JP2003000293A - Method for reducing 4-cyanoacetoacetate compound - Google Patents

Method for reducing 4-cyanoacetoacetate compound

Info

Publication number
JP2003000293A
JP2003000293A JP2001290838A JP2001290838A JP2003000293A JP 2003000293 A JP2003000293 A JP 2003000293A JP 2001290838 A JP2001290838 A JP 2001290838A JP 2001290838 A JP2001290838 A JP 2001290838A JP 2003000293 A JP2003000293 A JP 2003000293A
Authority
JP
Japan
Prior art keywords
gly
ala
val
leu
cyanoacetoacetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001290838A
Other languages
Japanese (ja)
Inventor
Shinya Ito
伸哉 伊藤
Ryuhei Wakita
龍平 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001290838A priority Critical patent/JP2003000293A/en
Publication of JP2003000293A publication Critical patent/JP2003000293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing the carbonyl group on the 3-position of a 4-cyanoacetoacetate compound. SOLUTION: This method for reducing the carbonyl group on the 3-position of the 4-cyanoacetoacetate compound comprises contacting the 4- cyanoacetoacetate compound of formula (1) (where, R is a 1-8C alkyl) with an enzyme (a), or (b) described below: (a) using an enzyme having a specific amino acid sequence, or (b) using an enzyme comprising an amino acid sequence where at least one amino acid is deleted from, substituted in or added to the above specific amino acid sequence and having the enzymatic activity to reduce the carbonyl group on the 3-position of the 4-cyanoacetoacetate compound of formula (1).

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は4−シアノアセト酢
酸エステル化合物の還元方法、詳しくは4−シアノアセ
ト酢酸エステル化合物の3位のカルボニル基の還元方法
に関する。 【0002】 【従来の技術および発明が解決しようとする課題】4−
シアノ−3−ヒドロキシブタン酸エステル化合物は医農
薬中間体として有用であり(例えば特表平5−3311
28号公報)、該化合物を製造するために4−シアノア
セト酢酸エステル化合物の3位のカルボニル基を還元す
る反応の開発が望まれている。 【0003】 【課題を解決するための手段】本発明者等は、4−シア
ノアセト酢酸エステル化合物の3位のカルボニル基を還
元する方法を鋭意検討した結果、後記一般式(1)で示
される4−シアノアセト酢酸エステル化合物に配列番号
1で示されるアミノ酸配列を有する酵素又は配列番号1
において1若しくは数個のアミノ酸が欠失、置換若しく
は付加されたアミノ酸配列からなり、かつ、一般式
(1)で示されるで示される4−シアノアセト酢酸エス
テル化合物の3位のカルボニル基を還元する酵素活性を
有する酵素を作用させることにより目的を達することを
見出し、本発明を完成した。 【0004】即ち、本発明は以下の発明を提供する。 一般式(1) 【化2】 (式中、RはC1−C8アルキル基を表す。) で示される4−シアノアセト酢酸エステル化合物に下記
a)またはb)を作用させることを特徴とする一般式
(1)で示される4−シアノアセト酢酸エステル化合物
の3位のカルボニル基の還元方法(以下、本発明方法と
記す。)。 a)配列番号1で示されるアミノ酸配列を有する酵素。 b)配列番号1において1若しくは数個のアミノ酸が欠
失、置換若しくは付加されたアミノ酸配列からなり、か
つ、一般式(1)で示される4−シアノアセト酢酸エス
テル化合物の3位のカルボニル基を還元する酵素活性を
有する酵素。(以下、a)およびb)をあわせて本酵素
と総称する。) 【0005】 【発明の実施の形態】本発明方法に用いられる一般式
(1)で示される4−シアノアセト酢酸エステル化合物
においてRで示されるC1−C8アルキル基としては、
例えばメチル基、エチル基、プロピル基、イソプロピル
基、ブチル基、ペンチル基、ヘキシル基、オクチル基が
挙げられる。 【0006】本発明方法に用いられる配列番号1で示さ
れるアミノ酸配列を有する酵素をコードする遺伝子配列
は配列番号2で示される(Appl. Microbiol. Biotechno
l (1999)52,386-392)。該酵素のアミノ酸配列をコード
する塩基配列を有する遺伝子は、天然に存在する遺伝子
であっても、天然に存在する遺伝子を変異処理(部分変
異導入法、突然変異処理等)を行ったものであってもよ
い。 【0007】本酵素は、例えば配列番号2で示される遺
伝子を含有し、該遺伝子が発現することによって配列番
号1で示されるアミノ酸配列を有する酵素を産生する微
生物を培養することにより製造することができる。配列
番号2で示される遺伝子を含有し、該遺伝子が発現する
ことによって配列番号1で示されるアミノ酸配列を有す
る酵素を産生する微生物は、天然に存在する微生物で
も、配列番号2で示される塩基配列を有する遺伝子を導
入した形質転換微生物であっても良い。 【0008】ここで、配列番号2で示される塩基配列を
有する遺伝子を導入した形質転換微生物の作成法につい
て説明する。配列番号2で示される塩基配列を有する遺
伝子を導入する宿主細胞としては、例えば、Escherichi
a、Bacillus、Corynebacterium、Staphylococcus、Stre
ptomyces、Saccharomyces、Kluyveromyces及びAspergil
lus属に属する微生物があげられる。該遺伝子を宿主細
胞へ導入する方法は、宿主となる細胞に応じて通常用い
られる方法であれば特に限定されるものではなく、例え
ば、「Molecular Cloning: ALaboratory Manual 2nd ed
ition」(1989), Cold Spring Harbor LaboratoryPres
s、「Current Protocols in Molecular Biology」(198
7), John Wiley & Sons, Inc. ISBNO-471-50338-X等に
記載される塩化カルシウム法や、「Methods inElectrop
oration:Gene Pulser /E.coli Pulser System」 Bio-Ra
d Laboratories, (1993)等に記載されるエレクトロポレ
ーション法が挙げられる。 【0009】該遺伝子が導入された形質転換微生物は、
遺伝子を宿主細胞に導入する際に用いられるベクターに
含まれる選択マーカー遺伝子の表現型等を指標にして選
抜することができる。形質転換微生物が該遺伝子を保有
していることは、該形質転換微生物からベクターDNA
を調製した後、調製されたDNAについて、例えば「モ
レキュラー・クローニング」(J.Sambrookら、コールド
・スプリング・ハーバー、1989年)等に記載される通常
の方法(制限酵素部位の確認、塩基配列の解析、サザン
ハイブリダイゼーション等)を行うことにより確認する
ことができる。 【0010】次に、本発明製造法に用いられる本酵素を
製造するために配列番号2で示される遺伝子を含有し、
該遺伝子が発現することによって配列番号1で示される
アミノ酸配列を有する酵素を産生する微生物を培養する
方法について説明する。 【0011】該微生物を培養する為の培地としては、微
生物の培養に通常使用される炭素源や窒素源、有機塩や
無機塩等を適宜含む各種の培地を用いることができる。 【0012】炭素源としては、例えばグルコース、デキ
ストリン、シュークロース等の糖類、グリセロール等の
糖アルコール、フマル酸、クエン酸、ピルビン酸等の有
機酸、動植物油、糖蜜が挙げられる。これら炭素源の培
地への添加量は、培地全量に対し通常、0.1〜20%
(w/v)程度とするとよい。 【0013】窒素源としては、肉エキス、ペプトン、酵
母エキス、麦芽エキス、大豆粉、コーン・スティープ・
リカー(Corn Steep Liquor )、綿実粉、乾燥酵母、カ
ザミノ酸等の天然有機窒素源やアミノ酸類、硝酸ナトリ
ウム、塩化アンモニウム、硫酸アンモニウム、リン酸ア
ンモニウム等の無機酸のアンモニウム塩や硝酸塩、フマ
ル酸アンモニウム、クエン酸アンモニウム等の有機酸の
アンモニウム塩、尿素などの有機または無機窒素源等が
挙げられる。これらのうち有機酸のアンモニウム塩、天
然有機窒素源、アミノ酸類等は、多くの場合、炭素源と
しても使用することができる。窒素源の添加量は培地全
量に対し通常、0.1〜30%(w/v)程度とすると
よい。 【0014】有機塩や無機塩としては、カリウム、ナト
リウム、マグネシウム、鉄、マンガン、コバルト、亜鉛
等の塩化物、硫酸塩、酢酸塩、炭酸塩類およびリン酸塩
類を挙げることができ、具体的には、塩化ナトリウム、
塩化カリウム、硫酸マグネシウム、硫酸第一鉄、硫酸マ
ンガン、塩化コバルト、硫酸亜鉛、硫酸銅、酢酸ナトリ
ウム、炭酸カルシウム、炭酸ナトリウム、リン酸水素一
カリウム、リン酸水素二カリウム等を挙げることができ
る。有機塩や無機塩の添加量は培地全量に対し通常、
0.0001〜5%(w/v)程度とするとよい。 【0015】さらに、tacプロモーター、trcプロモータ
ー、lacプロモーター等のアロラクトースで誘導される
タイプのプロモーターと本酵素をコードする遺伝子とが
機能可能な形で接続されてなる遺伝子が導入された宿主
細胞の場合には、該酵素の生産を誘導するための誘導剤
として、例えばisopropyl thio-β-D-galactoside(IPT
G)を培地中に少量加えてもよい。 【0016】培養は、微生物の培養に通常使用される方
法に準じて行うことができ、例えば試験管振盪式培養、
往復式振盪培養、ジャーファーメンター(Jar Fermente
r)培養、タンク培養等の液体培養、固体培養等の方法が
可能である。ジャーファーメンターを用いる場合には、
ジャーファーメンター内に無菌空気を導入する必要があ
り、通常、培養液容量の約0.1〜約2倍/分の通気条
件を用いる。培養温度は、35〜42℃の範囲が好まし
く、培地のpHとしては、約6〜約8の範囲が好まし
い。 培養時間は、培養条件によって異なるが、通常約
1日間〜約5日間が望ましい。 【0017】本発明製造法には、例えばこのようにして
得られた本酵素を含有する菌体、菌体処理物、または本
酵素の精製物を用いることができる。 【0018】ここで菌体処理物としては、例えば、凍結
乾燥菌体、有機溶媒処理菌体、乾燥菌体、菌体摩砕物、
菌体の自己消化物、菌体の超音波処理物、菌体抽出物、
菌体のアルカリ処理物を挙げることができ、さらにこれ
ら通常用いられる方法で固定化したものがあげられる。 【0019】本酵素の精製物は例えば本酵素を有する微
生物の培養物から本酵素を精製することにより製造する
ことができきる。本酵素を有する微生物の培養物から本
酵素を精製する方法としては、通常のタンパク質の精製
において使用される方法を適用することができ、例えば
次のような方法を挙げることができる。まず、微生物の
培養物から遠心分離等により菌体を集めた後、これを超
音波処理、ダイノミル処理、フレンチプレス処理等の物
理的破砕方法、または界面活性剤もしくはリゾチーム等
の菌体溶菌酵素を用いる化学的破砕方法等によって破砕
する。得られた破砕液から遠心分離、メンブレンフィル
ターろ過等により不溶物を除去して無細胞抽出液を調製
し、これを陽イオン交換クロマトグラフィー、陰イオン
交換クロマトグラフィー、疎水クロマトグラフィー、ゲ
ルクロマトグラフィー等の分離精製方法を適宜用いて分
画することによって本還元酵素を精製することができ
る。クロマトグラフィーに使用する担体としては、例え
ば、カルボキシメチル(CM)基、DEAE基、フェニ
ル基もしくはブチル基等を導入したセルロース、デキス
トランまたはアガロース等の樹脂担体が挙げられる。市
販の担体充填済みカラムを用いることもでき、例えば、
Q-Sepharose FF、Phenyl-Sepharose HP(商品名、いず
れもアマシャム ファルマシア バイオテク社製)、T
SK−gel G3000SW(商品名、東ソー社製)
等が挙げられる。 【0020】続いて、本発明方法について説明する。本
発明方法の一般式(1)で示される4−シアノアセト酢
酸エステル化合物の3位のカルボニル基を還元する反応
は一般式(1)で示される4−シアノアセト酢酸エステ
ル化合物に本酵素を作用させることによって達成され
る。該反応は通常、水の存在下で行われ、水は緩衝液の
形態であってもよく、この場合に用いられる緩衝剤とし
ては、例えばリン酸ナトリウム、リン酸カリウム等のリ
ン酸アルカリ金属塩、酢酸ナトリウム、酢酸カリウム等
の酢酸のアルカリ金属塩が挙げられる。この場合のpH
は反応が進行する範囲内で適宜変化させることができ
る。 【0021】緩衝液を溶媒として用いる場合、その量は
一般式(1)で示される4−シアノアセト酢酸エステル
化合物1重量部に対して、通常100重量部以下であ
る。 【0022】反応温度は、本酵素の安定性、反応速度の
点から0〜70℃であり、好ましくは10〜40℃であ
る。 【0023】該反応は、水の他に有機溶媒の共存下に行
うこともできる。この場合の有機溶媒としては、例え
ば、テトラヒドロフラン、t−ブチルメチルエーテル、
イソプロピルエーテルなどのエーテル類、トルエン、ヘ
キサン、シクロヘキサン、ヘプタン、イソオクタン、デ
カンなどの炭化水素類、t−ブタノール、メタノール、
エタノール、イソプロパノール、n−ブタノールなどの
アルコール類、ジメチルスルホキサイドなどのスルホキ
サイド類、アセトンなどのケトン類、アセトニトリルな
どのニトリル類およびこれらの混合物が挙げられる。反
応に使用する有機溶媒の量は、一般式(1)で示される
4−シアノアセト酢酸エステル化合物1重量部に対して
通常は100重量部以下であり、好ましくは50重量部
以下である。 【0024】該反応はさらに、補酵素(例えばNAD
H、NADPH)を加えて行うこともできる。反応に用
いられる補酵素の量は一般式(1)で示される4−シア
ノアセト酢酸エステル化合物に対して通常0.5重量倍
以下、好ましくは0.1重量倍以下である。反応に補酵
素を加える場合、補酵素の効率を高めるために、さらに
以下のものを加えることが好ましい。 1)ギ酸、グルコース、イソプロパノ−ル、2−ブタノ
ール、2−ペンタノール、2−ヘキサノール、2−ヘプ
タノール、2−オクタノール等の化合物 この場合に用いられるこれらの化合物の量は一般式
(1)で示される4−シアノアセト酢酸エステル化合物
に対して100重量倍以下、好ましくは10重量倍以下
である。 2)ギ酸脱水素酵素、グルコース脱水素酵素等の脱水素
酵素 この場合に用いられる脱水素酵素の量は、一般式(1)
で示される4−シアノアセト酢酸エステル化合物に対し
て0.1重量倍以下、好ましくは0.05重量倍以下で
ある。 【0025】該反応は、例えば、水、一般式(1)で示
される4−ブロモアセト酢酸エステル化合物、本酵素、
必要に応じて補酵素、有機溶媒を混合し、攪拌、振盪す
ることにより行うことができる。 【0026】反応の終点は例えば反応液中の原料化合物
の存在量を液体クロマトグラフィー、ガスクロマトグラ
フィー等により追跡することにより決定することができ
る。反応時間の範囲は、通常5分間〜4日間の範囲であ
る。 【0027】反応終了後は、必要に応じて反応液をヘキ
サン、ヘプタン、tert−ブチルメチルエーテル、酢
酸エチル、トルエン等の有機溶媒で抽出し、有機層を乾
燥した後、濃縮することにより還元生成物を単離するこ
とができる。還元生成物は、必要によりカラムクロマト
グラフィー等により精製することができる。 【0028】本発明方法に用いる4−シアノアセト酢酸
エステル化合物は、例えば4−ブロモアセト酢酸エステ
ル化合物とシアン化カリウムをメタノール中で反応させ
ることにより製造することができる。 【0029】本発明製造法には、a)配列番号1で示さ
れるアミノ酸配列を有する酵素の代わりに、b)配列番
号1において1若しくは数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列からなり、かつ、一般式
(1)で示される4−シアノアセト酢酸エステル化合物
を一般式(2)で示される光学活性4−シアノ−3−ヒ
ドロキシブタン酸エステル化合物に還元する酵素活性を
有する酵素を用いることもできる。この場合は、例え
ば、配列番号2で示されるDNAに、例えばDNAに点
変異等を生じさせるための周知技術である、部位特定変
異誘導法;DNAを選択的に開裂し、次いで選択された
ヌクレオチドを除去又は付加し、DNAを連結する方
法;又はオリゴヌクレオチド変異誘導体法を施すことに
より作成できる、配列番号1において1若しくは数個の
アミノ酸が欠失、置換若しくは付加されたアミノ酸配列
からなり、かつ、一般式(1)で示される4−シアノア
セト酢酸エステル化合物を一般式(2)で示される光学
活性4−シアノ−3−ヒドロキシブタン酸エステル化合
物に還元する酵素活性を有する酵素をコードする遺伝子
を作成し、前記と同様に形質転換体の作成、培養、反応
等を行い本発明製造法を行うことができる。 【0030】 【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれらの例に限定されるものではな
い。 【0031】実施例 フラスコに液体培地(水1000mlにトリプトン10
g、酵母エキス5g及び塩化ナトリウム5gを溶解し、
1N水酸化ナトリウム水溶液を滴下することにより、p
H7.0としたもの。)900mlを入れて滅菌した
後、アンピシリンを100μg/ml、isopropyl thio
-β-D-galactoside(IPTG)を0.4mMになるように
加え、ここに配列番号2で示されるDNAを含有するプ
ラスミドpUAR(受託番号:FERM P−1812
7)でE. coli JM109株を常法により形質転換した形質
転換体E. coli JM109/pUAR株を前記組成の液体培地で培
養した培養液1mlを接種し、37℃で14時間振盪培
養した。この培養液を遠心分離(15000×g、15
分、4℃)して得られた菌体を50mMリン酸1カリウ
ム−リン酸2カリウムバッファー(pH7.0)30m
lに懸濁し、この懸濁液を遠心分離(15000×g、
15分、4℃)して洗浄菌体を得た。4−シアノアセト
酢酸エチル21mg、50mMリン酸1カリウム−リン
酸2カリウムバッファー(pH7.0、NAD+ 1m
Mを溶解)1mlを混合し、ここに2−プロパノール7
5μl、デカン1.5mlを加えた。ここに上記洗浄菌
体200mgをリン酸1カリウム−リン酸2カリウムバ
ッファー(pH7.0)0.5mlに懸濁したものを注
加して、室温で24時間攪拌した。その後、反応液に酢
酸エチル3mlを加え、激しく攪拌した。この液を遠心
分離(3500rpm、10分)し、得られた有機層を
ガスクロマトグラフィー分析に付した。4−シアノ−3
−ヒドロキシブタン酸エチルの標品と保持時間が一致す
ること、およびマススペクトルのデータより、4−シア
ノアセト酢酸エチルの3位のカルボニル基が還元された
化合物である4−シアノ−3−ヒドロキシブタン酸エチ
ルの生成を確認した。 MS:(m/z) 157(M+)、130、117、
112 【0032】ガスクロマトグラフィー分析条件 カラム:DB−1(J&Wサイエンス社製)0.53m
mφ×30m、膜厚1.5μm 注入口温度:120℃ カラム室温度:50℃→(4℃/分)→170℃ FID検出器温度:300℃ キャリアガス:ヘリウム 流速:10ml/分 4−シアノ−3−ヒドロキシブタン酸エチルの保持時間
14分 【0033】 【発明の効果】本発明の還元方法により4−シアノアセ
ト酢酸エステル化合物の3位のカルボニル基を還元する
ことができる。 【0034】 【配列表】 SEQUENCE LISTING <110> Sumitomo Chemical Co., Ltd. <120> Reduction method of 4-cyanoacetoacetic acid ester <130> P153363 <150> JP 2000-372705 <151> 2000-12-07 <160> 2 <210> 1 <211> 385 <212> PRT <213> Corynebacterium sp. <400> 1 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 Gly Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 Ala Ser Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 Arg 385 <210> 2 <211> 1158 <212> DNA <213> Corynebacterium sp. <220> <221> CDS <222> (1)..(1158) <400> 2 atg aag gcg atc cag tac acg cga atc ggc gcg gaa ccc gaa ctc acg 48 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 gag att ccc aaa ccc gag ccc ggt cca ggt gaa gtg ctc ctg gaa gtc 96 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 acc gct gct ggc gtc tgc cac tcg gac gac ttc atc atg agc ctg ccc 144 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 gaa gag cag tac acc tac ggc ctt ccg ctc acg ctc ggc cac gaa ggc 192 Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 gca ggc aag gtc gcc gcc gtc ggc gag ggt gtc gaa ggt ctc gac atc 240 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 gga acc aat gtc gtc gtc tac ggg cct tgg ggt tgc ggc aac tgt tgg 288 Gly Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 cac tgc tca caa gga ctc gag aac tat tgc tct cgc gcc caa gaa ctc 336 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 gga atc aat cct ccc ggt ctc ggt gca ccc ggc gcg ttg gcc gag ttc 384 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 atg atc gtc gat tct cct cgc cac ctt gtc ccg atc ggt gac ctc gac 432 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 ccg gtc aag acg gtg ccg ctg acc gac gcc ggt ctg acg ccg tat cac 480 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 gcg atc aag cgt tct ctg ccg aaa ctt cgc gga ggc tcg tac gcg gtt 528 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 gtc att ggt acc ggc ggt ctc ggc cac gtc gct att cag ctc ctc cgc 576 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 cac ctc tcg gcg gca acg gtc atc gct ttg gac gtg agc gcg gac aag 624 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 ctc gaa ctg gca acc aag gta ggc gct cac gaa gtg gtt ctg tcc gac 672 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 aag gac gcg gcc gag aac gtc cgc aag atc act gga agt caa ggc gcc 720 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 gca ttg gtt ctc gac ttc gtc ggc tac cag ccc acc atc gac acc gcg 768 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 atg gct gtc gcc ggc gtc gga tca gac gtc acg atc gtc ggg atc ggg 816 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 gac ggc cag gcc cac gcc aaa gtc ggg ttc ttc caa agt cct tac gag 864 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 gct tcg gtg aca gtt ccg tat tgg ggt gcc cgc aac gag ttg atc gaa 912 Ala Ser Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 ttg atc gac ctc gcc cac gcc ggc atc ttc gac atc ggc ggt gga gac 960 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 ctt cag tct cga caa cgg tgc cga agc gta tcg acg act ggc tgc cgg 1008 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 aac gct cag cgg ccg tgc ggt tgt ggt ccc tgg tct gta gta ccg aca 1056 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 gcg gta gaa cga cag cgg aaa aac act gat gcc cgg ccg aat tcg att 1104 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 cgg ccg ggc atc agt gtc aga aat tcg gtg tgc gct agc tgc acg cct 1152 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 cga tga 1158 Arg 385
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing a 4-cyanoacetoacetate compound, and more particularly to a method for reducing a carbonyl group at the 3-position of a 4-cyanoacetoacetate compound. 2. Description of the Related Art
The cyano-3-hydroxybutanoate compound is useful as an intermediate for medical and agricultural chemicals (for example, Japanese Patent Application Laid-Open No. Hei 5-3311).
No. 28), the development of a reaction for reducing the carbonyl group at the 3-position of a 4-cyanoacetoacetate compound to produce the compound is desired. The inventors of the present invention have conducted intensive studies on a method for reducing the carbonyl group at the 3-position of a 4-cyanoacetoacetate compound, and as a result, have found that a compound represented by the following general formula (1): An enzyme having an amino acid sequence represented by SEQ ID NO: 1 in a cyanoacetoacetic acid ester compound or SEQ ID NO: 1
Wherein the enzyme comprises an amino acid sequence in which one or several amino acids have been deleted, substituted or added, and reduces the 3-position carbonyl group of a 4-cyanoacetoacetate compound represented by the general formula (1): It has been found that the objective is achieved by the action of an enzyme having activity, and the present invention has been completed. That is, the present invention provides the following inventions. General formula (1) (Wherein, R represents a C1-C8 alkyl group.) 4-cyanoacetoacetate represented by the general formula (1), wherein the following a) or b) is allowed to act on a 4-cyanoacetoacetate compound represented by the following formula: A method for reducing the carbonyl group at the 3-position of an acetate compound (hereinafter, referred to as the method of the present invention). a) An enzyme having the amino acid sequence represented by SEQ ID NO: 1. b) the amino acid sequence of SEQ ID NO: 1 in which one or several amino acids are deleted, substituted or added, and the carbonyl group at the 3-position of the 4-cyanoacetoacetate compound represented by the general formula (1) is reduced An enzyme having an enzymatic activity. (Hereinafter a) and b) are collectively referred to as the present enzyme. The C1-C8 alkyl group represented by R in the 4-cyanoacetoacetate compound represented by the general formula (1) used in the method of the present invention includes:
Examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, and an octyl group. The gene sequence encoding the enzyme having the amino acid sequence shown in SEQ ID NO: 1 used in the method of the present invention is shown in SEQ ID NO: 2 (Appl. Microbiol. Biotechno.
l (1999) 52,386-392). The gene having the base sequence encoding the amino acid sequence of the enzyme may be a naturally occurring gene obtained by subjecting a naturally occurring gene to a mutation treatment (partial mutation introduction method, mutation treatment, etc.). You may. The present enzyme can be produced, for example, by culturing a microorganism containing the gene represented by SEQ ID NO: 2 and producing an enzyme having the amino acid sequence represented by SEQ ID NO: 1 when the gene is expressed. it can. A microorganism containing the gene represented by SEQ ID NO: 2 and producing an enzyme having the amino acid sequence represented by SEQ ID NO: 1 when the gene is expressed is a nucleotide sequence represented by SEQ ID NO: 2 even in a naturally occurring microorganism. May be a transformed microorganism into which a gene having Here, a method for preparing a transformed microorganism into which a gene having the nucleotide sequence of SEQ ID NO: 2 has been introduced will be described. As a host cell into which a gene having the nucleotide sequence represented by SEQ ID NO: 2 is introduced, for example, Escherichi
a, Bacillus, Corynebacterium, Staphylococcus, Stre
ptomyces, Saccharomyces, Kluyveromyces and Aspergil
Microorganisms belonging to the genus lus can be mentioned. Method for introducing the gene into a host cell is not particularly limited as long as the normal methods used depending on the cell as a host, for example, "Molecular Cloning: ALaboratory Manual 2 nd ed
ition "(1989), Cold Spring Harbor Laboratory Pres
s, `` Current Protocols in Molecular Biology '' (198
7), John Wiley & Sons, Inc. ISBNO-471-50338-X, etc.
oration: Gene Pulser /E.coli Pulser System '' Bio-Ra
d Laboratories, (1993) and the like. The transformed microorganism into which the gene has been introduced is
Selection can be performed using the phenotype of the selectable marker gene contained in the vector used when introducing the gene into the host cell as an index. The fact that the transformed microorganism has the gene means that the transformed microorganism
Is prepared, and the prepared DNA is subjected to a conventional method (confirmation of restriction enzyme site, nucleotide sequence, etc.) described in, for example, "Molecular cloning" (J. Sambrook et al., Cold Spring Harbor, 1989). Analysis, Southern hybridization, etc.). Next, in order to produce the present enzyme used in the production method of the present invention, it contains the gene represented by SEQ ID NO: 2,
A method for culturing a microorganism that produces an enzyme having the amino acid sequence represented by SEQ ID NO: 1 when the gene is expressed will be described. As a medium for culturing the microorganism, various media containing a carbon source, a nitrogen source, an organic salt, an inorganic salt and the like which are usually used for culturing a microorganism can be used. Examples of the carbon source include sugars such as glucose, dextrin and sucrose, sugar alcohols such as glycerol, organic acids such as fumaric acid, citric acid and pyruvic acid, animal and vegetable oils, and molasses. The amount of these carbon sources added to the medium is usually 0.1 to 20% based on the total amount of the medium.
(W / v). [0013] Nitrogen sources include meat extract, peptone, yeast extract, malt extract, soy flour, corn steep,
Natural organic nitrogen sources and amino acids such as liquor (Corn Steep Liquor), cottonseed flour, dried yeast and casamino acid, ammonium salts and nitrates of inorganic acids such as sodium nitrate, ammonium chloride, ammonium sulfate and ammonium phosphate, and ammonium fumarate And ammonium salts of organic acids such as ammonium citrate, and organic or inorganic nitrogen sources such as urea. Of these, ammonium salts of organic acids, natural organic nitrogen sources, amino acids and the like can often be used as carbon sources. The amount of addition of the nitrogen source may be usually about 0.1 to 30% (w / v) based on the total amount of the medium. Examples of the organic and inorganic salts include chlorides, sulfates, acetates, carbonates and phosphates such as potassium, sodium, magnesium, iron, manganese, cobalt and zinc. Is sodium chloride,
Examples thereof include potassium chloride, magnesium sulfate, ferrous sulfate, manganese sulfate, cobalt chloride, zinc sulfate, copper sulfate, sodium acetate, calcium carbonate, sodium carbonate, monopotassium hydrogen phosphate, and dipotassium hydrogen phosphate. The amount of organic or inorganic salt added is usually
It is good to be about 0.0001-5% (w / v). Further, a host cell into which a gene obtained by operably connecting a promoter of the type induced by allolactose such as a tac promoter, a trc promoter, a lac promoter and a gene encoding the present enzyme is introduced. In some cases, as an inducer for inducing the production of the enzyme, for example, isopropyl thio-β-D-galactoside (IPT
G) may be added in a small amount to the medium. The cultivation can be carried out according to a method usually used for culturing microorganisms.
Reciprocating shaking culture, Jar Fermente
r) Methods such as liquid culture such as culture and tank culture, and solid culture are possible. When using a jar fermenter,
It is necessary to introduce sterile air into the jar fermenter, and usually aeration conditions of about 0.1 to about 2 times / min of the volume of the culture solution are used. The culture temperature is preferably in the range of 35 to 42 ° C, and the pH of the medium is preferably in the range of about 6 to about 8. The culturing time varies depending on the culturing conditions, but is usually about
1 day to about 5 days is desirable. In the production method of the present invention, for example, the cells containing the present enzyme thus obtained, processed cells thereof, or purified products of the present enzyme can be used. Examples of the treated cells include freeze-dried cells, organic solvent-treated cells, dried cells, ground cells,
Autolysed cells of the cells, sonicated cells, cell extracts,
Alkali-treated cells can be mentioned, and those immobilized by these commonly used methods can also be mentioned. The purified product of the present enzyme can be produced, for example, by purifying the present enzyme from a culture of a microorganism having the present enzyme. As a method for purifying the present enzyme from a culture of a microorganism having the present enzyme, a method used in ordinary protein purification can be applied, and examples thereof include the following methods. First, cells are collected from the culture of the microorganism by centrifugation or the like, and then subjected to ultrasonic treatment, dynomill treatment, a physical crushing method such as French press treatment, or a cell lysing enzyme such as a surfactant or lysozyme. Crushing is performed according to the chemical crushing method used. Insoluble matter is removed from the obtained crushed liquid by centrifugation, filtration with a membrane filter, etc. to prepare a cell-free extract, which is then subjected to cation exchange chromatography, anion exchange chromatography, hydrophobic chromatography, gel chromatography, etc. The present reductase can be purified by fractionation using the separation and purification method described above as appropriate. Examples of the carrier used for chromatography include resin carriers such as cellulose, dextran, and agarose, into which a carboxymethyl (CM) group, a DEAE group, a phenyl group, a butyl group, or the like has been introduced. A commercially available carrier-packed column can also be used, for example,
Q-Sepharose FF, Phenyl-Sepharose HP (trade names, all manufactured by Amersham Pharmacia Biotech), T
SK-gel G3000SW (trade name, manufactured by Tosoh Corporation)
And the like. Next, the method of the present invention will be described. In the method of the present invention, the reaction of reducing the carbonyl group at the 3-position of the 4-cyanoacetoacetate compound represented by the general formula (1) comprises reacting the 4-cyanoacetoacetate compound represented by the general formula (1) with the present enzyme. Achieved by The reaction is usually performed in the presence of water, and water may be in the form of a buffer. In this case, examples of the buffer include alkali metal phosphates such as sodium phosphate and potassium phosphate. And alkali metal salts of acetic acid such as sodium acetate and potassium acetate. PH in this case
Can be appropriately changed within a range in which the reaction proceeds. When a buffer is used as a solvent, the amount is usually 100 parts by weight or less based on 1 part by weight of the 4-cyanoacetoacetic ester compound represented by the general formula (1). The reaction temperature is from 0 to 70 ° C, preferably from 10 to 40 ° C, in view of the stability and reaction rate of the enzyme. The reaction can be carried out in the presence of an organic solvent in addition to water. As the organic solvent in this case, for example, tetrahydrofuran, t-butyl methyl ether,
Ethers such as isopropyl ether, hydrocarbons such as toluene, hexane, cyclohexane, heptane, isooctane and decane, t-butanol, methanol,
Examples thereof include alcohols such as ethanol, isopropanol and n-butanol, sulfoxides such as dimethyl sulfoxide, ketones such as acetone, nitriles such as acetonitrile, and mixtures thereof. The amount of the organic solvent used in the reaction is usually 100 parts by weight or less, preferably 50 parts by weight or less, based on 1 part by weight of the 4-cyanoacetoacetate compound represented by the general formula (1). The reaction further comprises a coenzyme (eg, NAD
H, NADPH). The amount of the coenzyme used in the reaction is usually 0.5 times by weight or less, preferably 0.1 times by weight or less, based on the 4-cyanoacetoacetate compound represented by the general formula (1). When a coenzyme is added to the reaction, it is preferable to further add the following in order to increase the efficiency of the coenzyme. 1) Compounds such as formic acid, glucose, isopropanol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol and 2-octanol The amount of these compounds used in this case is represented by the general formula (1). It is 100 times by weight or less, preferably 10 times by weight or less, based on the 4-cyanoacetoacetic acid ester compound shown. 2) Dehydrogenases such as formate dehydrogenase and glucose dehydrogenase The amount of dehydrogenase used in this case is determined by the general formula (1)
Is 0.1 times by weight or less, preferably 0.05 times by weight or less with respect to the 4-cyanoacetoacetate compound represented by the formula: The reaction is carried out by, for example, water, a 4-bromoacetoacetic ester compound represented by the general formula (1), the present enzyme,
If necessary, the reaction can be carried out by mixing a coenzyme and an organic solvent, stirring and shaking. The end point of the reaction can be determined, for example, by following the amount of the starting compound in the reaction solution by liquid chromatography, gas chromatography or the like. The range of the reaction time is usually from 5 minutes to 4 days. After completion of the reaction, if necessary, the reaction solution is extracted with an organic solvent such as hexane, heptane, tert-butyl methyl ether, ethyl acetate, toluene, and the like, and the organic layer is dried and concentrated to reduce the product. Can be isolated. The reduction product can be purified by column chromatography or the like, if necessary. The 4-cyanoacetoacetate compound used in the method of the present invention can be produced, for example, by reacting a 4-bromoacetoacetate compound with potassium cyanide in methanol. In the production method of the present invention, a) an amino acid sequence having the amino acid sequence represented by SEQ ID NO: 1 instead of b) an amino acid sequence in which one or several amino acids are deleted, substituted or added in SEQ ID NO: 1 And an enzyme having an enzymatic activity for reducing a 4-cyanoacetoacetate compound represented by the general formula (1) to an optically active 4-cyano-3-hydroxybutanoate compound represented by the general formula (2) It can also be used. In this case, for example, a site-specific mutagenesis method, which is a well-known technique for causing a point mutation or the like in the DNA shown in SEQ ID NO: 2, for example; A DNA sequence comprising the amino acid sequence of SEQ ID NO: 1 wherein one or several amino acids have been deleted, substituted or added; A gene encoding an enzyme having an enzymatic activity for reducing a 4-cyanoacetoacetic ester compound represented by the general formula (1) to an optically active 4-cyano-3-hydroxybutanoate compound represented by the general formula (2). The method of the present invention can be carried out by preparing, culturing, reacting, etc. in the same manner as described above. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. EXAMPLE A liquid medium (tryptone 10 in 1000 ml of water) was added to a flask.
g, 5 g of yeast extract and 5 g of sodium chloride,
By dropping a 1N aqueous solution of sodium hydroxide, p
H7.0. ) 900 ml was added and sterilized, then 100 μg / ml ampicillin, isopropyl thio
-β-D-galactoside (IPTG) was added to 0.4 mM, and the plasmid pUAR containing the DNA shown in SEQ ID NO: 2 (Accession number: FERM P-1812)
The transformant E. coli JM109 / pUAR obtained by transforming the E. coli JM109 strain by the conventional method in 7) was inoculated with 1 ml of a culture solution cultured in a liquid medium having the above composition, and cultured with shaking at 37 ° C. for 14 hours. The culture was centrifuged (15000 × g, 15
For 30 minutes at 4 ° C.), and the obtained cells are treated with a 50 mM monopotassium phosphate-dipotassium phosphate buffer (pH 7.0) 30 m
l, and the suspension is centrifuged (15000 xg,
(15 minutes, 4 ° C.) to obtain washed cells. 21 mg of ethyl 4-cyanoacetoacetate, 50 mM monopotassium phosphate-dipotassium phosphate buffer (pH 7.0, NAD + 1 m
M was dissolved) and 1 ml of 2-propanol 7 was added thereto.
5 μl and 1.5 ml of decane were added. A suspension obtained by suspending 200 mg of the washed cells in 0.5 ml of a potassium phosphate-dipotassium phosphate buffer (pH 7.0) was added thereto, followed by stirring at room temperature for 24 hours. Thereafter, 3 ml of ethyl acetate was added to the reaction solution, followed by vigorous stirring. This solution was centrifuged (3500 rpm, 10 minutes), and the obtained organic layer was subjected to gas chromatography analysis. 4-cyano-3
From the fact that the retention time is the same as that of the sample of ethyl-hydroxybutanoate, and from the mass spectrum data, it is found that 4-cyano-3-hydroxybutanoic acid is a compound in which the carbonyl group at the 3-position of ethyl 4-cyanoacetoacetate has been reduced. The formation of ethyl was confirmed. MS: (m / z) 157 (M <+> ), 130, 117,
112 Gas chromatography analysis column: DB-1 (manufactured by J & W Science) 0.53 m
mφ × 30 m, film thickness 1.5 μm Inlet temperature: 120 ° C. Column chamber temperature: 50 ° C. → (4 ° C./min)→170° C. FID detector temperature: 300 ° C. Carrier gas: Helium flow rate: 10 ml / min 4-cyano The retention time of ethyl 3-hydroxybutanoate is 14 minutes. According to the reduction method of the present invention, the carbonyl group at the 3-position of the 4-cyanoacetoacetate compound can be reduced. [Sequence List] SEQUENCE LISTING <110> Sumitomo Chemical Co., Ltd. <120> Reduction method of 4-cyanoacetoacetic acid ester <130> P153363 <150> JP 2000-372705 <151> 2000-12-07 <160> 2 <210> 1 <211> 385 <212> PRT <213> Corynebacterium sp. <400> 1 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 Glu Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu Thr Leu Gly His Glu Gly 50 55 60 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 Gly Thr Asn Val Val Val Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85 90 95 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 14 5 150 155 160 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 Ala Ser Val Thr Val Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 35 5 360 365 Arg Pro Gly Ile Ser Val Arg Asn Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 Arg 385 <210> 2 <211> 1158 <212> DNA <213> Corynebacterium sp. <220><221> CDS <222> (1) .. (1158) <400> 2 atg aag gcg atc cag tac acg cga atc ggc gcg gaa ccc gaa ctc acg 48 Met Lys Ala Ile Gln Tyr Thr Arg Ile Gly Ala Glu Pro Glu Leu Thr 1 5 10 15 gag att ccc aaa ccc gag ccc ggt cca ggt gaa gtg ctc ctg gaa gtc 96 Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu Leu Glu Val 20 25 30 acc gct gct ggc gtc tgc cac tcg gac gac ttc atc agc ctg ccc 144 Thr Ala Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35 40 45 gaa gag cag tac acc tac ggc ctt ccg ctc acg ctc ggc cac gaa ggc 192 Glu Glu Glu Tln Thr Tyr Gly Leu Prou Thr Leu Gly His Glu Gly 50 55 60 gca ggc aag gtc gcc gcc gtc ggc gag ggt gtc gaa ggt ctc gac atc 240 Ala Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile 65 70 75 80 gga acc aat gtc gtc gtc tac ggg cct tgg ggt tgc ggc aac tgt tgg 288 Gly Thr Asn Val Val Val Tyr Gly Pr o Trp Gly Cys Gly Asn Cys Trp 85 90 95 cac tgc tca caa gga ctc gag aac tat tgc tct cgc gcc caa gaa ctc 336 His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg Ala Gln Glu Leu 100 105 110 gga atc aat cct ccc ggt ctc ggt gca ccc ggc gcg ttg gcc gag ttc 384 Gly Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115 120 125 atg atc gtc gat tct cct cgc cac ctt gtc ccg atc ggt gac Met Ile Val Asp Ser Pro Arg His Leu Val Pro Ile Gly Asp Leu Asp 130 135 140 ccg gtc aag acg gtg ccg ctg acc gac gcc ggt ctg acg ccg tat cac 480 Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His 145 150 155 160 gcg atc aag cgt tct ctg ccg aaa ctt cgc gga ggc tcg tac gcg gtt 528 Ala Ile Lys Arg Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165 170 175 gtc att ggt acc ggc ggt cac gtc gct att cag ctc ctc cgc 576 Val Ile Gly Thr Gly Gly Leu Gly His Val Ala Ile Gln Leu Leu Arg 180 185 190 cac ctc tcg gcg gca acg gtc atc gct ttg gac gtg agc gcg gac Aag Ala Ala His 624 His Thr V al Ile Ala Leu Asp Val Ser Ala Asp Lys 195 200 205 ctc gaa ctg gca acc aag gta ggc gct cac gaa gtg gtt ctg tcc gac 672 Leu Glu Leu Ala Thr Lys Val Gly Ala His Glu Val Val Leu Ser Asp 210 215 220 aag gac gcg gcc gag aac gtc cgc aag atc act gga agt caa ggc gcc 720 Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly Ala 225 230 235 240 gca ttg gtt ctc gac ttc gtc ggc tac cag ccc acc acc gcg 768 Ala Leu Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala 245 250 255 atg gct gtc gcc ggc gtc gga tca gac gtc acg atc gtc ggg atc ggg 816 Met Ala Val Ala Gly Val Gly Ser Asp Val Thr Ile Val Gly Ile Gly 260 265 270 gac ggc cag gcc cac gcc aaa gtc ggg ttc ttc caa agt cct tac gag 864 Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro Tyr Glu 275 280 285 gct tcg gtg aca g tat tgg ggt gcc cgc aac gag ttg atc gaa 912 Ala Ser Val Thr Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290 295 300 ttg atc gac ctc gcc cac gcc ggc atc ttc gac atc ggc ggt gga gac 960 Le L eu Ala His Ala Gly Ile Phe Asp Ile Gly Gly Gly Asp 305 310 315 320 ctt cag tct cga caa cgg tgc cga agc gta tcg acg act ggc tgc cgg 1008 Leu Gln Ser Arg Gln Arg Cys Arg Ser Val Ser Thr Thr Gly Cys Arg 325 330 335 aac gct cag cgg ccg tgc ggt tgt ggt ccc tgg tct gta gta ccg aca 1056 Asn Ala Gln Arg Pro Cys Gly Cys Gly Pro Trp Ser Val Val Pro Thr 340 345 350 gcg gta gaa cga cag cgg aaa aac act gat gcc cgg ccg aat tcg att 1104 Ala Val Glu Arg Gln Arg Lys Asn Thr Asp Ala Arg Pro Asn Ser Ile 355 360 365 cgg ccg ggc atc agt gtc aga aat tcg gtg tgc gct agc tgc acg cct 1152 Arg Pro Gly Asle Ser Val Ser Val Cys Ala Ser Cys Thr Pro 370 375 380 cga tga 1158 Arg 385

Claims (1)

【特許請求の範囲】 【請求項1】一般式(1) 【化1】 (式中、RはC1−C8アルキル基を表す。) で示される4−シアノアセト酢酸エステル化合物に下記
a)またはb)を作用させることを特徴とする一般式
(1)で示される4−シアノアセト酢酸エステル化合物
の3位のカルボニル基の還元方法。 a)配列番号1で示されるアミノ酸配列を有する酵素。 b)配列番号1において1若しくは数個のアミノ酸が欠
失、置換若しくは付加されたアミノ酸配列からなり、か
つ、一般式(1)で示される4−シアノアセト酢酸エス
テル化合物の3位のカルボニル基を還元する酵素活性を
有する酵素。
[Claim 1] The general formula (1) (Wherein, R represents a C1-C8 alkyl group.) 4-cyanoacetoacetate represented by the general formula (1), wherein the following a) or b) is allowed to act on a 4-cyanoacetoacetate compound represented by the following formula: A method for reducing a carbonyl group at the 3-position of an acetate compound. a) An enzyme having the amino acid sequence represented by SEQ ID NO: 1. b) the amino acid sequence of SEQ ID NO: 1 in which one or several amino acids are deleted, substituted or added, and the carbonyl group at the 3-position of the 4-cyanoacetoacetate compound represented by the general formula (1) is reduced An enzyme having an enzymatic activity.
JP2001290838A 2000-12-07 2001-09-25 Method for reducing 4-cyanoacetoacetate compound Pending JP2003000293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290838A JP2003000293A (en) 2000-12-07 2001-09-25 Method for reducing 4-cyanoacetoacetate compound

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000372705 2000-12-07
JP2000-372705 2000-12-07
JP2001290838A JP2003000293A (en) 2000-12-07 2001-09-25 Method for reducing 4-cyanoacetoacetate compound

Publications (1)

Publication Number Publication Date
JP2003000293A true JP2003000293A (en) 2003-01-07

Family

ID=26605411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290838A Pending JP2003000293A (en) 2000-12-07 2001-09-25 Method for reducing 4-cyanoacetoacetate compound

Country Status (1)

Country Link
JP (1) JP2003000293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523702A (en) * 2002-04-26 2005-08-11 デグサ アクチエンゲゼルシャフト ADH from Ryudococcus erythropolis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523702A (en) * 2002-04-26 2005-08-11 デグサ アクチエンゲゼルシャフト ADH from Ryudococcus erythropolis

Similar Documents

Publication Publication Date Title
US6645746B1 (en) Carbonyl reductase, gene thereof and method of using the same
KR101191675B1 (en) Process for producing scyllo-inositol
US5356812A (en) Processes for production of optically active 3-phenyl-1,3-propanediol by asymmetric assimilation
US6781009B2 (en) Method for producing 4-cyano-3-oxobutanoate and 4-ctano-3-hydroxybutanoate
EP1213354B1 (en) Process for producing optically active 4-halo-3-hydroxybutanoate
JPS6247520B2 (en)
JPS59113896A (en) Preparation of pyrroloquinolinequinone
US20030186400A1 (en) Method for producing optically active 2-hydroxycycloalkanecarboxylic acid ester
JP2003000293A (en) Method for reducing 4-cyanoacetoacetate compound
JP3492776B2 (en) Method for producing cis-3-hydroxy-L-proline
WO2009008834A1 (en) Microbial kinetic resolution of ethyl-3,4-epoxybutyrate
EP0942068B1 (en) Process for the preparation of optically active n-benzyl-3-pyrrolidinol
JP2002233392A (en) Method for producing optically active 4-bromo-3- hydroxybutanoate
JP2840134B2 (en) Novel aminoacylase and method for producing the same
US7202068B2 (en) Enone reductase and methods of making and using thereof
EP1055732A1 (en) Process for producing (r)-2-hydroxy-1-phenoxypropane derivative
JP2003093089A (en) Method for producing (s)-3-quinuclidinol
JP3745803B2 (en) Malate dehydrogenase and method for producing the same
JP2002233394A (en) Method for producing optically active 3- hydroxypyrrolidine compound
JP4627039B2 (en) Polypeptide having amidase activity and gene thereof
US6465228B1 (en) Levodione reductase
JP5537796B2 (en) Method for obtaining reductase gene and reductase gene
JP2004350625A (en) Method for producing optically active n-benzyl-3-pyrrolidinol
JP2004041070A (en) Method for producing optically active 3-hydroxybutanoic acid compound
JPWO2003100043A1 (en) Microbe-derived novel (D) -2-hydroxy acid oxidase and biochemical production method of glyoxylic acid using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080128