JP2002372323A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JP2002372323A
JP2002372323A JP2001184362A JP2001184362A JP2002372323A JP 2002372323 A JP2002372323 A JP 2002372323A JP 2001184362 A JP2001184362 A JP 2001184362A JP 2001184362 A JP2001184362 A JP 2001184362A JP 2002372323 A JP2002372323 A JP 2002372323A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
evaporator
liquid separator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001184362A
Other languages
Japanese (ja)
Other versions
JP4408591B2 (en
Inventor
Katsuhiro Shimizu
水 克 浩 清
Shinichi Yakabe
真 一 矢ヶ部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2001184362A priority Critical patent/JP4408591B2/en
Publication of JP2002372323A publication Critical patent/JP2002372323A/en
Application granted granted Critical
Publication of JP4408591B2 publication Critical patent/JP4408591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating cycle capable of simplifying the piping structure of a bypass pipe from a gas-liquid separator. SOLUTION: In the refrigerating cycle, a first heat exchanger and a second heat exchanger are connected in series by a pipe between an outlet side and an inlet side of a compressor 11 for feeding a gas-phase refrigerant under pressure. One of the first and second heat exchangers serves as an evaporator and the other of them serves as a condenser, respectively. A four-way selector valve for inverting the roles of the evaporator and the condenser is provided in the outlet path and the inlet path of the compressor. The gas-liquid separator 16 separates the refrigerant in the heat exchanging path of the heat exchanger 21 serving as the evaporator into gas and liquid. The bypass pipe 25 supplies the refrigerant of gas-phase separated by the gas-liquid separator to a pipeline for connecting the outlet of the heat exchanger serving as the evaporator and the four-way selector valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸発器として機能
する熱交換器の熱交換路での圧力損失の増加や熱交換性
能の低下を防止する冷凍サイクルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle for preventing an increase in pressure loss and a decrease in heat exchange performance in a heat exchange path of a heat exchanger functioning as an evaporator.

【0002】[0002]

【従来の技術】この種の従来の冷凍サイクルとして、例
えば、特開平9−152216号公報には、蒸発器とし
て機能する熱交換器の熱交換路の途中の冷媒を気液分離
する気閾分離器を設けたものが開示されている。以下、
この公報に記載の冷凍サイクルについて、図4を参照し
て説明する。
2. Description of the Related Art As a conventional refrigeration cycle of this kind, for example, Japanese Patent Application Laid-Open No. Hei 9-152216 discloses a gas threshold separation for separating a refrigerant in the middle of a heat exchange path of a heat exchanger functioning as an evaporator. An arrangement with a vessel is disclosed. Less than,
The refrigeration cycle described in this publication will be described with reference to FIG.

【0003】図4は空調室内に据え付けられる室内ユニ
ットと、屋外に設置される室外ユニットによって構成さ
れる空気調和機の冷凍サイクルである。この冷凍サイク
ル10は、圧縮機11と、この圧縮機11の吐出口11
a及び吸入口11bに接続された四方切換弁12と、こ
の四方切換弁12に接続された室内熱交換器13及び室
外熱交換器14と、室内熱交換器13と室外熱交換器1
4との間に設けられた膨張弁15とを備えて構成されて
いる。
FIG. 4 shows a refrigeration cycle of an air conditioner comprising an indoor unit installed in an air-conditioned room and an outdoor unit installed outdoors. The refrigeration cycle 10 includes a compressor 11 and a discharge port 11 of the compressor 11.
a, a four-way switching valve 12 connected to the suction port 11b, an indoor heat exchanger 13 and an outdoor heat exchanger 14 connected to the four-way switching valve 12, an indoor heat exchanger 13, and an outdoor heat exchanger 1.
4 and an expansion valve 15 provided between them.

【0004】この構成により、暖房運転時には冷媒が、
圧縮機11の吐出口11aから吐出され、四方切換弁1
2から室内熱交換器13、膨張弁15及び室外熱交換器
14へと流れ、四方切換弁12から再び圧縮機11の吸
入口11bに流れるように循環する。また、冷房運転時
には四方切換弁12が切り換えられ、冷媒は圧縮機11
の吐出口11aから吐出され、四方切換弁12から逆に
室外熱交換器14、膨張弁15及び室内熱交換器13へ
と流れ、四方切換弁12から再び圧縮機11の吸入口1
1bに吸入されるように循環する。
[0004] With this configuration, during the heating operation, the refrigerant is
The four-way switching valve 1 is discharged from a discharge port 11 a of the compressor 11.
2, the refrigerant flows to the indoor heat exchanger 13, the expansion valve 15, and the outdoor heat exchanger 14, and circulates from the four-way switching valve 12 to the suction port 11 b of the compressor 11 again. During the cooling operation, the four-way switching valve 12 is switched, and the refrigerant is supplied to the compressor 11.
And flows from the four-way switching valve 12 to the outdoor heat exchanger 14, the expansion valve 15 and the indoor heat exchanger 13, and from the four-way switching valve 12 to the suction port 1 of the compressor 11 again.
Circulates so as to be sucked into 1b.

【0005】ここで、室内熱交換器13は、図示を省略
した多数枚の放熱フィンに複数本の熱交換パイプを貫通
させて形成した2つの冷媒が並流する熱交換路13a,
13bを備え、2つの熱交換路13a,13bの両端は
互いに接続され、その一端側の接続部が四方切換弁12
に、他端側の接続部が膨張弁15に接続されている。ま
た、室外熱交換器14は、長方形の多数枚の放熱フィン
を貫通する複数本の熱交換パイプを蛇行するように接続
することによって、2つの熱交換路14a,14bが放
熱フィンの長手方向両側に分離して形成されている。
[0005] The indoor heat exchanger 13 has a plurality of heat-radiating fins (not shown) through which a plurality of heat-exchange pipes are passed.
13b, the two ends of the two heat exchange paths 13a and 13b are connected to each other, and the connection at one end thereof is connected to the four-way switching valve 12
In addition, a connection portion on the other end side is connected to the expansion valve 15. Further, the outdoor heat exchanger 14 is connected in a meandering manner to a plurality of heat exchange pipes penetrating a large number of rectangular heat radiation fins, so that the two heat exchange paths 14a and 14b are formed on both longitudinal sides of the heat radiation fins. Are formed separately.

【0006】また、室外熱交換器14の熱交換路14
a,14bを形成するそれぞれの熱交換パイプの接続端
部間に、2つの入側接続口16a及び出側接続口16b
が接続され、熱交換路14a及び熱交換路14b間を液
相の冷媒が流通するように気液分離器16が直列に挿入
されている。さらに、気液分離器16の気相分排出口1
6cには、中間部に開閉弁である電磁弁19が設けられ
たバイパス管17の一端が接続され、このバイパス管1
7の他端が、四方切換弁12と圧縮機11の吸入口11
bとの間を接続する冷媒吸入流路18に接続されてい
る。
The heat exchange path 14 of the outdoor heat exchanger 14
a, 14b between the connection ends of the heat exchange pipes forming the two inlet connection ports 16a and the outlet connection port 16b.
Are connected, and a gas-liquid separator 16 is inserted in series so that a liquid-phase refrigerant flows between the heat exchange path 14a and the heat exchange path 14b. Further, the gas-phase discharge port 1 of the gas-liquid separator 16
6c is connected to one end of a bypass pipe 17 provided with an electromagnetic valve 19 which is an opening / closing valve at an intermediate portion.
7 is connected to the four-way switching valve 12 and the suction port 11 of the compressor 11.
b is connected to a refrigerant suction flow path 18 that connects between the refrigerant suction passages b and b.

【0007】これにより、暖房運転時に、室外熱交換器
14の熱交換路14aで熱交換によって気液混合状態と
なった冷媒は、気液分離器16で気相分が除かれて液相
分が多い状態で熱交換路14bでの熱交換が行われるこ
とになり、管内の冷媒の流速が高速度とならず圧力損失
の増加が抑制され、また、熱交換路14aと熱交換路1
4bとが冷媒の流通方向に直列に1パスとなるように接
続され、冷媒を分流することによって生じる熱交換性能
の低下を防止することができる。
As a result, during the heating operation, the refrigerant in the gas-liquid mixed state due to heat exchange in the heat exchange path 14a of the outdoor heat exchanger 14 has its gas phase removed by the gas-liquid separator 16 and has its liquid phase separated. The heat exchange in the heat exchange path 14b is performed in a state where there is a large amount of heat, the flow velocity of the refrigerant in the pipe does not become high, the increase in pressure loss is suppressed, and the heat exchange path 14a and the heat exchange path 1
4b is connected in series with the flow direction of the refrigerant so as to form one pass, and it is possible to prevent a decrease in heat exchange performance caused by dividing the refrigerant.

【0008】[0008]

【発明が解決しようとする課題】上述した従来の冷凍サ
イクルにおいては、バイパス管17が四方切換弁12と
圧縮機11の吸入口11bとを接続する冷媒吸入流路1
8に接続されているため、圧縮機11の振動分を吸収す
る必要性から、配管構造が複雑になるという問題があっ
た。
In the above-described conventional refrigeration cycle, the bypass pipe 17 connects the four-way switching valve 12 and the suction port 11b of the compressor 11 with the refrigerant suction flow path 1.
8, there is a problem that the piping structure becomes complicated due to the necessity of absorbing the vibration of the compressor 11.

【0009】また、室内外の温度や圧縮機11の回転数
などの使用条件によっては、気液分離器16から液相の
冷媒がバイパス管17を介して、圧縮機11の吸入口1
1bに導かれるいわゆる、液バックの可能性があるた
め、使用条件に応じて電磁弁19を閉成する必要があ
り、常時気液分離の効果が得られないという問題もあっ
た。
In addition, depending on operating conditions such as indoor and outdoor temperatures and the number of revolutions of the compressor 11, a liquid-phase refrigerant flows from the gas-liquid separator 16 through the bypass pipe 17 and is supplied to the suction port 1 of the compressor 11.
Since there is a possibility of so-called liquid back being led to 1b, it is necessary to close the solenoid valve 19 according to use conditions, and there is also a problem that the effect of gas-liquid separation cannot always be obtained.

【0010】さらに、室外熱交換器14の熱交換路に対
する接続位置に応じて使用電力が変化するという問題も
あった。
Further, there is another problem that the electric power used varies depending on the connection position of the outdoor heat exchanger 14 to the heat exchange path.

【0011】本発明は上記の問題点を解決するためにな
されたもので、その目的は気液分離器からのバイパス管
の配管構造を簡易化することのできる冷凍サイクルを提
供するにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a refrigeration cycle which can simplify a piping structure of a bypass pipe from a gas-liquid separator.

【0012】本発明の他の目的は気液分離器からの液バ
ックを抑制して、気液分離システムの信頼性の向上を図
り得る冷凍サイクルを提供するにある。
Another object of the present invention is to provide a refrigeration cycle capable of suppressing the liquid back from the gas-liquid separator and improving the reliability of the gas-liquid separation system.

【0013】本発明のもう一つの目的は消費電力を低減
することのできる冷凍サイクルを提供するにある。
Another object of the present invention is to provide a refrigeration cycle capable of reducing power consumption.

【0014】[0014]

【課題を解決するための手段】請求項1に係る発明は、
気相の冷媒を圧送する圧縮機の吐出側と吸入側の間に、
第1の熱交換器と第2の熱交換器とを直列に管接続し、
第1及び第2の熱交換器のいずれか一方を蒸発器とし、
いずれか他方を凝縮器としてそれぞれ機能させると共
に、蒸発器と凝縮器の役割を逆転させる四方切換弁が圧
縮機の吐出経路及び吸入経路に設けられた冷凍サイクル
において、蒸発器として機能する熱交換器の熱交換路の
途中の冷媒を気液分離する気液分離器と、気液分離器で
分離された気相の冷媒を、蒸発器として機能する熱交換
器の出口と四方切換弁とを接続する管路に流入させるバ
イパス管と、を備えたことを特徴とする。
The invention according to claim 1 is
Between the discharge side and the suction side of the compressor that pumps the gas phase refrigerant,
Connecting a first heat exchanger and a second heat exchanger in series with a pipe;
One of the first and second heat exchangers is an evaporator,
A heat exchanger that functions as an evaporator in a refrigeration cycle in which one of the other functions as a condenser and a four-way switching valve that reverses the role of the evaporator and the condenser is provided in the discharge path and the suction path of the compressor. A gas-liquid separator for gas-liquid separation of the refrigerant in the middle of the heat exchange path, and a gas-phase refrigerant separated by the gas-liquid separator is connected to the outlet of the heat exchanger functioning as an evaporator and a four-way switching valve. And a bypass pipe that flows into a pipeline that performs the bypass operation.

【0015】請求項2に係る発明は、請求項1に記載の
冷凍サイクルにおいて、バイパス管の少なくとも一部
を、蒸発器として機能する熱交換器の鉛直方向の全長の
略3/4以上の高さ位置に設けたことを特徴とする。
According to a second aspect of the present invention, in the refrigeration cycle according to the first aspect, at least a part of the bypass pipe has a height of about の or more of a total length in the vertical direction of the heat exchanger functioning as an evaporator. It is characterized in that it is provided at the position.

【0016】請求項3に係る発明は、請求項1又は2に
記載の冷凍サイクルにおいて、蒸発器として機能する熱
交換器の熱交換路のうち、冷媒の乾き度が0.5±0.
2である位置、又は、熱交換路の全長に対して入口から
50±20%の長さ位置に気液分離器を設けたことを特
徴とする。
According to a third aspect of the present invention, in the refrigeration cycle according to the first or second aspect, the dryness of the refrigerant in the heat exchange path of the heat exchanger functioning as an evaporator is 0.5 ± 0.5.
2. The gas-liquid separator is provided at a position 2 or at a position 50 ± 20% from the inlet with respect to the entire length of the heat exchange path.

【0017】請求項4に係る発明は、請求項1乃至3の
いずれか1項に記載の冷凍サイクルにおいて、気液分離
器を境として、上流側の熱交換路の本数よりも下流側の
直後の熱交換路の本数を少なくしたことを特徴とする。
According to a fourth aspect of the present invention, in the refrigeration cycle according to any one of the first to third aspects, the refrigeration cycle is located immediately downstream of the number of upstream heat exchange paths with respect to the gas-liquid separator. Characterized in that the number of heat exchange paths is reduced.

【0018】請求項5に係る発明は、請求項1乃至4の
いずれか1項に記載の冷凍サイクルにおいて、バイパス
管に逆止弁を設けたことを特徴とする。
According to a fifth aspect of the present invention, in the refrigeration cycle according to any one of the first to fourth aspects, a check valve is provided in the bypass pipe.

【0019】請求項6に係る発明は、請求項1乃至4の
いずれか1項に記載の冷凍サイクルにおいて、気液分離
器が設けられる熱交換器が蒸発器として機能するとき開
放され、凝縮器として機能するとき閉成される二方弁を
バイパス管に設けたことを特徴とする。
According to a sixth aspect of the present invention, in the refrigeration cycle according to any one of the first to fourth aspects, the heat exchanger provided with the gas-liquid separator is opened when the heat exchanger functions as an evaporator, and the condenser is opened. A two-way valve, which is closed when functioning as, is provided in the bypass pipe.

【0020】請求項7に係る発明は、請求項6に記載の
冷凍サイクルにおいて、気液分離器が設けられる熱交換
器の除霜運転時に二方弁を開放することを特徴とする。
According to a seventh aspect of the present invention, in the refrigeration cycle according to the sixth aspect, the two-way valve is opened during a defrosting operation of the heat exchanger provided with the gas-liquid separator.

【0021】[0021]

【発明の実施の形態】以下、本発明を図面に示す好適な
実施形態に基づいて詳細に説明する。図1は本発明に係
る冷凍サイクルの一実施形態の構成を示す系統図であ
り、図中、従来装置を示した図4と同一の要素には同一
の符号を付してその説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the drawings. FIG. 1 is a system diagram showing a configuration of an embodiment of a refrigeration cycle according to the present invention. In the figure, the same elements as those in FIG. .

【0022】図1に示した冷凍サイクル20は、本発明
に直接関係する室外熱交換器21と、これに付帯的に設
けられる気液分離器16とを中心にして記載し、室内熱
交換器の系統を省略して示してある。そして、上述した
と同様に、室外熱交換器が蒸発器として機能する暖房モ
ードでの運転時を主にして説明する。
The refrigeration cycle 20 shown in FIG. 1 mainly describes an outdoor heat exchanger 21 directly related to the present invention and a gas-liquid separator 16 attached to the outdoor heat exchanger 21. Are omitted from the illustration. Then, as described above, the description will be given mainly of the operation in the heating mode in which the outdoor heat exchanger functions as an evaporator.

【0023】ここで、暖房モードでの運転時に蒸発器と
して機能する室外熱交換器21は、膨張弁15を通して
送り込まれる液相冷媒の入口27と、四方切換弁12に
送り出す気相冷媒の出口28とを備える。液相冷媒の入
口27には熱交換路21a及び熱交換路21bの各一端
が共通に接続され、これらの熱交換路21a,21bの
他端は相互に接続されると共に、1本の配管によって気
液分離器16の入側接続口16aに接続されている。気
液分離器16の出側接続口16bは1本の配管によって
熱交換路21cの一端に接続されている。この熱交換路
21cの他端は、互いに分岐された熱交換路21d及び
熱交換路21eの一端に共通に接続され、さらに、これ
らの熱交換路21d,21eの他端は気相冷媒の出口2
8に接続されている。しかして、室外熱交換器21の流
路は2−1−2パスを形成し、気液分離器16の上流側
は2パスで、下流側は1パスとなっている。
Here, the outdoor heat exchanger 21 functioning as an evaporator during the operation in the heating mode has an inlet 27 for a liquid-phase refrigerant fed through the expansion valve 15 and an outlet 28 for a gas-phase refrigerant sent to the four-way switching valve 12. And One end of the heat exchange path 21a and one end of the heat exchange path 21b are commonly connected to the inlet 27 of the liquid-phase refrigerant, and the other ends of the heat exchange paths 21a and 21b are connected to each other and are connected by one pipe. It is connected to the inlet connection port 16a of the gas-liquid separator 16. The outlet connection port 16b of the gas-liquid separator 16 is connected to one end of the heat exchange path 21c by one pipe. The other end of the heat exchange path 21c is commonly connected to one end of a heat exchange path 21d and one end of a heat exchange path 21e which are branched from each other. Further, the other ends of the heat exchange paths 21d and 21e are connected to an outlet of a gas-phase refrigerant. 2
8 is connected. Thus, the flow path of the outdoor heat exchanger 21 forms a 2-1-2 path, the upstream side of the gas-liquid separator 16 has two paths, and the downstream side has one path.

【0024】また、室外熱交換器21の気相冷媒の出口
28は、その途中に連結部24が設けられた冷媒吸入流
路22によって四方切換弁12に接続されている。そし
て、気液分離器16の気相分排出口16cがバイパス管
25によって冷媒吸入流路22の連結部24に接続され
ている。このバイパス管25の途中には、気液分離器1
6で分離された気相の冷媒を冷媒吸入流路22に流入さ
せ、冷房運転時に冷媒吸入流路22から気液分離器16
に対して冷媒が戻ることを阻止する逆止弁26が設けら
れている。
An outlet 28 of the gas-phase refrigerant of the outdoor heat exchanger 21 is connected to the four-way switching valve 12 by a refrigerant suction passage 22 provided with a connecting portion 24 in the middle thereof. The gas-phase-port outlet 16 c of the gas-liquid separator 16 is connected to the connection portion 24 of the refrigerant suction passage 22 by a bypass pipe 25. In the middle of the bypass pipe 25, the gas-liquid separator 1
The refrigerant in the gaseous phase separated in step 6 is allowed to flow into the refrigerant suction flow path 22, and the gas-liquid separator 16 is removed from the refrigerant suction flow path 22 during the cooling operation.
A check valve 26 is provided for preventing the refrigerant from returning to the valve.

【0025】なお、液相冷媒の入口27は室外熱交換器
21の設置状態でみて、鉛直方向下方に配置され、気相
冷媒の出口28は鉛直方向上方に配置され、連結部24
は室外熱交換器21の鉛直方向の全長の略3/4以上の
高さ位置に設けられている。
When the outdoor heat exchanger 21 is installed, the inlet 27 of the liquid-phase refrigerant is disposed vertically downward, and the outlet 28 of the gas-phase refrigerant is disposed vertically upward,
Is provided at a height of about 3/4 or more of the total length of the outdoor heat exchanger 21 in the vertical direction.

【0026】さらに、気液分離器16は2−1−2パス
を形成する熱交換路のうち、冷媒の乾き度が0.5±
0.2である位置、又は、熱交換路の全長に対して入口
から50±20%の長さ位置に設けられている。
Further, the gas-liquid separator 16 has a dryness of the refrigerant of 0.5 ± 0.5 in the heat exchange path forming the 2-1-2 path.
It is provided at a position of 0.2 or 50 ± 20% of the total length of the heat exchange path from the inlet.

【0027】上記のように構成された本実施形態の動作
について、特に、従来装置と構成を異にする部分を中心
にして以下に説明する。先ず、圧縮機11から圧送され
た気相の冷媒は四方切換弁12を通して図1では図示を
省略した室内熱交換器に送り込まれ、ここで熱交換され
て液相の冷媒となり、冷媒流量の制御を行う膨張弁15
を介して、液相冷媒の入口27から室外熱交換器21に
流入する。室外熱交換器21の内部においては、熱交換
路21a及び熱交換路21bによってそれぞれ熱交換が
行われ、気相分と液相分とが混合した気液2相状態の冷
媒が気液分離器16に流入する。気液分離器16はこの
冷媒を気相分と液相分とに分離し、このうち、気相分は
バイパス管25を通して冷媒吸入流路22に送り込ま
れ、液相分は熱交換路21cに送りこまれてここで熱交
換が行われ、さらに、熱交換路21d,21eに分流し
てそれぞれにて熱交換が行われ、略全部の冷媒が気相分
として気相冷媒の出口28から冷媒吸入流路22に送り
出される。この気相冷媒はバイパス管25からのものと
合流して、四方切換弁12を介して、サクションカップ
23に流入し、圧縮機11はその吸入口11bから吸入
して吐出口11aから吐出させる。
The operation of the present embodiment configured as described above will be described below, particularly focusing on parts that differ in configuration from the conventional apparatus. First, the gas-phase refrigerant pumped from the compressor 11 is sent to an indoor heat exchanger (not shown in FIG. 1) through the four-way switching valve 12, where the heat is exchanged to become a liquid-phase refrigerant, and the refrigerant flow rate is controlled. Expansion valve 15
, Flows into the outdoor heat exchanger 21 from the inlet 27 of the liquid-phase refrigerant. Inside the outdoor heat exchanger 21, heat is exchanged by the heat exchange path 21a and the heat exchange path 21b, and a gas-liquid two-phase refrigerant in which a gas phase component and a liquid phase component are mixed is separated into a gas-liquid separator. Flow into 16. The gas-liquid separator 16 separates the refrigerant into a gaseous phase component and a liquid phase component, of which the gaseous phase component is sent to the refrigerant suction passage 22 through the bypass pipe 25, and the liquid phase component is transferred to the heat exchange path 21c. The heat is exchanged here and heat exchange is performed. Further, the heat is exchanged by dividing the heat into the heat exchange paths 21d and 21e. It is sent out to the channel 22. This gas-phase refrigerant merges with the refrigerant from the bypass pipe 25, flows into the suction cup 23 via the four-way switching valve 12, and the compressor 11 sucks in from the suction port 11b and discharges it from the discharge port 11a.

【0028】ここで、四方切換弁12とサクションカッ
プ23との接続部分は、圧縮機11の振動を吸収する部
分であり、図4に示した従来の冷凍サイクルはこの部位
にバイパス管を接続したため、その配管構造の複雑化を
余儀なくされた。この実施形態においては室外熱交換器
21の気相冷媒の出口28と四方切換弁12とを接続す
る冷媒吸入流路22の連結部24にバイパス管25を接
続したため、圧縮機11の振動を吸収する構造を採用す
る必要性がなくなることから、配管構造を簡易化するこ
とができる。
Here, the connecting portion between the four-way switching valve 12 and the suction cup 23 is a portion for absorbing the vibration of the compressor 11, and the conventional refrigeration cycle shown in FIG. 4 has a bypass pipe connected to this portion. , Complicating its piping structure. In this embodiment, since the bypass pipe 25 is connected to the connection portion 24 of the refrigerant suction flow path 22 that connects the gas-phase refrigerant outlet 28 of the outdoor heat exchanger 21 and the four-way switching valve 12, vibration of the compressor 11 is absorbed. Since there is no need to adopt a structure that performs the above, the piping structure can be simplified.

【0029】また、この実施形態では、室外熱交換器2
1の下方に液相冷媒入口27を、上方に気相冷媒出口2
8を配置し、連結部24を室外熱交換器21の鉛直方向
の全長の略3/4以上の高さ位置に、最適には気相冷媒
出口28と同等又はより高い位置に設けている。これに
よって、気液分離器16から液相の冷媒がバイパス管2
5に流出しても液相分は重力により上方に到達し難いよ
うな抵抗を受けることとなり、液バック現象を抑制する
ことができる。これによって、気液分離システムの信頼
性を向上させることができる。なお、連結部24に限ら
ず、バイパス管25の一部が上記高さに位置するように
すれば同一の効果を得ることができる。
In this embodiment, the outdoor heat exchanger 2
1, a liquid-phase refrigerant inlet 27 and a gas-phase refrigerant outlet 2 above.
8 and the connecting portion 24 is provided at a height of about 略 or more of the total length of the outdoor heat exchanger 21 in the vertical direction, and optimally at a position equivalent to or higher than the gas-phase refrigerant outlet 28. As a result, the refrigerant in the liquid phase is supplied from the gas-liquid separator 16 to the bypass pipe 2.
Even if the liquid flows out, the liquid phase receives a resistance that does not easily reach the upper side due to gravity, and the liquid back phenomenon can be suppressed. Thereby, the reliability of the gas-liquid separation system can be improved. The same effect can be obtained if not only the connecting portion 24 but also a part of the bypass pipe 25 is located at the above-mentioned height.

【0030】ところで、室外熱交換器21の熱交換路の
途中の冷媒を気液分離する気液分離器の接続位置は、熱
交換路の全長のどの途中位置が適当であるかを決定する
ための実験結果を図2に示す。図2は電力容量が1HP
(馬力)の一般家庭用の空気調和機に本実施形態に示す
気液分離器16を新たに設けるとき、蒸発器の入口から
の流路長の比率と入力電力の軽減量(及び入力電力の軽
減率)の関係をプロットして得られた線図である。この
図から明らかなように、流路長の比率が0(%)(蒸発
器の入口)であってもある程度の入力電力の軽減効果が
得られ、この位置から流路長の比率が大きくなるに従っ
て入力電力の軽減効果は次第に大きくなり、流路長の比
率が50(%)で最大となり、この位置から流路長の比
率が大きくなるに従って入力電力の軽減効果は次第に小
さくなり、100(%)の位置で入力電力の軽減効果は
ゼロになっている。
By the way, the connection position of the gas-liquid separator for gas-liquid separation of the refrigerant in the middle of the heat exchange path of the outdoor heat exchanger 21 is to determine which halfway position of the entire length of the heat exchange path is appropriate. FIG. 2 shows the results of the experiment. Figure 2 shows that the power capacity is 1HP
When the gas-liquid separator 16 according to the present embodiment is newly provided in an air conditioner for general household (horsepower), the ratio of the flow path length from the inlet of the evaporator to the reduction amount of the input power (and the input power FIG. 3 is a diagram obtained by plotting the relationship of (reduction rate). As is clear from this figure, even if the ratio of the flow path length is 0 (%) (the inlet of the evaporator), a certain effect of reducing the input power can be obtained, and the flow path length ratio increases from this position. , The effect of reducing the input power gradually increases, and becomes maximum when the ratio of the flow path length is 50 (%). As the ratio of the flow path length increases from this position, the reduction effect of the input power gradually decreases to 100 (%). The effect of reducing the input power is zero at the position ().

【0031】しかして、実用的には熱交換路の全長に対
して入口から50±20%の長さ位置に気液分離器を設
けることが妥当と考えられ。この場合、蒸発器の入口の
気相の冷媒がその出口にて全て気相の冷媒に移行する理
想的な状態とすれば、上記入口からの流路長比率を冷媒
の乾き度に置き換えることができるため、冷媒の乾き度
が0.5±0.2である位置に気液分離器を設けるよう
にしても、同様な結果が得られ、これによって、消費電
力を低減することができる。
However, in practice, it is considered appropriate to provide the gas-liquid separator at a position 50 ± 20% from the inlet with respect to the entire length of the heat exchange path. In this case, assuming an ideal state in which the gas-phase refrigerant at the inlet of the evaporator is all transferred to the gas-phase refrigerant at the outlet, the flow path length ratio from the inlet can be replaced with the dryness of the refrigerant. Therefore, even if the gas-liquid separator is provided at a position where the dryness of the refrigerant is 0.5 ± 0.2, similar results can be obtained, and power consumption can be reduced.

【0032】ところで、特開平9−152216号公報
に記載のものは、バイパス管17の途中に二方弁として
の電磁弁19を設け、暖房運転時にこれに通電して開放
状態とし、運転状態に応じて液バックの可能性がある場
合にこれを閉成したため、暖房運転時間に応じて、例え
ば、5(W)程度の電力を消費し続ける構成になってい
た。本実施形態では、バイパス管25に逆止弁26を設
けているので、消費電力低減の効果が高められる。
In the device described in Japanese Patent Application Laid-Open No. Hei 9-152216, a solenoid valve 19 is provided as a two-way valve in the middle of the bypass pipe 17, and when the heating operation is performed, the solenoid valve 19 is energized to be opened, and the operation state is changed. Accordingly, when there is a possibility of liquid back, the liquid back is closed, so that, for example, power of about 5 (W) is continuously consumed according to the heating operation time. In the present embodiment, since the check valve 26 is provided in the bypass pipe 25, the effect of reducing power consumption is enhanced.

【0033】なお、除霜運転時には、暖房運転モードの
途中に四方切換弁12を切り換えて室外熱交換器21に
気相の冷媒を送り込む必要性がある。この時、逆止弁2
6の代わりに二方弁である電磁弁を用いることによっ
て、暖房モードでの運転時にこの二方弁を開放し、冷房
モードでの運転時にこの二方弁を閉成し、除霜運転時に
この二方弁を開放する構成とすることもできる。これに
よって、除霜運転時に暖かい気相冷媒をバイパス管2
5,気液分離器16を介して熱交換路21a,21bに
直接導くことができ、霜の溶けにくい部分の除霜を効果
的に行うことができる。気液分離システムを除霜運転に
効果的に利用することができる。この場合、逆止弁を用
いた場合の開閉音を防止するという効果も得られる。
At the time of the defrosting operation, it is necessary to switch the four-way switching valve 12 during the heating operation mode to send the gaseous refrigerant to the outdoor heat exchanger 21. At this time, check valve 2
By using an electromagnetic valve that is a two-way valve instead of 6, the two-way valve is opened during operation in the heating mode, the two-way valve is closed during operation in the cooling mode, and the two-way valve is closed during the defrosting operation. The two-way valve may be opened. As a result, during the defrosting operation, the warm gas-phase refrigerant is
5, it can be directly guided to the heat exchange paths 21a and 21b via the gas-liquid separator 16, and the defrosting of the portion where the frost hardly melts can be effectively performed. The gas-liquid separation system can be effectively used for the defrosting operation. In this case, the effect of preventing the opening and closing noise when the check valve is used is also obtained.

【0034】また、上述した二方弁の電力消費を抑制す
るという観点では、一般にメカトロ弁と称されるパルス
モータを利用した弁を採用することができる。図3はバ
イパス管25にメカトロ弁を用いるものとして、蒸発器
の入口からの流路長の比率と、使用するメカトロ弁の口
径及びその絞り量の関係を示した図表で、例えば、蒸発
器の入口からの流路長の比率が50(%)の位置では弁
口径が5.0(mm)のものを全開状態で使用すること
によって、特別な絞り機構を用いることなしに良好な気
液分離機能が得られる。
Further, from the viewpoint of suppressing the power consumption of the two-way valve, a valve using a pulse motor generally called a mechatronic valve can be employed. FIG. 3 is a table showing the relationship between the ratio of the flow path length from the inlet of the evaporator, the diameter of the mechatronic valve to be used, and the amount of restriction thereof, assuming that the mechatronic valve is used for the bypass pipe 25. At the position where the ratio of the flow path length from the inlet is 50 (%), by using the valve with the valve diameter of 5.0 (mm) in the fully open state, good gas-liquid separation can be performed without using a special throttle mechanism. The function is obtained.

【0035】一方、気液分離を行うに当たり、上流側の
熱交換路と比較して下流の直後の熱交換路の本数が少な
い状況で気相の冷媒をバイパスさせれば、下流に圧送さ
れる気相の冷媒を効果的に分離することができ、液相の
冷媒を下流に圧送する抵抗を減らすことができる。本実
施形態では、熱交換路21a及び21bの出口側を共通
に接続し、1本の管路で気液分離器16に導き、さら
に、気液分離器16の1本の管路によって熱交換路21
cに移送する構成になっているため、気液分離特性を向
上させることができる。なお、気液分離器16の下流側
でも最終的には複数の熱交換路に分流させる必要がある
が、本実施形態では熱交換路21cの出口側を熱交換路
21d,21eに分流させる構成であるため、三方ベン
ドと称される分流器で済むため安価に構成できる利点も
得られる。
On the other hand, in performing gas-liquid separation, if the gaseous phase refrigerant is bypassed in a situation where the number of heat exchange paths immediately downstream is smaller than that of the upstream heat exchange path, the refrigerant is pumped downstream. The gas phase refrigerant can be effectively separated, and the resistance of pumping the liquid phase refrigerant downstream can be reduced. In the present embodiment, the outlet sides of the heat exchange paths 21a and 21b are commonly connected, guided to the gas-liquid separator 16 by one pipe, and further heat-exchanged by one pipe of the gas-liquid separator 16. Road 21
c, the gas-liquid separation characteristics can be improved. In addition, although it is necessary to finally divide the flow into a plurality of heat exchange paths even on the downstream side of the gas-liquid separator 16, in the present embodiment, the configuration is such that the outlet side of the heat exchange path 21c is diverted to the heat exchange paths 21d and 21e. Therefore, there is also obtained an advantage that it can be configured at a low cost because a current divider called a three-way bend is sufficient.

【0036】[0036]

【発明の効果】以上の説明によって明らかなように、本
発明によれば、気液分離器からのバイパス管の配管構造
を簡易化することのできる冷凍サイクルを提供すること
ができる。
As is apparent from the above description, according to the present invention, it is possible to provide a refrigeration cycle that can simplify the piping structure of the bypass pipe from the gas-liquid separator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る冷凍サイクルの一実施形態の構成
を示す系統図。
FIG. 1 is a system diagram showing a configuration of an embodiment of a refrigeration cycle according to the present invention.

【図2】図1に示した実施形態の動作を説明するため
に、熱交換路の途中の冷媒を気液分離する気液分離器の
接続位置と入力電力の低減量との関係を示す図表。
FIG. 2 is a chart showing a relationship between a connection position of a gas-liquid separator for gas-liquid separation of a refrigerant in the middle of a heat exchange path and a reduction amount of input power in order to explain an operation of the embodiment shown in FIG. .

【図3】図1に示した実施形態のバイパス管にメカトロ
弁と称されるパルスモータを利用した弁を採用した場合
における蒸発器の入口からの流路長の比率と、使用する
メカトロ弁の口径及びその絞り量の関係を示した図表。
FIG. 3 shows the ratio of the flow path length from the inlet of the evaporator when a valve using a pulse motor called a mechatronic valve is employed in the bypass pipe of the embodiment shown in FIG. 4 is a table showing the relationship between the aperture and the amount of aperture.

【図4】従来の冷凍サイクルの構成を示す系統図。FIG. 4 is a system diagram showing a configuration of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

11 圧縮機 12 四方切換弁 15 膨張弁 16 気液分離器 20 冷凍サイクル 21 蒸発器として機能する室外熱交換器 21a〜21e 熱交換路 22 冷媒吸入流路 23 サクションカップ 24 連結部 25 バイパス管 26 逆止弁 DESCRIPTION OF SYMBOLS 11 Compressor 12 Four-way switching valve 15 Expansion valve 16 Gas-liquid separator 20 Refrigeration cycle 21 Outdoor heat exchanger functioning as an evaporator 21a-21e Heat exchange path 22 Refrigerant suction flow path 23 Suction cup 24 Connecting part 25 Bypass pipe 26 Reverse Stop valve

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】気相の冷媒を圧送する圧縮機の吐出側と吸
入側の間に、第1の熱交換器と第2の熱交換器とを直列
に管接続し、前記第1及び第2の熱交換器のいずれか一
方を蒸発器とし、いずれか他方を凝縮器としてそれぞれ
機能させると共に、蒸発器と凝縮器の役割を逆転させる
四方切換弁が前記圧縮機の吐出経路及び吸入経路に設け
られた冷凍サイクルにおいて、 蒸発器として機能する前記熱交換器の熱交換路の途中の
冷媒を気液分離する気液分離器と、 前記気液分離器で分離された気相の冷媒を、蒸発器とし
て機能する前記熱交換器の出口と前記四方切換弁とを接
続する管路に流入させるバイパス管と、 を備えたことを特徴とする冷凍サイクル。
1. A first heat exchanger and a second heat exchanger are connected in series between a discharge side and a suction side of a compressor for pumping a gaseous refrigerant, and the first and second heat exchangers are connected in series. One of the two heat exchangers functions as an evaporator, and the other functions as a condenser. A four-way switching valve for reversing the role of the evaporator and the condenser is provided in the discharge path and the suction path of the compressor. In the provided refrigeration cycle, a gas-liquid separator for gas-liquid separation of the refrigerant in the middle of the heat exchange path of the heat exchanger functioning as an evaporator, and a gas-phase refrigerant separated by the gas-liquid separator, A refrigeration cycle comprising: a bypass pipe that flows into a pipe connecting the outlet of the heat exchanger functioning as an evaporator and the four-way switching valve.
【請求項2】前記バイパス管の少なくとも一部を、蒸発
器として機能する前記熱交換器の鉛直方向の全長の略3
/4以上の高さ位置に設けたことを特徴とする請求項1
に記載の冷凍サイクル。
2. The heat exchanger, which functions as an evaporator, has at least a portion of at least a part of the bypass pipe having a length of approximately 3
2. The apparatus according to claim 1, wherein the height is set to / 4 or more.
The refrigeration cycle according to 1.
【請求項3】蒸発器として機能する前記熱交換器の熱交
換路のうち、冷媒の乾き度が0.5±0.2である位
置、又は、熱交換路の全長に対して入口から50±20
%の長さ位置に前記気液分離器を設けたことを特徴とす
る請求項1又は2に記載の冷凍サイクル。
3. The heat exchange path of the heat exchanger functioning as an evaporator, wherein the dryness of the refrigerant is 0.5 ± 0.2 or 50% from the inlet with respect to the entire length of the heat exchange path. ± 20
3. The refrigeration cycle according to claim 1, wherein the gas-liquid separator is provided at a position corresponding to a% length.
【請求項4】前記気液分離器を境として、上流側の熱交
換路の本数よりも下流側の直後の熱交換路の本数を少な
くしたことを特徴とする請求項1乃至3のいずれか1項
に記載の冷凍サイクル。
4. The apparatus according to claim 1, wherein the number of heat exchange paths immediately downstream of the gas-liquid separator is smaller than the number of heat exchange paths of the upstream side. Item 2. The refrigeration cycle according to item 1.
【請求項5】前記バイパス管に逆止弁を設けたことを特
徴とする請求項1乃至4のいずれか1項に記載の冷凍サ
イクル。
5. The refrigeration cycle according to claim 1, wherein a check valve is provided in the bypass pipe.
【請求項6】前記気液分離器が設けられる前記熱交換器
が蒸発器として機能するとき開放され、凝縮器として機
能するとき閉成される二方弁を前記バイパス管に設けた
ことを特徴とする請求項1乃至4のいずれか1項に記載
の冷凍サイクル。
6. The bypass pipe is provided with a two-way valve which is opened when the heat exchanger in which the gas-liquid separator is provided functions as an evaporator and closed when it functions as a condenser. The refrigeration cycle according to any one of claims 1 to 4, wherein
【請求項7】前記気液分離器が設けられる前記熱交換器
の除霜運転時に前記二方弁を開放することを特徴とする
請求項6に記載の冷凍サイクル。
7. The refrigeration cycle according to claim 6, wherein the two-way valve is opened during a defrosting operation of the heat exchanger provided with the gas-liquid separator.
JP2001184362A 2001-06-19 2001-06-19 Refrigeration cycle Expired - Fee Related JP4408591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184362A JP4408591B2 (en) 2001-06-19 2001-06-19 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184362A JP4408591B2 (en) 2001-06-19 2001-06-19 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2002372323A true JP2002372323A (en) 2002-12-26
JP4408591B2 JP4408591B2 (en) 2010-02-03

Family

ID=19024134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184362A Expired - Fee Related JP4408591B2 (en) 2001-06-19 2001-06-19 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4408591B2 (en)

Also Published As

Publication number Publication date
JP4408591B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
EP1437557B1 (en) Multi-type air conditioner with defrosting device
US7204094B2 (en) Air conditioner
WO2018047331A1 (en) Air conditioning device
JP2006105560A (en) Air conditioner
WO2004008048A1 (en) Refrigeration equipment
EP1643196B1 (en) Air conditioner
WO2005033593A1 (en) Freezer
US6817205B1 (en) Dual reversing valves for economized heat pump
JP2003172523A (en) Heat-pump floor heater air conditioner
JP4303032B2 (en) Air conditioner
JP5277854B2 (en) Air conditioner
WO2006115053A1 (en) Air conditioner
JP2000274859A (en) Refrigerator
JP2007278676A (en) Heat exchanger
JP2010048506A (en) Multi-air conditioner
JP2006300369A (en) Air conditioner
JP4408591B2 (en) Refrigeration cycle
JP2004332961A (en) Air conditioner
JP4774858B2 (en) Air conditioner
JP2006242443A (en) Air conditioner
WO2024154323A1 (en) Refrigeration cycle device
CN114127493A (en) Air conditioner
CN217178749U (en) Air conditioner outdoor unit and air conditioner
JP3680225B2 (en) Refrigerant circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees