JP2002373863A - Method of epitaxially growing compound semiconductor layer and growth device - Google Patents

Method of epitaxially growing compound semiconductor layer and growth device

Info

Publication number
JP2002373863A
JP2002373863A JP2001180983A JP2001180983A JP2002373863A JP 2002373863 A JP2002373863 A JP 2002373863A JP 2001180983 A JP2001180983 A JP 2001180983A JP 2001180983 A JP2001180983 A JP 2001180983A JP 2002373863 A JP2002373863 A JP 2002373863A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
compound semiconductor
tray
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001180983A
Other languages
Japanese (ja)
Inventor
Tomoji Watanabe
智司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001180983A priority Critical patent/JP2002373863A/en
Publication of JP2002373863A publication Critical patent/JP2002373863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of growing a compound semiconductor layer having a uniform composition and a uniform thickness to an epitaxial film by heating a substrate at a uniform temperature, and to provide a growth device. SOLUTION: A tray of the growth device is constituted of a circular plate with the unrelieved upper and lower surfaces, and a ring member for holding the circular plate and the upper and lower surfaces of the circular plate in contact with a substrate and a susceptor, are polished to raise the flatness of the circular plate. Consequently, an irregularity in the gaps between the substrate and the susceptor and the tray can be suppressed and it becomes possible to heat the substrate at a uniform temperature with good reproducibility.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に化合物半
導体をエピタキシャル成長させる方法及び装置に係わ
り、特に基板を均一な温度に加熱することにより均一な
組成と厚さのエピタキシャル膜を成長させる方法及び装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for epitaxially growing a compound semiconductor on a substrate, and more particularly to a method for growing an epitaxial film having a uniform composition and thickness by heating the substrate to a uniform temperature. Related to the device.

【0002】[0002]

【従来の技術】図3,4は、従来のエピタキシャル成長
装置の反応室構造を示す垂直断面図と水平断面図であ
る。また、図5はトレイ11、基板12、サセプタ4の垂直
断面の拡大図である。
2. Description of the Related Art FIGS. 3 and 4 are a vertical sectional view and a horizontal sectional view showing a reaction chamber structure of a conventional epitaxial growth apparatus. FIG. 5 is an enlarged view of a vertical section of the tray 11, the substrate 12, and the susceptor 4.

【0003】この装置は、円形断面を有する石英製の反
応管1の両端をフランジ2(2a,2b)で密閉し、その内部
を所定の圧力(通常、数百〜数千Pa)に調整してエピタ
キシャル成長を行うものである。
In this apparatus, both ends of a quartz reaction tube 1 having a circular cross section are sealed with flanges 2 (2a, 2b), and the inside thereof is adjusted to a predetermined pressure (usually several hundred to several thousand Pa). To perform epitaxial growth.

【0004】反応管1は外側反応管1aと内側反応管1bの
二重構造になっていて、その間に水を流して冷却してい
る。RFコイル3を外側反応管1aの中央外側を取り囲むよ
うに設けてある。さらに、内側反応管1bの中央下側にグ
ラファイト製サセプタ4 を設置してある。このRFコイル
3に高周波を印加することによってサセプタ4 内部に渦
電流を誘起し、自己発熱させてサセプタ4を加熱する。R
Fコイル3に印加する電力は、サセプタ4内部に埋め込ん
だ温度センサ5が所定の値を示すように、図示しないコ
ントローラで自動的に調整される。
[0004] The reaction tube 1 has a double structure of an outer reaction tube 1a and an inner reaction tube 1b, between which water is flown for cooling. The RF coil 3 is provided so as to surround the center outside of the outer reaction tube 1a. Further, a graphite susceptor 4 is provided below the center of the inner reaction tube 1b. This RF coil
An eddy current is induced inside the susceptor 4 by applying a high frequency to 3, and the susceptor 4 is heated by self-heating. R
The electric power applied to the F coil 3 is automatically adjusted by a controller (not shown) so that the temperature sensor 5 embedded in the susceptor 4 indicates a predetermined value.

【0005】サセプタ4は内側サセプタ4aと外側サセプ
タ4bからなる。内側サセプタ4aの上面は平坦になるよう
に加工してある。外側サセプタ4bの側面を貫通して、水
平回転軸13の先端が外側サセプタ4bの内部に差し込まれ
ている。水平回転軸13の先端テーパ部13t、それと接触
する内側サセプタ4aの下面テーパ部4tには、かさ歯車を
形成してある。水平回転軸13を図示しない駆動機構によ
って回転させると、それにつれて内側サセプタ4aが垂直
軸を中心に自転する構造になっている。
[0005] The susceptor 4 comprises an inner susceptor 4a and an outer susceptor 4b. The upper surface of the inner susceptor 4a is processed so as to be flat. The tip of the horizontal rotation shaft 13 is inserted into the inside of the outer susceptor 4b so as to penetrate the side surface of the outer susceptor 4b. A bevel gear is formed on the tip taper portion 13t of the horizontal rotation shaft 13 and the lower surface taper portion 4t of the inner susceptor 4a that comes into contact with the tip taper portion 13t. When the horizontal rotating shaft 13 is rotated by a driving mechanism (not shown), the inner susceptor 4a rotates around the vertical axis.

【0006】トレイ11の上面には、基板12より少し大き
い凹部11bを設けてあり、そこに基板12を載せるように
なっている。また、矩形流路底板102の中央には、円形
開口部102aを設けてある。この円形開口部102aには、内
周に沿って段差部102bが内側に張り出しており、ここに
トレイ11の外側段差部11aを載せるようになっている。
On the upper surface of the tray 11, a concave portion 11b slightly larger than the substrate 12 is provided, on which the substrate 12 is placed. Further, a circular opening 102a is provided at the center of the rectangular channel bottom plate 102. The circular opening 102a has a stepped portion 102b projecting inward along the inner periphery, and the outer stepped portion 11a of the tray 11 is placed here.

【0007】エピタキシャル成長をする時には、基板12
をトレイ11の上に載せ、さらにそれを矩形流路底板102
に載せた状態で、矩形流路上側板101と一緒に反応管1内
に搬入し、回転サセプタ4aの上に載せる。基板12の上面
は矩形流路10で覆われており、矩形流路10は拡大流路9
につなげてある。その状態で、ガス導入管6から原料ガ
スを反応管1内に導入する。導入された原料ガスは、反
応管1と一体となった拡大流路9を通り、さらに矩形流路
10を通り、反対側のフランジ2bに設けた排気口7を通っ
て、真空ポンプ8で排気される。この過程で基板12の上
面が原料ガスの流れにさらされ、原料ガスは基板12やそ
の周辺の高温に加熱された部材から熱受け取って反応
し、基板12表面にエピタキシャル膜を成長させる。
During epitaxial growth, the substrate 12
Is placed on the tray 11, and then it is placed on the rectangular channel bottom plate 102.
Is loaded into the reaction tube 1 together with the rectangular flow path upper plate 101 and placed on the rotary susceptor 4a. The upper surface of the substrate 12 is covered with a rectangular channel 10, and the rectangular channel 10 is
It is connected to In this state, the raw material gas is introduced into the reaction tube 1 from the gas introduction tube 6. The introduced source gas passes through the enlarged flow path 9 integrated with the reaction tube 1 and further into a rectangular flow path.
After passing through 10, the gas is evacuated by the vacuum pump 8 through the exhaust port 7 provided in the opposite flange 2b. In this process, the upper surface of the substrate 12 is exposed to the flow of the raw material gas, and the raw material gas receives and reacts with heat from the substrate 12 and the surrounding members heated to a high temperature to grow an epitaxial film on the surface of the substrate 12.

【0008】化合物半導体のエピタキシャル成長には、
III族原料として三つのアルキル基が結合したを有機金
属化合物(液体、固体)を、V族原料として水素化物を
用いる。III族原料の有機金属化合物(液体、固体)
は、バブリングや加熱によって気化させ、H2などで希釈
して、反応管1内に供給する。V族原料の水素化物も同様
に、H2などで希釈して、反応管1内に供給する。
For epitaxial growth of a compound semiconductor,
An organometallic compound (liquid or solid) having three alkyl groups bonded thereto is used as a group III raw material, and a hydride is used as a group V raw material. Group III raw material organometallic compounds (liquid, solid)
Is vaporized by bubbling or heating, diluted with H 2 or the like, and supplied into the reaction tube 1. Similarly, the hydride of the group V raw material is diluted with H 2 or the like and supplied into the reaction tube 1.

【0009】[0009]

【発明が解決しようとする課題】上述したエピタキシャ
ル成長装置では、成長層の組成や膜厚のバラツキが基板
面内や基板毎に生ずるという問題があった。特に、半導
体レーザでは、成長層の組成や膜厚によって発光波長が
大きく変化するため、大きな問題になっていた。この問
題に対して、我々は、次のようなメカニズで成長層の組
成や膜厚のバラツキが生ずることを明らかにした。すな
わち、 ・数百〜数千Paと比較的高圧力でエピタキシャル成長を
行うと、 ・主として、サセプタ→トレイ→基板への伝熱が、これ
らの間に介在するガスの熱伝導によって行われ、さら
に、ガスの平均自由行程がサセプタとトレイ、トレイと
基板の隙間に比較して十分に短いため、サセプタとトレ
イ間、トレイと基板の間の熱抵抗が、それらの隙間に比
例する。 ・したがって、サセプタとトレイの隙間、トレイと基板
の隙間が変わると、サセプタの温度が一定になるように
制御していても、基板の温度が変化し、 ・原料ガスの反応が変わり、エピタキシャル層の組成や
厚さが変化するというメカニズムである。
In the above-described epitaxial growth apparatus, there is a problem in that the composition and the thickness of the growth layer vary in the substrate surface or in each substrate. In particular, in the case of a semiconductor laser, the emission wavelength greatly changes depending on the composition and thickness of the growth layer, and this has been a serious problem. In response to this problem, we have clarified that the composition and thickness of the grown layer vary due to the following mechanism. When epitaxial growth is performed at a relatively high pressure of several hundreds to several thousands Pa, heat transfer from the susceptor to the tray to the substrate is mainly performed by heat conduction of a gas interposed therebetween. Since the mean free path of the gas is sufficiently short as compared with the gap between the susceptor and the tray and between the susceptor and the tray, the thermal resistance between the susceptor and the tray and between the tray and the substrate are proportional to the gap. Therefore, if the gap between the susceptor and the tray or the gap between the tray and the substrate changes, the temperature of the substrate changes even if the temperature of the susceptor is controlled to be constant. This is a mechanism in which the composition and thickness of the film change.

【0010】ここで、InP基板上にInGaAsPを成長させる
プロセスを例に取り上げ、基板温度、エピタキシャル成
長層の組成や厚さ、さらにはInGaAsP単膜の発光波長が
隙間の変動に対してどの程度変動するか見積もってみ
た。原料としてトリメチルインジウム、トリエチルガリ
ウム、AsH3、PH3を使用し、基板温度を600℃、成長圧力
を7000Paとするものと仮定した。この条件では、隙間が
1μm変化すると基板温度は約0.1℃変化する。また、基
準発光波長≒1.5μmとした実験から、InGaAsPの発光波
長は1℃基板温度変化に対して、約2nm変化することがわ
かった。これより、隙間に対する発光波長の変化率は約
0.2nm/1μmと見積もることができる。
Here, taking a process of growing InGaAsP on an InP substrate as an example, the substrate temperature, the composition and thickness of the epitaxial growth layer, and the extent to which the emission wavelength of the InGaAsP single film varies with the variation of the gap. I tried to estimate. It was assumed that trimethylindium, triethylgallium, AsH 3 , and PH 3 were used as raw materials, the substrate temperature was 600 ° C., and the growth pressure was 7000 Pa. Under these conditions, the gap
A change of 1 μm changes the substrate temperature by about 0.1 ° C. In addition, an experiment in which the reference emission wavelength was 1.5 μm showed that the emission wavelength of InGaAsP changed by about 2 nm with respect to a 1 ° C. substrate temperature change. From this, the rate of change of the emission wavelength with respect to the gap is about
It can be estimated to be 0.2 nm / 1 μm.

【0011】一方、サセプタとトレイの隙間、トレイと
基板の隙間がどれくらい変動するかは、基板、トレイ、
サセプタの平面度(反り)を考慮して、以下のように見
積もった。
On the other hand, how much the gap between the susceptor and the tray and the gap between the tray and the substrate fluctuate depends on the substrate, the tray,
In consideration of the flatness (warpage) of the susceptor, estimation was made as follows.

【0012】基板:メーカから購入した時点での反り
は、直径φ50mm、Sn ドープ、InP 基板で、8〜15μm程
度(凸状)である。これに対し、加熱している基板の表
裏に請ずる温度差に起因する反りは、0.5〜1μm程度
(凹状)であり、メーカから購入した時点での反りの1
/10〜1/20 と小さな値である。なお、InPの物性値
は、「III−V族半導体混晶、コロナ社」に記載の値、ヤ
ング率=6.07E11dyn/cm2、ポアソン比=0.36、線膨張
係数=4.56E−61/K、熱伝導率=0.68W/cmKとして、InP
基板の厚さは450μm、成膜温度は600℃として、計算し
た。
Substrate: The warpage at the time of purchase from the manufacturer is about 8 to 15 μm (convex) for a Sn-doped, InP substrate having a diameter of φ50 mm. On the other hand, the warpage caused by the temperature difference between the front and back of the substrate being heated is about 0.5 to 1 μm (concave), and the warpage at the time of purchase from the manufacturer is one.
The value is as small as / 10 to 1/20. The physical properties of InP are the values described in "III-V Group Semiconductor Mixed Crystal, Corona", Young's modulus = 6.07E11dyn / cm2, Poisson's ratio = 0.36, coefficient of linear expansion = 4.56E-61 / K, heat Conductivity = 0.68W / cmK, InP
The calculation was performed on the assumption that the thickness of the substrate was 450 μm and the film formation temperature was 600 ° C.

【0013】トレイ:直径φ50mmの基板用のトレイは直
径φ80〜100mmの大きさである。通常、トレイは機械加
工をした後、表面を滑らかにするため焼き仕上げする。
機械加工では平面度50μmの加工精度が得られるが、焼
仕上げによりを加工精度が悪くなり、平面度100μmの加
工が限界である。
Tray: A tray for a substrate having a diameter of φ50 mm has a diameter of φ80 to 100 mm. Usually, the tray is machined and then baked to smooth the surface.
Machining can achieve a processing accuracy of flatness of 50 μm, however, baking finish deteriorates the processing accuracy, and processing of flatness of 100 μm is the limit.

【0014】サセプタ:グラファイトの母材から機械加
工で削り出す。加工の最終工程で不純物を除去する目的
で2000℃以上の加熱処理を行うが、寸法の変化は小さ
い。機械加工だけで、平面度5〜10μmの加工が可能であ
る。
Susceptor: Machined out of a graphite base material. Heat treatment at 2000 ° C. or higher is performed for the purpose of removing impurities in the final step of processing, but the change in dimensions is small. Processing with a flatness of 5 to 10 μm is possible only by machining.

【0015】総合:基板、トレイ、サセプタの中では、
特にトレイの加工精度(平面度)が悪く、サセプタとト
レイの隙間、トレイと基板の隙間にバラツキがでる主原
因になっている。一つのトレイでも隙間は場所によって
変化し、トレイ毎にも変化する。トレイ起因の隙間のバ
ラツキは100μmと見積もられ、それは基板温度で10℃、
InGaAsPの発光波長で20nmの変動に相当する。
Overall: In the substrate, tray, and susceptor,
In particular, the processing accuracy (flatness) of the tray is poor, and this is the main cause of variations in the gap between the susceptor and the tray and the gap between the tray and the substrate. Even in one tray, the gap changes depending on the location, and also changes from tray to tray. The variation in the gap caused by the tray is estimated to be 100 μm, which is 10 ° C.
The emission wavelength of InGaAsP corresponds to a fluctuation of 20 nm.

【0016】[0016]

【課題を解決するための手段】トレイの加工精度(平面
度)を上げるには、機械加工後に焼き仕上げという従来
の加工方法を、機械加工後に研磨という加工方法に変更
すれば良い。ただし、トレイの上下面に凹凸があると研
磨加工は難しい。従来のトレイは中心に凹部を設けてい
るため、研磨が難しかった。そこで、トレイを上下面に
凹凸のない円板と、それを保持するためのリング部材に
分割し、基板やサセプタと接触する円板の上下面を研磨
することで、平面度を向上させる。
In order to increase the processing accuracy (flatness) of the tray, the conventional processing method of baking after machining is changed to a processing method of polishing after machining. However, if the upper and lower surfaces of the tray have irregularities, polishing is difficult. Since the conventional tray has a concave portion at the center, polishing is difficult. Therefore, the flatness is improved by dividing the tray into a disc having no irregularities on the upper and lower surfaces and a ring member for holding the disc, and polishing the upper and lower surfaces of the disc in contact with the substrate and the susceptor.

【0017】さらに、基板やサセプタと接触する円板を
複数に分割し、それらを異なる厚さに研磨加工すること
によって、サセプタの形状や基板の反りにあわせて隙間
を調整する。サセプタ上面が凹状に、基板が凸状になっ
ている場合には、中央部材の厚さを周辺部材に比べて厚
くする。石英の熱伝導率は少なくともガスの約10倍だか
ら、基板の温度変動は生じにくい。
Further, the disk which comes into contact with the substrate or the susceptor is divided into a plurality of pieces, and these are polished to different thicknesses, whereby the gap is adjusted according to the shape of the susceptor or the warpage of the substrate. When the upper surface of the susceptor is concave and the substrate is convex, the thickness of the central member is made thicker than the peripheral members. Since the thermal conductivity of quartz is at least about 10 times that of gas, fluctuations in substrate temperature are unlikely to occur.

【0018】[0018]

【発明の実施の形態】以下、図を用いて本発明の実施例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の第一実施例を示すサセプ
タ、トレイ、基板部の垂直断面図である。反応室全体の
構造は図3,4,5と同一であるので説明を省略する。
FIG. 1 is a vertical sectional view of a susceptor, a tray, and a substrate portion showing a first embodiment of the present invention. The structure of the entire reaction chamber is the same as in FIGS.

【0020】トレイ11は、保持リング111、円板112、カ
バーリング113の3個の部品から構成されている。円板11
2を載せるために、保持リング111の内側には段差111aが
形成されている。また、矩形流路底板102と一緒に保持
リングをサセプタ4aから持ち上げるため、保持リング11
1の外側にも段差111cを形成してある。さらに、保持リ
ング111の下部にはスカート111bを取り付け、サセプタ4
aの中心と保持リング111の中心軸が一致するようにして
ある。
The tray 11 is composed of three parts, a holding ring 111, a disk 112, and a cover ring 113. Disk 11
A step 111a is formed inside the holding ring 111 in order to put the 2 thereon. Further, the holding ring 11 is lifted from the susceptor 4a together with the rectangular flow path bottom plate 102.
A step 111c is also formed outside 1. Further, a skirt 111b is attached to the lower part of the retaining ring 111, and the susceptor 4
The center of “a” and the central axis of the holding ring 111 coincide with each other.

【0021】円板112 の上には、円板112とほぼ同一の
外径を持ち、基板12より少し大きい内径(開口)を持つ
カバーリング113 を載せてある。基板12は、カバーリン
グ113の開口内側の円板112上に載せ、カバーリング113
によって基板12が円板112 上を前後左右に動かないよう
にする。この状態で、保持リング111、円板112、カバー
リング113、基板12を矩形流路底板102に載せて反応管1
の内部に搬入し、保持リング111をサセプタ4aの上に載
せる。保持リング111のスカート111bがサセプタ4aの外
側に勘合すると、円板112は保持リング111から離間し
(円板112が保持リングから離間するように、段差111a
と段差112aの寸法が決められている)、サセプタ4a上面
に円板112の下面が直接接触して保持される。
On the disk 112, a cover ring 113 having substantially the same outer diameter as the disk 112 and having a slightly larger inner diameter (opening) than the substrate 12 is mounted. The substrate 12 is placed on the disk 112 inside the opening of the cover ring 113, and
This prevents the substrate 12 from moving back and forth and right and left on the disk 112. In this state, the holding ring 111, the disk 112, the cover ring 113, and the substrate 12 are placed on the rectangular channel bottom plate 102, and the reaction tube 1
And the holding ring 111 is placed on the susceptor 4a. When the skirt 111b of the retaining ring 111 fits outside the susceptor 4a, the disc 112 separates from the retaining ring 111 (so that the disc 111 separates from the retaining ring so that the step 111a
The size of the step 112a is determined), and the lower surface of the disk 112 is directly in contact with and held by the upper surface of the susceptor 4a.

【0022】RFコイル3に高周波を印可することによっ
て高温に加熱されたサセプタ4aから、円板112を介して
基板12に熱が伝えられる。この伝熱過程は、サセプタ4a
と円板112、円板112と基板12の間に介在するガスの熱伝
導が主体となる。円板112の上下面は研磨加工により、
少なくとも1μm以下の平面度に加工されている。サセプ
タ4aの上面も、少なくとも10μm以下の平面度に加工さ
れている。
Heat is transmitted from the susceptor 4 a, which is heated to a high temperature by applying a high frequency to the RF coil 3, to the substrate 12 via the disk 112. This heat transfer process is performed by the susceptor 4a.
And the circular plate 112, and heat conduction of gas interposed between the circular plate 112 and the substrate 12 is mainly performed. The upper and lower surfaces of the disk 112 are polished,
It is processed to a flatness of at least 1 μm or less. The upper surface of the susceptor 4a is also processed to a flatness of at least 10 μm or less.

【0023】サセプタ4aの上面と円板112の間の隙間は0
〜10μm以下、円板112と基板12 との隙間は8〜15μmで
ある。従来技術のところで述べたように、隙間の変動に
対して、基板温度の変化が0.1℃/1μmであるので、基
板12の面内温度差は2℃以内になる。また、InGaAsPの発
光波長の変動は4nm以下になる。これらの値は、従来値
の1/5以下である。
The gap between the upper surface of the susceptor 4a and the disk 112 is zero.
The gap between the disk 112 and the substrate 12 is 8 to 15 μm. As described in the description of the related art, since the change in the substrate temperature is 0.1 ° C./1 μm with respect to the change in the gap, the in-plane temperature difference of the substrate 12 is within 2 ° C. In addition, the fluctuation of the emission wavelength of InGaAsP becomes 4 nm or less. These values are 1/5 or less of the conventional value.

【0024】図2は本発明の第二実施例を示すサセプ
タ、トレイ、基板部の垂直断面図である。トレイ11は、
保持リング111、外側リング114、中間リング115、円板1
16 の4個の部品から構成される。保持リング111の形状
は第一実施例と同一である。第一の実施例との相違点
は、基板12と接触するトレイの一部を中間リング115と
円板116の二つに分割した点である。さらに、中間リン
グ115と円板116は、異なる厚さになるように各々上下面
を研磨加工する点にある。例えば、サセプタ4aの上面が
凹状になっている場合には、円板116を中間リング115よ
り厚くする。
FIG. 2 is a vertical sectional view of a susceptor, tray and substrate showing a second embodiment of the present invention. Tray 11
Retaining ring 111, outer ring 114, intermediate ring 115, disk 1
It consists of 16 parts. The shape of the retaining ring 111 is the same as in the first embodiment. The difference from the first embodiment is that a part of the tray in contact with the substrate 12 is divided into two parts, an intermediate ring 115 and a disk 116. Further, the intermediate ring 115 and the disk 116 are polished on the upper and lower surfaces so as to have different thicknesses. For example, when the upper surface of the susceptor 4a is concave, the disk 116 is made thicker than the intermediate ring 115.

【0025】厚くする程度は、The degree of thickening is

【0026】[0026]

【数1】 という条件から決めれば良い。ここで、h1はサセプタ4a
と円板116との隙間、h2は円板116と基板12との隙間、h3
はサセプタ4aと中間リング115との隙間、h4は中間リン
グ115と基板12の隙間である。
(Equation 1) It should be decided from the conditions. Where h1 is the susceptor 4a
H2 is the gap between the disk 116 and the substrate 12, h3
Denotes a gap between the susceptor 4a and the intermediate ring 115, and h4 denotes a gap between the intermediate ring 115 and the substrate 12.

【0027】ここでは、基板12との接触部を二分割する
例を説明したが、もっと細かく分割した方が、基板12の
温度均一性がさらに改善されることは言うまでもない。
第一の実施例で10μm以上あった隙間のバラツキを、第
二の実施例では10μm以下に抑えることが可能になり、I
nGaAsPの発光波長の変動は2nm以下に抑えることができ
る。
Here, an example in which the contact portion with the substrate 12 is divided into two parts has been described. However, it goes without saying that the more uniform division improves the temperature uniformity of the substrate 12.
The variation in the gap, which was 10 μm or more in the first embodiment, can be suppressed to 10 μm or less in the second embodiment.
The fluctuation of the emission wavelength of nGaAsP can be suppressed to 2 nm or less.

【0028】[0028]

【発明の効果】本発明によれば、基板面内で均一な組成
ならびに膜厚を持った化合物半導体のエピタキシャル成
長が可能になる。また、組成や膜厚の再現性向上も可能
になる。したがって、特に半導体レーザの発光波長が設
計値からずれることを防止し、生産効率の大幅な向上が
達成できる。
According to the present invention, it becomes possible to epitaxially grow a compound semiconductor having a uniform composition and film thickness in the plane of the substrate. Further, the reproducibility of the composition and the film thickness can be improved. Therefore, it is possible to prevent the emission wavelength of the semiconductor laser from deviating from the design value, and to achieve a significant improvement in production efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例を示すサセプタ、トレイ、
基板部の垂直断面図。
FIG. 1 shows a susceptor, a tray, and a first embodiment of the present invention.
FIG. 4 is a vertical sectional view of a substrate unit.

【図2】本発明の第二実施例を示すサセプタ、トレイ、
基板部の垂直断面図。
FIG. 2 shows a susceptor, a tray, and a second embodiment of the present invention.
FIG. 4 is a vertical sectional view of a substrate unit.

【図3】従来のエピタキシャル成長装置の反応室構造を
示す垂直断面図。
FIG. 3 is a vertical sectional view showing a reaction chamber structure of a conventional epitaxial growth apparatus.

【図4】従来のエピタキシャル成長装置の反応室構造を
示す水平断面図。
FIG. 4 is a horizontal sectional view showing a reaction chamber structure of a conventional epitaxial growth apparatus.

【図5】従来のトレイ、基板、サセプタの垂直断面図。FIG. 5 is a vertical sectional view of a conventional tray, substrate, and susceptor.

【符号の説明】[Explanation of symbols]

1…反応管、2,2a,2b…フランジ、3…RFコイル、4…サ
セプタ、4a…内側サセプタ、4b…外側サセプタ、5…温
度センサ、6…ガス導入管、7…排気口、8…真空ポン
プ、9…拡大流路、10…矩形流路、11…トレイ、12…基
板、13…水平回転軸、1a…外側反応管、1b…内側反応
管、13t…水平回転軸13の先端テーパ部、4t…内側サセ
プタ4aの下面テーパ部、11b…凹部、102…矩形流路底
板、102a…円形開口部、102b…段差部、11a…外側段差
部、101…矩形流路上側板、111…保持リング、112…円
板、113…カバーリング、111a…段差、111c…段差、111
b…スカート、112a…段差、114…外側リング、115…中
間リング、116 …円板。
1 ... Reaction tube, 2, 2a, 2b ... Flange, 3 ... RF coil, 4 ... Susceptor, 4a ... Inner susceptor, 4b ... Outer susceptor, 5 ... Temperature sensor, 6 ... Gas inlet tube, 7 ... Exhaust port, 8 ... Vacuum pump, 9… Enlarged flow path, 10… Rectangular flow path, 11… Tray, 12… Substrate, 13… Horizontal rotating shaft, 1a… Outer reaction tube, 1b… Inner reaction tube, 13t… Taper tip of horizontal rotating shaft 13 Part, 4t: tapered lower surface of the inner susceptor 4a, 11b: concave part, 102: rectangular bottom plate, 102a: circular opening, 102b: stepped part, 11a: outer stepped part, 101: rectangular upper plate, 111: holding Ring, 112 ... disk, 113 ... cover ring, 111a ... step, 111c ... step, 111
b ... skirt, 112a ... step, 114 ... outer ring, 115 ... intermediate ring, 116 ... disk.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA11 BA08 BA11 BA25 CA04 FA10 GA01 KA45 LA14 5F045 AA04 AB18 AC08 AC19 AD10 AE30 AF04 BB02 BB03 CA12 DP04 DQ06 EM03 EM09 EM10 5F073 CA12 CB02 EA29  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA11 BA08 BA11 BA25 CA04 FA10 GA01 KA45 LA14 5F045 AA04 AB18 AC08 AC19 AD10 AE30 AF04 BB02 BB03 CA12 DP04 DQ06 EM03 EM09 EM10 5F073 CA12 CB02 EA29

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 反応室と、反応室内を所定の圧力に調整
する圧力調整手段と、反応室内に設置したサセプタと、
サセプタを所定の温度に保持する加熱手段と、反応室内
に化合物半導体の原料となるガスを供給する手段とを備
えたエピタキシャル成長装置を用いて、基板をトレイに
載せて反応室内に搬入し、サセプタ上に基板とトレイを
載置し、その後にサセプタを所定の温度に昇温させ、化
合物半導体の原料となるガスを反応室内に供給しなが
ら、基板表面に化合物半導体をエピタキシャル成長させ
る際に、基板ならびにサセプタと接触するトレイ上下面
を研磨加工したことを特徴とする化合物半導体のエピタ
キシャル成長方法及び成長装置。
A reaction chamber, pressure adjusting means for adjusting the pressure in the reaction chamber to a predetermined pressure, a susceptor installed in the reaction chamber,
Using an epitaxial growth apparatus provided with a heating means for maintaining the susceptor at a predetermined temperature and a means for supplying a gas serving as a source of a compound semiconductor into the reaction chamber, the substrate is loaded on a tray and loaded into the reaction chamber, and the substrate is placed on the susceptor. The substrate and the tray are placed on the substrate, and then the susceptor is heated to a predetermined temperature, and while supplying a gas as a raw material for the compound semiconductor into the reaction chamber, the substrate and the susceptor are grown when the compound semiconductor is epitaxially grown on the substrate surface. A method and apparatus for epitaxially growing a compound semiconductor, wherein upper and lower surfaces of a tray that comes into contact with the substrate are polished.
【請求項2】 請求項1記載の化合物半導体のエピタキ
シャル成長方法及び成長装置において、基板ならびにサ
セプタと接触するトレイ上下面を1μm 以下の平面度と
なるように研磨加工したことを特徴とする化合物半導体
のエピタキシャル成長方法及び成長装置。
2. A compound semiconductor epitaxial growth method and apparatus according to claim 1, wherein upper and lower surfaces of the tray in contact with the substrate and the susceptor are polished so as to have a flatness of 1 μm or less. An epitaxial growth method and a growth apparatus.
【請求項3】 請求項1記載の化合物半導体のエピタキ
シャル成長方法及び成長装置において、前記トレイを、
基板を載せる円板と、その円板を周辺で保持するリング
に分割し、前記円板の上下面を研磨加工したことを特徴
とする化合物半導体のエピタキシャル成長方法及び成長
装置。
3. The method and apparatus for epitaxially growing a compound semiconductor according to claim 1, wherein:
A method and apparatus for epitaxially growing a compound semiconductor, comprising dividing a disk on which a substrate is placed and a ring holding the disk around the disk, and polishing the upper and lower surfaces of the disk.
【請求項4】 請求項3記載の化合物半導体のエピタキ
シャル成長方法及び成長装置において、前記基板を載せ
る円板を、複数の部材に分割し、部材によってその厚さ
が変わるように、前記部材の上下面を研磨加工したこと
を特徴とする化合物半導体のエピタキシャル成長方法及
び成長装置。
4. The method and apparatus for epitaxially growing a compound semiconductor according to claim 3, wherein the disk on which the substrate is mounted is divided into a plurality of members, and the upper and lower surfaces of the members are changed so that the thickness varies depending on the members. And an apparatus for epitaxially growing a compound semiconductor.
【請求項5】 請求項4記載の化合物半導体のエピタキ
シャル成長方法及び成長装置において、サセプタと基板
との隙間から前記基板を載せる部材の厚さを減算した値
が、基板のどの位置でも概略同一の値となるように、前
記複数の部材の厚さを決定することを特徴する化合物半
導体のエピタキシャル成長方法及び成長装置。
5. A method and an apparatus for epitaxially growing a compound semiconductor according to claim 4, wherein the value obtained by subtracting the thickness of the member on which the substrate is placed from the gap between the susceptor and the substrate is substantially the same at any position on the substrate. A method and an apparatus for epitaxially growing a compound semiconductor, wherein the thicknesses of the plurality of members are determined so as to be as follows.
【請求項6】 反応室と、反応室内を所定の圧力に調整
する圧力調整手段と、反応室内に設置したサセプタと、
サセプタを所定の温度に保持する加熱手段と、反応室内
に化合物半導体の原料となるガスを供給する手段とを備
えたエピタキシャル成長装置を用いて、基板をトレイに
載せて反応室内に搬入し、サセプタ上に基板とトレイを
載置し、その後にサセプタを所定の温度に昇温させ、化
合物半導体の原料となるガスを反応室内に供給しなが
ら、基板表面に化合物半導体をエピタキシャル成長させ
る際に、基板とトレイとの隙間ならびにトレイとサセプ
タと隙間が大きくても10μm以上のバラツキを持たない
ようにしたことを特徴とする化合物半導体のエピタキシ
ャル成長方法及び成長装置。
6. A reaction chamber, pressure adjusting means for adjusting the pressure in the reaction chamber to a predetermined pressure, and a susceptor installed in the reaction chamber.
Using an epitaxial growth apparatus provided with a heating means for maintaining the susceptor at a predetermined temperature and a means for supplying a gas serving as a source of a compound semiconductor into the reaction chamber, the substrate is loaded on a tray and loaded into the reaction chamber, and the substrate is placed on the susceptor. The substrate and the tray are placed on the substrate, and then the susceptor is heated to a predetermined temperature, and a gas as a raw material of the compound semiconductor is supplied into the reaction chamber. Characterized in that the gap between the substrate and the tray and the susceptor does not have a variation of 10 μm or more even when the gap is large.
【請求項7】 請求項1〜6記載の化合物半導体のエピ
タキシャル成長方法及び成長装置において、InP基板の
上にInGaAsP層をエピタキシャル成長させることを特徴
とする化合物半導体のエピタキシャル成長方法及び成長
装置。
7. The method and apparatus for epitaxially growing a compound semiconductor according to claim 1, wherein an InGaAsP layer is epitaxially grown on an InP substrate.
【請求項8】 請求項7記載の化合物半導体のエピタキ
シャル成長方法を用いて組成が異なるエピタキシャル成
長層を多層に重ねあわせる工程を含むことを特徴とする
半導体レーザの製造方法。
8. A method for manufacturing a semiconductor laser, comprising a step of superposing an epitaxially grown layer having a different composition on a multilayer using the method for epitaxially growing a compound semiconductor according to claim 7.
【請求項9】 請求項8記載の半導体レーザの製造方法
において、半導体レーザの発光波長が1.2〜1.55μmであ
ることを特徴とする半導体レーザの製造方法。
9. The method for manufacturing a semiconductor laser according to claim 8, wherein an emission wavelength of the semiconductor laser is 1.2 to 1.55 μm.
【請求項10】 請求項8,9記載の半導体レーザの製
造方法を用いて製造された半導体レーザを光源とする通
信機器。
10. A communication device using a semiconductor laser manufactured by using the method for manufacturing a semiconductor laser according to claim 8 as a light source.
JP2001180983A 2001-06-15 2001-06-15 Method of epitaxially growing compound semiconductor layer and growth device Pending JP2002373863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001180983A JP2002373863A (en) 2001-06-15 2001-06-15 Method of epitaxially growing compound semiconductor layer and growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001180983A JP2002373863A (en) 2001-06-15 2001-06-15 Method of epitaxially growing compound semiconductor layer and growth device

Publications (1)

Publication Number Publication Date
JP2002373863A true JP2002373863A (en) 2002-12-26

Family

ID=19021316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001180983A Pending JP2002373863A (en) 2001-06-15 2001-06-15 Method of epitaxially growing compound semiconductor layer and growth device

Country Status (1)

Country Link
JP (1) JP2002373863A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524911A (en) * 2003-04-30 2006-11-02 アイクストロン、アーゲー Semiconductor vapor deposition process and apparatus using two kinds of process gas pretreated on one side
JP2007258516A (en) * 2006-03-24 2007-10-04 Taiyo Nippon Sanso Corp Vapor phase epitaxy device
JP2010109297A (en) * 2008-10-31 2010-05-13 Sharp Corp Tray, vapor phase growth equipment, and vapor phase growth method
US20150345046A1 (en) * 2012-12-27 2015-12-03 Showa Denko K.K. Film-forming device
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524911A (en) * 2003-04-30 2006-11-02 アイクストロン、アーゲー Semiconductor vapor deposition process and apparatus using two kinds of process gas pretreated on one side
JP4700602B2 (en) * 2003-04-30 2011-06-15 アイクストロン、アーゲー Semiconductor vapor deposition process and apparatus using two kinds of process gas pretreated on one side
JP2007258516A (en) * 2006-03-24 2007-10-04 Taiyo Nippon Sanso Corp Vapor phase epitaxy device
JP2010109297A (en) * 2008-10-31 2010-05-13 Sharp Corp Tray, vapor phase growth equipment, and vapor phase growth method
US20150345046A1 (en) * 2012-12-27 2015-12-03 Showa Denko K.K. Film-forming device
US20160194753A1 (en) * 2012-12-27 2016-07-07 Showa Denko K.K. SiC-FILM FORMATION DEVICE AND METHOD FOR PRODUCING SiC FILM

Similar Documents

Publication Publication Date Title
CN105734532B (en) The disk reactor with ferrofluid seal for chemical vapor deposition
JP4899445B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP3092801B2 (en) Thin film growth equipment
JP4599816B2 (en) Manufacturing method of silicon epitaxial wafer
JP2002373863A (en) Method of epitaxially growing compound semiconductor layer and growth device
JP2000012470A (en) Vapor-phase growth system
JP2004200436A (en) Susceptor and its manufacturing method
JP4252944B2 (en) Susceptor and chemical vapor deposition method
JP2020100528A (en) Laminate, method for manufacturing laminate and method for manufacturing silicon carbide polycrystal substrate
JP2010040574A (en) Production process of epitaxial wafer, and epitaxial wafer
JP7273267B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
WO2019098033A1 (en) Susceptor and method for manufacturing epitaxial wafer
JP7400337B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JPH1116991A (en) Carbon support for semiconductor manufacturing apparatus
JP2001035794A (en) Method and device for manufacturing semiconductor device
JPH0268922A (en) Susceptor for vapor growth
JP7413768B2 (en) Method for manufacturing polycrystalline substrate
JP6841359B1 (en) Manufacturing method of susceptor for manufacturing silicon epitaxial wafer and manufacturing method of silicon epitaxial wafer
TWI835249B (en) A wafer support rod device, equipment and method for wafer epitaxial growth
JP5710382B2 (en) Manufacturing method of semiconductor device
JP4951580B2 (en) Manufacturing method of semiconductor wafer
JP2024022522A (en) Wafer boat and method for forming layer on a plurality of substrates
TW202302939A (en) Wafer supporting rod device, equipment and method for epitaxial growth of wafer
CN115506013A (en) Epitaxial production process of SiC wafer