opposite to each other. In the manufacturing method, a conductive support, on which a conductive member having an aperture and a conductive member covering the aperture is mounted via an insulating body, and an insulating substrate, on which a recessed section where a fixed electrode is formed, are joined so that the recessed section and the aperture are superimposed. The conductive member is electrically connected to the support, and wirings being connected to each of the fixed electrode and the support are formed so as to penetrate through the insulating substrate, and the conductive member in the aperture section works as the diaphragm electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は静電容量型圧力セン
サ及びその製造方法に係り、特にマイクロマシニング技
術を用いた圧力センサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitance type pressure sensor and a method of manufacturing the same, and more particularly to a method of manufacturing a pressure sensor using a micromachining technique.

【0002】[0002]

【従来の技術】近年、マイクロマシニング技術の発展に
より様々なマイクロマシンの開発が進められている。こ
の技術は、例えば半導体デバイスの製造技術である成
膜、フォトリソグラフィ、接合などを組み合わせ、種々
のデバイス、部品等の作製に応用する技術であり、静電
容量型圧力センサもこの技術を用いて作製することがで
きる。以下、図6及び図7を参照して従来の静電容量型
圧力センサについて説明する。
2. Description of the Related Art In recent years, various micromachines have been developed due to the development of micromachining technology. This technology is, for example, a technology that combines film-forming, photolithography, bonding, etc., which are semiconductor device manufacturing technologies, and is applied to the manufacture of various devices, parts, etc., and the capacitive pressure sensor also uses this technology. Can be made. Hereinafter, a conventional capacitance type pressure sensor will be described with reference to FIGS. 6 and 7.

【0003】この圧力センサは、ガラス基板1と、ダイ
ヤフラム電極3及びその支持体4からなるシリコン基板
2とが、支持体4上面部で接合されており、ガラス基板
1、ダイヤフラム電極3及び支持体4によって密封され
た空間(基準圧力室)5が形成されている。基準圧力室
5内には、ダイヤフラム電極3と対向した位置にダイヤ
フラム電極3とほぼ同一面積の固定電極6が配置され、
また、支持体4上方に基準圧力室5内を低圧に維持する
ためのゲッタ7が配置されている。電極パッド10a、
10bは、ガラス基板1を貫通して設けられた第一配線
11a、第二配線11bを介して固定電極6、支持体4
の夫々と電気的に接続されている。圧力センサは、ケー
シング8内にOリングなどのシール部材9を介してガラ
ス基板1の周縁部で圧接されるように取り付けられる。
また、電極パッド10a、10bを図示しない計測器に
接続される。基準圧力室5と測定領域12との圧力差に
応じてダイヤフラム電極3が変形し、この変形に伴うダ
イヤフラム電極3と固定電極6の両電極間の静電容量が
変化して、その変化量から測定領域12の圧力を求める
ことができる。
In this pressure sensor, a glass substrate 1 and a silicon substrate 2 consisting of a diaphragm electrode 3 and its support 4 are bonded together at the upper surface of the support 4, and the glass substrate 1, the diaphragm electrode 3 and the support are supported. A space (reference pressure chamber) 5 sealed by 4 is formed. In the reference pressure chamber 5, a fixed electrode 6 having substantially the same area as the diaphragm electrode 3 is arranged at a position facing the diaphragm electrode 3,
Further, a getter 7 for maintaining the inside of the reference pressure chamber 5 at a low pressure is arranged above the support body 4. Electrode pad 10a,
Reference numeral 10b denotes a fixed electrode 6 and a support body 4 through a first wiring 11a and a second wiring 11b provided so as to penetrate the glass substrate 1.
It is electrically connected to each of. The pressure sensor is mounted inside the casing 8 via a sealing member 9 such as an O-ring so as to be pressed against the peripheral edge of the glass substrate 1.
Further, the electrode pads 10a and 10b are connected to a measuring device (not shown). The diaphragm electrode 3 is deformed according to the pressure difference between the reference pressure chamber 5 and the measurement region 12, and the capacitance between the diaphragm electrode 3 and the fixed electrode 6 changes due to this deformation. The pressure in the measurement area 12 can be obtained.

【0004】上記圧力センサのダイヤフラム電極3及び
支持体4は一枚のシリコン基板2を加工して作製される
ため一体型の構成である。その加工方法の一例を図7に
示す。すなわち、シリコン基板2の第一面側に例えばボ
ロン(B)などの不純物をドープし、通常のシリコン
(Si)とはエッチング選択比が異なる拡散層22を形
成する。この拡散層22は例えば2〜8μm程度の厚さ
である(図7(a))。このシリコン基板2の第二面上
に、フォトリソグラフィ手段を用いてマスク23を形成
する(図7(b))。次に、シリコン基板2の第二面側
をエチレンジアミンピロカテコール水溶液(EPW)な
どのエッチング液に浸して異方性エッチングを施す。シ
リコン基板2はマスク23が形成された部分以外でエッ
チングが進み、このエッチングされた部分で第一面側に
形成された拡散層22を露出させる(図7(c))。そ
して、マスク23を除去する(図7(d))。このダイ
ヤフラム電極3と支持体4が一体となったシリコン基板
2は、支持体4の拡散層22側で図6のごとく構成され
たガラス基板1と陽極接合される。
The diaphragm electrode 3 and the supporting member 4 of the pressure sensor are of an integral type because they are manufactured by processing one silicon substrate 2. An example of the processing method is shown in FIG. That is, the first surface side of the silicon substrate 2 is doped with impurities such as boron (B) to form the diffusion layer 22 having an etching selection ratio different from that of ordinary silicon (Si). The diffusion layer 22 has a thickness of, for example, about 2 to 8 μm (FIG. 7A). A mask 23 is formed on the second surface of the silicon substrate 2 by using photolithography means (FIG. 7B). Next, anisotropic etching is performed by immersing the second surface side of the silicon substrate 2 in an etching solution such as an ethylenediamine pyrocatechol aqueous solution (EPW). The silicon substrate 2 is etched at a portion other than the portion where the mask 23 is formed, and the diffusion layer 22 formed on the first surface side is exposed at the portion where the mask 23 is formed (FIG. 7C). Then, the mask 23 is removed (FIG. 7D). The silicon substrate 2 in which the diaphragm electrode 3 and the support 4 are integrated is anodically bonded to the glass substrate 1 configured as shown in FIG. 6 on the diffusion layer 22 side of the support 4.

【0005】ここで、上記のような圧力センサは、単一
のガラス基板とシリコン基板から一度に複数個の圧力セ
ンサを製造することができる。この場合、例えばボロン
(B)などの不純物をドープする前に、フォトリソグラ
フィ手段を用いてダイヤフラム電極となる領域以外の領
域にマスクを形成し、その後、第一面側からボロンなど
をドープして所定の領域内に拡散層を形成する。なお、
このマスクの除去はガラス基板とシリコン基板を陽極接
合する前に適宜行えばよい。
In the pressure sensor as described above, a plurality of pressure sensors can be manufactured at once from a single glass substrate and silicon substrate. In this case, for example, before doping impurities such as boron (B), a mask is formed in a region other than the region to be the diaphragm electrode by using photolithography means, and then boron or the like is doped from the first surface side. A diffusion layer is formed in a predetermined area. In addition,
This mask removal may be appropriately performed before the anodic bonding of the glass substrate and the silicon substrate.

【0006】[0006]

【発明が解決しようとする課題】静電容量型圧力センサ
の測定可能な圧力範囲は、その圧力センサのダイヤフラ
ム電極の厚みや面積によって決まる。低い圧力範囲を測
定対象とする場合には、ダイヤフラム電極を薄くする
か、その面積を大きくすればよい。逆に、高い圧力範囲
を測定対象とする場合には、ダイヤフラム電極を厚くす
るか、その面積を小さくすればよい。
The measurable pressure range of the capacitance type pressure sensor is determined by the thickness and area of the diaphragm electrode of the pressure sensor. When measuring a low pressure range, the diaphragm electrode may be thinned or its area may be increased. On the contrary, when a high pressure range is to be measured, the diaphragm electrode may be thickened or the area thereof may be reduced.

【0007】しかし、ダイヤフラム電極の面積によって
測定対象となる圧力範囲を決める場合、低い圧力範囲の
ものはダイヤフラム電極を大きくするために圧力センサ
自身も大型化する。これは、単一のガラス基板とシリコ
ン基板から一度に製造できる圧力センサが少なくなるな
どの問題がある。また、高い圧力範囲を測定対象とする
ものはダイヤフラム電極及びこれと対向配置された固定
電極の面積を小さくするために両電極間の静電容量の絶
対値及び圧力変化に応じて変化する静電容量の値が小さ
くなる。これは、感度低下を招き、高い精度での圧力測
定が困難となるなどの問題があった。面積によって測定
対象とする圧力範囲を決める圧力センサは、いずれの場
合においても、その測定対象とする圧力範囲に合わせて
その都度フォトマスクや個々の圧力センサの寸法を変更
しなければならならず、この変更により設計コスト或い
は製造コストの上昇を余儀なくされていた。
However, in the case where the pressure range to be measured is determined by the area of the diaphragm electrode, the pressure sensor itself becomes large in the low pressure range in order to enlarge the diaphragm electrode. This has a problem that the number of pressure sensors that can be manufactured at once from a single glass substrate and a silicon substrate decreases. In addition, the target of measurement in a high pressure range is an electrostatic capacitance that changes according to the absolute value of the electrostatic capacitance between both electrodes and the pressure change in order to reduce the area of the diaphragm electrode and the fixed electrode that is arranged opposite to it. The capacity value becomes smaller. This leads to a decrease in sensitivity, making it difficult to measure pressure with high accuracy. The pressure sensor that determines the pressure range to be measured by the area must change the dimensions of the photomask and individual pressure sensors in each case according to the pressure range to be measured, This change has forced an increase in design cost or manufacturing cost.

【0008】一方、ダイヤフラム電極の厚みを変更して
測定対象とする圧力範囲を決める圧力センサは、高い圧
力を測定対象とする場合、シリコン基板の拡散層を厚く
するためにその拡散時間を長くする必要がある。ボロン
拡散層を形成する方法は、窒化ホウ素(BN)を高温加
熱してボロン(B)のみを気化(放出)させ、これをシ
リコンウェハ上層に堆積、拡散する方法が代表的であ
る。例えば10μm程度のボロン拡散層を形成には14
時間程度の拡散時間を要し、20μm程度のボロン拡散
層に至っては60時間程度の拡散時間を必要とする。し
かし、実際に20μm以上のボロン拡散層を形成するこ
とは、ボロンなどの拡散源を長時間供給することの安定
性や、拡散装置(拡散炉)の耐久性などの点から非常に
困難である。
On the other hand, in the pressure sensor which determines the pressure range to be measured by changing the thickness of the diaphragm electrode, the diffusion time is lengthened to thicken the diffusion layer of the silicon substrate when a high pressure is measured. There is a need. A typical method for forming the boron diffusion layer is to heat boron nitride (BN) at a high temperature to vaporize (release) only boron (B), and deposit and diffuse this on a silicon wafer upper layer. For example, to form a boron diffusion layer of about 10 μm, 14
A diffusion time of about 60 hours is required, and a boron diffusion layer of about 20 μm requires a diffusion time of about 60 hours. However, it is extremely difficult to actually form a boron diffusion layer having a thickness of 20 μm or more from the viewpoints of stability of supplying a diffusion source such as boron for a long time and durability of a diffusion device (diffusion furnace). .

【0009】本発明は上述の問題を鑑み、任意の圧力範
囲の測定に最適な感度を有する静電容量型圧力センサ
を、1組のフォトマスクにより種々製造可能な製造方法
を提供するとともに、量産性に優れ、測定精度の高い静
電容量型圧力センサを提供することを目的とする。
In view of the above problems, the present invention provides a manufacturing method capable of variously manufacturing a capacitance type pressure sensor having an optimum sensitivity for measuring an arbitrary pressure range with a set of photomasks and mass production. It is an object of the present invention to provide a capacitance type pressure sensor which has excellent properties and high measurement accuracy.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の静電容量型圧力センサの製造方法は、次
のように構成される。即ち、対向配置された固定電極と
ダイヤフラム電極を有し、当該ダイヤフラム電極が外力
によって変形され、この変形に応じて変化する前記固定
電極と前記ダイヤフラム電極の間の静電容量によって圧
力を求める静電容量型圧力センサの製造方法において、
絶縁性基板に凹部を形成し、該凹部内に固定電極を形成
する工程と、第一導電層、絶縁層及び第二導電層が積層
された構造を有する積層型基板における所定の領域の前
記第一導電層及び前記絶縁層の周辺を除去する工程と、
前記領域内における前記第二導電層を周縁部を残して除
去する工程と、前記領域の第一導電層と前記第二導電層
を電気的に接続する配線を形成する工程と、前記領域の
第一導電層と前記固定電極とを向い合せかつ前記凹部を
塞ぐように、前記絶縁性基板と前記第二導電層とを接合
する工程と、からなることを特徴とする。あるいは、絶
縁性基板に凹部を形成し、該凹部内に固定電極を形成す
る工程と、第一導電層、絶縁層及び第二導電層が積層さ
れた構造を有する積層型基板の所定の領域の前記第二導
電層を除去する工程と、前記第二導電層の除去された領
域と前記凹部とを重なり合わせかつ前記凹部を塞ぐよう
に、前記第一導電層と前記絶縁性基板とを接合する工程
と、からなることを特徴とする。
In order to achieve the above-mentioned object, a method of manufacturing a capacitance type pressure sensor of the present invention is constructed as follows. That is, it has a fixed electrode and a diaphragm electrode which are arranged to face each other. In the manufacturing method of the capacitive pressure sensor,
A step of forming a concave portion on the insulating substrate and forming a fixed electrode in the concave portion; and a step of forming a fixed electrode in the concave portion on a predetermined area of the laminated substrate having a structure in which a first conductive layer, an insulating layer and a second conductive layer are laminated. A step of removing one conductive layer and the periphery of the insulating layer;
A step of removing the second conductive layer in the area leaving a peripheral portion, a step of forming a wiring electrically connecting the first conductive layer and the second conductive layer of the area, And a step of joining the insulating substrate and the second conductive layer so as to face one conductive layer and the fixed electrode and close the recess. Alternatively, a step of forming a concave portion in the insulating substrate and forming a fixed electrode in the concave portion, and a step of forming a fixed electrode in a predetermined region of a laminated substrate having a structure in which a first conductive layer, an insulating layer, and a second conductive layer are laminated The step of removing the second conductive layer, and joining the first conductive layer and the insulating substrate so as to overlap the removed region of the second conductive layer and the recess and to close the recess. And a process.

【0011】積層型基板を用いることにより、ダイヤフ
ラムとして働く第一導電層の厚みは、研磨等によりを容
易に変えることができるため、測定対象とする圧力範囲
に合わせた種々の静電容量型圧力センサを簡単に作製す
ることが可能となる。従って、拡散層を形成する工程を
省くことができるため生産性が大幅に向上する。このよ
うな積層型基板としては、SOI(Silicon O
n Insulator)型の基板が好適に用いられ
る。これは、2枚の単結晶シリコンを、その酸化膜を介
して結合した構造のシリコン基板であり、半導体製造プ
ロセスを利用するマイクロマシニング技術にとっても有
効な材料である。
By using the laminated type substrate, the thickness of the first conductive layer acting as a diaphragm can be easily changed by polishing or the like, so that various capacitance type pressures suitable for the pressure range to be measured can be obtained. It is possible to easily manufacture the sensor. Therefore, since the step of forming the diffusion layer can be omitted, the productivity is significantly improved. As such a laminated substrate, an SOI (Silicon O
n Insulator) type substrates are preferably used. This is a silicon substrate having a structure in which two pieces of single crystal silicon are bonded via an oxide film thereof, and is also an effective material for a micromachining technique utilizing a semiconductor manufacturing process.

【0012】以上の方法において、前記第二導電層が除
去された領域の前記絶縁層を除去する工程を付加すると
よい。これにより、一層感度の高い圧力測定が可能とな
るとともに、例えば、ダイヤフラム電極の変形が大きい
場合でも、絶縁層の剥離に起因する測定精度の低下を抑
え、より信頼性の高い圧力測定が可能となる。さらに、
アウトガスの低減を図ることができる。
In the above method, a step of removing the insulating layer in the region where the second conductive layer is removed may be added. As a result, it becomes possible to measure pressure with higher sensitivity, and for example, even when the deformation of the diaphragm electrode is large, a decrease in measurement accuracy due to peeling of the insulating layer is suppressed, and more reliable pressure measurement is possible. Become. further,
Outgassing can be reduced.

【0013】また、本発明の製造方法は、対向配置され
た固定電極とダイヤフラム電極を有し、当該ダイヤフラ
ム電極が外力によって変形され、この変形に応じて変化
する前記固定電極と前記ダイヤフラム電極の間の静電容
量によって圧力を求める静電容量型圧力センサの製造方
法において、第一の絶縁性基板と導電性基板とを接合す
る工程と、前記導電性基板を中央部の固定電極と、これ
を囲む周辺部に分離する工程と、第二の絶縁性基板に凹
部を形成する工程と、第一導電層、絶縁層及び第二導電
層が積層された構造を有する積層型基板の前記第一導電
層と、前記第二の絶縁性基板の前記凹部の反対側の面と
を接合する工程と、前記第二導電層を除去し、続いて前
記凹部上部の第一導電層を残して前記絶縁層及び前記第
一導電層を除去する工程と、前記第一導電層に接続し、
周辺に延びる配線を形成する工程と、前記第二の絶縁性
基板と前記導電性基板とを、前記固定電極と前記第一導
電層とを向かい合わせ、かつ前記導電性基板と前記配線
とが接触するように、接合する工程と、からなることを
特徴とする。
Also, the manufacturing method of the present invention has a fixed electrode and a diaphragm electrode which are arranged to face each other, and the diaphragm electrode is deformed by an external force, and the gap between the fixed electrode and the diaphragm electrode is changed according to this deformation. In the method of manufacturing a capacitance type pressure sensor for obtaining a pressure by the capacitance of, a step of joining a first insulating substrate and a conductive substrate, the conductive substrate and a fixed electrode in the central portion, The step of separating into the surrounding peripheral portion, the step of forming a recess in the second insulating substrate, and the first conductivity of the laminated substrate having a structure in which the first conductive layer, the insulating layer and the second conductive layer are stacked. A step of joining a layer and a surface of the second insulating substrate opposite to the recess, the second conductive layer is removed, and then the insulating layer is formed by leaving the first conductive layer above the recess. And removing the first conductive layer A step, connected to the first conductive layer,
A step of forming wiring extending to the periphery, the second insulating substrate and the conductive substrate, the fixed electrode and the first conductive layer face each other, and the conductive substrate and the wiring contact As described above, the step of joining is included.

【0014】一方、本発明に係る静電容量型圧力センサ
は次のように構成される。すなわち、対向配置された固
定電極とダイヤフラム電極を有し、このダイヤフラム電
極が外力によって変形され、この変形に応じて変化する
固定電極とダイヤフラム電極の間の静電容量によって圧
力を求める静電容量型圧力センサにおいて、ダイヤフラ
ム電極は、少なくとも固定電極との対向面が導電性を有
する部材であって、かつこの圧力センサを構成する各部
材と独立した弾性部材からなることで特徴づけられる。
On the other hand, the capacitance type pressure sensor according to the present invention is constructed as follows. That is, it has a fixed electrode and a diaphragm electrode that are arranged opposite to each other, and the diaphragm electrode is deformed by an external force, and the pressure is obtained by the electrostatic capacitance between the fixed electrode and the diaphragm electrode which changes according to this deformation. In the pressure sensor, the diaphragm electrode is characterized in that at least the surface facing the fixed electrode is a member having conductivity, and is made of an elastic member independent of each member constituting the pressure sensor.

【0015】具体的には、開口を有し該開口を塞ぐ導電
性部材が絶縁体を介して取り付けられた導電性の支持体
と、凹部が形成され該凹部内に固定電極が形成された絶
縁性基板とが、前記凹部及び前記開口が重なり合いかつ
前記凹部を塞ぐように接合され、前記導電性部材と前記
支持体とが電気的に連結されるとともに、前記固定電極
と前記支持体とにそれぞれ接続する配線が前記絶縁性基
板を貫通して形成され、前記開口部の導電性部材がダイ
ヤフラム電極として作用することを特徴とする。
Specifically, a conductive support member having an opening and a conductive member attached to the opening through an insulator, and an insulating member having a recessed portion and a fixed electrode formed in the recessed portion. A conductive substrate, the recess and the opening are overlapped with each other and are joined so as to close the recess, the conductive member and the support are electrically connected, and the fixed electrode and the support respectively. A wiring to be connected is formed so as to penetrate the insulating substrate, and the conductive member in the opening acts as a diaphragm electrode.

【0016】また、他の構成としては、開口を有し該開
口を塞ぐ導電性部材が絶縁体を介して取り付けられた導
電性の支持体と、凹部が形成され該凹部内に固定電極が
形成された絶縁性基板とからなり、前記導電性部材と前
記絶縁性基板とが前記凹部及び前記開口が重なり合いか
つ前記凹部を塞ぐように接合され、前記固定電極と前導
電性部材とにそれぞれ接続する配線が前記絶縁性基板を
貫通して形成され、前記開口部の導電性部材がダイヤフ
ラム電極として作用することを特徴とする。
Further, as another structure, a conductive support having an opening and a conductive member for closing the opening is attached through an insulator, and a recess is formed to form a fixed electrode in the recess. And an insulating substrate, the conductive member and the insulating substrate are joined so that the recess and the opening overlap and close the recess, and are connected to the fixed electrode and the front conductive member, respectively. A wiring is formed so as to penetrate through the insulating substrate, and the conductive member in the opening acts as a diaphragm electrode.

【0017】さらにまた、固定電極が形成された第一の
絶縁性基板と、開口を有し該開口を塞ぐ導電性部材が取
り付けられた第二の絶縁性基板とが、該第二の絶縁性基
板の開口よりも大きい開口を有する導電性基板を介し
て、前記固定電極と前記導電性部材と向い合うように接
合され、前記導電性基板と前記導電性部材とが電気的に
接続されるとともに、前記固定電極と前記導電性基板と
にそれぞれ接続する配線が前記第一の絶縁性基板を貫通
して形成され、前記開口部の導電性部材がダイヤフラム
電極として作用することを特徴とする。
Furthermore, the first insulating substrate having the fixed electrode formed thereon and the second insulating substrate having an opening and a conductive member for closing the opening are attached to the second insulating substrate. The fixed electrode and the conductive member are joined so as to face each other through a conductive substrate having an opening larger than the opening of the substrate, and the conductive substrate and the conductive member are electrically connected to each other. Wirings respectively connecting to the fixed electrode and the conductive substrate are formed so as to penetrate through the first insulating substrate, and the conductive member in the opening acts as a diaphragm electrode.

【0018】[0018]

【発明の実施の形態】以下、添付図を参照して本発明の
実施の形態について説明する。なお、図6及び図7で説
明した実質的に同一の要素には同一の符号を付し、説明
を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, the substantially same elements described in FIGS. 6 and 7 are denoted by the same reference numerals, and the description thereof will be omitted.

【0019】図1(a)は本発明に係る静電容量型圧力
センサの一例を示す概略斜視図であり、図1(b)はそ
の断面図である。図1に示すごとく、この圧力センサ
は、第一配線11aと第二配線11bを備えた絶縁性基
板(パイレックス(登録商標)ガラス等)1と、シリコ
ン基板からなる導電性の支持体4とを接合した構成であ
る。支持体4は開口を有し、この開口は絶縁物31を介
して接合された弾性を有する導電性部材30によって閉
塞されている。この支持体4の開口から露出している導
電性部材30がダイヤフラム電極3である。また、導電
性部材30とシリコン基板32は配線部材33によって
電気的に接続されている。一方、絶縁性基板1には凹部
が形成されており、この凹部は導電性部材30及び支持
体4によって密封され、基準圧力室5を形成している。
基準圧力室5内には、ダイヤフラム電極3と対向した位
置にダイヤフラム電極3とほぼ同一面積の固定電極6が
配置され、また、支持体4上に基準圧力室5内を低圧に
維持するためのゲッタ7が配置されている。電極パッド
10a、10bは、絶縁性基板1を貫通して設けられた
第一配線11a、第二配線11bを介して固定電極6、
支持体4の夫々と電気的に接続されている。このセンサ
は、ケーシング8内にOリングなどのシール部材9を介
して絶縁性基板1の周縁部で圧接されるように取り付け
られる。また、電極パッド10a、10bを図示しない
計測器に接続する。これにより、基準圧力室5と測定領
域12との圧力差に応じてダイヤフラム電極3が変形
し、この変形に伴うダイヤフラム電極3と固定電極6の
両電極間の静電容量が変化し、その変化量から測定領域
12の圧力を求めることができる。
FIG. 1A is a schematic perspective view showing an example of a capacitance type pressure sensor according to the present invention, and FIG. 1B is a sectional view thereof. As shown in FIG. 1, this pressure sensor includes an insulating substrate (Pyrex (registered trademark) glass or the like) 1 having a first wiring 11a and a second wiring 11b, and a conductive support 4 made of a silicon substrate. It is a bonded structure. The support body 4 has an opening, and the opening is closed by an elastic conductive member 30 joined via an insulator 31. The conductive member 30 exposed from the opening of the support 4 is the diaphragm electrode 3. The conductive member 30 and the silicon substrate 32 are electrically connected by the wiring member 33. On the other hand, a concave portion is formed in the insulating substrate 1, and the concave portion is sealed by the conductive member 30 and the support 4 to form a reference pressure chamber 5.
A fixed electrode 6 having substantially the same area as the diaphragm electrode 3 is arranged in the reference pressure chamber 5 at a position facing the diaphragm electrode 3, and the reference pressure chamber 5 is maintained on the support 4 at a low pressure. The getter 7 is arranged. The electrode pads 10a and 10b are fixed electrodes 6 through a first wiring 11a and a second wiring 11b provided through the insulating substrate 1.
Each of the supports 4 is electrically connected. This sensor is mounted in the casing 8 via a sealing member 9 such as an O-ring so as to be pressed against the peripheral portion of the insulating substrate 1. In addition, the electrode pads 10a and 10b are connected to a measuring device (not shown). As a result, the diaphragm electrode 3 is deformed according to the pressure difference between the reference pressure chamber 5 and the measurement region 12, and the capacitance between the diaphragm electrode 3 and the fixed electrode 6 is changed due to this deformation, and the change is caused. The pressure in the measuring area 12 can be determined from the quantity.

【0020】上記圧力センサの製造には、第一導電層及
び第二導電層の2枚の導電層が絶縁層を介して結合され
た積層型基板が用いられる。好適には、第一導電層及び
第二導電層を単結晶シリコンとし、絶縁層をその酸化膜
で構成したSOI基板などを用いるとよい。以下、その
製造方法を図2を参照して説明する。第一導電層30及
び第二導電層32は単結晶シリコンであり、その間に介
在する絶縁層はシリコン酸化膜である(図2(a))。
このようなSOI基板は、Si基板と表面に酸化膜が形
成されたSi基板とを接合した後、一方のSi基板をC
MP(化学的機械研磨法)等により測定圧力範囲に応じ
て所定の厚さに研磨して作製される。また、導電層の比
抵抗としては、0.01Ω・cm以下のものが好適に用
いられる。第一導電層30と第二導電層32の表面にシ
リコン酸化膜34及び35を形成し、第一導電層30上
のシリコン酸化膜34を、通常のフォトリソグラフィ手
段を用いてパターニングする(図2(b))。このシリ
コン酸化膜34をマスクとし、水酸化テトラメチルアン
モニウム(TMAH)などの酸化膜に対するシリコンの
エッチング選択比が高いエッチング液を使用して第一導
電層30の一部をエッチング除去する(図2(c))。
第二導電層32上のシリコン酸化膜35のパターニング
後、第一導電層30上のマスク34、及び絶縁層31の
露出した部分をエッチング除去する(図2(d))。第
一導電層30と第二導電層32を電気的に接続するため
に配線33を形成し、これらを凹部内部に挿入し、固定
電極6、第一配線11a、第二配線11b、電極10
a、10bを備えた絶縁性基板1と、その間にゲッタ7
を挿入しながら真空中で陽極接合して、真空封止された
基準圧力室5を形成する(図2(e))。第二導電層3
2をエチレンジアミンピロカテコール水溶液(EPW)
や水酸化カリウム(KOH)などに浸し、第二導電層3
2の一部をエッチング除去した後、これをフッ酸などに
浸して第二導電層32上のマスク35及び露出した絶縁
層31をエッチング除去する(図2(f))。
In the manufacture of the pressure sensor, a laminated type substrate in which two conductive layers, a first conductive layer and a second conductive layer, are bonded together via an insulating layer is used. It is preferable to use an SOI substrate in which the first conductive layer and the second conductive layer are single crystal silicon, and the insulating layer is an oxide film thereof. Hereinafter, the manufacturing method will be described with reference to FIG. The first conductive layer 30 and the second conductive layer 32 are single crystal silicon, and the insulating layer interposed therebetween is a silicon oxide film (FIG. 2A).
In such an SOI substrate, after bonding a Si substrate and a Si substrate having an oxide film formed on the surface thereof, one of the Si substrates is subjected to C
It is prepared by polishing to a predetermined thickness according to the measurement pressure range by MP (chemical mechanical polishing method) or the like. The specific resistance of the conductive layer is preferably 0.01 Ω · cm or less. Silicon oxide films 34 and 35 are formed on the surfaces of the first conductive layer 30 and the second conductive layer 32, and the silicon oxide film 34 on the first conductive layer 30 is patterned using a normal photolithography means (FIG. 2). (B)). Using this silicon oxide film 34 as a mask, a part of the first conductive layer 30 is removed by etching using an etching solution having a high etching selection ratio of silicon to the oxide film such as tetramethylammonium hydroxide (TMAH) (FIG. 2). (C)).
After patterning the silicon oxide film 35 on the second conductive layer 32, the mask 34 on the first conductive layer 30 and the exposed portion of the insulating layer 31 are removed by etching (FIG. 2D). The wiring 33 is formed to electrically connect the first conductive layer 30 and the second conductive layer 32, and these are inserted into the recesses, and the fixed electrode 6, the first wiring 11a, the second wiring 11b, and the electrode 10 are formed.
Insulating substrate 1 provided with a and 10b, and getter 7 in between.
While inserting, anodic bonding is performed in a vacuum to form a vacuum-sealed reference pressure chamber 5 (FIG. 2E). Second conductive layer 3
2 is ethylenediamine pyrocatechol aqueous solution (EPW)
The second conductive layer 3 by immersing it in potassium hydroxide (KOH), etc.
After part of 2 is removed by etching, it is immersed in hydrofluoric acid or the like to remove the mask 35 on the second conductive layer 32 and the exposed insulating layer 31 by etching (FIG. 2 (f)).

【0021】この方法によれば、測定対象とする圧力範
囲が高く、例えばボロン(B)拡散法では困難であった
ダイヤフラム電極の厚い静電容量型圧力センサを、容易
に作製することができる。即ち、ダイヤフラム電極の厚
みは設計時に任意に選択可能であり、その測定対象とす
る圧力範囲ごとに製造工程を変更するなどのコスト上昇
の要因を取除き、量産性を向上させることができる。な
お、図2では、第二導電層のエッチングは接合後に行っ
たが、接合前に行っても良い。また、図1のセンサで
は、導電性部材(第一導電層)30をパターニングし、
支持体4と絶縁性基板1とを接合する構成としたが、導
電性部材30のパターニングを行わず、図3に示すよう
に、導電性部材30と絶縁性基板1を接合する構成とし
ても良い。
According to this method, it is possible to easily manufacture a capacitance type pressure sensor having a thick diaphragm electrode, which has a high pressure range to be measured and which has been difficult with the boron (B) diffusion method, for example. That is, the thickness of the diaphragm electrode can be arbitrarily selected at the time of designing, and it is possible to improve the mass productivity by removing the cost increase factor such as changing the manufacturing process for each pressure range to be measured. Although the etching of the second conductive layer is performed after the bonding in FIG. 2, it may be performed before the bonding. In the sensor of FIG. 1, the conductive member (first conductive layer) 30 is patterned,
Although the support 4 and the insulating substrate 1 are bonded to each other, the conductive member 30 may be bonded to the insulating substrate 1 as shown in FIG. 3 without patterning the conductive member 30. .

【0022】図4に本発明の第二の実施形態を示す。本
実施形態の圧力センサは、固定電極6が形成された第一
の絶縁性基板1aと、導電性基板32と、ダイヤフラム
30が形成された第二の絶縁性基板1bとにより基準圧
力室5を形成する構成としたものである、このセンサの
製造方法を図5に示す。第二の絶縁性基板(パイレック
ス(登録商標)ガラス等)1bに金属膜37を形成し、
パターニングする(図5(a))。続いて、金属膜37
をマスクとして絶縁性基板を所定の厚さエッチングした
後、上面の金属膜を除去する(図5(b))。所定の厚
さの第一導電層(Si)30、絶縁層(SiO)31
及び第二導電層(Si)からなるSOI基板を、第一導
電層30と第二の絶縁性基板1bの上面とを重ね、陽極
接合法により接合する(図5(c))。第二導電層32
の全てをエッチングにより除去した後、絶縁層31及び
第一導電層30のパターニングを行う(図5(d))。
続いて、絶縁層31を除去し、周辺に延びる配線33を
形成する(図5(e))。一方、導電性基板(Si)3
2に酸化膜を形成し、酸化膜39のパターニングを行う
(図5(f))。酸化膜39をマスクとして、Siの異
方性エッチングを行った後、再び酸化膜の形成・パター
ニングにより、固定電極となるSi上に酸化膜のパター
ン40を形成する(図5(g))。次に、導電性基板3
2上に、配線用孔が形成された第一の絶縁性基板(パイ
レックス(登録商標)ガラス等)1aを陽極接合する
(図5(h))。配線11a,11bの埋め込み、電極
パッド10a、10bの形成を行った後(図5
(i))、Siのエッチングを行って、固定電極6とそ
れを囲む導電性基板32とを分離する(図5(j))。
続いて、第二の絶縁性基板1bの上に、導電性基板32
を重ね、陽極接合法により接合する(図5(k))。最
後に、絶縁性基板1bのダイヤフラム真下の部分を除去
し、さらに金属膜37を除去してセンサを完成する(図
5(l))。
FIG. 4 shows a second embodiment of the present invention. In the pressure sensor of this embodiment, the reference pressure chamber 5 is formed by the first insulating substrate 1a on which the fixed electrode 6 is formed, the conductive substrate 32, and the second insulating substrate 1b on which the diaphragm 30 is formed. FIG. 5 shows a method of manufacturing this sensor, which is configured to be formed. A metal film 37 is formed on the second insulating substrate (Pyrex (registered trademark) glass or the like) 1b,
Patterning is performed (FIG. 5A). Then, the metal film 37
After the insulating substrate is etched to a predetermined thickness using the mask as a mask, the metal film on the upper surface is removed (FIG. 5B). First conductive layer (Si) 30 and insulating layer (SiO 2 ) 31 having a predetermined thickness
An SOI substrate composed of the second conductive layer (Si) and the first conductive layer 30 and the upper surface of the second insulating substrate 1b are overlapped with each other and bonded by an anodic bonding method (FIG. 5C). Second conductive layer 32
After removing all by etching, the insulating layer 31 and the first conductive layer 30 are patterned (FIG. 5D).
Then, the insulating layer 31 is removed and the wiring 33 extending to the periphery is formed (FIG. 5E). On the other hand, conductive substrate (Si) 3
An oxide film is formed on the substrate 2 and the oxide film 39 is patterned (FIG. 5F). After performing anisotropic etching of Si using the oxide film 39 as a mask, the oxide film pattern 40 is formed again on the Si serving as the fixed electrode by forming and patterning the oxide film (FIG. 5G). Next, the conductive substrate 3
A first insulating substrate (Pyrex (registered trademark) glass or the like) 1a having wiring holes formed thereon is anodically bonded onto the substrate 2 (FIG. 5 (h)). After the wirings 11a and 11b are embedded and the electrode pads 10a and 10b are formed (see FIG.
(I)), Si is etched to separate the fixed electrode 6 from the conductive substrate 32 surrounding it (FIG. 5 (j)).
Then, the conductive substrate 32 is formed on the second insulating substrate 1b.
Are stacked and bonded by an anodic bonding method (FIG. 5 (k)). Finally, the portion directly below the diaphragm of the insulating substrate 1b is removed, and further the metal film 37 is removed to complete the sensor (FIG. 5 (l)).

【0023】以上、本発明の実施の形態について説明し
たが、各構成及び配置関係は本発明が理解できる程度に
概略的に示したものに過ぎず、また各構成の組成(材
質)については例示に過ぎない。従って、本発明は上述
の実施の形態に限定されず、特許請求の範囲の記載に基
づいて様々な形態に変更可能である。
Although the embodiments of the present invention have been described above, the respective constitutions and arrangements are merely shown to the extent that the present invention can be understood, and the compositions (materials) of the respective constitutions are exemplified. Nothing more than. Therefore, the present invention is not limited to the above-mentioned embodiments, and can be modified into various forms based on the description of the claims.

【0024】[0024]

【発明の効果】以上の説明で明らかなように、本発明に
よると、ダイヤフラム電極の厚みを変更して設計するこ
とで所望な測定対象とする圧力範囲を容易に得ることが
でき、この圧力範囲に応じた静電容量型圧力センサの量
産性を向上させることができる。また、この圧力センサ
の製造工程を簡略化するなどの効果も奏する。
As is apparent from the above description, according to the present invention, it is possible to easily obtain a desired pressure range to be measured by changing the thickness of the diaphragm electrode and designing it. It is possible to improve the mass productivity of the capacitance type pressure sensor according to the above. Further, there are effects such as simplifying the manufacturing process of this pressure sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電容量型圧力センサの一例を示す概
略図である。
FIG. 1 is a schematic view showing an example of a capacitance type pressure sensor of the present invention.

【図2】図1に示した静電容量型圧力センサの製造工程
の一例を示す概略図である。
FIG. 2 is a schematic view showing an example of a manufacturing process of the capacitance type pressure sensor shown in FIG.

【図3】本発明の静電容量型圧力センサ他の例を示す概
略図である。
FIG. 3 is a schematic view showing another example of the capacitance type pressure sensor of the present invention.

【図4】本発明の静電容量型圧力センサ他の例を示す概
略図である。
FIG. 4 is a schematic view showing another example of the capacitance type pressure sensor of the present invention.

【図5】図4に示した静電容量型圧力センサの製造工程
の一例を示す概略図である。
FIG. 5 is a schematic view showing an example of a manufacturing process of the capacitance type pressure sensor shown in FIG.

【図6】従来の静電容量型圧力センサを示す概略断面図
である。
FIG. 6 is a schematic sectional view showing a conventional capacitance type pressure sensor.

【図7】従来の静電容量型圧力センサの製造工程を示す
概略図である。
FIG. 7 is a schematic view showing a manufacturing process of a conventional capacitance type pressure sensor.

【符号の説明】[Explanation of symbols]

1 絶縁性基板、 2 シリコン基板、 3 ダイヤフラム電極、 4 支持体、 5 基準圧力室、 6 固定電極、 7 ゲッタ、 8 ケース、 9 シール部材、 10a、10b 電極パッド、 11a、11b 配線、 22 拡散層、 23 マスク、 30 第一導電層、 31 絶縁層、 32 第二導電層、 33 配線部材、 34、35 マスク、 37 金属膜。 1 insulating substrate, 2 Silicon substrate, 3 diaphragm electrode, 4 support, 5 Reference pressure chamber, 6 fixed electrodes, 7 Getter, 8 cases, 9 seal members, 10a, 10b electrode pads, 11a, 11b wiring, 22 diffusion layer, 23 masks, 30 first conductive layer, 31 insulating layer, 32 a second conductive layer, 33 wiring members, 34, 35 masks, 37 Metal film.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F055 AA40 BB01 CC02 DD05 EE25 FF43 GG01 4M112 AA01 CA03 CA04 CA05 CA06 CA11 CA13 CA15 DA04 DA05 DA07 DA12 EA03 EA06 EA11 EA13 FA01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F055 AA40 BB01 CC02 DD05 EE25                       FF43 GG01                 4M112 AA01 CA03 CA04 CA05 CA06                       CA11 CA13 CA15 DA04 DA05                       DA07 DA12 EA03 EA06 EA11                       EA13 FA01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 対向配置された固定電極とダイヤフラム
電極を有し、当該ダイヤフラム電極が外力によって変形
され、この変形に応じて変化する前記固定電極と前記ダ
イヤフラム電極の間の静電容量によって圧力を求める静
電容量型圧力センサにおいて、 前記ダイヤフラム電極は、少なくとも前記固定電極との
対向面が導電性を有する部材であって、かつ当該圧力セ
ンサを構成する各部材と独立した弾性部材からなること
を特徴とする静電容量型圧力センサ。
1. A fixed electrode and a diaphragm electrode which are arranged to face each other, the diaphragm electrode is deformed by an external force, and a pressure is generated by an electrostatic capacitance between the fixed electrode and the diaphragm electrode which changes according to this deformation. In the capacitance-type pressure sensor to be sought, the diaphragm electrode is a member in which at least the surface facing the fixed electrode is conductive, and is made of an elastic member independent of each member constituting the pressure sensor. Characteristic capacitance type pressure sensor.
【請求項2】 開口を有し該開口を塞ぐ導電性部材が絶
縁体を介して取り付けられた導電性の支持体と、凹部が
形成され該凹部内に固定電極が形成された絶縁性基板と
が、前記凹部及び前記開口が重なり合いかつ前記凹部を
塞ぐように接合され、前記導電性部材と前記支持体とが
電気的に連結されるとともに、前記固定電極と前記支持
体とにそれぞれ接続する配線が前記絶縁性基板を貫通し
て形成され、前記開口部の導電性部材がダイヤフラム電
極として作用することを特徴とする請求項1に記載の静
電容量型圧力センサ。
2. A conductive support having an opening and a conductive member attached to the opening via an insulator, and an insulating substrate having a recess and a fixed electrode formed in the recess. A wiring that connects the recess and the opening so as to overlap and close the recess, electrically connects the conductive member and the support, and connects the fixed electrode and the support, respectively. 2. The capacitance type pressure sensor according to claim 1, wherein is formed by penetrating through the insulating substrate, and the conductive member of the opening acts as a diaphragm electrode.
【請求項3】 開口を有し該開口を塞ぐ導電性部材が絶
縁体を介して取り付けられた導電性の支持体と、凹部が
形成され該凹部内に固定電極が形成された絶縁性基板と
からなり、前記導電性部材と前記絶縁性基板とが前記凹
部及び前記開口が重なり合いかつ前記凹部を塞ぐように
接合され、前記固定電極と前導電性部材とにそれぞれ接
続する配線が前記絶縁性基板を貫通して形成され、前記
開口部の導電性部材がダイヤフラム電極として作用する
ことを特徴とする請求項1に記載の静電容量型圧力セン
サ。
3. A conductive support having an opening and a conductive member attached to the opening via an insulator, and an insulating substrate having a recess and a fixed electrode formed in the recess. The conductive member and the insulating substrate are joined so that the recess and the opening overlap and close the recess, and the wirings respectively connected to the fixed electrode and the front conductive member are the insulating substrate. 2. The capacitance type pressure sensor according to claim 1, wherein the conductive member in the opening acts as a diaphragm electrode.
【請求項4】 固定電極が形成された第一の絶縁性基
板と、開口を有し該開口を塞ぐ導電性部材が取り付けら
れた第二の絶縁性基板とが、該第二の絶縁性基板の開口
よりも大きい開口を有する導電性基板を介して、前記固
定電極と前記導電性部材と向い合うように接合され、前
記導電性基板と前記導電性部材とが電気的に接続される
とともに、前記固定電極と前記導電性基板とにそれぞれ
接続する配線が前記第一の絶縁性基板を貫通して形成さ
れ、前記開口部の導電性部材がダイヤフラム電極として
作用することを特徴とする請求項1に記載の静電容量型
圧力センサ。
4. A first insulating substrate having a fixed electrode formed thereon, and a second insulating substrate having a conductive member having an opening and closing the opening, the second insulating substrate. Through a conductive substrate having an opening larger than the opening, the fixed electrode and the conductive member are joined to face each other, and the conductive substrate and the conductive member are electrically connected, Wirings respectively connecting to the fixed electrode and the conductive substrate are formed penetrating the first insulating substrate, and the conductive member of the opening acts as a diaphragm electrode. Capacitive pressure sensor according to.
【請求項5】 対向配置された固定電極とダイヤフラム
電極を有し、当該ダイヤフラム電極が外力によって変形
され、この変形に応じて変化する前記固定電極と前記ダ
イヤフラム電極の間の静電容量によって圧力を求める静
電容量型圧力センサの製造方法において、 絶縁性基板に凹部を形成し、該凹部内に固定電極を形成
する工程と、 第一導電層、絶縁層及び第二導電層が積層された構造を
有する積層型基板における所定の領域の前記第一導電層
及び前記絶縁層の周辺を除去する工程と、 前記領域内における前記第二導電層を周縁部を残して除
去する工程と、 前記領域の第一導電層と前記第二導電層を電気的に接続
する配線を形成する工程と、 前記領域の第一導電層と前記固定電極とを向い合せかつ
前記凹部を塞ぐように、前記絶縁性基板と前記第二導電
層とを接合する工程と、からなることを特徴とする静電
容量型圧力センサの製造方法。
5. A fixed electrode and a diaphragm electrode which are arranged opposite to each other, wherein the diaphragm electrode is deformed by an external force, and a pressure is applied by an electrostatic capacitance between the fixed electrode and the diaphragm electrode which changes according to this deformation. In the method of manufacturing a capacitance type pressure sensor to be sought, a step of forming a recess in an insulating substrate and forming a fixed electrode in the recess, and a structure in which a first conductive layer, an insulating layer and a second conductive layer are laminated A step of removing the periphery of the first conductive layer and the insulating layer in a predetermined area of the laminated substrate having: a step of removing the second conductive layer in the area leaving a peripheral portion, A step of forming a wiring that electrically connects the first conductive layer and the second conductive layer; and the insulating substrate so that the first conductive layer and the fixed electrode in the region face each other and close the recess. Method of manufacturing a capacitive pressure sensor comprising: the step of bonding the second conductive layer, in that it consists of.
【請求項6】 対向配置された固定電極とダイヤフラム
電極を有し、当該ダイヤフラム電極が外力によって変形
され、この変形に応じて変化する前記固定電極と前記ダ
イヤフラム電極の間の静電容量によって圧力を求める静
電容量型圧力センサの製造方法において、 絶縁性基板に凹部を形成し、該凹部内に固定電極を形成
する工程と、 第一導電層、絶縁層及び第二導電層が積層された構造を
有する積層型基板の所定の領域の前記第二導電層を除去
する工程と、 前記第二導電層の除去された領域と前記凹部とを重なり
合わせかつ前記凹部を塞ぐように、前記第一導電層と前
記絶縁性基板とを接合する工程と、からなることを特徴
とする静電容量型圧力センサの製造方法。
6. A fixed electrode and a diaphragm electrode which are arranged opposite to each other, wherein the diaphragm electrode is deformed by an external force, and a pressure is generated by an electrostatic capacitance between the fixed electrode and the diaphragm electrode which changes according to this deformation. In the method of manufacturing a capacitance type pressure sensor to be sought, a step of forming a recess in an insulating substrate and forming a fixed electrode in the recess, and a structure in which a first conductive layer, an insulating layer and a second conductive layer are laminated A step of removing the second conductive layer in a predetermined region of the laminated substrate having, and the first conductive layer so that the removed region of the second conductive layer and the recess are overlapped and the recess is closed. A method of manufacturing a capacitance type pressure sensor, comprising the step of bonding a layer to the insulating substrate.
【請求項7】 前記第二導電層が除去された領域の前記
絶縁層を除去する工程を含むことを特徴とする請求項5
又は6に記載の静電容量型圧力センサの製造方法。
7. The method according to claim 5, further comprising a step of removing the insulating layer in a region where the second conductive layer is removed.
Or the method of manufacturing the electrostatic capacitance type pressure sensor according to the item 6.
【請求項8】 対向配置された固定電極とダイヤフラム
電極を有し、当該ダイヤフラム電極が外力によって変形
され、この変形に応じて変化する前記固定電極と前記ダ
イヤフラム電極の間の静電容量によって圧力を求める静
電容量型圧力センサの製造方法において、 第一の絶縁性基板と導電性基板とを接合する工程と、 前記導電性基板を中央部の固定電極と、これを囲む周辺
部に分離する工程と、第二の絶縁性基板に凹部を形成す
る工程と、 第一導電層、絶縁層及び第二導電層が積層された構造を
有する積層型基板の前記第一導電層と、前記第二の絶縁
性基板の前記凹部の反対側の面とを接合する工程と、 前記第二導電層を除去し、続いて前記凹部上部の第一導
電層を残して前記絶縁層及び前記第一導電層を除去する
工程と、 前記第一導電層に接続し、周辺に延びる配線を形成する
工程と、 前記第二の絶縁性基板と前記導電性基板とを、前記固定
電極と前記第一導電層とを向かい合わせ、かつ前記導電
性基板と前記配線とが接触するように、接合する工程
と、からなることを特徴とする静電容量型圧力センサの
製造方法。
8. A fixed electrode and a diaphragm electrode which are arranged to face each other, the diaphragm electrode is deformed by an external force, and a pressure is applied by an electrostatic capacitance between the fixed electrode and the diaphragm electrode which changes according to this deformation. In the method for manufacturing a capacitance-type pressure sensor to be sought, a step of joining a first insulating substrate and a conductive substrate, a step of separating the conductive substrate into a fixed electrode at a central portion and a peripheral portion surrounding the fixed electrode A step of forming a recess in the second insulating substrate, the first conductive layer of a laminated substrate having a structure in which a first conductive layer, an insulating layer and a second conductive layer are stacked, and the second A step of joining a surface of the insulating substrate opposite to the recess, and removing the second conductive layer, and then leaving the first conductive layer above the recess to form the insulating layer and the first conductive layer. A step of removing the first conductive material Connecting to, and forming a wiring extending to the periphery, the second insulating substrate and the conductive substrate, facing the fixed electrode and the first conductive layer, and the conductive substrate and the A method of manufacturing an electrostatic capacitance type pressure sensor, comprising: a step of joining the wires so that the wires come into contact with each other.
【請求項9】 前記積層型基板がSOI(Silic
on On Insulator)基板であることを特
徴とする請求項5〜8いずれか1項に記載の静電容量型
圧力センサの製造方法。
9. The stacked substrate is an SOI (Silic) substrate.
On On Insulator) substrate, The manufacturing method of the electrostatic capacitance type pressure sensor of any one of Claims 5-8 characterized by the above-mentioned.
JP2001182841A 2001-06-18 2001-06-18 Capacitive pressure sensor and its manufacturing method Withdrawn JP2003004566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182841A JP2003004566A (en) 2001-06-18 2001-06-18 Capacitive pressure sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182841A JP2003004566A (en) 2001-06-18 2001-06-18 Capacitive pressure sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003004566A true JP2003004566A (en) 2003-01-08

Family

ID=19022864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182841A Withdrawn JP2003004566A (en) 2001-06-18 2001-06-18 Capacitive pressure sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003004566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101285A (en) * 2005-10-03 2007-04-19 Hitachi Ltd Wireless ic tag and its manufacturing method
KR102184886B1 (en) * 2019-06-26 2020-12-01 한솔테크닉스 (주) Pressure sensor
CN113557419A (en) * 2019-03-13 2021-10-26 株式会社村田制作所 Pressure sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101285A (en) * 2005-10-03 2007-04-19 Hitachi Ltd Wireless ic tag and its manufacturing method
JP4528239B2 (en) * 2005-10-03 2010-08-18 株式会社日立製作所 Wireless IC tag
CN113557419A (en) * 2019-03-13 2021-10-26 株式会社村田制作所 Pressure sensor
KR102184886B1 (en) * 2019-06-26 2020-12-01 한솔테크닉스 (주) Pressure sensor

Similar Documents

Publication Publication Date Title
US7998777B1 (en) Method for fabricating a sensor
EP1920229B1 (en) Pressure sensors and methods of making the same
US6445053B1 (en) Micro-machined absolute pressure sensor
EP2339357B1 (en) Method for fabricating a sensor
JP4871513B2 (en) Micromechanical device with thinly formed cantilever structure and related method
CA2777309C (en) Device for measuring environmental forces and method of fabricating the same
EP3052901B1 (en) Inertial and pressure sensors on single chip
KR20090064693A (en) Micro gas sensor and manufacturing method thereof
JP2004132947A (en) Pressure sensor
AU2001280660A1 (en) Micro-machined absolute pressure sensor
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
JP2002250665A (en) Capacitance-type sensor and its manufacturing method
KR20050117698A (en) Monolithic multi-functional integrated sensor and methods for fabricating the same
CN110531114B (en) Pure axial deformation MEMS triaxial piezoresistive accelerometer chip and preparation method thereof
JP2008039593A (en) Capacitance type acceleration sensor
JP2003004566A (en) Capacitive pressure sensor and its manufacturing method
JP4549085B2 (en) Capacitance type pressure sensor and manufacturing method thereof
JPH07318445A (en) Capacitance type pressure sensor and manufacture thereof
CN114199428A (en) Local thinning process method for MEMS inner cavity and application thereof
JP6773437B2 (en) Stress sensor
JPH10284737A (en) Manufacture of capacitive semiconductor sensor
CN114858215A (en) Multi-sensor combined structure, processing method thereof and combined sensor
CN115806269A (en) C-SOI-based resonant pressure sensor and manufacturing method thereof
CN117629506A (en) Composite vacuum degree sensor and manufacturing method thereof
JPS6320873A (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090808

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100820