JP2002539398A - Bonding technology of reinforced thermoplastic resin pipe (RTP) for high pressure transfer - Google Patents

Bonding technology of reinforced thermoplastic resin pipe (RTP) for high pressure transfer

Info

Publication number
JP2002539398A
JP2002539398A JP2000605130A JP2000605130A JP2002539398A JP 2002539398 A JP2002539398 A JP 2002539398A JP 2000605130 A JP2000605130 A JP 2000605130A JP 2000605130 A JP2000605130 A JP 2000605130A JP 2002539398 A JP2002539398 A JP 2002539398A
Authority
JP
Japan
Prior art keywords
coupler
annular body
pipe
reinforced thermoplastic
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000605130A
Other languages
Japanese (ja)
Inventor
アルウィン ファーラー
Original Assignee
ラティス インテレクチュアル プロパティー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラティス インテレクチュアル プロパティー リミテッド filed Critical ラティス インテレクチュアル プロパティー リミテッド
Publication of JP2002539398A publication Critical patent/JP2002539398A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • B29C65/3432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding comprising several wires, e.g. in the form of several independent windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52295Joining tubular articles involving the use of a socket said socket comprising reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52298Joining tubular articles involving the use of a socket said socket being composed by several elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • F16L47/03Welded joints with an electrical resistance incorporated in the joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • B29C65/305Electrical means involving the use of cartridge heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72324General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of inorganic materials not provided for in B29C66/72321 - B29C66/72322
    • B29C66/72325Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

(57)【要約】 一方の強化熱可塑性樹脂パイプ(12)の端部と、他方の強化熱可塑性樹脂パイプ(10)の実質的に軸線方向に整合された隣接端部とを結合するのに適した電融カプラ(14)において、結合すべき両パイプの隣接端部を包囲する環状本体と、カプラの環状本体の内側面を両強化熱可塑性樹脂パイプの外側面のプラスチック材料に融着するための加熱手段とを有し、軸線方向補強体が設けられていることを特徴とする電融カプラ(14)。 SUMMARY OF THE INVENTION To join an end of one reinforced thermoplastic pipe (12) to a substantially axially aligned adjacent end of the other reinforced thermoplastic pipe (10). In a suitable electrofused coupler (14), the annular body surrounding the adjacent ends of the two pipes to be joined and the inner surface of the annular body of the coupler are fused to the plastic material on the outer surface of both reinforced thermoplastic pipes. And a heating means for providing an axial reinforcement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】 (技術分野) 本発明は、高圧搬送用強化熱可塑性樹脂パイプ(RTP)の結合装置および方
法に関する。
TECHNICAL FIELD The present invention relates to an apparatus and a method for joining a reinforced thermoplastic resin pipe (RTP) for high-pressure conveyance.

【0002】 (背景技術) 石油およびガス等の高圧流体を搬送する慣用パイプは、炭素鋼のような金属か
ら作られている。しかしながら、このようなパイプは、製造コストが高くかつ重
く、このため設置が困難で、従って時間を要しかつコストが嵩み、また一般に、
パイプの長さに沿って専用支持体を設ける必要がある。更に、金属パイプは、搬
送すべき液体およびガス中に存在するCO2およびH2Sから腐食を受け易く、こ
のため定期的メインテナンスを必要とする。
BACKGROUND OF THE INVENTION Conventional pipes that carry high pressure fluids such as oil and gas are made from metals such as carbon steel. However, such pipes are expensive and heavy to manufacture, which makes them difficult to install, and therefore time consuming and costly, and, in general,
A dedicated support must be provided along the length of the pipe. Further, the metal pipe is susceptible to corrosion from CO 2 and H 2 S present in liquid and gas to be transported, requires this for periodic maintenance.

【0003】 金属パイプの上記問題を解決できる高圧搬送用パイプの開発には多大な研究活
動がなされている。
A great deal of research has been conducted on the development of high-pressure transfer pipes that can solve the above-mentioned problems of metal pipes.

【0004】 図1に示す強化熱可塑性樹脂パイプ(RTP)は、100バールまでの圧力で
耐食性の長所が得られるポリエチレン(PE)の新しいクラスのパイプであるが
、PEは、7バール以下の圧力に制限されている。RTPは、例えば円滑パイプ
のような熱可塑性ライナに、高強度繊維強化テープをオーバーラップさせること
により製造されている。繊維が損傷を受けないように遮断するため、補強面上に
は外層が押出し成形される。一般に、RTPは、20〜100バールの範囲の使
用圧力用として、4〜20インチの直径に製造される。
[0004] The reinforced thermoplastic pipe (RTP) shown in FIG. 1 is a new class of polyethylene (PE) pipe which offers the advantages of corrosion resistance at pressures up to 100 bar, but PE has a pressure below 7 bar. Is restricted to RTP is made by overlapping a high strength fiber reinforced tape on a thermoplastic liner, such as a smooth pipe. An outer layer is extruded on the reinforcing surface to block the fibers from damage. Generally, RTP is manufactured to a diameter of 4 to 20 inches for working pressures in the range of 20 to 100 bar.

【0005】 炭素鋼ラインパイプに比べ、RTPは、耐食性、可撓性および軽量性を有する
材料であり、このため、設置が容易でかつ特定用途に適合させることができる。
[0005] Compared to carbon steel line pipes, RTP is a material that has corrosion resistance, flexibility and light weight, so that it is easy to install and can be tailored to specific applications.

【0006】 RTP材料のコストは炭素鋼パイプのコストより高いが、可撓性がありかつ軽
量なRTPパイプの合計コストは炭素鋼パイプの合計コストに競合できると見積
もられている。炭素鋼パイプとは異なりRTPパイプが腐食しないため、このこ
とは、特に、パイプが侵食性物質を搬送する場合にいえることである。パイプの
耐久性により運転コストを低減させることが期待されている。
Although the cost of RTP materials is higher than the cost of carbon steel pipes, it has been estimated that the total cost of flexible and lightweight RTP pipes can compete with the total cost of carbon steel pipes. This is especially true if the pipes carry aggressive substances, as RTP pipes do not corrode, unlike carbon steel pipes. It is expected that the operating cost will be reduced due to the durability of the pipe.

【0007】 石油およびガス搬送用途に対するRTPの可能性は非常に大きい。この材料は
、カナダおよびロシア等のように、遠隔領域に石油およびガス備蓄を有する国で
は特に魅力的である。材料が軽量であることは、材料の輸送コストおよび設置時
間を大幅に低減させ、山岳地域または軟土壌地域のようにアクセスが困難な領域
でのパイプラインの敷設を可能にする。また、この軽量材料は、パイプを人力で
容易に取り扱うことができ、重い掘削または輸送車両を必要としないため、パイ
プラインの敷設により引き起こされる環境破壊を最小にする。これは、ジャング
ルやツンドラのような敏感な生態系において特に有益である。RTPの耐化学性
は高度の腐食性をもつガスおよび/または液体の搬送を可能にし、従って処理設
備を必ずしも必要としないので、更なる節約が達成される。また、耐化学性とは
、鋼パイプラインとは異なり、コーティングまたは電気防食処理をする必要がな
いことを意味する。必要な検査時間は最短でありかつパイプラインの補修コスト
は低減されるので、鋼パイプラインに比べ運転コストを大幅に低減できる。
[0007] The potential of RTP for oil and gas transport applications is enormous. This material is particularly attractive in countries that have oil and gas reserves in remote areas, such as Canada and Russia. The light weight of the material greatly reduces the cost of transporting the material and the installation time, and allows the laying of pipelines in difficult-to-access areas, such as mountainous or soft soil areas. Also, this lightweight material minimizes the environmental destruction caused by laying pipelines because pipes can be easily handled manually and does not require heavy drilling or transport vehicles. This is particularly beneficial in sensitive ecosystems such as jungles and tundra. Further savings are achieved because the chemical resistance of RTP allows the transport of highly corrosive gases and / or liquids and thus does not necessarily require processing equipment. Also, chemical resistance, unlike steel pipelines, means that there is no need for coating or cathodic protection. Since the required inspection time is the shortest and the cost of repairing the pipeline is reduced, the operating costs can be significantly reduced compared to steel pipelines.

【0008】 この種類の材料は、20バールおよび60℃での石油/ガス混合物について或
る商業的経験を得ている。高濃度のCO2およびH2Sを含む混合物の腐食性によ
り、運転後3〜6ヶ月後に炭素鋼フローラインの漏洩が生じる。試験的研究では
、70kmの6インチ炭素鋼フローラインがRTPで置換された。RTPフロー
ラインは、等価の炭素鋼パイプラインに比べ、全設置時間を1/8程度に短縮で
きる。注目すべき他の長所は、RTPの円滑内面および可撓性によりエルボおよ
びアンカーを省略できるので、非常に高い流量が得られることである。
This type of material has gained some commercial experience for oil / gas mixtures at 20 bar and 60 ° C. The corrosive mixtures containing high concentrations of CO 2 and H 2 S, leakage of carbon steel flow lines occurs after 3-6 months after the operation. In a pilot study, a 70 km 6 inch carbon steel flow line was replaced with RTP. The RTP flow line can reduce the total installation time to about 1/8 compared to an equivalent carbon steel pipeline. Another notable advantage is that very high flow rates are obtained because the elbows and anchors can be omitted due to the smooth inner surface and flexibility of the RTP.

【0009】 1998年後期には、シベリアに最初の高圧ガス搬送用パイプラインが敷設さ
れた。RTPの軽量性により重機は全く不要であり、2kmのRTPが丁度2日
で敷設された。このシステムは80バールまでハイドロ試験が行われ、50バー
ルまでの使用圧力が得られるように設計された。
In late 1998, the first high pressure gas transport pipeline was laid in Siberia. No heavy equipment was required due to the light weight of the RTP, and a 2 km RTP was laid in just two days. The system was hydrotested up to 80 bar and designed to provide working pressures up to 50 bar.

【0010】 RTPは、最近の数年来、産業界から大きな関心がもたれているが、この種類
のパイプ材料に関する1つの主要関心事は、安価で信頼性のある結合方法の利用
可能性である。RTPの高い(100バールまでの)使用圧力は、高荷重支持能
力に対処できる結合方法を必要とする。また、RTPの結合時に重要なことは、
収容される圧力媒体(液体またはガス)が補強繊維に全く接触しないようにする
ことである。圧力媒体が補強繊維に接触すると、繊維の機械的強度の低下、およ
び図2に示すように、補強層内の空隙内での圧力媒体の蓄積を引き起こす。後者
は、圧力媒体がガスである場合に問題となる。なぜならば、減圧時に、空隙内の
圧力によって周囲のパイプ壁材料が分離され、これにより、膨れ(A)、部分的
破壊(B)、またはこれらの組合せが引き起こされる。
[0010] While RTP has been of great interest from the industry in recent years, one major concern with this type of pipe material is the availability of inexpensive and reliable joining methods. The high (up to 100 bar) working pressure of RTP requires a coupling method that can handle high load bearing capacity. Also important when binding RTP is:
The purpose is to prevent the contained pressure medium (liquid or gas) from coming into contact with the reinforcing fibers at all. The contact of the pressure medium with the reinforcing fibers causes a reduction in the mechanical strength of the fibers and, as shown in FIG. 2, the accumulation of the pressure medium in the voids in the reinforcing layer. The latter is problematic when the pressure medium is a gas. Because, during depressurization, the pressure in the void separates the surrounding pipe wall material, which causes bulging (A), partial fracture (B), or a combination thereof.

【0011】 フランス国特許第2728049号、第2728051号および英国特許第2287996号には、
RTPと機械的形式のカップリングとの結合方法が開示されている。これらの機
械的結合システムにおけるシーリング方法は、ゴムシーケンスリングを使用する
ことおよび/または充分な力でパイプ表面をクランプして漏洩防止シールを確保
することである。しかしながら、これらのシステムは、多くの機械加工を必要と
するため非常に高価であり、また組立てに大きい力を必要とする。これらのシー
リング方法は短時間で実行できることが証明されているが、RTPの端部に加え
られたクランプ荷重が長時間の経過につれて弛緩し、継手部分でのパイプに相対
移動が生じ、継手に漏洩を引き起こすという問題がある。
[0011] French Patent Nos. 2728049 and 278051 and British Patent No. 2287996 include:
A method of coupling an RTP with a mechanical coupling is disclosed. The sealing method in these mechanical coupling systems is to use a rubber sequence ring and / or to clamp the pipe surface with sufficient force to ensure a leak-proof seal. However, these systems are very expensive because they require a lot of machining and require a lot of assembly power. Although these sealing methods have been proven to be able to be performed in a short time, the clamp load applied to the end of the RTP relaxes over time, causing relative movement of the pipe at the joint and leakage at the joint. There is a problem that causes.

【0012】 (発明の開示) 本発明は、上記機械的形式のフィッティングに比べて安価に製造でき、組立て
が容易で、補強体内への圧力媒体の侵入を防止する、信頼性の高い漏洩防止シー
ルを備えたRTP継手を提供する。本発明は、繊維強化熱可塑性樹脂パイプの突
合せ結合方法が説明されている英国特許GB 2280145Aに開示された発明を発展さ
せたものである。この突合せ融着は、2つの強化熱可塑性樹脂パイプの端部間に
漏洩防止シールを形成できるが、100バールまでの使用圧力に対処できる継手
を得ることはできない。このような高圧は、継手に高い軸線方向および周方向応
力を誘起し、継手を破壊する。
DISCLOSURE OF THE INVENTION The present invention provides a highly reliable leak-proof seal that is cheaper to manufacture than the mechanical fittings described above, is easier to assemble, and prevents intrusion of the pressure medium into the reinforcement. An RTP fitting comprising: The present invention is an extension of the invention disclosed in GB 2280145A, which describes a method of butt joining fiber reinforced thermoplastic pipes. This butt fusion can form a leak-proof seal between the ends of the two reinforced thermoplastic pipes, but does not provide a joint that can handle working pressures up to 100 bar. Such high pressure induces high axial and circumferential stresses in the joint and destroys the joint.

【0013】 本発明の第1態様によれば、一方の強化熱可塑性樹脂パイプの端部と、他方の
強化熱可塑性樹脂パイプの実質的に隣接しかつ実質的に軸線方向に整合された端
部とを結合する電融カプラであって、結合すべき両パイプの隣接端部を包囲する
環状本体と、電融カプラの環状本体の内側面を両強化熱可塑性樹脂パイプの外側
面のプラスチック材料に融着するための加熱手段とを有し、かつ軸線方向補強手
段が設けられた電融カプラが提供される。
According to a first aspect of the present invention, an end of one reinforced thermoplastic pipe and a substantially adjacent and substantially axially aligned end of the other reinforced thermoplastic pipe. And an annular body surrounding the adjacent ends of both pipes to be joined, and the inner surface of the annular body of the fuser coupler is made of a plastic material on the outer surface of both reinforced thermoplastic resin pipes. An electrofusing coupler having a heating means for fusing and provided with an axial reinforcing means is provided.

【0014】 補強手段は、継手に沿う軸線方向および周方向の応力によりカプラに割れまた
はクラックが生じる傾向を防止または低減させる。これにより、環境を破壊し、
かつ高価で不便なパイプラインの破裂の傾向が低減される。
The reinforcing means prevents or reduces the tendency of the coupler to crack or crack due to axial and circumferential stresses along the joint. This destroys the environment,
And the tendency for expensive and inconvenient pipeline rupture is reduced.

【0015】 補強手段は、好ましくは、カプラの長さに沿って軸線方向に間隔を隔てた少な
くとも2つの位置でカプラと係合する。2つの位置は、カプラの軸線方向端部と
することができる。補強手段は、例えば、カプラの軸線方向長さの少なくとも一
部に沿って配置される1つ以上の補強メッシュ(カプラと一体でも一体でなくて
もよい)、カプラを包囲しかつカプラの軸線方向端部と係合するように配置され
るスリーブ、または以下に説明するあらゆる例で構成できる。
[0015] The stiffening means preferably engages the coupler at at least two locations axially spaced along the length of the coupler. The two positions may be axial ends of the coupler. The reinforcement means may include, for example, one or more reinforcement meshes (which may or may not be integral with the coupler) disposed along at least a portion of the axial length of the coupler, surround the coupler and extend in the axial direction of the coupler. It can be composed of a sleeve arranged to engage the end, or any of the examples described below.

【0016】 強化熱可塑性樹脂パイプの実質的に軸線方向に配置された隣接端部は、好まし
くは、電融カプラが両パイプラインの隣接端部を包囲する前に、互いに突合せ融
着される。これにより、パイプ内の流体がRTPの繊維に侵入しかつ繊維に沿っ
て拡散することにより繊維を劣化させ、ひいてはパイプを破壊することが防止さ
れる。
The substantially axially disposed adjacent ends of the reinforced thermoplastic pipe are preferably butt-fused to each other before the fusing coupler surrounds the adjacent ends of both pipelines. This prevents the fluid in the pipe from penetrating and diffusing along the RTP fibers, thereby deteriorating the fibers and thus preventing the pipe from breaking.

【0017】 (発明を実施するための最良の形態) 以下、添付図面を参照して本発明の実施形態を説明する。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

【0018】 図3は、突合せ融着により結合されるべき2つの強化熱可塑性樹脂パイプ10
、12を示す。一方のパイプ12は、該パイプ12を包囲する電融カプラ14を
有している。
FIG. 3 shows two reinforced thermoplastic pipes 10 to be joined by butt fusion.
, 12 are shown. One pipe 12 has an electro-fusion coupler 14 surrounding the pipe 12.

【0019】 カプラ14は、図示の直径方向間隙16をもってパイプ12の回りに緩く嵌合
される。カプラ14は加熱手段を支持しており、該加熱手段は、この例では、カ
プラの熱可塑性樹脂壁内に埋入された、パイプ12を包囲する2群の巻線18、
20からなる電気要素である。加熱要素は、巻線18、20に電気エネルギを供
給するターミナル(図示せず)に接続される。カプラ14には、この軸線方向長
さに沿う補強手段が設けられている。該補強手段は、この例ではスリーブ22で
あり、該スリーブ22の各軸線方向端部には、カプラ14の軸線方向端部と係合
するように配置されたフランジ24を有している。この例では、補強手段は鋼で
作られているが、複合材等の任意の適当な強化材料で作ることができる。この例
では、補強手段は、最初に、電融カプラ14上に円筒状スリーブ22を配置し、
次にスリーブ22の両側に環状フランジ24を配置し、最後に両フランジ24を
スリーブ22の軸線方向端部に固定する。この場合には、スタッド(図示せず)
を用いて固定する。
The coupler 14 is loosely fitted around the pipe 12 with a diametric gap 16 as shown. The coupler 14 supports a heating means, which in this example comprises two groups of windings 18 surrounding the pipe 12, embedded in the thermoplastic wall of the coupler,
And 20 electrical elements. The heating element is connected to a terminal (not shown) that supplies electrical energy to the windings 18,20. The coupler 14 is provided with reinforcing means along the axial length. The stiffening means is a sleeve 22 in this example, with a flange 24 at each axial end of the sleeve 22 arranged to engage the axial end of the coupler 14. In this example, the reinforcing means is made of steel, but can be made of any suitable reinforcing material, such as a composite. In this example, the reinforcement means first places a cylindrical sleeve 22 on the electro-fusion coupler 14,
Next, annular flanges 24 are arranged on both sides of the sleeve 22, and both flanges 24 are finally fixed to the axial end of the sleeve 22. In this case, a stud (not shown)
Fix using.

【0020】 各パイプ10、12は、この例では、内側面32を備えた熱可塑性樹脂材料か
らなる内側パイプ30と、該内側パイプ30の周囲に巻回されてパイプ30の長
手方向に延びる強化繊維の層(単一または複数)34と、熱可塑性樹脂材料から
なる外側層36で構成され、外側層36は、層(単一または複数)34を設けた
後に内側パイプ30に付加される。外側層36は外側面38を有している。
Each of the pipes 10, 12 is, in this example, an inner pipe 30 made of a thermoplastic resin material having an inner surface 32, and a reinforcement wound around the inner pipe 30 and extending in the longitudinal direction of the pipe 30. It comprises a fiber layer (single or plural) 34 and an outer layer 36 made of a thermoplastic resin material. The outer layer 36 is added to the inner pipe 30 after providing the layer (single or plural) 34. Outer layer 36 has an outer surface 38.

【0021】 かくして、各パイプ10、12は、内側面32と外側面38との間にパイプ壁
を有している。
Thus, each pipe 10, 12 has a pipe wall between the inner side 32 and the outer side 38.

【0022】 両パイプ10、12の端面を結合する前に、これらにきれいな表面40、42
が形成されるように、両パイプを正確にトリミングしておく。この作業は、両パ
イプ10、12が突合せ融着機(図示せず)内に保持されている間に行われる。
次に、両パイプ10、12を、両パイプ端部40、42間に介在されるヒータプ
レート(図示せず)に対して油圧シリンダで押し付ける。熱可塑性樹脂材料が溶
融して、加えられる軸線方向荷重によりアップセットされると、各パイプには初
期ビードが形成される。
Before joining the end faces of the two pipes 10, 12, they should have clean surfaces 40, 42.
Both pipes are trimmed exactly so that is formed. This operation is performed while both pipes 10, 12 are held in a butt fusion machine (not shown).
Next, both pipes 10 and 12 are pressed by a hydraulic cylinder against a heater plate (not shown) interposed between both pipe ends 40 and 42. As the thermoplastic material melts and is upset by the applied axial load, an initial bead is formed in each pipe.

【0023】 パイプ10、12は、熱浸透期間の間ヒータプレートに当接して保持される。
次に、両パイプ10、12がプレートから後退されかつプレートが取除かれると
、両パイプ10、12は、軸線方向荷重を受けた状態で一体化される。パイプ1
0、12からの溶融材料は、アップセットにより熱可塑性樹脂材料が内方および
外方に流動し、図4および図7に示すような最終内側ビード50および外側ビー
ド52を形成する。
The pipes 10 and 12 are held in contact with the heater plate during the heat infiltration period.
Next, when the pipes 10, 12 are retracted from the plate and the plate is removed, the pipes 10, 12 are integrated under an axial load. Pipe 1
The molten material from 0, 12 causes the thermoplastic material to flow inward and outward upon upset to form the final inner bead 50 and outer bead 52 as shown in FIGS.

【0024】 両パイプ10、12は冷却され、最終冷却段階中に軸線方向の力が除去される
が、軸線方向の分離移動ができないように拘束される(図4)。
Both pipes 10, 12 are cooled and axial forces are removed during the final cooling phase, but are constrained so that no axial separation movement is possible (FIG. 4).

【0025】 各パイプ10、12の各強化層34は、図7に示すように、その元の位置から
の熱可塑性樹脂の外方への流れにより、全体的にかつ主として外方に変位される
(参照番号58で示す)。この結果、融着継手では、強化繊維が存在しない共通
内側面32に隣接する熱可塑性樹脂の層60が生じる。次に、外側ビード52が
除去される(図5)。電融カプラ14をパイプ12に沿って摺動させ、該電融カ
プラ14の半分がパイプ10を覆いかつ他の半分がパイプ12を覆うようにして
、電融カプラ14の中心を突合せ融着継手上に位置決めする。
As shown in FIG. 7, each reinforcing layer 34 of each pipe 10, 12 is displaced entirely and mainly outward by the outward flow of the thermoplastic resin from its original position. (Indicated by reference numeral 58). This results in the fusion joint having a layer 60 of thermoplastic resin adjacent the common inner surface 32 where no reinforcing fibers are present. Next, the outer beads 52 are removed (FIG. 5). The center of the electro-fusing coupler 14 is butt-fused by sliding the electro-fusing coupler 14 along the pipe 12 such that half of the electro-fusing coupler 14 covers the pipe 10 and the other half covers the pipe 12. Position on top.

【0026】 最後に、ターミナルが電気エネルギ源に接続され、図6に示すように、カプラ
14が電融により両パイプ10、12の端部の外側面に融着されるのに充分な時
間だけ電流が加熱要素に通される。巻線群18と巻線群20との間の小さい中央
領域は溶融されず、外側ビード52の切り株を含んでいる。
Finally, the terminal is connected to a source of electrical energy and, as shown in FIG. 6, the coupler 14 is electrofused for a time sufficient to be fused to the outer surfaces of the ends of both pipes 10,12. An electric current is passed through the heating element. The small central region between windings 18 and 20 is not melted and contains the stump of outer bead 52.

【0027】 上記とは別の態様として、結合すべき両パイプ10、12の端面が結合される
前に、熱可塑性樹脂材料の外側層36および強化繊維の層(単一または複数)3
4を両パイプ10、12の端部から切除し、内側パイプ30を突出した状態に残
すことができる。次に両パイプ10、12の端部を突合せ一体融着しても、強化
繊維の流れは全く生じないか、生じても無視できる程度である。
As an alternative to the above, before the end faces of the two pipes 10, 12 to be joined are joined, the outer layer 36 of thermoplastic material and the layer (s) of reinforcing fibers 3, 3.
4 can be cut off from the ends of both pipes 10, 12, leaving the inner pipe 30 protruding. Next, even if the ends of both pipes 10 and 12 are butt-joined and fused together, the flow of the reinforcing fiber does not occur at all, or even if it occurs, it is negligible.

【0028】 一例として、アラミド繊維で強化されたポリエチレンからなるパイプ間に継手
を形成した。両パイプは、125mmの外径および11.5mmの壁厚を有する
。外径を壁厚で除すことにより得られる商は11であり、この値は、標準寸法比
(Standard Dimension Ratio:SDR)として知られている。内側ビードおよび
外側ビードの幅(パイプの長さ方向に平行に測定)は11mm、高さ(パイプの
半径方向に測定)は5mmである。他の例では、内側ビードおよび外側ビードは
非常に小さく、幅は3mm、高さは2mmである。
As an example, joints were formed between pipes made of polyethylene reinforced with aramid fibers. Both pipes have an outer diameter of 125 mm and a wall thickness of 11.5 mm. The quotient obtained by dividing the outer diameter by the wall thickness is 11, which is known as the Standard Dimension Ratio (SDR). The width of the inner and outer beads (measured parallel to the length of the pipe) is 11 mm, and the height (measured in the radial direction of the pipe) is 5 mm. In another example, the inner and outer beads are very small, 3 mm wide and 2 mm high.

【0029】 これらの例では、内側パイプ30および外側層36は同グレードのポリエチレ
ンで作られている。しかしながら、一般的には、内側パイプ30および外側層3
6は、同グレードまたは異なるグレードの同一の熱可塑性樹脂材料で形成するか
、同一または異なる熱可塑性樹脂材料で形成することができる。
In these examples, inner pipe 30 and outer layer 36 are made of the same grade of polyethylene. However, in general, the inner pipe 30 and the outer layer 3
6 can be made of the same or different grade of the same thermoplastic resin material, or can be made of the same or different thermoplastic resin material.

【0030】 突合せ融着の性能および均質性に関する品質制御チェックを行う必要がある場
合には大きいビードが好ましく、ビードは、検査のために容易に除去される。他
方、非常に小さいビードは大きいビードほどには流体の流れを妨げないので有効
である。また、電融カプラとパイプとの間の間隙が外側ビードを収容できるほど
充分大きければ、電融カプラが突合せ融着継手上を摺動できるようにするために
外側ビードを除去する必要はない。実際には、工学的条件に基いて任意のビード
サイズにすることができる。また、本発明は広範囲のパイプサイズおよびSDR
に適用でき、上記例は純粋な例示である。
Large beads are preferred when quality control checks on the performance and homogeneity of the butt fusion need to be performed, and the beads are easily removed for inspection. On the other hand, very small beads are effective because they do not impede fluid flow as much as large beads. Also, if the gap between the fused coupler and the pipe is large enough to accommodate the outer bead, it is not necessary to remove the outer bead to allow the fused coupler to slide over the butt fusion joint. In practice, any bead size can be used based on engineering conditions. The present invention also provides a wide range of pipe sizes and SDRs.
And the above examples are purely illustrative.

【0031】 完成した継手では、突合せ融着継手の製造中の溶融パイプ材料の流れは、強化
繊維が存在せずかつ元の内側チューブ30の厚さとほぼ同じ厚さの層60の形成
を確実にする。従って、例えば25バールの圧力を受けてパイプ内を流れる侵食
性薬品または流体は、高応力を受ける繊維補強体から隔絶された状態に維持され
る。しかしながら、突合せ継手の外側部分には繊維が存在するので融着界面は弱
化される。このため、軸線方向に強化された電融カプラ14を使用しない場合に
は、パイプに作用する軸線方向荷重または曲げ荷重により脆性破壊が生じる危険
がある。
In the finished joint, the flow of molten pipe material during the manufacture of the butt-fused joint ensures the formation of a layer 60 in the absence of reinforcing fibers and having a thickness approximately equal to the thickness of the original inner tube 30. I do. Thus, aggressive chemicals or fluids flowing through the pipe, for example under a pressure of 25 bar, are kept isolated from the highly stressed fiber reinforcement. However, the presence of fibers in the outer portion of the butt joint weakens the fusion interface. Therefore, when the axially reinforced electrofusion coupler 14 is not used, there is a risk that brittle fracture may occur due to an axial load or a bending load acting on the pipe.

【0032】 電融カプラ14は突合せ融着継手上で融着され、および補強手段(この例では
スリーブ22およびフランジ24)は、継手にかなりの大きさの軸線方向強度を
付与する。カプラ14および補強手段22、24は、使用時の突合せ継手の破壊
の危険性を低減させ、かつビードが切除された突合せ継手の外面に突出するか近
接する繊維を外部環境から保護する。繊維へのアクセスが許容されると、加圧さ
れたガスおよび液体は、毛管作用により、繊維に沿ってかなりの距離に亘って浸
透するであろう。繊維内の高圧ガスは強化層に沿う剥離を引き起こす。このため
、パイプの外側層36の破裂が生じるか、パイプラインが減圧された場合には内
側パイプ30の圧壊が生じるであろう。
The electro-fusing coupler 14 is fused on the butt-fusion joint, and the reinforcing means (sleeve 22 and flange 24 in this example) impart a significant amount of axial strength to the joint. The coupler 14 and the reinforcing means 22, 24 reduce the risk of rupture of the butt joint during use and protect the fibers projecting or proximate to the outer surface of the cut butt joint from the external environment. If access to the fiber is allowed, the pressurized gas and liquid will penetrate a considerable distance along the fiber due to capillary action. The high pressure gas in the fibers causes delamination along the reinforcement layer. This will either rupture the outer layer 36 of the pipe or crush the inner pipe 30 if the pipeline is depressurized.

【0033】 必要ならば、軸線方向に整合された2つ以上(好ましくは奇数)の電融カプラ
14を、より強力な継手を形成すべく付加される適当長さの補強スリーブ22を
用いて、直列に一体突合せ融着することができる。
If necessary, two or more (preferably odd) axially aligned fusing couplers 14 may be added using appropriate length reinforcement sleeves 22 added to form a stronger joint. It can be butt-welded in series.

【0034】 継手の機械的一体性を実証するための試験を行った。継手は、軸線方向に整合
された2つの隣接強化熱可塑性樹脂パイプを突合せ融着し、外側ビードを除去し
、かつ、一体に突合せ融着される軸線方向に整合された3つの連続電融カプラを
パイプの継手上に配置することにより、上記のようにして製造された。次に、電
融カプラを付勢して、継手上で両パイプ上に融着した。次に、一連の電融カプラ
上に金属スリーブを配置し、該金属スリーブの両側にフランジを配置し、該フラ
ンジをスタッドを用いて金属スリーブに固定した。各パイプの開端部に閉塞手段
を螺着することにより、各パイプの開端部を閉塞して容器を形成した。次に、加
圧媒体としての水を適当な入口から容器内に供給して、容器が破壊するまで容器
の圧力を徐々に増大させた。容器は286バールの圧力で破壊したこと(強化熱
可塑性樹脂パイプは、290バールの定格破壊圧力を有すること)、および破壊
は融着継手からパイプ直径の約1.5倍の距離だけ離れた位置でパイプに生じた
ことが判明した。これは、本発明による強化電融カプラ継手はパイプより強く、
かつパイプ内の高圧により発生するかなりの大きさの軸線方向応力に耐え得るこ
とを証明するものである。
Tests were performed to demonstrate the mechanical integrity of the joint. The joint is a butt-fused two axially aligned adjacent reinforced thermoplastic pipes, removes the outer bead, and is a three axially aligned, continuous electrofused coupler that is butt-fused together. Was prepared as described above by placing it on a pipe joint. Next, the electrofusion coupler was energized and fused onto both pipes on the joint. Next, a metal sleeve was arranged on a series of electrofusion couplers, flanges were arranged on both sides of the metal sleeve, and the flange was fixed to the metal sleeve using studs. By screwing a closing means on the open end of each pipe, the open end of each pipe was closed to form a container. Next, water as a pressurized medium was supplied into the container from an appropriate inlet, and the pressure of the container was gradually increased until the container was broken. The vessel broke at a pressure of 286 bar (reinforced thermoplastic pipes should have a rated burst pressure of 290 bar) and the break was at a distance of about 1.5 times the pipe diameter from the fusion splice. It turned out that it occurred in the pipe. This is because the reinforced fused coupler joint according to the present invention is stronger than the pipe,
And it proves that it can withstand considerable amounts of axial stress caused by high pressure in the pipe.

【0035】 補強手段22は必ずしも上記例におけるようなスリーブである必要はないが、
スリーブは、内部圧力によるあらゆる軸線方向荷重および周方向荷重に対処でき
るため好ましい。しかしながら、補強手段2は、鋼のような金属、テープのよう
なプラスチック、複合材またはセラミックで作られたメッシュまたはケージで構
成することもできる。
The reinforcing means 22 does not necessarily need to be a sleeve as in the above example,
Sleeves are preferred because they can handle any axial and circumferential loads due to internal pressure. However, the reinforcing means 2 can also consist of a mesh or cage made of metal such as steel, plastic such as tape, composite or ceramic.

【0036】 図8に示す例では、電融カプラ14は、該カプラ14を形成するプラスチック
材料内部の補強手段として機能する補強メッシュ62により強化されている。或
いは、メッシュ62は電融カプラ14の軸線方向長さに沿って分離された位置で
外面に固定することもできる。
In the example shown in FIG. 8, the electrofused coupler 14 is reinforced by a reinforcing mesh 62 that functions as a reinforcing means inside the plastic material forming the coupler 14. Alternatively, the mesh 62 can be fixed to the outer surface at a location separated along the axial length of the electro-fusing coupler 14.

【0037】 図9に示す例では、ブラケット(この例ではリング64の形態をなしている)
が電融カプラ14の各軸線方向端部に配置され、かつ固定手段(この例では、周
方向に間隔を隔てて配置される2つ以上のロッド66)が設けられて、ブラケッ
ト64を保持している。ブラケット64および固定手段66はカプラ14の軸線
方向端部で該カプラ14と係合し、カプラが軸線方向応力を受けて割れることを
防止する。この例では、ロッド66は金属で作られ、かつその両端部にはねじ山
が形成されている。これらのねじ山は、使用時に、リング64に形成された対応
サイズの孔から突出するように配置されてナット68が固定され、カプラ14に
対してリング64を強固に維持する。
In the example shown in FIG. 9, a bracket (in this example, in the form of a ring 64)
Are disposed at each axial end of the electro-fusing coupler 14, and are provided with fixing means (in this example, two or more rods 66 which are arranged at intervals in the circumferential direction) to hold the bracket 64. ing. Bracket 64 and securing means 66 engage coupler 14 at the axial end thereof to prevent the coupler from cracking under axial stress. In this example, the rod 66 is made of metal and has threads at both ends. In use, these threads are positioned to protrude from correspondingly sized holes formed in ring 64 to secure nut 68 and maintain ring 64 rigidly with coupler 14.

【0038】 図示しない他の例では、電融カプラ14は、1本以上の細長い巻回熱可塑性樹
フィラメントで補強される。該フィラメントは、製造時にカップリング14の内
部で軸線方向に配置するか、軸線方向に間隔を隔てた2つ以上の位置でカップリ
ングの外面に固定することもできる。
In another example, not shown, the electrofused coupler 14 is reinforced with one or more elongated wound thermoplastic tree filaments. The filaments may be axially disposed within the coupling 14 during manufacture, or may be secured to the outer surface of the coupling at two or more axially spaced locations.

【0039】 本発明は上記例に限定されるものではなく、電融カプラが軸線方向圧力を受け
て割れることを防止または低減させる任意の補強手段に適用できる。
The present invention is not limited to the above-described example, and can be applied to any reinforcing means for preventing or reducing the possibility that the electrofusing coupler is cracked by receiving an axial pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一般的な強化熱可塑性樹脂パイプ(RTP)の構造を示す図面である。FIG. 1 is a view showing the structure of a general reinforced thermoplastic resin pipe (RTP).

【図2】 強化熱可塑性樹脂パイプの強化繊維と接触する、収容された圧力媒体の結果を
示す図面である。
FIG. 2 shows the result of a contained pressure medium in contact with the reinforcing fibers of a reinforced thermoplastic pipe.

【図3】 2つの強化熱可塑性樹脂パイプを一体に結合する種々の段階のうちの1つを示
す図面である。
FIG. 3 is a diagram illustrating one of various stages of joining two reinforced thermoplastic resin pipes together.

【図4】 2つの強化熱可塑性樹脂パイプを一体に結合する種々の段階のうちの1つを示
す図面である。
FIG. 4 illustrates one of the various stages of joining two reinforced thermoplastic pipes together.

【図5】 2つの強化熱可塑性樹脂パイプを一体に結合する種々の段階のうちの1つを示
す図面である。
FIG. 5 illustrates one of the various stages of joining two reinforced thermoplastic pipes together.

【図6】 2つの強化熱可塑性樹脂パイプを一体に結合する種々の段階のうちの1つを示
す図面である。
FIG. 6 illustrates one of the various stages of joining two reinforced thermoplastic pipes together.

【図7】 図4に示した継手のゾーンを示す拡大図である。FIG. 7 is an enlarged view showing zones of the joint shown in FIG. 4;

【図8】 強化手段の他の実施形態を示す図面である。FIG. 8 is a view showing another embodiment of the reinforcing means.

【図9】 強化手段の他の実施形態を示す図面である。FIG. 9 is a view showing another embodiment of the reinforcing means.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 一方の強化熱可塑性樹脂パイプの端部と、他方の強化熱可塑
性樹脂パイプの実質的に隣接しかつ実質的に軸線方向に整合された端部とを結合
する電融カプラにおいて、結合すべき両パイプの隣接端部を包囲する環状本体と
、該環状本体の内側面を両強化熱可塑性樹脂パイプの外側面のプラスチック材料
に融着するための加熱手段と、環状本体の軸線方向長さに沿って配置される補強
手段とを有することを特徴とする電融カプラ。
1. An electrofusion coupler for joining an end of one reinforced thermoplastic pipe to a substantially adjacent and substantially axially aligned end of the other reinforced thermoplastic pipe. An annular body surrounding the adjacent ends of the pipes to be joined; heating means for fusing the inner surface of the annular body to the plastic material on the outer surface of the reinforced thermoplastic pipes; and an axis of the annular body. A reinforcing means arranged along the direction length.
【請求項2】 前記補強手段は、電融カプラの長さに沿って軸線方向に間隔
を隔てた少なくとも2つの位置で電融カプラの環状本体と係合するように配置さ
れることを特徴とする請求項1記載の電融カプラ。
2. The stiffening means is arranged to engage the annular body of the fusing coupler at at least two axially spaced locations along the length of the fusing coupler. The electrofused coupler according to claim 1, wherein
【請求項3】 前記電融カプラの環状本体は、第1軸線方向端部およびこれ
とは反対側の第2軸線方向端部を有し、補強手段は環状本体の両軸線方向端部と
係合するように配置されることを特徴とする請求項2記載の電融カプラ。
3. The annular body of the electrofusion coupler has a first axial end and a second axial end opposite thereto, and the reinforcing means is associated with both axial ends of the annular body. 3. The electro-fusing coupler according to claim 2, wherein the electro-fusing coupler is arranged so as to match.
【請求項4】 前記補強手段は、環状本体の第1軸線方向端部と係合するよ
うに配置される第1フランジと、環状本体の第2軸線方向端部と係合するように
配置される第2フランジと、両フランジに連結されるように配置されて、各フラ
ンジを環状本体のそれぞれの軸線方向端部と係合した状態に維持する固定手段と
を有することを特徴とする請求項3記載の電融カプラ。
4. The reinforcement means is arranged to engage a first axial end of the annular body and a first flange and to engage a second axial end of the annular body. And a securing means arranged to be coupled to the two flanges to maintain each flange in engagement with a respective axial end of the annular body. 3. The fused coupler according to 3.
【請求項5】 前記各フランジは環状であり、固定手段はスリーブを有して
いることを特徴とする請求項4記載の電融カプラ。
5. The electrofusion coupler according to claim 4, wherein each of said flanges is annular, and said fixing means has a sleeve.
【請求項6】 前記各フランジは環状であり、固定手段は、環状本体の回り
で周方向に間隔を隔てて配置される2つ以上の細長い部材を有することを特徴と
する請求項4記載の電融カプラ。
6. The invention according to claim 4, wherein each of said flanges is annular and said securing means comprises two or more elongated members circumferentially spaced around the annular body. Electrolytic coupler.
【請求項7】 前記補強手段は、軸線方向に間隔を隔てた少なくとも2箇所
で環状本体に固定された、環状本体の軸線方向長さを実質的に引っ張る1つ以上
の部材を有することを特徴とする請求項1記載の電融カプラ。
7. The reinforcing means comprises one or more members fixed to the annular body at at least two axially spaced locations and substantially pulling the axial length of the annular body. The electrofused coupler according to claim 1, wherein
【請求項8】 前記環状本体の環状長さを実質的に引っ張る部材は熱可塑性
樹脂フィラメントであることを特徴とする請求項7記載の電融カプラ。
8. The electrofusing coupler according to claim 7, wherein the member for substantially pulling the annular length of the annular body is a thermoplastic resin filament.
【請求項9】 前記環状本体の環状長さを実質的に引っ張る部材はメッシュ
であることを特徴とする請求項7記載の電融カプラ。
9. The electrofusing coupler according to claim 7, wherein the member that substantially pulls the annular length of the annular body is a mesh.
【請求項10】 前記環状本体の軸線方向長さを実質的に引っ張る部材は環
状本体内に埋入されていることを特徴とする請求項7〜9のいずれか1項記載の
電融カプラ。
10. The electrofusing coupler according to claim 7, wherein the member for substantially pulling the length of the annular body in the axial direction is embedded in the annular body.
【請求項11】 添付図面を参照して説明したものと実質的に同じであるこ
とを特徴とする電融カプラ。
11. An electrofusion coupler, which is substantially the same as that described with reference to the accompanying drawings.
【請求項12】 他の強化熱可塑性樹脂パイプの一端に隣接して、該端部と
実質的に整合して配置される第1強化熱可塑性樹脂パイプと、両パイプを軸線方
向に一体に保持するための請求項1〜11のいずれか1項記載の電融カプラとを
有することを特徴とする継手。
12. A first reinforced thermoplastic pipe disposed adjacent to and substantially aligned with one end of another reinforced thermoplastic pipe, and the two pipes are integrally held in the axial direction. A joint comprising: the electrofusing coupler according to any one of claims 1 to 11 for performing the following.
【請求項13】 添付図面を参照して説明したものと実質的に同じであるこ
とを特徴とする継手。
13. A coupling according to claim 13, which is substantially the same as that described with reference to the accompanying drawings.
【請求項14】 一方の強化熱可塑性樹脂パイプの端部と、他方の強化熱可
塑性樹脂パイプの実質的に軸線方向に整合された隣接端部とを結合する方法にお
いて、 一方の強化熱可塑性樹脂パイプの軸線方向端部を、他の強化熱可塑性樹脂パイ
プの軸線方向端部に実質的に隣接しかつ実質的に軸線方向に整合するように配置
し、 請求項1〜11のいずれか1項に記載の電融カプラを、両パイプが出合う位置
に配置し、 電融カプラの加熱手段を付勢して、環状本体の内側面を強化熱可塑性樹脂パイ
プの外側面に融着することからなることを特徴とする方法。
14. A method of joining an end of one reinforced thermoplastic pipe to a substantially axially aligned adjacent end of the other reinforced thermoplastic resin pipe, the method comprising: 12. The pipe according to claim 1, wherein an axial end of the pipe is substantially adjacent to and axially aligned with an axial end of another reinforced thermoplastic resin pipe. Disposing the electrofusing coupler described in (1) in a position where both pipes meet, energizing the heating means of the electrofusing coupler, and fusing the inner surface of the annular body to the outer surface of the reinforced thermoplastic resin pipe. A method comprising:
【請求項15】 前記電融カプラが継手上に配置される前に、両パイプの端
部が互いに突合せ融着され、該突合せ融着が、 結合すべき各強化熱可塑性樹脂パイプの端部を加熱し、 各強化熱可塑性樹脂パイプの実質的に軸線方向に整合された加熱端部を互いに
押し付け、 両端部を冷却することからなることを特徴とする請求項14記載の方法。
15. The ends of both pipes are butt-fused to each other before the electro-fusing coupler is placed on the joint, the butt-fusion joining the ends of each reinforced thermoplastic pipe to be joined. 15. The method of claim 14, comprising heating, pressing substantially axially aligned heated ends of each reinforced thermoplastic pipe together and cooling the ends.
【請求項16】 前記突合せ融着により形成されるあらゆる外側ビードを除
去することを特徴とする請求項15記載の方法。
16. The method of claim 15, wherein any outer beads formed by said butt fusion are removed.
【請求項17】 添付図面を参照して説明したものと実質的に同じであるこ
とを特徴とする方法。
17. A method substantially as described with reference to the accompanying drawings.
JP2000605130A 1999-03-17 2000-03-02 Bonding technology of reinforced thermoplastic resin pipe (RTP) for high pressure transfer Pending JP2002539398A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9906057.6 1999-03-17
GB9906057A GB9906057D0 (en) 1999-03-17 1999-03-17 Joining pipes
PCT/GB2000/000742 WO2000055538A1 (en) 1999-03-17 2000-03-02 Joining of reinforced thermoplastic pipe (rtp) for high pressure transportation applications

Publications (1)

Publication Number Publication Date
JP2002539398A true JP2002539398A (en) 2002-11-19

Family

ID=10849739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000605130A Pending JP2002539398A (en) 1999-03-17 2000-03-02 Bonding technology of reinforced thermoplastic resin pipe (RTP) for high pressure transfer

Country Status (8)

Country Link
EP (1) EP1166006A1 (en)
JP (1) JP2002539398A (en)
AR (1) AR018226A1 (en)
AU (1) AU755988B2 (en)
BR (1) BR0009059A (en)
CA (1) CA2365867A1 (en)
GB (2) GB9906057D0 (en)
WO (1) WO2000055538A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040443A (en) * 2005-08-04 2007-02-15 Mesco Inc Joint construction of plastic pipe
JP2012158141A (en) * 2011-02-02 2012-08-23 Teijin Ltd Fiber-reinforced plastic joined body and joining method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415024B (en) * 2002-05-14 2006-03-29 Uponor Innovation Ab Composite electrofusion fitting
GB2388635B (en) * 2002-05-14 2006-03-29 Uponor Innovation Ab Composite electrofusion fitting
DE102004027795A1 (en) * 2004-06-08 2006-01-05 Friatec Ag Connecting arrangement, in particular for frictional bonding of at least one fiber composite component to another component
CN102287589A (en) * 2010-06-17 2011-12-21 甘国工 Steel plastic composite pipe for spirally-wound steel wire reinforcing body and pipe network
RU2458279C2 (en) * 2010-08-27 2012-08-10 Учреждение Российской академии наук Институт проблем нефти и газа Сибирского отделения Российской академии наук Method for polymer tubes welding via electric sleeves
FI20115062A0 (en) * 2011-01-24 2011-01-24 Maricap Oy Transfer tube portion of a pneumatic material transfer system and method for forming a tube connection
WO2013071448A1 (en) * 2011-11-16 2013-05-23 Flexpipe Systems Inc. Connection for a thermoplastic pipe, assembly and method
CA3040163C (en) 2012-02-17 2021-02-16 Core Linepipe Inc. Pipe electro-fusion assembly
CN106402558A (en) * 2016-10-19 2017-02-15 青岛红石极威实业集团有限公司 Hot-melt type RTP high-pressure pipe joint and connection method
CN108194742B (en) * 2018-01-23 2024-04-12 南京晨光复合管工程有限公司 Connection structure and connection method of high-voltage connector for RTP (real-time transport protocol) pipe
DE102018117797A1 (en) * 2018-07-24 2020-01-30 Naturspeicher Gmbh High-pressure pipe, method for the end welding of high-pressure pipes and pipe arrangement of high-pressure pipes
CN109000071B (en) * 2018-09-03 2020-06-16 王庆昭 Reinforced thermoplastic plastic composite pipe connecting joint and connecting method thereof
DE102019105266A1 (en) * 2019-03-01 2020-09-03 Naturspeicher Gmbh High pressure pipe
WO2022020301A1 (en) 2020-07-20 2022-01-27 Saudi Arabian Oil Company Apparatus and method for electrofusion welding of reinforced thermosetting resin pipe joints
WO2022020323A1 (en) 2020-07-20 2022-01-27 Saudi Arabian Oil Company Apparatus and method for friction welding of reinforced thermosetting resin pipe joints
WO2022020309A1 (en) 2020-07-20 2022-01-27 Saudi Arabian Oil Company Apparatus and method for welding reinforced thermosetting resin pipe joints by induction heating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540193C1 (en) * 1985-11-13 1987-04-23 Friedrichsfeld Gmbh Electric welding fitting or welding socket
GB2235740B (en) * 1989-08-22 1992-12-23 British Gas Plc Grouted pipe joint for polyolefin-lined pipes
US5125690A (en) * 1989-12-15 1992-06-30 Metcal, Inc. Pipe joining system and method
GB9314971D0 (en) * 1993-07-20 1993-09-01 British Gas Plc A method of joining reinforced thermoplastic pipes
EP0635354A1 (en) * 1993-07-23 1995-01-25 Streng Plastic AG Electrofusion coupler
GB2299376A (en) * 1995-03-20 1996-10-02 Clive Michael Perry Flue gas extractor fan
JP2000513074A (en) * 1996-06-25 2000-10-03 ウポノール ベスローテン フェンノートシャップ Electric welding pipe fittings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040443A (en) * 2005-08-04 2007-02-15 Mesco Inc Joint construction of plastic pipe
JP2012158141A (en) * 2011-02-02 2012-08-23 Teijin Ltd Fiber-reinforced plastic joined body and joining method

Also Published As

Publication number Publication date
AU755988B2 (en) 2003-01-02
CA2365867A1 (en) 2000-09-21
GB2347892B (en) 2003-04-09
EP1166006A1 (en) 2002-01-02
GB0004944D0 (en) 2000-04-19
AR018226A1 (en) 2001-10-31
GB9906057D0 (en) 1999-05-12
BR0009059A (en) 2002-04-09
AU2924000A (en) 2000-10-04
WO2000055538A1 (en) 2000-09-21
GB2347892A (en) 2000-09-20

Similar Documents

Publication Publication Date Title
JP2002539398A (en) Bonding technology of reinforced thermoplastic resin pipe (RTP) for high pressure transfer
US9857003B2 (en) Pipe, pipe connection and pipeline system
US6231086B1 (en) Pipe-in-pipe mechanical bonded joint assembly
CA2737502C (en) Electrofusion fitting
US9285063B2 (en) Connection fitting for connecting thermoplastic pipes
US5824179A (en) Method of joining reinforced thermoplastic pipes
EP3775653B1 (en) Apparatus and method for lined pipe welding
WO1991017362A1 (en) Joining of metallic pipe lined with thermoplastic polymer
EP1468219B1 (en) Connection of internally lined pipelines
EP3298317B1 (en) Joining lined pipe sections
HRP20000498A2 (en) Method for connecting two reinforced thermoplastic tubes
AU741319B2 (en) Pipe in pipe assembly
US20040070199A1 (en) Welded joint for metal pipes
JPH11336958A (en) Connection structure for plastic pipe
EP0728976B1 (en) Improvements in and relating to pipe joints
RU2140601C1 (en) Method of connection of pipes, fitting and pipe connecting members
JP2011163524A (en) Pipe connecting structure and pipe connecting method
RU2263843C1 (en) Plastic tube joint assembly
RU2165345C1 (en) Method for mounting reinforcing coupling onto defective butt of operating pipeline
RU2086847C1 (en) Sleeve-coupling of tubes
GB2298689A (en) Process for joining pipes
GB2588919A (en) Improved methods for joining lines pipes and associated apparatus
WO1999046969A2 (en) Pipe lining
UA60530A (en) Method for welding structural elements with a pipe

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041101