JP2003003204A - Method for manufacturing niobium powder - Google Patents

Method for manufacturing niobium powder

Info

Publication number
JP2003003204A
JP2003003204A JP2001185694A JP2001185694A JP2003003204A JP 2003003204 A JP2003003204 A JP 2003003204A JP 2001185694 A JP2001185694 A JP 2001185694A JP 2001185694 A JP2001185694 A JP 2001185694A JP 2003003204 A JP2003003204 A JP 2003003204A
Authority
JP
Japan
Prior art keywords
niobium
capacitors
powder
capacitor
niobium powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001185694A
Other languages
Japanese (ja)
Inventor
Koichi Wada
紘一 和田
Yasuo Tsumita
康保 積田
Toshiya Kawasaki
俊哉 川崎
Kazumi Naito
一美 内藤
Kazuhiro Omori
和弘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001185694A priority Critical patent/JP2003003204A/en
Priority to US10/175,144 priority patent/US6780218B2/en
Publication of JP2003003204A publication Critical patent/JP2003003204A/en
Priority to US10/792,576 priority patent/US7138004B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing niobium powder of low oxygen content for capacitor by which a capacitor having increased capacitance per unit mass, decreased leakage current and reduced fluctuation can be obtained and also to provide a method for manufacturing a sintered compact using the niobium powder and a capacitor using the sintered compact. SOLUTION: Niobium hydride or niobium-alloy hydride is pulverized at -200 to 30 deg.C in the presence of a disperse medium to obtain the niobium powder of low oxygen content. The sintered compact for capacitor electrode and also the capacitor are constituted by using the above niobium powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコンデンサ用ニオブ
粉の製造方法に関し、ニオブ中の酸素含有量を少なくす
ることにより、単位質量当たりの容量が大きく、漏れ電
流特性の良好なコンデンサを得ることのできるコンデン
サ用ニオブ粉、それを用いた焼結体、およびその焼結体
を用いたコンデンサに関する。コンデンサ用ニオブと
は、ニオブを主成分とし、コンデンサを製造するための
素材となりうるものをいう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing niobium powder for a capacitor, which is capable of obtaining a capacitor having a large capacity per unit mass and good leakage current characteristics by reducing the oxygen content in niobium. The present invention relates to a niobium powder for capacitors, a sintered body using the same, and a capacitor using the sintered body. Niobium for capacitors is a material that contains niobium as a main component and can be a material for manufacturing capacitors.

【0002】[0002]

【従来の技術】携帯電話やパーソナルコンピューター等
の電子機器に使用されるコンデンサは、小型で大容量の
ものが望まれている。このようなコンデンサの中でもタ
ンタルコンデンサは大きさの割には容量が大きく、しか
も性能が良好なため好んで使用されている。このタンタ
ルコンデンサの陽極体としては、一般的にタンタル粉の
焼結体が使用されている。これらタンタルコンデンサの
容量を上げるためには、焼結体質量を増大させるか、ま
たはタンタル粉を微粉化して表面積を増加させた焼結体
を用いる必要がある。
2. Description of the Related Art Capacitors used in electronic equipment such as mobile phones and personal computers are desired to be small in size and large in capacity. Among these capacitors, the tantalum capacitor is preferred because it has a large capacity for its size and good performance. A sintered body of tantalum powder is generally used as the anode body of this tantalum capacitor. In order to increase the capacity of these tantalum capacitors, it is necessary to increase the mass of the sintered body or use a sintered body in which tantalum powder is pulverized to increase the surface area.

【0003】焼結体質量を増加させる方法では、コンデ
ンサの形状が必然的に増大して小型化の要求を満たさな
い。タンタル粉を微粉化して表面積を増大させる方法で
は、タンタル焼結体の細孔径が小さくなると共に、閉鎖
孔が多くなってしまうため、後工程における陰極剤の含
浸が困難になる。これらの欠点を解決する研究の1つと
して、タンタルより誘電率の大きい材料を用いた焼結体
のコンデンサが考えられる。これらの誘電率の大きい材
料としてニオブおよびニオブ合金がある。
The method of increasing the mass of the sintered body inevitably increases the shape of the capacitor and does not satisfy the demand for miniaturization. In the method of pulverizing tantalum powder to increase the surface area, the pore size of the tantalum sintered body becomes smaller and the number of closed pores increases, so that impregnation of the catholyte in the subsequent step becomes difficult. As one of the researches for solving these drawbacks, a sintered body capacitor using a material having a larger dielectric constant than tantalum can be considered. Materials having a large dielectric constant include niobium and niobium alloys.

【0004】しかしながら、コンデンサ用ニオブ粉の製
造方法としては、特開昭55−157226号公報に
は、凝集粉から粒径2μmあるいはそれ以下のニオブ粉
末を成型、焼結してコンデンサ用焼結素子の製造方法が
開示されているが、該広報にはコンデンサ特性について
の詳細は示されていない。
However, as a method for producing niobium powder for a capacitor, Japanese Patent Laid-Open No. 55-157226 discloses that a niobium powder having a particle size of 2 μm or less is formed from agglomerated powder and sintered to obtain a sintered element for a capacitor. However, the publication does not provide details on the capacitor characteristics.

【0005】また、米国特許4,084,965号公報
には、ニオブインゴットを水素化して粉砕して5.1μ
mのニオブ粉末を得、これを焼結して用いたコンデンサ
が開示されているが、開示されているコンデンサは漏れ
電流(以下LCと略記することがある)が大きくて実用
性に乏しい。
US Pat. No. 4,084,965 discloses that a niobium ingot is hydrogenated and pulverized to 5.1 μm.
A capacitor obtained by obtaining niobium powder of m and sintering the niobium powder is disclosed. However, the disclosed capacitor has a large leakage current (hereinafter may be abbreviated as LC) and is not practical.

【0006】特開平10−242004号公報には、ニ
オブ粉の一部を窒化すること等によりLC値を改善する
ことが開示されている。しかしながら、粒径の細かなニ
オブ粉を用いてニオブ焼結体から高容量なコンデンサを
作成した場合、LC値が特異的に大きなコンデンサが出
現する場合があった。
Japanese Unexamined Patent Publication (Kokai) No. 10-242004 discloses that the LC value is improved by nitriding a part of niobium powder. However, when a high-capacity capacitor is made from a niobium sintered body by using niobium powder having a fine particle size, a capacitor having a specific large LC value may appear.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、コン
デンサ用ニオブ中の酸素量を少なくすることにより、単
位質量あたりの容量が大きく、漏れ電流が小さく、さら
にバラツキの少ないコンデンサを提供しうるコンデンサ
用ニオブ粉、それを用いた焼結体およびその焼結体を用
いたコンデンサの製造方法を提供することにある。
An object of the present invention is to provide a capacitor having a large capacity per unit mass, a small leakage current, and a small variation by reducing the amount of oxygen in niobium for a capacitor. It is to provide niobium powder for a capacitor, a sintered body using the same, and a method for manufacturing a capacitor using the sintered body.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前述の課
題を鋭意検討した結果、LCのばらつく原因がコンデン
サ用ニオブ粉のもつ酸素にあり、例えば、低温で水素化
ニオブまたは水素化ニオブ合金を粉砕することにより得
た、酸素含有量の低いコンデンサ用ニオブ粉を用いるこ
とにより、LC特性を改善できることを見出し本発明を
完成させた。即ち、本発明は以下から構成される。
As a result of intensive studies on the above-mentioned problems, the inventors of the present invention have found that the cause of LC variation is oxygen contained in the niobium powder for capacitors, and for example, niobium hydride or niobium hydride at low temperature is used. The inventors have found that LC characteristics can be improved by using niobium powder for capacitors having a low oxygen content, obtained by crushing an alloy, and completed the present invention. That is, the present invention includes the following.

【0009】(1)分散媒存在下で水素化ニオブまたは
水素化ニオブ合金を粉砕する工程を含むコンデンサ用ニ
オブ粉の製造方法において、粉砕温度が、−200〜3
0℃の温度範囲であることを特徴とするコンデンサ用ニ
オブ粉の製造方法。 (2)水素化ニオブ粉または水素化ニオブ合金粉を粉砕
後、100〜1000℃の温度で脱水素する工程を含む
前項1に記載のコンデンサ用ニオブ粉の製造方法。 (3)粉砕温度が、粉砕中に上昇しないことを特徴とす
る前項1または2に記載のコンデンサ用ニオブ粉の製造
方法。 (4)分散媒が、水、有機溶剤、液化気体からなる群よ
り選ばれた少なくとも1種である前項1乃至3のいずれ
か1項に記載のコンデンサ用ニオブ粉の製造方法。
(1) In the method for producing niobium hydride for a capacitor including the step of pulverizing niobium hydride or a niobium hydride alloy in the presence of a dispersion medium, the pulverization temperature is -200 to 3
A method for producing niobium powder for a capacitor, which is in a temperature range of 0 ° C. (2) The method for producing niobium powder for capacitors according to the above item 1, which comprises a step of dehydrogenating the niobium hydride powder or the niobium hydride alloy powder at a temperature of 100 to 1000 ° C. after crushing. (3) The method for producing niobium powder for a capacitor as described in 1 or 2 above, wherein the crushing temperature does not rise during crushing. (4) The method for producing niobium powder for capacitors according to any one of the above items 1 to 3, wherein the dispersion medium is at least one selected from the group consisting of water, an organic solvent, and a liquefied gas.

【0010】(5)前項1乃至4のいずれか1項に記載
の製造方法で得られたコンデンサ用ニオブ粉。 (6)コンデンサ用ニオブ粉の平均粒径が、0.01〜
10μmである前項5に記載のコンデンサ用ニオブ粉。 (7)コンデンサ用ニオブ粉のBET比表面積が、0.
5〜40m2/gである前項5または6に記載のコンデ
ンサ用ニオブ粉。 (8)コンデンサ用ニオブ粉の嵩密度が、0.5〜4g
/mlである前項5乃至7のいずれか1項に記載のコン
デンサ用ニオブ粉。 (9)コンデンサ用ニオブ粉の細孔径のピークが、0.
01〜7μmである前項5乃至8のいずれか1項に記載
のコンデンサ用ニオブ粉。 (10)コンデンサ用ニオブ粉の酸素含有量が2.5質
量%以下である前項5乃至9のいずれか1項に記載のコ
ンデンサ用ニオブ粉。 (11)コンデンサ用ニオブ粉が、さらにホウ素、窒
素、炭素および硫黄の元素からなる群より選ばれた少な
くとも1種の元素を含む前項5乃至10のいずれか1項
に記載のコンデンサ用ニオブ粉。
(5) Niobium powder for capacitors obtained by the manufacturing method according to any one of items 1 to 4 above. (6) The average particle size of the niobium powder for capacitors is 0.01 to
The niobium powder for capacitors according to the item 5 above, which is 10 μm. (7) The BET specific surface area of the niobium powder for capacitors is 0.
The niobium powder for capacitors according to item 5 or 6 above, which has an amount of 5 to 40 m 2 / g. (8) The bulk density of niobium powder for capacitors is 0.5 to 4 g.
The niobium powder for capacitors according to any one of the above items 5 to 7, which is / ml. (9) The peak of the pore size of the niobium powder for capacitors is 0.
The niobium powder for capacitors according to any one of items 5 to 8 above, which has a particle size of 01 to 7 μm. (10) The niobium powder for capacitors according to any one of the above items 5 to 9, wherein the niobium powder for capacitors has an oxygen content of 2.5 mass% or less. (11) The niobium powder for capacitors according to any one of items 5 to 10 above, wherein the niobium powder for capacitors further contains at least one element selected from the group consisting of elements of boron, nitrogen, carbon and sulfur.

【0011】(12)前項5乃至11のいずれか1項に
記載のコンデンサ用ニオブ粉を造粒して得られる平均粒
径が10〜500μmのコンデンサ用ニオブ造粒物。 (13)コンデンサ用ニオブ造粒物のBET比表面積
が、0.5〜40m2/gである前項12に記載のコン
デンサ用ニオブ造粒物。 (14)コンデンサ用ニオブ造粒物の細孔径のピークが
0.01〜500μmの範囲内にある前項12または1
3に記載のコンデンサ用ニオブ造粒物。 (15)コンデンサ用ニオブ造粒物の嵩密度が、0.0
5〜4g/mlである前項12乃至14のいずれか1項
に記載のコンデンサ用ニオブ造粒物。 (16)コンデンサ用ニオブ造粒物の酸素濃度が、3質
量%以下である前項12乃至15のいずれか1項に記載
のコンデンサ用ニオブ造粒物。
(12) A niobium granulated product for capacitors having an average particle size of 10 to 500 μm obtained by granulating the niobium powder for capacitors described in any one of the above items 5 to 11. (13) The niobium granulated product for capacitors according to the above item 12, wherein the BET specific surface area of the niobium granulated product for capacitors is 0.5 to 40 m 2 / g. (14) The above-mentioned item 12 or 1, wherein the peak of the pore diameter of the niobium granulated product for capacitors is in the range of 0.01 to 500 μm.
3. A niobium granulated product for capacitors according to 3. (15) The bulk density of the niobium granulated product for capacitors is 0.0
The niobium granulated product for capacitors according to any one of the above items 12 to 14, which is 5 to 4 g / ml. (16) The niobium granulated product for capacitors according to any one of the above items 12 to 15, wherein the niobium granulated product for capacitors has an oxygen concentration of 3% by mass or less.

【0012】(17)前項5乃至11のいずれか1項に
記載のコンデンサ用ニオブ粉、及び/または前項12乃
至16のいずれか1項に記載のコンデンサ用ニオブ造粒
物を焼結して得られる焼結体。 (18)前項17に記載の焼結体を一方の電極とし、前
記焼結体表面上に形成された誘電体と、前記誘電体上に
設けられた他方の電極とから構成されたコンデンサ。 (19)誘電体の主成分が酸化ニオブである前項18に
記載のコンデンサ。
(17) Obtained by sintering the niobium powder for capacitors according to any one of the above 5 to 11 and / or the granulated niobium for capacitors according to any one of the above 12 to 16 Sintered body. (18) A capacitor comprising the sintered body according to the item 17 as one electrode, and a dielectric formed on the surface of the sintered body and the other electrode provided on the dielectric. (19) The capacitor as described in 18 above, wherein the main component of the dielectric is niobium oxide.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0014】ニオブインゴットを水素化し、適当な分散
媒の存在下、適当な粉砕機を用いて粉砕することは公知
の技術である(米国特許4,084,965号公報)。
しかしながら、これらの方法を用いてコンデンサ用のニ
オブ粉を製造した場合、LC値が高くまたバラツキが大
きく、コンデンサとしての信頼性がない。このことは、
分散媒に存在する酸素が、粉砕中の発熱により水素化ニ
オブと反応または吸着し、その後、焼結体を作製する際
に結晶化して酸化ニオブとなり、特にLCに悪い影響を
与えていると考えられる。したがって、水素化ニオブ粉
中の酸素量を低く抑えることが、LC特性を向上させる
ために重要である。水素化ニオブ粉中の酸素量を低く抑
えるためには、例えば、粉砕中の温度上昇を抑える方法
がある。これらのことは、水素化ニオブ合金粉について
も同様である。
It is a known technique to hydrogenate a niobium ingot and to grind it using a suitable grinder in the presence of a suitable dispersion medium (US Pat. No. 4,084,965).
However, when niobium powder for a capacitor is manufactured by using these methods, the LC value is high and the variation is large, so that the capacitor is not reliable. This is
Oxygen present in the dispersion medium reacts or adsorbs with niobium hydride due to the heat generated during pulverization, and is then crystallized into niobium oxide when producing a sintered body, which is thought to have a particularly bad effect on LC. To be Therefore, it is important to suppress the amount of oxygen in the niobium hydride powder to be low in order to improve LC characteristics. In order to keep the amount of oxygen in the niobium hydride powder low, for example, there is a method of suppressing the temperature rise during grinding. The same applies to the niobium hydride alloy powder.

【0015】本発明では、適当な分散媒存在下−200
〜30℃の温度範囲で、例えば、水素化ニオブまたは水
素化ニオブ合金を粉砕することにより、酸素含有量が少
なく、LC特性の良好なコンデンサの得られる水素化ニ
オブ粉または水素化ニオブ合金粉を作製できる。上記温
度範囲の内、酸素含有量が少なく、LC値を良好にする
効果を有する温度範囲は低い程良いが、極低温での粉砕
は粉砕設備が過大となるためコスト高となる。したがっ
て、−40〜10℃が特に好ましい。粉砕中の温度を上
昇させないことは、粉砕物の酸素含有量の増加を防ぐた
めに好ましい。したがって、−200〜30℃の温度範
囲にて粉砕中の温度を一定に保つ、あるいは降下させる
ことがより好ましい。
In the present invention, -200 in the presence of a suitable dispersion medium.
By crushing niobium hydride or a niobium hydride alloy in a temperature range of -30 ° C., for example, a niobium hydride powder or a niobium hydride alloy powder having a low oxygen content and capable of obtaining a capacitor having good LC characteristics can be obtained. Can be made. Of the above temperature ranges, the lower the oxygen content and the lower the temperature range that has the effect of improving the LC value, the better. However, pulverization at extremely low temperatures is expensive because the pulverization equipment is too large. Therefore, -40-10 degreeC is especially preferable. Not raising the temperature during milling is preferred to prevent an increase in the oxygen content of the mill. Therefore, it is more preferable to keep the temperature during pulverization constant or to lower it in the temperature range of −200 to 30 ° C.

【0016】分散媒としては、例えば、水、有機溶媒、
または液化気体等が好適に使用でき、これらの分散媒を
使用する際には充分な脱気を行って用いることが好まし
い。有機溶媒としてはアルコール類、エーテル類、セル
ソルブ類、エステル類、脂肪族炭化水素類、またはハロ
ゲン化炭化水素類等が好適に使用できる。さらに、粉砕
温度にて固化しない分散媒が好ましい。液化気体として
は液体窒素、液体アルゴンが好ましい。
As the dispersion medium, for example, water, an organic solvent,
Alternatively, a liquefied gas or the like can be preferably used, and when these dispersion media are used, it is preferable to perform sufficient degassing before use. As the organic solvent, alcohols, ethers, cellosolves, esters, aliphatic hydrocarbons, halogenated hydrocarbons and the like can be preferably used. Furthermore, a dispersion medium that does not solidify at the crushing temperature is preferable. Liquid nitrogen and liquid argon are preferable as the liquefied gas.

【0017】本発明のコンデンサ用ニオブ粉の原料とし
ては、例えば、ニオブ及び/またはニオブ合金が挙げら
れる。 このニオブ合金のニオブ以外の合金成分として
は、リチウム、ナトリウム、カリウム、ルビジウム、セ
シウム、フランシウム、ベリリウム、マグネシウム、カ
ルシウム、ストロンチウム、バリウム、ラジウム、スカ
ンジウム、イットリウム、ランタン、セリウム、プラセ
オジウム、ネオジウム、サマリウム、ユーロピウム、ガ
ドリニウム、テルビウム、ジスプロシウム、ホルミウ
ム、エルビウム、バナジウム、タンタル、クロム、モリ
ブデン、タングステン、マンガン、レニウム、鉄、ルテ
ニウム、オスミウム、コバルト、ロジウム、イリジウ
ム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、
カドミウム、水銀、ホウ素、アルミニウム、ガリウム、
インジウム、タリウム、炭素、珪素、ゲルマニウム、ス
ズ、鉛、リン、砒素、アンチモン、ビスマス、セレン、
テルル、ポロニウム、アスタチンからなる群より選ばれ
た少なくとも1種があげられる。
Examples of the raw material of the niobium powder for capacitors of the present invention include niobium and / or niobium alloy. As alloy components other than niobium of this niobium alloy, lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, radium, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, Europium, gadolinium, terbium, dysprosium, holmium, erbium, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc,
Cadmium, mercury, boron, aluminum, gallium,
Indium, thallium, carbon, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, selenium,
At least one selected from the group consisting of tellurium, polonium, and astatine can be given.

【0018】粉砕機としては、例えば、粉砕媒体を用い
る粉砕機としてビーズミルが適当である。粉砕媒体の材
質としては、例えば、ステンレス、ジルコニア、ニオ
ブ、ZTA(アルミナ強化ジルコニア)、アルミナ等で
あり、特にジルコニア、ニオブが好ましい。
As the crusher, for example, a bead mill is suitable as a crusher using a crushing medium. Examples of the material of the grinding medium include stainless steel, zirconia, niobium, ZTA (alumina reinforced zirconia), alumina and the like, and zirconia and niobium are particularly preferable.

【0019】得られた水素化ニオブ粉または水素化ニオ
ブ合金粉は、前記粉砕物を、公知の乾燥方法を用いて乾
燥することにより粉体として得ることができる。このよ
うにして得た粉体は、通常、平均粒径が0.01〜10
μmであり、BET比表面積が0.5〜40m2/g、嵩
密度が0.5〜4g/ml、細孔径のピークが0.01
〜7μmの範囲にある。
The obtained niobium hydride powder or niobium hydride alloy powder can be obtained as a powder by drying the pulverized product using a known drying method. The powder thus obtained usually has an average particle size of 0.01 to 10
μm, BET specific surface area of 0.5 to 40 m 2 / g, bulk density of 0.5 to 4 g / ml, and pore diameter peak of 0.01.
Is in the range of ~ 7 μm.

【0020】このようにして得た本発明の水素化ニオブ
粉または水素化ニオブ合金粉の酸素量は、通常5000
0ppm以下であるが、LC特性をさらに向上させるた
めには、2000〜25000ppmの範囲にすること
が望ましい。本発明で用いる酸素量は、(株)堀場製作
所製のEGMA−620Wを用いて測定した値であり、
スラリーを直接測定した場合は、スラリー濃度から乾燥
粉に換算した値を示す。
The oxygen content of the niobium hydride powder or niobium hydride alloy powder of the present invention thus obtained is usually 5000.
Although it is 0 ppm or less, in order to further improve the LC characteristics, it is preferably in the range of 2000 to 25000 ppm. The oxygen amount used in the present invention is a value measured using EGMA-620W manufactured by Horiba Ltd.,
When the slurry is directly measured, the value obtained by converting the slurry concentration into dry powder is shown.

【0021】本発明の水素化ニオブ粉または水素化合金
粉は、そのまま焼結して焼結体を作製してもよいし、1
00〜1000℃の温度で脱水素を行い、ニオブ粉また
はニオブ合金粉として使用してもよい。さらに、これら
の水素化ニオブ粉、水素化合金粉、ニオブ粉またはニオ
ブ合金粉の漏れ電流値を改善するために、これらのニオ
ブ粉の一部を窒化、ホウ化、炭化、および硫化による処
理をしてもよい。窒化、ホウ化、炭化、硫化による処理
を行って得られた、窒化物、ホウ化物、炭化物、硫化
物、はいずれを含有しても良く、また、これらの2種、
3種、4種の組み合わせであってもよい。その結合量、
即ち、窒素、ホウ素、炭素、硫黄の含有量の総和は、各
粉体の粒径、形状、他方の合金成分、他方の合金成分の
存在量によって変わるが、平均粒径0.01μm〜10
μm程度の粉で0ppmより多く200,000ppm
以下である。200,000ppmを越えると容量特性
が悪化し、コンデンサとして適さない。LCと容量の最
適化から、50ppm〜10,000ppmが好まし
く、200ppm〜20,000ppmが特に好まし
い。
The niobium hydride powder or hydrogenated alloy powder of the present invention may be directly sintered to produce a sintered body, or 1
Dehydrogenation may be performed at a temperature of 00 to 1000 ° C. and used as niobium powder or niobium alloy powder. Further, in order to improve the leakage current value of these hydrogenated niobium powder, hydrogenated alloy powder, niobium powder or niobium alloy powder, a part of these niobium powders is treated by nitriding, borating, carbonizing, and sulfurizing. You may. The nitride, the boride, the carbide, and the sulfide obtained by performing the treatment by nitriding, borating, carbonizing, and sulfurizing may contain any of these, and these two kinds,
It may be a combination of three or four kinds. The amount of binding,
That is, the total content of nitrogen, boron, carbon, and sulfur varies depending on the particle size and shape of each powder, the amount of the other alloy component, and the amount of the other alloy component present, but the average particle size is 0.01 μm to 10 μm.
More than 0ppm in powder of about μm 200,000ppm
It is the following. If it exceeds 200,000 ppm, the capacitance characteristic deteriorates and it is not suitable as a capacitor. From the viewpoint of LC and capacity optimization, 50 ppm to 10,000 ppm is preferable, and 200 ppm to 20,000 ppm is particularly preferable.

【0022】本発明のコンデンサ用水素化ニオブ粉、水
素化合金粉、ニオブ粉またはニオブ合金粉を適当な形状
に造粒した後、使用してもよいし、造粒後に未造粒のニ
オブ粉を適量混合して使用してもよい。
The hydrogenated niobium powder for capacitors, hydrogenated alloy powder, niobium powder or niobium alloy powder of the present invention may be granulated into an appropriate shape and then used, or ungranulated niobium powder after granulation. You may mix and use a suitable amount.

【0023】造粒の方法として、例えば、未造粒の一部
窒化処理したニオブ粉を高減圧下に放置し適当な温度に
加熱した後解砕する方法、樟脳、ポリアクリル酸、ポリ
メチルアクリル酸エステル、ポリビニルアルコールなど
の適当なバインダーとアセトン、アルコール類、酢酸エ
ステル類、水などの溶媒と未造粒、あるいは造粒した一
部窒化処理されたニオブ粉を混合した後、解砕する方法
等があげられる。この方法は、水素化ニオブ粉、ニオブ
粉、水素化ニオブ合金粉、ニオブ合金粉でも好適に使用
できる。
As the granulation method, for example, a method in which ungranulated niobium powder which is partially nitrided is left under a high reduced pressure, heated to an appropriate temperature and then crushed, camphor, polyacrylic acid, polymethylacryl A method in which a suitable binder such as acid ester or polyvinyl alcohol is mixed with a solvent such as acetone, alcohol, acetate, water or the like and ungranulated or granulated partially nitrified niobium powder and then crushed Etc. This method can also be suitably used for hydrogenated niobium powder, niobium powder, hydrogenated niobium alloy powder, and niobium alloy powder.

【0024】このようにして造粒したニオブ造粒物やニ
オブ合金造粒物は、焼結体を製造する際の加圧成形性を
向上させる。この場合、造粒粉の平均粒径は、10μm
〜500μmが好ましい。造粒粉の平均粒径が10μm
以下では部分的にブロッキングを起こし、金型への流動
性が悪くなる。500μm以上では加圧成型後の成形体
が欠けやすい。さらに、加圧成型体を焼結した後、コン
デンサを製造する際の陰極剤の含浸がし易いことから、
造粒物の平均粒径は、30μm〜250μmが特に好ま
しい。通常、このようにして得られる造粒物のBET比
表面積は0.5〜40m2/gであり、嵩密度は0.5
〜4g/ml、細孔径のピークは0.01〜500μ
m、含有酸素量は5質量%以下である。
The niobium granules or niobium alloy granules granulated in this manner improve the press moldability when producing a sintered body. In this case, the average particle size of the granulated powder is 10 μm
˜500 μm is preferred. The average particle size of the granulated powder is 10 μm
In the following, blocking will occur partially and the fluidity to the mold will deteriorate. If the thickness is 500 μm or more, the molded body after pressure molding tends to chip. Further, after sintering the pressure-molded body, it is easy to impregnate the cathodic agent when manufacturing the capacitor,
The average particle size of the granulated product is particularly preferably 30 μm to 250 μm. Usually, the BET specific surface area of the granules thus obtained is 0.5 to 40 m 2 / g, and the bulk density is 0.5.
~ 4g / ml, peak of pore size is 0.01 ~ 500μ
m, the oxygen content is 5% by mass or less.

【0025】本発明のコンデンサ用ニオブ焼結体あるい
はニオブ合金焼結体は、前述の紛体あるいは前述の造粒
物を焼結して製造する。焼結体の製造方法は特に限定さ
れるものではないが、たとえば、ニオブまたはタンタル
などの弁作用金属からなる、適当な形状及び長さを有す
るリードワイヤーを用意し、これを前述した粉または前
述の造粒粉の加圧成型時にリードワイヤーの一部が成形
体の内部に挿入させるように一体成形して、リードワイ
ヤーを前記焼結体の引き出しリードとなるように組み立
て設計する。前述の粉または前述の造粒物を所定の形状
に加圧成型した後に10-5〜102Paで1分〜10時
間、500℃〜2000℃、好ましくは900℃〜15
00℃、さらに好ましくは900℃〜1300℃の範囲
で加熱することにより、コンデンサ用ニオブ焼結体ある
いはニオブ合金焼結体が得られる。
The niobium sintered body for a capacitor or the niobium alloy sintered body of the present invention is manufactured by sintering the above powder or the above granulated material. The method for producing the sintered body is not particularly limited, but for example, a lead wire made of a valve metal such as niobium or tantalum and having an appropriate shape and length is prepared. During the pressure molding of the granulated powder, the lead wire is integrally molded so that a part of the lead wire is inserted into the inside of the molded body, and the lead wire is assembled and designed so as to be a lead for the sintered body. After the above-mentioned powder or the above-mentioned granulated material is pressure-molded into a predetermined shape, it is heated at 10 -5 to 10 2 Pa for 1 minute to 10 hours, 500 ° C to 2000 ° C, preferably 900 ° C to 15
A niobium sintered body for a capacitor or a niobium alloy sintered body can be obtained by heating at 00 ° C, more preferably in the range of 900 ° C to 1300 ° C.

【0026】前述した焼結体を一方の電極とし、他方の
電極の間に介在した誘電体とからコンデンサを製造する
ことができる。ここでコンデンサの誘電体として、酸化
ニオブを主体とする誘電体が好ましく挙げられる。酸化
ニオブを主体とする誘電体は、例えば、一方の電極であ
るニオブ焼結体を電解液中で化成することによって得ら
れる。ニオブ電極を電解液中で化成するには、通常プロ
トン酸水溶液、たとえば、0.1質量%リン酸水溶液、
硫酸水溶液または1質量%の酢酸水溶液、アジピン酸水
溶液等を用いて行われる。ニオブ電極を電解液中で化成
して酸化ニオブ誘電体を得る場合、本発明のコンデンサ
は、電解コンデンサとなりニオブ電極が陽極となる。
A capacitor can be manufactured by using the above-mentioned sintered body as one electrode and a dielectric material interposed between the other electrodes. Here, as the dielectric of the capacitor, a dielectric containing niobium oxide as a main component is preferable. The dielectric containing niobium oxide as a main component is obtained, for example, by forming a niobium sintered body, which is one of the electrodes, in an electrolytic solution. To form a niobium electrode in an electrolytic solution, a protonic acid aqueous solution is usually used, for example, a 0.1 mass% phosphoric acid aqueous solution,
It is performed using a sulfuric acid aqueous solution, a 1 mass% acetic acid aqueous solution, an adipic acid aqueous solution, or the like. When a niobium electrode is formed in an electrolytic solution to obtain a niobium oxide dielectric, the capacitor of the present invention serves as an electrolytic capacitor and the niobium electrode serves as an anode.

【0027】本発明のコンデンサにおいて、ニオブ焼結
体の他方の電極(対極)は格別限定されるものではな
く、たとえば、アルミ電解コンデンサ業界で公知である
電解液、有機半導体及び無機半導体から選ばれた少なく
とも1種の材料(化合物)が使用できる。
In the capacitor of the present invention, the other electrode (counter electrode) of the niobium sintered body is not particularly limited and is selected from, for example, electrolytic solutions, organic semiconductors and inorganic semiconductors known in the aluminum electrolytic capacitor industry. At least one material (compound) can be used.

【0028】電解液の具体例としては、イソブチルトリ
プロピルアンモニウムボロテトラフルオライド電解質を
5質量%溶解したジメチルホルムアミドとエチレングリ
コールの混合溶液、テトラエチルアンモニウムボロテト
ラフルオライドを7質量%溶解したプロピレンカーボネ
ートとエチレングリコールの混合溶液などが挙げられ
る。
Specific examples of the electrolytic solution include a mixed solution of dimethylformamide and ethylene glycol in which 5% by mass of isobutyltripropylammonium borotetrafluoride electrolyte is dissolved, and propylene carbonate in which 7% by mass of tetraethylammonium borotetrafluoride is dissolved. Examples include a mixed solution of ethylene glycol.

【0029】有機半導体の具体例としては、ベンゾピロ
リン4量体とクロラニルからなる有機半導体、テトラチ
オテトラセンを主成分とする有機半導体、テトラシアノ
キノジメタンを主成分とする有機半導体、あるいは下記
一般式(1)または一般式(2)で表される繰り返し単
位を含む導電性高分子が挙げられる。
Specific examples of the organic semiconductor include an organic semiconductor containing benzopyrroline tetramer and chloranil, an organic semiconductor containing tetrathiotetracene as a main component, an organic semiconductor containing tetracyanoquinodimethane as a main component, or the following general compounds. An example of the conductive polymer includes a repeating unit represented by the formula (1) or the general formula (2).

【0030】[0030]

【化1】 [Chemical 1]

【0031】式中、R1〜R4はそれぞれ独立して水素原
子、炭素数1乃至10の直鎖上もしくは分岐状の飽和も
しくは不飽和のアルキル基、アルコキシ基あるいはアル
キルエステル基、またはハロゲン原子、ニトロ基、シア
ノ基、1級、2級もしくは3級アミノ基、CF3基、フ
ェニル基及び置換フェニル基からなる群から選ばれた一
価基を表わす。R1とR2及びR3とR4の炭化水素鎖は互
いに任意の位置で結合して、かかる基により置換を受け
ている炭素原子と共に少なくとも1つ以上の3〜7員環
の飽和または不飽和炭化水素の環状構造を形成する二価
鎖を形成してもよい。前記環状結合鎖には、カルボニ
ル、エーテル、エステル、アミド、スルフィド、スルフ
ィニル、スルホニル、イミノの結合を任意の位置に含ん
でもよい。Xは酸素、硫黄または窒素原子を表し、R5
はXが窒素原子の時のみ存在して、独立して水素または
炭素数1乃至10の直鎖上もしくは分岐状の飽和もしく
は不飽和のアルキル基を表す。
In the formula, R 1 to R 4 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms, an alkoxy group or an alkyl ester group, or a halogen atom. Represents a monovalent group selected from the group consisting of a nitro group, a cyano group, a primary, secondary or tertiary amino group, a CF 3 group, a phenyl group and a substituted phenyl group. The hydrocarbon chains of R 1 and R 2 and R 3 and R 4 are bonded to each other at any position, and at least one saturated or unsaturated 3 to 7 membered ring together with the carbon atom substituted by such a group. You may form the bivalent chain which forms the cyclic structure of a saturated hydrocarbon. The cyclic bond chain may contain a bond of carbonyl, ether, ester, amide, sulfide, sulfinyl, sulfonyl and imino at any position. X represents an oxygen, sulfur or nitrogen atom, and R 5
Is present only when X is a nitrogen atom, and independently represents hydrogen or a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms.

【0032】さらに、本発明においては前記一般式
(1)または一般式(2)のR1〜R4は、好ましくは、
それぞれ独立して水素原子、炭素数1乃至6の直鎖上も
しくは分岐状の飽和もしくは不飽和のアルキル基または
アルコキシ基を表し、R1とR2及びR3とR4は互いに結
合して環状になっていてもよい。
Further, in the present invention, R 1 to R 4 in the general formula (1) or the general formula (2) are preferably
Each independently represents a hydrogen atom, a linear or branched saturated or unsaturated alkyl group or alkoxy group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 are bonded to each other to form a ring. May be.

【0033】さらに、本発明においては、前記一般式
(1)で表される繰り返し単位を含む導電性高分子は、
好ましくは下記一般式(3)で示される構造単位を繰り
返し単位として含む導電性高分子が挙げられる。
Further, in the present invention, the conductive polymer containing the repeating unit represented by the general formula (1) is
A conductive polymer containing a structural unit represented by the following general formula (3) as a repeating unit is preferable.

【0034】[0034]

【化2】 [Chemical 2]

【0035】式中、R6及びR7は、各々独立して水素原
子、炭素数1乃至6の直鎖状もしくは分岐状の飽和もし
くは不飽和のアルキル基、または該アルキル基が互いに
任意の位置で結合して、2つの酸素元素を含む少なくと
も1つ以上の5〜7員環の飽和炭化水素の環状構造を形
成する置換基を表わす。また、前記環状構造には置換さ
れていてもよいビニレン結合を有するもの、置換されて
いてもよいフェニレン構造のものが含まれる。
In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl groups are located at arbitrary positions with respect to each other. Represents a substituent which forms a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon containing two oxygen elements. The cyclic structure includes those having a vinylene bond which may be substituted and those having a phenylene structure which may be substituted.

【0036】このような化学構造を含む導電性高分子
は、荷電されており、ドーパントがドープされる。ドー
パントには公知のドーパントが制限なく使用できる。無
機半導体の具体例としては、二酸化鉛または二酸化マン
ガンを主成分とする無機半導体、四三酸化鉄からなる無
機半導体などが挙げられる。このような半導体は単独で
も、または二種以上組み合わせて使用してもよい。
The conductive polymer containing such a chemical structure is charged and doped with a dopant. Known dopants can be used as the dopant without limitation. Specific examples of the inorganic semiconductor include an inorganic semiconductor having lead dioxide or manganese dioxide as a main component, an inorganic semiconductor made of ferric tetroxide, and the like. Such semiconductors may be used alone or in combination of two or more.

【0037】一般式(1)または一般式(2)で表され
る繰り返し単位を含む重合体としては、たとえば、ポリ
アニリン、ポリオキシフェニレン、ポリフェニレンサル
ファイド、ポリチオフェン、ポリフラン、ポリピロー
ル、ポリメチルピロール、及びこれらの置換誘導体や共
重合体などが挙げられる。中でもポリピロール、ポリチ
オフェン及びこれらの置換誘導体(例えばポリ(3,4
−エチレンジオキシチオフェン)等)が好ましい。
Examples of the polymer containing a repeating unit represented by the general formula (1) or the general formula (2) include polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and these. Substituted derivatives and copolymers thereof are listed. Among them, polypyrrole, polythiophene and substituted derivatives thereof (for example, poly (3,4
-Ethylenedioxythiophene) etc.) are preferred.

【0038】上記有機半導体及び無機半導体として、電
導度10-2S/cm〜103S/cmの範囲のものを使
用すると、作製したコンデンサのインピーダンス値がよ
り小さくなり高周波での容量を更に一層大きくすること
ができる。
When the organic semiconductor and the inorganic semiconductor having an electric conductivity in the range of 10 -2 S / cm to 10 3 S / cm are used, the impedance value of the produced capacitor becomes smaller and the capacitance at high frequency is further increased. Can be large.

【0039】前記導電性高分子層を製造する方法として
は、例えばアニリン、チオフェン、フラン、ピロール、
メチルピロールまたはこれらの置換誘導体の重合性化合
物を、脱水素的2電子酸化の酸化反応を充分行わせ得る
酸化剤の作用で重合する方法が採用される。重合性化合
物(モノマー)からの重合反応は、例えばモノマーの気
相重合、溶液重合等があり、誘電体を有するニオブ焼結
体の表面に形成される。導電性高分子が溶液塗布可能な
有機溶媒可溶性のポリマーの場合には、表面に塗布して
形成する方法が採用される。
As the method for producing the conductive polymer layer, for example, aniline, thiophene, furan, pyrrole,
A method is employed in which a polymerizable compound of methylpyrrole or a substituted derivative thereof is polymerized by the action of an oxidant capable of sufficiently performing an oxidation reaction of dehydrogenative two-electron oxidation. The polymerization reaction from the polymerizable compound (monomer) includes, for example, gas phase polymerization of the monomer, solution polymerization, etc., and is formed on the surface of the niobium sintered body having a dielectric. When the conductive polymer is a solution-soluble polymer soluble in an organic solvent, a method of coating on the surface to form the conductive polymer is adopted.

【0040】溶液重合による好ましい製造方法の1つと
して、誘電体層を形成したニオブ焼結体を、酸化剤を含
む溶液(溶液1)に浸漬し、次いでモノマー及びドーパ
ントを含む溶液(溶液2)に浸漬して重合し、該表面に
導電性高分子層を形成得する方法が例示される。また、
前記焼結体を、溶液2に浸漬した後で溶液1に浸漬して
もよい。また、前記溶液2においては、ドーパントを含
まないモノマー溶液として前記方法に使用してもい。ま
た、ドーパントを使用する場合、酸化剤を含む溶液に共
存させて使用してもよい。このような重合工程操作を、
誘電体を有する前記ニオブ焼結体に対して1回以上、好
ましくは3〜20回繰り返すことによって緻密で層状の
導電性高分子層を容易に形成することができる。
As one of preferred production methods by solution polymerization, a niobium sintered body having a dielectric layer formed thereon is dipped in a solution containing an oxidizing agent (solution 1), and then a solution containing a monomer and a dopant (solution 2). A method of immersing in and polymerizing to form a conductive polymer layer on the surface is exemplified. Also,
The sintered body may be dipped in the solution 2 and then in the solution 1. The solution 2 may be used in the above method as a monomer solution containing no dopant. When a dopant is used, it may be used together with a solution containing an oxidizing agent. Such a polymerization process operation,
By repeating the niobium sinter having the dielectric once or more, preferably 3 to 20 times, a dense and layered conductive polymer layer can be easily formed.

【0041】本発明のコンデンサの製造方法において
は、酸化剤はコンデンサ性能に悪影響を及ぼすことな
く、その酸化剤の還元体がドーパントになって導電性高
分子の電動度を向上させ得る酸化剤であれば良く、工業
的に安価で製造上取り扱いの容易な化合物が好まれる。
In the method of manufacturing a capacitor of the present invention, the oxidizing agent is an oxidizing agent that can improve the electric conductivity of the conductive polymer by using the reduced form of the oxidizing agent as a dopant without adversely affecting the performance of the capacitor. It is sufficient that a compound that is industrially inexpensive and easy to handle in production is preferred.

【0042】このような酸化剤としては、具体的には、
例えばFeCl3やFeClO4、Fe(有機酸アニオ
ン)塩等のFe(III)系化合物類、または無水塩化ア
ルミニウム/塩化第一銅、アルカリ金属過硫酸塩類、過
硫酸アンモニウム塩類、過酸化物類、過マンガン酸カリ
ウム等のマンガン類、2,3−ジクロロ−5,6−ジシ
アノ−1,4−ベンゾキノン(DDQ)、テトラクロロ
−1,4−ベンゾキノン、テトラシアノ−1,4−ベン
ゾキノン等のキノン類、よう素、臭素等のハロゲン類、
過酸、硫酸、発煙硫酸、三酸化硫黄、クロロ硫酸、フル
オロ硫酸、アミド硫酸等のスルホン酸、オゾン等及びこ
れら複数の酸化剤の組み合わせが挙げられる。
Specific examples of such an oxidizing agent include:
For example, FeCl 3 , FeClO 4 , Fe (III) -based compounds such as Fe (organic acid anion) salts, or anhydrous aluminum chloride / cuprous chloride, alkali metal persulfates, ammonium persulfate salts, peroxides, peroxides, Manganese such as potassium manganate, quinones such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone and tetracyano-1,4-benzoquinone, Halogens such as iodine and bromine,
Examples thereof include peracid, sulfuric acid, fuming sulfuric acid, sulfur trioxide, chlorosulfuric acid, fluorosulfuric acid, sulfonic acid such as amido sulfuric acid, ozone and the like, and combinations of a plurality of these oxidizing agents.

【0043】これらの中で、前記Fe(有機酸アニオ
ン)塩を形成する有機酸アニオンの基本化合物として
は、有機スルホン酸または有機カルボン酸、有機リン
酸、有機ホウ酸等が挙げられる。有機スルホン酸の具体
例としては、ベンゼンスルホン酸やp−トルエンスルホ
ン酸、メタンスルホン酸、エタンスルホン酸、α−スル
ホ−ナフタレン、β−スルホ−ナフタレン、ナフタレン
ジスルホン酸、アルキルナフタレンスルホン酸(アルキ
ル基としてはブチル、トリイソプロピル、ジ−t−ブチ
ル等)等が使用される。
Among these, examples of the basic compound of the organic acid anion forming the Fe (organic acid anion) salt include organic sulfonic acid or organic carboxylic acid, organic phosphoric acid and organic boric acid. Specific examples of the organic sulfonic acid include benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, α-sulfo-naphthalene, β-sulfo-naphthalene, naphthalenedisulfonic acid, alkylnaphthalenesulfonic acid (alkyl group). Examples thereof include butyl, triisopropyl, di-t-butyl and the like).

【0044】一方、有機カルボン酸の具体例としては、
酢酸、プロピオン酸、安息香酸、シュウ酸等が挙げられ
る。さらに本発明においては、ポリアクリル酸、ポリメ
タクリル酸、ポリスチレンスルホン酸、ポリビニルスル
ホン酸、ポリビニル硫酸ポリ−α−メチルスルホン酸、
ポリエチレンスルホン酸、ポリリン酸等の高分子電解質
アニオンも使用される。なお、これら有機スルホン酸ま
たは有機カルボン酸の例は単なる例示であり、これらに
限定されるものではないない。また、前記アニオンの対
カチオンは、H+、Na+、K+等のアルカリ金属イオ
ン、または水素原子やテトラメチル基、テトラエチル
基、テトラブチル基、テトラフェニル基等で置換された
アンモニウムイオン等が例示されるが、これらに限定さ
れるものではない。前記の酸化剤のうち、特に好ましい
のは、3価のFe系化合物類、または塩化第一銅系、過
硫酸アルカリ塩類、過硫酸アンモニウム塩類酸類、キノ
ン類を含む酸化剤である。
On the other hand, specific examples of the organic carboxylic acid include:
Examples thereof include acetic acid, propionic acid, benzoic acid and oxalic acid. Furthermore, in the present invention, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfate poly-α-methyl sulfonic acid,
Polyelectrolyte anions such as polyethylene sulphonic acid, polyphosphoric acid are also used. The examples of these organic sulfonic acids or organic carboxylic acids are merely examples, and the present invention is not limited to these. Examples of the counter cation of the anion include an alkali metal ion such as H + , Na + , and K + , or an ammonium ion substituted with a hydrogen atom, a tetramethyl group, a tetraethyl group, a tetrabutyl group, a tetraphenyl group, or the like. However, the present invention is not limited to these. Among the above-mentioned oxidizing agents, particularly preferable are oxidizing agents containing trivalent Fe-based compounds, cuprous chloride-based compounds, alkali persulfate salts, ammonium persulfate acids and quinones.

【0045】導電性高分子の重合体組成物の製造方法に
おいて必要に応じて共存させるドーパント能を有するア
ニオン(酸化剤の還元体アニオン以外のアニオン)は、
前述の酸化剤から産生される酸化剤アニオン(酸化剤の
還元体)を対イオンに持つ電解質アニオンまたは他の電
解質アニオンを使用することができる。具体的には例え
ば、PF6 -、SbF6 -、AsF6 -の如き5B族元素のハ
ロゲン化物アニオン、BF4 -の如き3B族元素のハロゲ
ン化物アニオン、I-(I3 -)、Br-、Cl-の如きハ
ロゲンアニオン、ClO4 -の如き過ハロゲン酸アニオ
ン、AlCl4 -、FeCl4 -、SnCl5 -等の如きルイ
ス酸アニオン、あるいはNO3 -、SO4 2-の如き無機酸
アニオン、またはp−トルエンスルホン酸やナフタレン
スルホン酸、炭素数1乃至5のアルキル置換ナフタレン
スルホン酸等のスルホン酸アニオン、CF3SO3 -,C
3SO3 -の如き有機スルホン酸アニオン、またはCH3
COO-、C65COO-のごときカルボン酸アニオン等
のプロトン酸アニオンを挙げることができる。
In the method for producing a polymer composition of a conductive polymer, an anion (anion other than the reducing anion of an oxidizing agent) having a dopant ability to coexist as necessary is
An electrolyte anion having an oxidant anion (reduced form of the oxidant) produced from the aforementioned oxidant as a counter ion, or another electrolyte anion can be used. Specifically, for example, halide anions of Group 5B elements such as PF 6 , SbF 6 , AsF 6 , halide anions of Group 3B elements such as BF 4 , I (I 3 ), Br , A halogen anion such as Cl −, a perhalogenate anion such as ClO 4 −, a Lewis acid anion such as AlCl 4 , FeCl 4 and SnCl 5 or an inorganic acid anion such as NO 3 and SO 4 2−. Or a sulfonate anion such as p-toluenesulfonic acid, naphthalenesulfonic acid, or an alkyl-substituted naphthalenesulfonic acid having 1 to 5 carbon atoms, CF 3 SO 3 , C
H 3 SO 3 -, such as organic sulfonic acid anion or CH 3,
Proton acid anions such as carboxylic acid anions such as COO and C 6 H 5 COO can be mentioned.

【0046】また、同じく、ポリアクリル酸、ポリメタ
クリル酸、ポリスチレンスルホン酸、ポリビニルスルホ
ン酸、ポリビニル硫酸、ポリ−α−メチルスルホン酸、
ポリエチレンスルホン酸、ポリリン酸等の高分子電解質
のアニオン等を挙げることができるが、これらに限定さ
れるものではない。しかしながら、好ましくは、高分子
系及び低分子系の有機スルホン酸化合物あるいはポリリ
ン酸化合物のアニオンが挙げられ、望ましくは芳香族系
のスルホン酸化合物(ドデシルベンゼンスルホン酸ナト
リウム、ナフタレンスルホン酸ナトリウム等)がアニオ
ン供出化合物として用いられる。
Similarly, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyvinyl sulfuric acid, poly-α-methyl sulfonic acid,
Examples thereof include anions of polyelectrolytes such as polyethylene sulfonic acid and polyphosphoric acid, but are not limited thereto. However, preferably, anions of high molecular weight and low molecular weight organic sulfonic acid compounds or polyphosphoric acid compounds are mentioned, and preferably aromatic sulfonic acid compounds (sodium dodecylbenzene sulfonate, sodium naphthalene sulfonate, etc.) Used as anion-donating compound.

【0047】また、有機スルホン酸アニオンのうち、さ
らに有効なドーパントとしては、分子内に一つ以上のス
ルホアニオン基(−SO3−)とキノン構造を有するス
ルホキノン化合物や、アントラセンスルホン酸アニオン
が挙げられる。
Among the organic sulfonate anions, more effective dopants include sulfoquinone compounds having one or more sulfoanion groups (—SO 3 —) and a quinone structure in the molecule, and anthracene sulfonate anions. To be

【0048】前記スルホキノン化合物のスルホキノンア
ニオンの基本骨格として、p−ベンゾキノン、o−ベン
ゾキノン、1,2−ナフトキノン、1,4−ナフトキノ
ン、2,6−ナフトキノン、9,10−アントラキノ
ン、1,4−アントラキノン、1,2−アントラキノ
ン、1,4−クリセンキノン、5,6−クリセンキノ
ン、6,12−クリセンキノン、アセナフトキノン、ア
セナフテンキノン、カンホルキノン、2,3−ボルナン
ジオン、9,10−フェナントレンキノン、2,7−ピ
レンキノンが挙げられる。他方の電極(対極)が固体の
場合には、所望により用いられる外部引き出しリード
(例えば、リードフレームなど)との電気的接触をよく
するため、その上に導電体層を設けてもよい。
As the basic skeleton of the sulfoquinone anion of the sulfoquinone compound, p-benzoquinone, o-benzoquinone, 1,2-naphthoquinone, 1,4-naphthoquinone, 2,6-naphthoquinone, 9,10-anthraquinone, 1,4 -Anthraquinone, 1,2-anthraquinone, 1,4-chrysenequinone, 5,6-chrysenequinone, 6,12-chrysenequinone, acenaphthoquinone, acenaphthenequinone, camphorquinone, 2,3-bornanedione, 9,10-phenanthrenequinone, 2 , 7-pyrenequinone. When the other electrode (counter electrode) is solid, a conductor layer may be provided thereon in order to improve electrical contact with an external lead lead (for example, a lead frame) which is optionally used.

【0049】導電体層としては、たとえば、導電ペース
トの固化、メッキ、金属蒸着、耐熱性の導電樹脂フィル
ムなどにより形成することができる。導電ペーストとし
ては、銀ペースト、銅ペースト、アルミペースト、カー
ボンペースト、ニッケルペーストなどが好ましいが、こ
れらは、1種を用いても2種以上を用いてもよい。2種
以上を用いる場合、混合してもよく、または別々の層と
して重ねてもよい。導電ペースト適用した後、空気中に
放置するか、または加熱して固化せしめる。メッキとし
ては、ニッケルメッキ、銅メッキ、銀メッキ、アルミメ
ッキなどがあげられる。また、蒸着金属としては、アル
ミニウム、ニッケル、銅、銀などがあげられる。
The conductor layer can be formed, for example, by solidifying a conductive paste, plating, metal deposition, a heat-resistant conductive resin film, or the like. As the conductive paste, silver paste, copper paste, aluminum paste, carbon paste, nickel paste and the like are preferable, but these may be used alone or in combination of two or more. If two or more are used, they may be mixed or stacked as separate layers. After applying the conductive paste, leave it in the air or heat it to solidify. Examples of the plating include nickel plating, copper plating, silver plating, aluminum plating and the like. Further, examples of the vapor deposition metal include aluminum, nickel, copper, silver and the like.

【0050】具体的には、例えば第二の電極上にアルミ
ペースト、銀ペーストを順次積層し、エポキシ樹脂のよ
うな材料で封止してコンデンサが構成される。このコン
デンサは、ニオブ焼結体と一体に焼結成型された、また
は、後で溶接されたニオブまたは、タンタルリードを有
していてもよい。
Specifically, for example, an aluminum paste and a silver paste are sequentially laminated on the second electrode and sealed with a material such as an epoxy resin to form a capacitor. The capacitor may have niobium or tantalum leads that are sintered together with the niobium sinter or are later welded.

【0051】以上のような構成の本発明のコンデンサ
は、例えば、樹脂モールド、樹脂ケース、金属性の外装
ケース、樹脂のディッピング、ラミネートフィルムによ
る外装により各種用途のコンデンサ製品とすることがで
きる。
The capacitor of the present invention having the above-described structure can be used as a capacitor product for various purposes by, for example, resin molding, a resin case, a metallic outer case, resin dipping, and a laminated film outer case.

【0052】また、他方の電極が液体の場合には、前記
両極と誘電体から構成されたコンデンサを、例えば、他
方の電極と電気的に接続した缶に収納してコンデンサが
形成される。この場合、レニウム含有ニオブ焼結体の電
極側は、前記したニオブまたはタンタルリードを介して
外部に導出すると同時に、絶縁性ゴムなどにより、缶と
の絶縁がはかられるように設計される。
When the other electrode is liquid, the capacitor formed of the both electrodes and the dielectric is housed in, for example, a can electrically connected to the other electrode to form the capacitor. In this case, the electrode side of the rhenium-containing niobium sintered body is designed to be led out to the outside through the niobium or tantalum lead described above, and at the same time, insulated from the can by the insulating rubber or the like.

【0053】以上、説明した本発明の実施態様にしたが
って製造した水素化ニオブ粉、水素化ニオブ合金粉、ニ
オブ粉、ニオブ合金粉およびこれらの造粒物を用いてコ
ンデンサ用焼結体を作製し、該焼結体からコンデンサを
製造することにより、漏れ電流値の小さい信頼性の良好
なコンデンサを得ることができる。
As described above, a niobium hydride powder, a niobium hydride alloy powder, a niobium powder, a niobium alloy powder produced according to the embodiment of the present invention and a granulated product thereof are used to produce a sintered body for a capacitor. By manufacturing a capacitor from the sintered body, a highly reliable capacitor having a small leakage current value can be obtained.

【0054】[0054]

【実施例】以下、実施例及び比較例を挙げて本発明を具
体的に説明するが、本発明はこれらの例に限定されるも
のではない。なお、各例において所望の物性をもつ前述
の粉体、造粒物から作製した焼結体(以下「ニオブ焼結
体」、「ニオブ合金焼結体」または単に「焼結体」と略
する。)の容量と漏れ電流値およびチップ加工したコン
デンサの容量と漏れ電流値は、以下の方法により測定し
た。
The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In each example, a sintered body prepared from the above-mentioned powder or granulated material having desired physical properties (hereinafter abbreviated as “niobium sintered body”, “niobium alloy sintered body” or simply “sintered body”). .) And the leakage current value of the chip-processed capacitor, and the leakage current value were measured by the following methods.

【0055】(1)焼結体の容量測定 室温において、誘電体層を形成した焼結体とタンタル材
の電極とを30質量%硫酸中に浸漬させ、それぞれをヒ
ューレットパッカード社製の測定器(プレシジョンLC
RメーターHP4284A型)に接続して120Hzで
の容量を測定した。焼結体質量当たりのこの測定値を焼
結体の容量(単位はμF・V/g)とした。
(1) Measurement of Capacity of Sintered Body At room temperature, the sintered body having the dielectric layer formed thereon and the electrode of the tantalum material were immersed in 30% by mass of sulfuric acid, and each of them was measured by a Hewlett Packard measuring instrument ( Precision LC
R meter HP4284A type) and the capacity at 120 Hz was measured. This measured value per mass of the sintered body was defined as the capacity of the sintered body (unit is μF · V / g).

【0056】(2)焼結体の漏れ電流測定 陽極として誘電体層を形成した焼結体と、陰極とを、室
温において、20質量%リン酸水溶液中に浸漬し、直流
14Vを3分間印加し続けた後に、電流値を測定した。
焼結体質量当たりのこの測定値を焼結体の漏れ電流値
(LC値、単位はμA/g)とした。
(2) Leakage Current Measurement of Sintered Body A sintered body having a dielectric layer formed as an anode and a cathode were immersed in a 20 mass% phosphoric acid aqueous solution at room temperature, and a direct current of 14 V was applied for 3 minutes. After continuing, the current value was measured.
This measured value per mass of the sintered body was taken as the leakage current value (LC value, unit: μA / g) of the sintered body.

【0057】(3)コンデンサの容量測定 室温において、作製したチップの端子間にヒューレット
パッカード社製LCR測定器を接続し、120Hzでの
容量の測定値をチップ加工したコンデンサの容量とし
た。
(3) Capacitance Measurement of Capacitor At room temperature, an LCR measuring instrument manufactured by Hewlett-Packard was connected between the terminals of the produced chip, and the measured value of the capacitance at 120 Hz was taken as the capacitance of the chip-processed capacitor.

【0058】(4)コンデンサの漏れ電流測定 室温において、直流電圧6.3Vを、作製したチップの
端子間に1分間印加し続けた後に測定された電流値をチ
ップに加工したコンデンサの漏れ電流値とした。
(4) Leakage Current Measurement of Capacitor At room temperature, a DC voltage of 6.3 V was continuously applied between the terminals of the fabricated chip for 1 minute, and then the measured leakage current value of the capacitor processed into the chip was measured. And

【0059】(5)粒子径測定 マイクロトラック社製HRA 9320−X100を用
い粒度分布をレーザー回折散乱法で測定した。その累積
体積%が、50体積%に相当する粒径値(D 50;μm)
を平均粒子径とした。
(5) Particle size measurement For Microtrac HRA 9320-X100
The particle size distribution was measured by the laser diffraction scattering method. That accumulation
Volume% corresponds to a particle size value (D 50; Μm)
Was defined as the average particle size.

【0060】実施例1:ニオブインゴット1000gを
SUS304製の反応容器に入れ、400℃で10時間
水素を導入し続けた。室温まで冷却した後、アルゴン雰
囲気下、水素化されたニオブ塊を、ハンマークラッシャ
ーで粗粉砕を行い、粒径0.5mm以下の水素化ニオブ粗
粉を得た。次に粉砕媒体として粒径1mmのジルコニア製
ビーズ、分散媒として脱気したメタノールを用い、粉砕
温度10℃から−40℃に冷却しながら、水素化ニオブ
粗粉を6時間かけて湿式粉砕し、水素化ニオブ粉のメタ
ノールスラリーを得た。減圧下、40℃で乾燥を行い、
水素化ニオブ粉を得た。この粉体の平均粒径は0.9μ
mであり、酸素濃度は1.2質量%であった。この様に
して得た水素化ニオブ粉を1×10-2Pa、400℃で
4時間加熱し脱水素したのち、室温まで冷却した。大気
圧下、窒素を導入し300℃で2時間窒化した。このよ
うにして得たニオブ粉を4×10-3Paの減圧下、11
00℃で2時間焼結したのち、室温まで冷却した。得ら
れたニオブ塊を解砕してニオブ造粒粉を得た。この造粒
粉の平均粒径は、110μmであり、酸素含有量は1.
8質量%であった。
Example 1: 1000 g of niobium ingot was placed in a reaction vessel made of SUS304, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling to room temperature, the hydrogenated niobium lump was coarsely crushed with a hammer crusher in an argon atmosphere to obtain a niobium hydride coarse powder having a particle size of 0.5 mm or less. Then, using zirconia beads having a particle diameter of 1 mm as a grinding medium and degassed methanol as a dispersion medium, the niobium hydride coarse powder was wet ground for 6 hours while cooling from a grinding temperature of 10 ° C to -40 ° C. A methanol slurry of niobium hydride powder was obtained. Dried under reduced pressure at 40 ℃,
A niobium hydride powder was obtained. The average particle size of this powder is 0.9μ
m and the oxygen concentration was 1.2% by mass. The niobium hydride powder thus obtained was heated at 1 × 10 -2 Pa and 400 ° C. for 4 hours for dehydrogenation, and then cooled to room temperature. Nitrogen was introduced under atmospheric pressure and nitriding was performed at 300 ° C. for 2 hours. The niobium powder thus obtained was treated under reduced pressure of 4 × 10 −3 Pa to obtain 11
After sintering at 00 ° C. for 2 hours, it was cooled to room temperature. The obtained niobium lump was crushed to obtain niobium granulated powder. The average particle size of this granulated powder was 110 μm, and the oxygen content was 1.
It was 8% by mass.

【0061】このようにして得たニオブ造粒粉を0.3
mmφのニオブ線と共に成型し、およそ0.3cm×
0.18cm×0.45cmの成型体(約0.1g)を
作製した。次にこれらの成型体を4×10-3Paの減圧
下、1250℃で30分放置することにより焼結体を得
た。得られた焼結体を、0.1質量%リン酸水溶液中
で、80℃の温度で6時間、20Vの電圧で化成するこ
とにより、表面に誘電体層を形成した。この後、30質
量%硫酸中での容量と、20質量%リン酸水溶液中での
漏れ電流を各々測定した。その結果を表1に示す。
The niobium granulated powder thus obtained was 0.3
Molded together with mmφ niobium wire, approximately 0.3 cm ×
A 0.18 cm × 0.45 cm molded body (about 0.1 g) was produced. Next, these molded bodies were left under reduced pressure of 4 × 10 −3 Pa at 1250 ° C. for 30 minutes to obtain a sintered body. The obtained sintered body was subjected to chemical conversion in a 0.1 mass% phosphoric acid aqueous solution at a temperature of 80 ° C. for 6 hours at a voltage of 20 V to form a dielectric layer on the surface. Then, the capacity in 30 mass% sulfuric acid and the leak current in 20 mass% phosphoric acid aqueous solution were measured. The results are shown in Table 1.

【0062】実施例2〜5:実施例1と同様な方法で分
散媒および粉砕時の温度を変化させてニオブ粉を作製
し、続けて造粒粉を作製した。
Examples 2 to 5: In the same manner as in Example 1, niobium powder was produced by changing the dispersion medium and the temperature at the time of pulverization, and then granulated powder was produced.

【0063】このようにして得られた、ニオブ造粒粉を
0.3mmφのニオブ線と共に成型し、およそ0.3c
m×0.18cm×0.45cmの成型体(約0.1
g)を作製した。次にこれらの成型体を4×10-3Pa
の減圧下、1250℃で30分放置することにより焼結
体を得た。得られた焼結体を、0.1質量%リン酸水溶
液中で、80℃の温度で6時間、20Vの電圧で化成す
ることにより、表面に誘電体層を形成した。この後、3
0質量%硫酸中での容量と、20質量%リン酸水溶液中
での漏れ電流を各々測定した。その結果を表1に示す。
The niobium granulated powder thus obtained was molded together with a niobium wire having a diameter of 0.3 mm to obtain about 0.3 c
m × 0.18 cm × 0.45 cm molded body (about 0.1
g) was prepared. Next, these molded bodies were treated with 4 × 10 −3 Pa
A sintered body was obtained by leaving it under reduced pressure at 1250 ° C. for 30 minutes. The obtained sintered body was subjected to chemical conversion in a 0.1 mass% phosphoric acid aqueous solution at a temperature of 80 ° C. for 6 hours at a voltage of 20 V to form a dielectric layer on the surface. After this, 3
The capacity in 0 mass% sulfuric acid and the leakage current in 20 mass% phosphoric acid aqueous solution were measured. The results are shown in Table 1.

【0064】実施例6〜16:各種ニオブ合金インゴッ
ト1000gをSUS304製の反応容器に入れ、40
0℃で10時間水素を導入し続けた。室温まで冷却した
後、アルゴン雰囲気下、水素化されたニオブ合金塊を、
ハンマークラッシャーで粗粉砕を行い、粒径0.5mm
以下の粗粉を得た。次に粉砕媒体として粒径1mmのジル
コニア製ビーズ、分散媒として脱気したエタノールを用
い、粉砕温度10℃から−30℃に冷却しながら、水素
化ニオブ合金粗粉を6〜10時間かけて湿式粉砕し、水
素化ニオブ合金粉のエタノールスラリーを得た。減圧
下、40℃で乾燥を行い、水素化ニオブ合金粉を得た。
この様にして得た水素化ニオブ合金粉を1×10-2
a、400℃で4時間加熱して脱水素したのち、さら
に、4×10-3Paの減圧下、1100℃で2時間焼結
したのち、室温まで冷却した。得られたニオブ合金塊を
解砕してニオブ合金造粒粉を得た。
Examples 6 to 16: 1000 g of various niobium alloy ingots were placed in a reaction container made of SUS304 and 40
Hydrogen was continuously introduced at 0 ° C. for 10 hours. After cooling to room temperature, under argon atmosphere, the hydrogenated niobium alloy lump,
Coarse crushing with hammer crusher, particle size 0.5mm
The following coarse powder was obtained. Then, using zirconia beads having a particle diameter of 1 mm as a grinding medium and degassed ethanol as a dispersion medium, the niobium hydride coarse powder is wet for 6 to 10 hours while cooling from a grinding temperature of 10 ° C to -30 ° C. It was pulverized to obtain an ethanol slurry of niobium hydride alloy powder. It was dried at 40 ° C. under reduced pressure to obtain a niobium hydride alloy powder.
The niobium hydride alloy powder obtained in this manner was added to 1 × 10 -2 P
After heating at 400 ° C. for 4 hours for dehydrogenation, sintering was further performed at 1100 ° C. for 2 hours under reduced pressure of 4 × 10 −3 Pa, and then cooled to room temperature. The obtained niobium alloy lump was crushed to obtain niobium alloy granulated powder.

【0065】得られた、ニオブ造粒粉を0.3mmφの
ニオブ線と共に成型し、およそ0.3cm×0.18c
m×0.45cmの成型体(約0.1g)を作製した。
次にこれらの成型体を4×10-3Paの減圧下、125
0℃で30分放置することにより焼結体を得た。得られ
た焼結体を、0.1質量%リン酸水溶液中で、80℃の
温度で6時間、20Vの電圧で化成することにより、表
面に誘電体層を形成した。この後、30質量%硫酸中で
の容量と、20質量%リン酸水溶液中での漏れ電流を各
々測定した。その結果を表1に示す
The obtained niobium granulated powder was molded together with a niobium wire having a diameter of 0.3 mm to obtain a powder of about 0.3 cm × 0.18 c
A m × 0.45 cm molded body (about 0.1 g) was produced.
Next, these molded bodies were subjected to 125 × 10 −3 Pa under a reduced pressure of 125
A sintered body was obtained by leaving it at 0 ° C. for 30 minutes. The obtained sintered body was subjected to chemical conversion in a 0.1 mass% phosphoric acid aqueous solution at a temperature of 80 ° C. for 6 hours at a voltage of 20 V to form a dielectric layer on the surface. Then, the capacity in 30 mass% sulfuric acid and the leak current in 20 mass% phosphoric acid aqueous solution were measured. The results are shown in Table 1.

【0066】比較例1:ニオブインゴット1000gを
SUS304製の反応容器に入れ、400℃で10時間
水素を導入し続けた。室温まで冷却した後、アルゴン雰
囲気下、水素化されたニオブ塊を、ハンマークラッシャ
ーで粗粉砕を行い、粒径0.5mm以下の粗粉を得た。
次に粉砕媒体として粒径1mmのジルコニア製ビーズ、分
散媒として脱気したエタノールを用い、粉砕温度40℃
から70℃に昇温しながら、水素化ニオブ粗粉を6時間
かけて湿式粉砕し、水素化ニオブ粉のエタノールスラリ
ーを得た。減圧下、40℃で乾燥を行い、水素化ニオブ
粉を得た。この粉体の平均粒径は0.9μmであり、酸
素濃度は6.3質量%であった。この様にして得た水素
化ニオブ粉を1×10-2Pa、400℃で4時間加熱し
脱水素したのち、室温まで冷却した。大気圧下、窒素を
導入し300℃で2時間窒化した。さらに、ニオブ粉を
4×10-3Paの減圧下、1100℃で2時間焼結した
のち、室温まで冷却した。得られたニオブ塊を解砕して
ニオブ造粒粉を得た。この造粒粉の平均粒径は、110
μmであり、酸素含有量は6.8質量%であった。
Comparative Example 1: 1000 g of niobium ingot was placed in a reaction vessel made of SUS304, and hydrogen was continuously introduced at 400 ° C. for 10 hours. After cooling to room temperature, the hydrogenated niobium lump was coarsely crushed with a hammer crusher under an argon atmosphere to obtain coarse powder having a particle size of 0.5 mm or less.
Next, using zirconia beads having a particle diameter of 1 mm as a grinding medium and degassed ethanol as a dispersion medium, a grinding temperature of 40 ° C.
While raising the temperature to 70 ° C. from 70 to 70 ° C., the niobium hydride coarse powder was wet pulverized for 6 hours to obtain an ethanol slurry of niobium hydride powder. It was dried at 40 ° C. under reduced pressure to obtain niobium hydride powder. The average particle diameter of this powder was 0.9 μm, and the oxygen concentration was 6.3 mass%. The niobium hydride powder thus obtained was heated at 1 × 10 -2 Pa and 400 ° C. for 4 hours for dehydrogenation, and then cooled to room temperature. Nitrogen was introduced under atmospheric pressure and nitriding was performed at 300 ° C. for 2 hours. Further, the niobium powder was sintered under reduced pressure of 4 × 10 −3 Pa at 1100 ° C. for 2 hours and then cooled to room temperature. The obtained niobium lump was crushed to obtain niobium granulated powder. The average particle size of this granulated powder is 110
μm, and the oxygen content was 6.8% by mass.

【0067】このようにして得られた、ニオブ造粒粉を
0.3mmφのニオブ線と共に成型し、およそ0.3c
m×0.18cm×0.45cmの成型体(約0.1
g)を作製した。次にこれらの成型体を4×10-3Pa
の減圧下、1250℃で30分放置することにより焼結
体を得た。得られた焼結体を、0.1質量%リン酸水溶
液中で、80℃の温度で6時間、20Vの電圧で化成す
ることにより、表面に誘電体層を形成した。この後、3
0質量%硫酸中での容量と、20質量%リン酸水溶液中
での漏れ電流を各々測定した。その結果を表1に示す。
The niobium granulated powder thus obtained was molded together with a 0.3 mmφ niobium wire to obtain about 0.3 c
m × 0.18 cm × 0.45 cm molded body (about 0.1
g) was prepared. Next, these molded bodies were treated with 4 × 10 −3 Pa
A sintered body was obtained by leaving it under reduced pressure at 1250 ° C. for 30 minutes. The obtained sintered body was subjected to chemical conversion in a 0.1 mass% phosphoric acid aqueous solution at a temperature of 80 ° C. for 6 hours at a voltage of 20 V to form a dielectric layer on the surface. After this, 3
The capacity in 0 mass% sulfuric acid and the leakage current in 20 mass% phosphoric acid aqueous solution were measured. The results are shown in Table 1.

【0068】比較例2〜3:比較例2は、実施例2と同
様な方法で、粉砕する温度を40℃に保って粉砕した。
Comparative Examples 2-3: Comparative Example 2 was pulverized in the same manner as in Example 2 while maintaining the pulverizing temperature at 40 ° C.

【0069】比較例3は、実施例6と同様な方法で、粉
砕する温度を−30℃から10℃に昇温して粉砕した。
以降実施例2または実施例6と同様な方法で造粒、焼結
を行い、得られた焼結体を、0.1質量%リン酸水溶液
中で、80℃の温度で6時間、20Vの電圧で化成する
ことにより、表面に誘電体層を形成した。この後、30
質量%硫酸中での容量と、20質量%リン酸水溶液中で
の漏れ電流を各々測定した。その結果を表1に示す。
Comparative Example 3 was pulverized in the same manner as in Example 6 by raising the pulverization temperature from -30 ° C to 10 ° C.
Thereafter, granulation and sintering were performed in the same manner as in Example 2 or Example 6, and the obtained sintered body was placed in a 0.1 mass% phosphoric acid aqueous solution at a temperature of 80 ° C. for 6 hours at 20 V. A dielectric layer was formed on the surface by chemical conversion with voltage. After this, 30
The capacity in mass% sulfuric acid and the leakage current in a 20 mass% phosphoric acid aqueous solution were measured. The results are shown in Table 1.

【0070】[0070]

【表1】 [Table 1]

【0071】実施例17〜18:実施例17は実施例1
と、実施例18は実施例6と、それぞれ同様な方法で得
た焼結体を各50個用意した。これらの焼結体を20V
の電圧で、0.1質量%リン酸水溶液を用い、200分
間電解化成して、表面に誘電体酸化皮膜を形成した。次
に、60質量%硝酸マンガン水溶液に浸漬後220℃で
30分加熱することを繰り返して、誘電体酸化皮膜上に
他方の電極層として二酸化マンガン層を形成した。引き
続き、その上に、カーボン層、銀ペースト層を順次積層
した。次にリードフレームを載せた後、全体をエポキシ
樹脂で封止して、チップ型コンデンサを作製した。この
チップ型コンデンサの容量とLC値の平均(n=各50
個)を表2に示す。尚、LC値は室温で6.3V、1分
間印加した時の値である。
Examples 17-18: Example 17 is Example 1
In Example 18, 50 sintered bodies obtained by the same method as in Example 6 were prepared. 20V of these sintered bodies
At a voltage of 0.1% by mass, an aqueous solution of phosphoric acid was used for electrolytic formation for 200 minutes to form a dielectric oxide film on the surface. Next, the manganese dioxide layer was formed as the other electrode layer on the dielectric oxide film by repeating the heating at 220 ° C. for 30 minutes after immersion in a 60 mass% manganese nitrate aqueous solution. Subsequently, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. The average of the capacitance and LC value of this chip type capacitor (n = 50 for each)
Are shown in Table 2. The LC value is a value when 6.3 V is applied for 1 minute at room temperature.

【0072】実施例19〜20:実施例19は実施例2
と、実施例20は実施例8と、それぞれ同様な方法で得
た焼結体を各50個用意した。これらの焼結体を20V
の電圧で、0.1質量%リン酸水溶液を用い、200分
間電解化成して、表面に誘電体酸化皮膜を形成した。次
に、誘電体酸化被膜の上に、過硫酸アンモニウム10質
量%水溶液とアントラキノンスルホン酸0.5質量%水
溶液の等量混合液を接触させた後、ピロール蒸気を触れ
させる操作を少なくとも5回行うことによりポリピロー
ルからなる他方の電極(対極)を形成した。
Examples 19 to 20: Example 19 is Example 2
In Example 20, 50 sintered bodies obtained by the same method as in Example 8 were prepared. 20V of these sintered bodies
At a voltage of 0.1% by mass, an aqueous solution of phosphoric acid was used for electrolytic formation for 200 minutes to form a dielectric oxide film on the surface. Next, the operation of contacting pyrrole vapor with at least 5 times after contacting an equal amount mixed solution of 10 mass% ammonium persulfate aqueous solution and 0.5 mass% anthraquinonesulfonic acid aqueous solution on the dielectric oxide film. Thus, the other electrode (counter electrode) made of polypyrrole was formed.

【0073】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、全体をエポキシ樹脂で封止して、チップ型コンデン
サを作製した。このチップ型コンデンサの容量とLC値
の平均(n=各50個)を表2に示す。尚、LC値は室
温で6.3V、1分間印加した時の値である。
Subsequently, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. Table 2 shows the average of the capacitance and LC value of this chip type capacitor (n = 50 each). The LC value is a value when 6.3 V is applied for 1 minute at room temperature.

【0074】実施例21〜22:実施例21は実施例3
と、実施例22は実施例10と、同様な方法で得た焼結
体を各50個用意した。これらの焼結体を20Vの電圧
で、0.1質量%リン酸水溶液を用い、200分間電解
化成して、表面に誘電体酸化皮膜を形成した。次に、こ
の焼結体を、過硫酸アンモニウム25質量%を含む水溶
液(溶液1)に浸漬した後引き上げ、80℃で30分乾
燥させ、次いで誘電体を形成した焼結体を、3,4−エ
チレンジオキシチオフェン18質量%を含むイソプロパ
ノール溶液(溶液2)に浸漬した後引き上げ、60℃の
雰囲気に10分放置することで酸化重合を行った。これ
を再び溶液1に浸漬し、さらに前記と同様に処理した。
溶液1に浸漬してから酸化重合を行うまでの操作を8回
繰り返した後、50℃の温水で10分洗浄を行い、10
0℃で30分乾燥を行うことにより、導電性のポリ
(3,4−エチレンジオキシチオフェン)からなる他方
の電極(対極)を形成した。
Examples 21 to 22: Example 21 is Example 3
In Example 22, 50 sintered bodies obtained by the same method as in Example 10 were prepared. These sintered bodies were electrolyzed at a voltage of 20 V using a 0.1 mass% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, this sintered body was immersed in an aqueous solution (solution 1) containing 25% by mass of ammonium persulfate and then pulled up and dried at 80 ° C. for 30 minutes, and then the sintered body on which a dielectric was formed was 3,4- It was immersed in an isopropanol solution (solution 2) containing 18% by mass of ethylenedioxythiophene, then pulled up, and left standing in an atmosphere of 60 ° C. for 10 minutes to carry out oxidative polymerization. This was immersed again in the solution 1 and further treated in the same manner as described above.
After repeating the operation from the immersion in the solution 1 to the oxidative polymerization 8 times, washing with warm water at 50 ° C. for 10 minutes was performed, and
The other electrode (counter electrode) made of conductive poly (3,4-ethylenedioxythiophene) was formed by drying at 0 ° C. for 30 minutes.

【0075】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、全体をエポキシ樹脂で封止して、チップ型コンデン
サを作製した。このチップ型コンデンサの容量とLC値
の平均(n=各50個)を表2に示す。尚、LC値は室
温で6.3V、1分間印加した時の値である。
Subsequently, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. Table 2 shows the average of the capacitance and LC value of this chip type capacitor (n = 50 each). The LC value is a value when 6.3 V is applied for 1 minute at room temperature.

【0076】比較例4〜5:比較例4は比較例1と、比
較例5は比較例3と同様な方法で得た焼結体を各50個
用意した。これらの焼結体を20Vの電圧で、0.1質
量%リン酸水溶液を用い、200分間電解化成して、表
面に誘電体酸化皮膜を形成した。次に、このニオブ焼結
体を、過硫酸アンモニウム25質量%を含む水溶液(溶
液1)に浸漬した後引き上げ、80℃で30分乾燥さ
せ、次いで誘電体を形成した焼結体を、3,4−エチレ
ンジオキシチオフェン18質量%を含むイソプロパノー
ル溶液(溶液2)に浸漬した後引き上げ、60℃の雰囲
気に10分放置することで酸化重合を行った。これを再
び溶液1に浸漬し、さらに前記と同様に処理した。溶液
1に浸漬してから酸化重合を行うまでの操作を8回繰り
返した後、50℃の温水で10分洗浄を行い、100℃
で30分乾燥を行うことにより、導電性のポリ(3,4
−エチレンジオキシチオフェン)からなる他方の電極
(対極)を形成した。
Comparative Examples 4 to 5: For Comparative Example 4, 50 sintered bodies obtained by the same method as Comparative Example 1 and Comparative Example 5 were prepared. These sintered bodies were electrolyzed at a voltage of 20 V using a 0.1 mass% phosphoric acid aqueous solution for 200 minutes to form a dielectric oxide film on the surface. Next, this niobium sintered body was immersed in an aqueous solution containing 25% by mass of ammonium persulfate (Solution 1), then pulled up and dried at 80 ° C. for 30 minutes, and then the sintered body on which a dielectric was formed was -Oxidative polymerization was carried out by immersing in an isopropanol solution (solution 2) containing 18% by mass of ethylenedioxythiophene, pulling it up, and leaving it in an atmosphere of 60 ° C for 10 minutes. This was immersed again in the solution 1 and further treated in the same manner as described above. After repeating the operation from dipping in the solution 1 to oxidative polymerization 8 times, wash with warm water at 50 ° C. for 10 minutes and then at 100 ° C.
Conductive poly (3,4)
-The other electrode (counter electrode) consisting of ethylenedioxythiophene) was formed.

【0077】引き続き、その上に、カーボン層、銀ペー
スト層を順次積層した。次にリードフレームを載せた
後、全体をエポキシ樹脂で封止して、チップ型コンデン
サを作製した。このチップ型コンデンサの容量とLC値
の平均(n=各50個)を表2に示す。尚、LC値は室
温で6.3V、1分間印加した時の値である。
Subsequently, a carbon layer and a silver paste layer were sequentially laminated on it. Next, after mounting a lead frame, the whole was sealed with an epoxy resin to manufacture a chip type capacitor. Table 2 shows the average of the capacitance and LC value of this chip type capacitor (n = 50 each). The LC value is a value when 6.3 V is applied for 1 minute at room temperature.

【0078】[0078]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/00 H01G 9/05 K 9/052 9/24 C (72)発明者 川崎 俊哉 神奈川県川崎市川崎区大川町5−1 昭和 電工株式会社生産技術センター内 (72)発明者 内藤 一美 千葉県千葉市緑区大野台一丁目1番1号 昭和電工株式会社総合研究所内 (72)発明者 大森 和弘 千葉県千葉市緑区大野台一丁目1番1号 昭和電工株式会社総合研究所内 Fターム(参考) 4K017 AA03 AA04 BA07 BB13 BB15 DA08 EA03 FB02 4K018 AA40 BA20 BB04 BB10 BC01 BC10 BC11 BD10 DA00 JA09 JA12 JA16 KA39 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01G 9/00 H01G 9/05 K 9/052 9/24 C (72) Inventor Toshiya Kawasaki Kawasaki City, Kanagawa Prefecture 5-1 Okawa-cho, Kawasaki-ku Showa Denko Co., Ltd. Production Technology Center (72) Inventor Kazumi Naito 1-1-1, Onodai, Midori-ku, Chiba-shi, Chiba Showa Denko K.K. (72) Inventor Kazuhiro Omori 1-1-1 Onodai, Midori-ku, Chiba-shi, Chiba Showa Denko Co., Ltd. Research Institute F-term (reference) 4K017 AA03 AA04 BA07 BB13 BB15 DA08 EA03 FB02 4K018 AA40 BA20 BB04 BB10 BC01 BC10 BC11 BD10 DA00 JA09 JA12 JA16 KA39

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】分散媒存在下で水素化ニオブまたは水素化
ニオブ合金を粉砕する工程を含むコンデンサ用ニオブ粉
の製造方法において、粉砕温度が、−200〜30℃の
温度範囲であることを特徴とするコンデンサ用ニオブ粉
の製造方法。
1. A method for producing niobium hydride for a capacitor, which comprises a step of pulverizing niobium hydride or a niobium hydride alloy in the presence of a dispersion medium, wherein the pulverization temperature is in the temperature range of −200 to 30 ° C. Manufacturing method of niobium powder for capacitors.
【請求項2】水素化ニオブ粉または水素化ニオブ合金粉
を粉砕後、100〜1000℃の温度で脱水素する工程
を含む請求項1に記載のコンデンサ用ニオブ粉の製造方
法。
2. The method for producing niobium powder for capacitors according to claim 1, further comprising a step of dehydrogenating the niobium hydride powder or the niobium hydride alloy powder at a temperature of 100 to 1000 ° C.
【請求項3】粉砕温度が、粉砕中に上昇しないことを特
徴とする請求項1または2に記載のコンデンサ用ニオブ
粉の製造方法。
3. The method for producing niobium powder for capacitors according to claim 1, wherein the crushing temperature does not rise during crushing.
【請求項4】分散媒が、水、有機溶剤、液化気体からな
る群より選ばれた少なくとも1種である請求項1乃至3
のいずれか1項に記載のコンデンサ用ニオブ粉の製造方
法。
4. The dispersion medium is at least one selected from the group consisting of water, an organic solvent, and a liquefied gas.
2. A method for producing niobium powder for capacitors according to any one of 1.
【請求項5】請求項1乃至4のいずれか1項に記載の製
造方法で得られたコンデンサ用ニオブ粉。
5. A niobium powder for capacitors, which is obtained by the manufacturing method according to claim 1.
【請求項6】コンデンサ用ニオブ粉の平均粒径が、0.
01〜10μmである請求項5に記載のコンデンサ用ニ
オブ粉。
6. The average particle size of the niobium powder for capacitors is 0.
The niobium powder for capacitors according to claim 5, which has a particle size of 01 to 10 μm.
【請求項7】コンデンサ用ニオブ粉のBET比表面積
が、0.5〜40m2/gである請求項5または6に記
載のコンデンサ用ニオブ粉。
7. The niobium powder for capacitors according to claim 5, wherein the niobium powder for capacitors has a BET specific surface area of 0.5 to 40 m 2 / g.
【請求項8】コンデンサ用ニオブ粉の嵩密度が、0.5
〜4g/mlである請求項5乃至7のいずれか1項に記
載のコンデンサ用ニオブ粉。
8. The niobium powder for capacitors has a bulk density of 0.5.
The niobium powder for capacitors according to any one of claims 5 to 7, which has a content of ~ 4 g / ml.
【請求項9】コンデンサ用ニオブ粉の細孔径のピーク
が、0.01〜7μmである請求項5乃至8のいずれか
1項に記載のコンデンサ用ニオブ粉。
9. The niobium powder for capacitors according to claim 5, wherein the niobium powder for capacitors has a peak pore size of 0.01 to 7 μm.
【請求項10】コンデンサ用ニオブ粉の酸素含有量が
2.5質量%以下である請求項5乃至9のいずれか1項
に記載のコンデンサ用ニオブ粉。
10. The niobium powder for capacitors according to claim 5, wherein the niobium powder for capacitors has an oxygen content of 2.5 mass% or less.
【請求項11】コンデンサ用ニオブ粉が、さらにホウ
素、窒素、炭素および硫黄の元素からなる群より選ばれ
た少なくとも1種の元素を含む請求項5乃至10のいず
れか1項に記載のコンデンサ用ニオブ粉。
11. The capacitor according to claim 5, wherein the niobium powder for capacitors further contains at least one element selected from the group consisting of elements of boron, nitrogen, carbon and sulfur. Niobium powder.
【請求項12】請求項5乃至11のいずれか1項に記載
のコンデンサ用ニオブ粉を造粒して得られる平均粒径が
10〜500μmのコンデンサ用ニオブ造粒物。
12. A niobium granulated product for capacitors having an average particle size of 10 to 500 μm, which is obtained by granulating the niobium powder for capacitors according to any one of claims 5 to 11.
【請求項13】コンデンサ用ニオブ造粒物のBET比表
面積が、0.5〜40m 2/gである請求項12に記載
のコンデンサ用ニオブ造粒物。
13. A BET ratio table of granulated niobium for capacitors.
Area is 0.5-40m 2/ G. 13.
Niobium granules for capacitors.
【請求項14】コンデンサ用ニオブ造粒物の細孔径のピ
ークが0.01〜500μmの範囲内にある請求項12
または13に記載のコンデンサ用ニオブ造粒物。
14. The peak of the pore diameter of the niobium granulated product for capacitors is in the range of 0.01 to 500 μm.
Or a niobium granulated product for a capacitor as described in 13 above.
【請求項15】コンデンサ用ニオブ造粒物の嵩密度が、
0.05〜4g/mlである請求項12乃至14のいず
れか1項に記載のコンデンサ用ニオブ造粒物。
15. The bulk density of the niobium granulated product for a capacitor is
The niobium granulated product for capacitors according to any one of claims 12 to 14, which is 0.05 to 4 g / ml.
【請求項16】コンデンサ用ニオブ造粒物の酸素濃度
が、3質量%以下である請求項12乃至15のいずれか
1項に記載のコンデンサ用ニオブ造粒物。
16. The niobium granulated product for capacitors according to claim 12, wherein the niobium granulated product for capacitors has an oxygen concentration of 3% by mass or less.
【請求項17】請求項5乃至11のいずれか1項に記載
のコンデンサ用ニオブ粉、及び/または請求項12乃至
16のいずれか1項に記載のコンデンサ用ニオブ造粒物
を焼結して得られる焼結体。
17. A niobium powder for capacitors according to any one of claims 5 to 11 and / or a niobium granule for capacitors according to any one of claims 12 to 16 is sintered. The resulting sintered body.
【請求項18】請求項17に記載の焼結体を一方の電極
とし、前記焼結体表面上に形成された誘電体と、前記誘
電体上に設けられた他方の電極とから構成されたコンデ
ンサ。
18. The sintered body according to claim 17 is used as one electrode, and is composed of a dielectric formed on the surface of the sintered body and the other electrode provided on the dielectric. Capacitors.
【請求項19】誘電体の主成分が酸化ニオブである請求
項18に記載のコンデンサ。
19. The capacitor according to claim 18, wherein the main component of the dielectric is niobium oxide.
JP2001185694A 2001-06-20 2001-06-20 Method for manufacturing niobium powder Pending JP2003003204A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001185694A JP2003003204A (en) 2001-06-20 2001-06-20 Method for manufacturing niobium powder
US10/175,144 US6780218B2 (en) 2001-06-20 2002-06-20 Production process for niobium powder
US10/792,576 US7138004B2 (en) 2001-06-20 2004-03-04 Production process for niobium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185694A JP2003003204A (en) 2001-06-20 2001-06-20 Method for manufacturing niobium powder

Publications (1)

Publication Number Publication Date
JP2003003204A true JP2003003204A (en) 2003-01-08

Family

ID=19025232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185694A Pending JP2003003204A (en) 2001-06-20 2001-06-20 Method for manufacturing niobium powder

Country Status (1)

Country Link
JP (1) JP2003003204A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106587A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, process for producing discharge surface treatment electrode, discharge surface treatment apparatus and discharge surface treatment method
WO2006038720A1 (en) 2004-10-06 2006-04-13 Showa Denko K.K. Niobium powder, niobium granules, niobium sinter and capacitor, and production processes thereof
JP2009196835A (en) * 2008-02-20 2009-09-03 Hydro-Device Co Ltd Hydrogen generating material and method for producing the hydrogen generating material
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
JP2012069789A (en) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
WO2001026123A1 (en) * 1999-10-01 2001-04-12 Showa Denko K.K. Capacitor powder composition, sintered body made of the composition, and capacitor made of the sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
JP2004500480A (en) * 1999-03-19 2004-01-08 キャボット コーポレイション Production of niobium and other metal powders by grinding
WO2001026123A1 (en) * 1999-10-01 2001-04-12 Showa Denko K.K. Capacitor powder composition, sintered body made of the composition, and capacitor made of the sintered body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106587A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Discharge surface treatment electrode, process for producing discharge surface treatment electrode, discharge surface treatment apparatus and discharge surface treatment method
JPWO2004106587A1 (en) * 2003-05-29 2006-07-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment electrode manufacturing method, discharge surface treatment apparatus, and discharge surface treatment method
JP4523545B2 (en) * 2003-05-29 2010-08-11 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
US7910176B2 (en) 2003-06-05 2011-03-22 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method
WO2006038720A1 (en) 2004-10-06 2006-04-13 Showa Denko K.K. Niobium powder, niobium granules, niobium sinter and capacitor, and production processes thereof
EP1808244A1 (en) * 2004-10-06 2007-07-18 Showa Denko Kabushiki Kaisha Niobium powder, niobium granules, niobium sinter and capacitor, and production processes thereof
EP1808244A4 (en) * 2004-10-06 2009-08-05 Showa Denko Kk Niobium powder, niobium granules, niobium sinter and capacitor, and production processes thereof
KR101159625B1 (en) 2004-10-06 2012-06-27 쇼와 덴코 가부시키가이샤 Niobium powder, niobium granules, niobium sinter and capacitor, and production processes thereof
JP2009196835A (en) * 2008-02-20 2009-09-03 Hydro-Device Co Ltd Hydrogen generating material and method for producing the hydrogen generating material
JP2012069789A (en) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
US8711546B2 (en) 2010-09-24 2014-04-29 Sanyo Electric Co., Ltd. Method of fabricating solid electrolytic capacitor and solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US6934146B2 (en) Niobium powder, niobium sintered body and capacitor using the sintered body
EP1618575B1 (en) Valve acting metal sintered body, production method therefor and solid electrolytic capacitor
US7594947B2 (en) Niobium powder, sintered body thereof, and capacitor using the same
JP4712883B2 (en) Niobium powder for capacitors, sintered niobium and capacitors
US6780218B2 (en) Production process for niobium powder
AU2001277734B2 (en) Niobium powder, sinter thereof, and capacitor using the body
JP4042995B2 (en) Niobium powder, niobium granulated product, niobium sintered body, capacitor, and production method thereof
US20090256014A1 (en) Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thererof
JP2009033182A (en) Method of manufacturing capacitor
EP1434243B1 (en) Niobium powder, sintered compact thereof, chemically modified product thereof and capacitor using them
JP2003003204A (en) Method for manufacturing niobium powder
JP4360680B2 (en) Niobium powder for capacitors, sintered niobium and capacitors
JP2002093666A (en) Niobium powder, sintered compact using the same and capacitor using the compact
RU2267182C2 (en) Niobium powder, sintered niobium material and capacitor made from this sintered material
JP4367827B2 (en) Niobium alloy, sintered body thereof, and capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524