JP2002371324A - Method for collecting metal component from soil - Google Patents

Method for collecting metal component from soil

Info

Publication number
JP2002371324A
JP2002371324A JP2001178743A JP2001178743A JP2002371324A JP 2002371324 A JP2002371324 A JP 2002371324A JP 2001178743 A JP2001178743 A JP 2001178743A JP 2001178743 A JP2001178743 A JP 2001178743A JP 2002371324 A JP2002371324 A JP 2002371324A
Authority
JP
Japan
Prior art keywords
soil
metal
water
collecting
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001178743A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Murakami
義行 村上
Minoru Nakajima
実 中島
Kazuhiro Sato
和広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2001178743A priority Critical patent/JP2002371324A/en
Publication of JP2002371324A publication Critical patent/JP2002371324A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating metal contained in soil from the soil, and collecting the metal. SOLUTION: This method for collecting the metal comprises extracting the metal contained in the soil as ions with the use of acid water, then adding a surface active agent to the extracted water, forming foam on the extracted water, uptaking and collecting the metal ions on the surface of generated foam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属成分によって
汚染されている土壌の洗浄方法に関し、更に詳しくは、
土壌中に含まれている金属成分を抽出回収することによ
って、土壌を洗浄する方法に関する。
The present invention relates to a method for cleaning soil contaminated by metal components, and more particularly to a method for cleaning soil contaminated by metal components.
The present invention relates to a method for washing soil by extracting and recovering a metal component contained in soil.

【0002】[0002]

【従来の技術】金属成分によって汚染されている土壌の
洗浄方法としては、「土壌・地下水汚染に係る調査・対
策指針運用基準(環境庁水質保全局編1999年)」に
よれば、汚染土壌の分級洗浄、泡沫浮上法による土
壌洗浄、重金属汚染土壌の加熱処理技術、水蒸気加
熱法による汚染土壌浄化、塩化揮発法、電気泳動土
壌修復技術、電気泳動法による重金属汚染土壌の浄
化、電気浸透土壌修復技術が挙げられている。
2. Description of the Related Art As a method for cleaning soil contaminated by metal components, according to the “Operational Guidelines for Surveys and Countermeasures for Soil and Groundwater Pollution (Environment Agency, Water Quality Conservation Bureau, 1999)” Classification washing, soil washing by foam floating method, heat treatment technology for heavy metal contaminated soil, purification of contaminated soil by steam heating method, chloride volatilization method, electrophoretic soil remediation technology, purification of heavy metal contaminated soil by electrophoretic method, electroosmotic soil remediation Technology is listed.

【0003】これらの操作のうち、汚染土壌の分級洗浄
は、土壌を分級しながら、水に溶けやすい汚染物質を溶
解して取り除くとともに、主に金属の吸着しやすい微小
粒子を取り除くことによって、金属と分離された土壌を
取り出す方法である。該方法は、鉱石からの特定金属の
回収方法としては古くから行われている技術であるが、
洗浄に用いる排水の処理が必要という問題点がある。
[0003] Among these operations, classification and washing of contaminated soil involves dissolving and removing contaminants which are easily soluble in water while classifying the soil, and mainly removing fine particles which are easily adsorbed by metals. It is a method of taking out the separated soil. This method is a technique that has long been used as a method for recovering a specific metal from ore,
There is a problem that it is necessary to treat wastewater used for washing.

【0004】泡沫浮上法による土壌洗浄は、浮遊選鉱法
ともいわれる技術で、疎水性表面を有する粒子をバブリ
ングによって生じた泡沫に付着させて浮上分離する方法
である。該技術は、疎水性表面を有する重金属の硫化物
には効果的であるが、一般の土壌中に含まれる金属含有
粒子が疎水性表面を必ずしも有していないため、通常の
浮遊選鉱では分離できない場合があるという問題点があ
る。硫化剤を添加して硫化物として回収する方法も考え
られるが、硫化物が高価であったり、土壌中に硫化剤が
残留する可能性があったりすることは好ましくない。
[0004] Soil washing by the foam flotation method is a technique called flotation ore separation, and is a method in which particles having a hydrophobic surface are attached to foam generated by bubbling to separate them by flotation. The technique is effective for heavy metal sulfides having a hydrophobic surface, but cannot be separated by ordinary flotation because metal-containing particles contained in general soil do not necessarily have a hydrophobic surface There is a problem that there are cases. A method of adding a sulphide and recovering it as a sulphide may be considered, but it is not preferable that the sulphide is expensive or the sulphide may remain in the soil.

【0005】重金属汚染土壌の加熱処理技術は、重金属
含有土壌に空気を通じながら1000℃程度で加熱して
揮発しやすい金属を土壌から除去する方法である。該方
法は、有機物との複合汚染土壌の土壌処理技術としては
有効であるが、揮発せずに溶融しやすい金属は処理でき
ないこと、金属を含んだ排ガスを処理する必要があるこ
と、加熱した土壌は元の土壌とはかなり性質が変化する
ため埋め戻しが困難なこと、排ガスの処理に冷却・捕集
に水を用いると排水処理が必要になること、強熱するた
めに非意図的に有害物質が生じる恐れがあるので留意す
る必要があるといった問題点がある。
[0005] The heat treatment technique for heavy metal contaminated soil is a method of heating at about 1000 ° C while passing air through heavy metal-containing soil to remove volatile metals from the soil. Although this method is effective as a soil treatment technique for complex contaminated soil with organic matter, it cannot treat metals that are easily melted without volatilization, it is necessary to treat exhaust gas containing metals, Is difficult to backfill because its properties change considerably from the original soil, that if water is used for cooling and collecting exhaust gas, wastewater treatment will be required, and it will be unintentionally harmful due to overheating There is a problem that it is necessary to pay attention because there is a possibility that a substance is generated.

【0006】水蒸気加熱法による汚染土壌浄化は、土壌
を加熱しながら加熱蒸気を吹き込んで金属を揮散して土
壌から金属を分離する技術である。該方法は、金属の分
離効率に優れており、土壌を埋め戻しできる可能性も高
いが、加熱蒸気を供給する熱源が必要なこと、排ガスお
よび凝縮水の処理が必要となること、揮発しにくい金属
は分離できないといった問題点がある。
[0006] Purification of contaminated soil by a steam heating method is a technique for separating a metal from soil by blowing heated steam while heating the soil to volatilize the metal. The method is excellent in metal separation efficiency and has a high possibility of backfilling soil, but requires a heat source to supply heated steam, requires treatment of exhaust gas and condensed water, and is difficult to volatilize. There is a problem that metals cannot be separated.

【0007】塩化揮発法は、塩化カルシウム水溶液を土
壌に加えて土壌を塩化物にして沸点を低下させたのち、
土壌を800〜1000℃に加熱して金属を揮発分離す
る技術である。該方法も重金属汚染処理の加熱処理技術
や水蒸気加熱法による汚染土壌浄化の方法と同様に、排
ガスの処理が必要であり、排ガスの処理に用いられる水
の処理が必要となることや、加熱によって非意図的に有
害物質が生成する恐れがあるといった問題点がある。
In the chloride volatilization method, an aqueous solution of calcium chloride is added to soil to convert the soil into chloride and lower the boiling point.
This is a technique in which soil is heated to 800 to 1000 ° C to volatilize and separate metals. This method also requires the treatment of exhaust gas, similar to the heat treatment technology of heavy metal contamination treatment and the method of soil contamination purification by steam heating, and requires the treatment of water used for the treatment of exhaust gas. There is a problem that harmful substances may be generated unintentionally.

【0008】電気泳動土壌修復技術は、土壌中の間隙に
水を満たして、直流電流を加えることで陰イオンの金属
が陽極に移動し、陽極部に濃縮された金属を回収する方
法である。該方法では、原位置で抽出できるが、除去速
度が速くない為に時間がかかるという問題点がある。ま
た、土壌中に塩素イオンが大量に含まれる場合は塩素ガ
スの発生が予想されるという問題もある。
[0008] The electrophoretic soil restoration technique is a method in which a gap in the soil is filled with water and a direct current is applied, whereby the metal of the anion moves to the anode and the metal concentrated in the anode is recovered. In this method, extraction can be performed at the original position, but there is a problem that it takes time because the removal speed is not fast. There is also a problem that when a large amount of chloride ions is contained in soil, generation of chlorine gas is expected.

【0009】電気泳動法による重金属汚染土壌の浄化は
水を含んだ土壌に直流電流を流すことで、陰イオンは陽
極に、陽イオンは陰極に移動するので、土壌中に挿入し
た電極付近に金属を集めて除去する技術であり、電極を
半透性膜で覆って、膜内に注入したEDTA溶液を循環
することで金属を捕集する方法が報告されている。該方
法も、電気泳動土壌修復技術の方法と同様に、処理に時
間がかかる傾向があり、塩素イオンが大量に含まれる場
合は塩素ガスの発生に留意しなければならないといった
問題点がある。
In the purification of heavy metal-contaminated soil by electrophoresis, an anion moves to an anode and a cation moves to a cathode by passing a direct current through soil containing water. It is a technique for collecting and removing metal, and a method of collecting metal by covering an electrode with a semipermeable membrane and circulating an EDTA solution injected into the membrane has been reported. This method also has a problem that, similarly to the method of the electrophoretic soil repair technique, the treatment tends to take a long time, and when a large amount of chloride ions is contained, attention must be paid to generation of chlorine gas.

【0010】電気浸透土壌修復技術は、地中に直流電流
を流して電磁場を作り、土壌水を陽極から陰極へ移動さ
せて、この流れとともに水溶性の金属を陽極から陰極に
移動させて回収する方法である。該方法も電気泳動土壌
修復技術や電気泳動法による重金属汚染土壌の浄化方法
と同様に処理時間が長くかかり、塩素イオンが土壌中に
含まれる場合には塩素ガスの発生に留意する必要がある
こと、水を供給する必要がある場合はこの水の処理も必
要となるといった問題点がある。
In the electroosmosis soil restoration technology, a direct current is applied to the ground to create an electromagnetic field, and soil water is moved from the anode to the cathode. With this flow, water-soluble metal is moved from the anode to the cathode and collected. Is the way. This method also requires a long processing time, similar to the method for remediation of heavy metal contaminated soil by electrophoretic soil restoration technology or electrophoresis, and it is necessary to pay attention to the generation of chlorine gas when chlorine ions are contained in the soil. However, when water needs to be supplied, there is a problem that this water treatment is also required.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の課題を背景になされたもので、その目的
は、土壌中の金属を土壌中から分離するとともに、金属
を回収する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to separate a metal in soil from the soil and to recover the metal. Is to provide.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記した
従来技術に鑑み、鋭意検討を重ねた結果、土壌中に含有
される金属をイオンとして抽出した後、該抽出水を起泡
させたとき、この発生した泡表面にて金属イオンが捕集
できることを見出し、本発明を完成するに至った。
Means for Solving the Problems In view of the above-mentioned prior art, the present inventors have conducted intensive studies. As a result, after extracting metals contained in soil as ions, the extracted water was foamed. Then, they found that metal ions could be collected on the surface of the generated bubbles, and completed the present invention.

【0013】すなわち、本発明の目的は、金属を含む土
壌中から該金属を分離回収する方法であって、該土壌を
下記(a)〜(d)の各工程を逐次的に通過させること
を特徴とする、土壌中からの金属成分回収方法によって
達成することができる。 (a)酸性の水を用いて、土壌中の金属成分を金属イオ
ンとして抽出する工程。 (b)工程(a)で得られる抽出水に、界面活性剤を添
加する工程。 (c)工程(b)で得られた抽出水を起泡させる工程。 (d)発生した泡に含まれる金属イオンを捕集して回収
する工程。
[0013] That is, an object of the present invention is a method for separating and recovering a metal from soil containing the metal, wherein the soil is sequentially passed through the following steps (a) to (d). It can be achieved by a characteristic method for recovering metal components from soil. (A) A step of extracting metal components in soil as metal ions using acidic water. (B) a step of adding a surfactant to the extraction water obtained in step (a). (C) a step of foaming the extracted water obtained in the step (b). (D) a step of collecting and collecting metal ions contained in the generated bubbles.

【0014】[0014]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0015】まず、本発明の回収方法において対象とす
る土壌は、金属成分が、イオン、酸化物、水酸化物など
の状態で含有されており、これらによって汚染されてい
るものである。
First, the target soil in the recovery method of the present invention contains metal components in the form of ions, oxides, hydroxides, and the like, and is contaminated by these.

【0016】以下、本発明の回収方法について図面を以
って具体的に説明する。
Hereinafter, the recovery method of the present invention will be specifically described with reference to the drawings.

【0017】図1は、本発明の回収方法における実施態
様の一例を模式的に示した概略図であって、掘削などし
て得た金属成分を含有する土壌は、粉砕機などを用いて
微細な粒子となし、経路(図中4)より抽出装置(図中
1)に送る。該抽出装置では、該土壌粒子に酸性の水
(図中A)を添加してpH値を調整した後、撹拌又は振
盪によって土壌粒子から金属イオンを抽出する。
FIG. 1 is a schematic view schematically showing an example of an embodiment of the recovery method of the present invention. The soil containing a metal component obtained by excavation or the like is finely ground using a crusher or the like. The particles are sent to the extraction device (1 in the figure) from the path (4 in the figure). In the extraction device, acidic water (A in the figure) is added to the soil particles to adjust the pH value, and then metal ions are extracted from the soil particles by stirring or shaking.

【0018】ここで土壌を微細な粒子とする粉砕機とし
ては、既存の粉砕機を用いればよく、例えば、高速回転
式衝撃粉砕機、自生粉砕機、ボールミル等を挙げること
ができる。また、抽出に用いる酸性の水としては、塩
酸、硝酸、硫酸など一般的な鉱酸の水溶液が使用可能で
ある。更に、調整するpH値は、対象の金属、土壌の性
状によって異なるが、pH値を必要以上に下げると添加
する薬剤量が増加するので、試料を用いて適切な薬剤量
を決定すればよい。
Here, as the pulverizer for converting the soil into fine particles, an existing pulverizer may be used, and examples thereof include a high-speed rotary impact pulverizer, an autogenous pulverizer, and a ball mill. As the acidic water used for the extraction, an aqueous solution of a common mineral acid such as hydrochloric acid, nitric acid, and sulfuric acid can be used. Further, the pH value to be adjusted varies depending on the properties of the target metal and soil. However, if the pH value is lowered more than necessary, the amount of added drug increases, so that an appropriate amount of drug may be determined using a sample.

【0019】該抽出装置で金属成分を抽出した抽出水
は、経路(図中8)を経由して直接イオン浮選装置(図
中3)に送っても良いし、必要であれば経路(図中5)
を通して、固液分離装置(図中2)に送っても良い。
The extracted water from which the metal component has been extracted by the extraction device may be sent directly to the ion flotation device (3 in the figure) via a path (8 in the figure), or may be sent to the ion flotation device (3 in the figure) if necessary. Medium 5)
May be sent to a solid-liquid separation device (2 in the figure).

【0020】該固液分離装置としては、一般に用いられ
ている遠心ろ過機、ドラムフィルター、ヤングフィルタ
ー、フィルタープレス、ベルトプレスなどを用いること
ができる。該固液分離装置における処理は必ずしも必要
なものではないが、該処理により、次に添加する界面活
性剤が土壌に吸着するということが無いので、界面活性
剤の使用量を低減できるという利点がある。
As the solid-liquid separator, a generally used centrifugal filter, a drum filter, a young filter, a filter press, a belt press and the like can be used. Although the treatment in the solid-liquid separation device is not always necessary, the treatment has the advantage that the amount of the surfactant used can be reduced because the surfactant to be subsequently added does not adsorb to the soil. is there.

【0021】次いで、金属を抽出した水は、経路(図中
6又は8)を経てイオン浮選装置(図中3)に送られ
る。該イオン浮選装置では界面活性剤(図中B)を抽出
水に添加し、気体(図中C)封入により、及び/又は撹
拌により、該抽出水を起泡させ、気泡中に金属成分を濃
縮し、経路(図中11)を通じて回収する。
Next, the water from which the metal has been extracted is sent to an ion flotation device (3 in the figure) via a path (6 or 8 in the figure). In the ion flotation apparatus, a surfactant (B in the figure) is added to the extraction water, and the extraction water is bubbled by filling a gas (C in the figure) and / or by stirring, so that the metal component is contained in the bubbles. Concentrate and collect via route (11 in the figure).

【0022】ここで、界面活性剤としては、1分子鎖の
中に親水基と疎水基とを併せ持つ有機化合物であればい
ずれも用いることができるが、対象とする金属成分によ
って、用いる界面活性剤の種類は選択する必要がある。
Here, any surfactant can be used as long as it is an organic compound having both a hydrophilic group and a hydrophobic group in one molecular chain. Depending on the metal component to be used, the surfactant may be used. Type must be selected.

【0023】なお、界面活性剤による金属の捕集は、水
中に溶解した金属と界面活性剤の有する電荷との静電的
な相互作用によると考えることができ、例えば、塩酸水
溶液に溶解したアンチモンは、アンチモンのクロロ錯体
を形成する。当該クロロ錯体がマイナスの電荷を有する
ことから、例えばシクロヘキシルピリジニウムクロリド
のようなプラスの電荷を有する界面活性剤を用いると効
率よくアンチモンを界面活性剤に捕集できる。
The collection of metal by the surfactant can be considered to be due to the electrostatic interaction between the metal dissolved in water and the charge of the surfactant. For example, antimony dissolved in an aqueous hydrochloric acid solution can be considered. Forms a chloro complex of antimony. Since the chloro complex has a negative charge, when a surfactant having a positive charge such as cyclohexylpyridinium chloride is used, antimony can be efficiently collected by the surfactant.

【0024】また、カドミウムのようなキレートを形成
しやすい金属では、例えばアミノ基を有する界面活性剤
を用いると、アミンの窒素の非共有結合電子対と金属と
が配位結合することにより界面活性剤に金属を捕集でき
る。
In the case of a metal such as cadmium which easily forms a chelate, for example, when a surfactant having an amino group is used, the non-covalent bond electron pair of amine nitrogen and the metal are coordinated to form a surfactant. Metal can be collected by the agent.

【0025】なお、起泡させるために気体を用いる場合
には、運転費用を抑制できる事から空気を用いることが
好ましい。
When a gas is used for foaming, it is preferable to use air because the operation cost can be suppressed.

【0026】なお、余りに起泡を激しく行うと、気泡中
に同伴される水量が多くなるので、好ましくない。起泡
させるために気体を用いる場合には、気泡の線速度が大
きくなると気泡中に同伴される水量が多くなって好まし
くないが、気泡の線速度を小さくする為に槽の表面積を
大きくすると気液接触時間が短くなって効率が悪い。
It should be noted that excessively vigorous foaming is not preferable because the amount of water entrained in the bubbles increases. When gas is used for foaming, if the linear velocity of the bubbles increases, the amount of water entrained in the bubbles increases, which is not preferable.However, if the surface area of the tank is increased to reduce the linear velocity of the bubbles, The liquid contact time is short and efficiency is poor.

【0027】また、線速度を小さくする為に通気流量を
減らすと処理時間を長くする必要が生じて効率が悪い。
起泡させるために気体を用いる場合には、気泡の線速度
が1.0×10-3〜1.0×10-5m/sが望ましい。
If the flow rate is reduced to reduce the linear velocity, it is necessary to lengthen the processing time, resulting in poor efficiency.
When a gas is used for foaming, the linear velocity of the bubble is desirably 1.0 × 10 −3 to 1.0 × 10 −5 m / s.

【0028】金属の種類、抽出水中の金属濃度、必要な
除去率によって最適な界面活性剤濃度、通気流量、気泡
の線速度、及び処理時間を選定する必要がある。
It is necessary to select an optimum surfactant concentration, aeration flow rate, a linear velocity of air bubbles, and a treatment time depending on the type of metal, the metal concentration in the extraction water, and the required removal rate.

【0029】次いで、発生した泡は、オーバーフロー、
掻取り、真空吸引などの方法を用いることで捕集可能で
あり、捕集した泡中には、イオン状又は粒子状の金属が
高濃度に含まれている。
Next, the generated bubbles overflow,
It can be collected by using a method such as scraping or vacuum suction, and the collected foam contains a high concentration of ionic or particulate metal.

【0030】最終的に、イオン浮選装置(図中3)から
の排水は、経路(図中12)から経路(図中13)を経
由して排出されるが、一方、経路(図中14)を経由し
て抽出装置(図中1)に循環させて土壌粒子からの金属
の抽出に再利用することで、排出水量の低減、酸性の水
使用量の低減を図ることも可能である。
Finally, the waste water from the ion flotation device (3 in the figure) is discharged from the path (12 in the figure) via the path (13 in the figure), while the drain (14 in the figure) is discharged. ), Is recycled to the extraction of the metal from the soil particles by circulating through the extraction device (1 in the figure), so that the amount of discharged water and the amount of acidic water used can be reduced.

【0031】[0031]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれにより何ら限定を受けるもので
はない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

【0032】[実施例1]500mg/kgの濃度でカ
ドミウムを含有する土壌100gに塩酸水溶液を100
g加えてpH1.0に調整した。30分間振とうした
後、固液分離して土壌と抽出水とに分離した。
Example 1 100 g of a cadmium-containing soil at a concentration of 500 mg / kg was treated with 100 ml of an aqueous hydrochloric acid solution.
g was added to adjust the pH to 1.0. After shaking for 30 minutes, solid-liquid separation was performed to separate soil and extraction water.

【0033】分離した抽出水は78gで250mg/L
のカドミウムを含有しており、土壌中のカドミウムのう
ち39wt%を抽出・除去することができた。該抽出水
に界面活性剤としての、ヘキサデシルピリジニウムクロ
リド(和光純薬製試薬特級)を0.15g加えた後、抽
出水を撹拌しながら空気を7mL/minの流量で吹き
込んで起泡させた。この空気吹き込みを3時間行った
後、生じた泡を分離・除去したところ、抽出水中のカド
ミウム濃度は14mg/Lであって、土壌中に含まれて
いたカドミウムのうちの37wt%を泡として回収する
ことができた。
The extracted water separated was 78 g at 250 mg / L.
Of cadmium in the soil, and 39% by weight of cadmium in the soil could be extracted and removed. After 0.15 g of hexadecylpyridinium chloride (special grade of reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a surfactant was added to the extraction water, air was blown into the extraction water at a flow rate of 7 mL / min while stirring the extraction water. . After blowing air for 3 hours, the generated bubbles were separated and removed. The cadmium concentration in the extraction water was 14 mg / L, and 37% by weight of the cadmium contained in the soil was recovered as bubbles. We were able to.

【0034】[実施例2]実施例1において、分離した
抽出水に添加する界面活性剤として、ドデシル硫酸ナト
リウム(和光純薬製試薬特級)を用いたこと以外は同様
の操作を行ったところ、処理後の抽出水中のカドミウム
濃度は198mg/Lとなり、土壌中に含まれていたカ
ドミウムのうちの8wt%を泡として回収できた(土壌
中のカドミウムのうち、39wt%は抽出・除去)。
Example 2 The same operation as in Example 1 was carried out except that sodium dodecyl sulfate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used as a surfactant to be added to the separated extraction water. The cadmium concentration in the extracted water after the treatment was 198 mg / L, and 8 wt% of the cadmium contained in the soil could be recovered as foam (39 wt% of the cadmium in the soil was extracted and removed).

【0035】[実施例3]実施例1において、固液分離
操作を行うことなく、更に、界面活性剤としてのヘキサ
デシルピリジニウムクロリド(和光純薬製試薬特級)を
7.0g加えたこと以外は、同様の操作を行った。金属
成分除去処理後の土壌中のカドミウム濃度は105mg
/kgとなっており、土壌中に含まれていたカドミウム
のうちの79%を泡として回収できた。
Example 3 The procedure of Example 1 was repeated except that 7.0 g of hexadecylpyridinium chloride (special grade of reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added as a surfactant without performing the solid-liquid separation operation. The same operation was performed. Cadmium concentration in soil after metal component removal treatment is 105mg
/ Kg, and 79% of the cadmium contained in the soil could be recovered as foam.

【0036】[実施例4]実施例1において、対象とし
て、アンチモンを20000mg/kgの濃度で含む土
壌を用いること以外は同様の操作を行ったところ、固液
分離操作後の抽出水中のアンチモン濃度は7500mg
/Lであって、土壌中のアンチモンのうち29wt%を
抽出・除去できた。気泡による分離・除去後の抽出水中
のアンチモン濃度は、1880mg/Lとなって、土壌
中に含まれていたアンチモンのうちの22wt%を泡と
して回収できた。
Example 4 The same operation as in Example 1 was carried out except that soil containing antimony at a concentration of 20000 mg / kg was used as a target. The concentration of antimony in the extraction water after the solid-liquid separation operation was determined. Is 7500mg
/ L, and 29 wt% of antimony in the soil could be extracted and removed. The concentration of antimony in the extraction water after separation / removal by bubbles was 1880 mg / L, and 22 wt% of antimony contained in the soil could be recovered as bubbles.

【0037】[実施例5]実施例1において、対象とし
て、砒素を1mg/kgの濃度で含む土壌を用い、更
に、界面活性剤としてドデシル硫酸ナトリウム(和光純
薬製試薬特級)を用いたこと以外は同様の操作を行った
ところ、固液分離操作後の抽出水中の砒素濃度は0.3
8mg/Lとなり土壌中の砒素のうち30wt%を抽出
・除去できた。処理後の抽出水中の砒素濃度は0.14
mg/Lとなって、土壌中に含まれていた砒素のうちの
19wt%を泡として回収できた。
Example 5 In Example 1, a soil containing arsenic at a concentration of 1 mg / kg was used as a target, and sodium dodecyl sulfate (special grade reagent manufactured by Wako Pure Chemical Industries) was used as a surfactant. Except that the arsenic concentration in the extraction water after the solid-liquid separation operation was 0.3
It was 8 mg / L, and 30 wt% of arsenic in the soil could be extracted and removed. Arsenic concentration in extracted water after treatment is 0.14
mg / L, 19 wt% of arsenic contained in the soil could be recovered as foam.

【0038】[0038]

【発明の効果】本発明によれば、土壌中に含有される金
属を酸性の水を用いてイオンとして抽出した後、界面活
性剤を抽出水に添加して、気体によってバブリングする
ことによって泡を発生させて、発生する泡によって金属
イオンを捕集して回収することによって土壌中の金属の
回収を効率よく行うことができる。
According to the present invention, after extracting metals contained in soil as ions using acidic water, a surfactant is added to the extracted water and bubbles are bubbled by bubbling with gas. The metal ions in the soil can be efficiently collected by generating and collecting and collecting the metal ions by the generated bubbles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施の一態様を示したプロセスの概略図
である。
FIG. 1 is a schematic diagram of a process illustrating one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 抽出装置 2 固液分離装置 3 イオン浮選装置 4 経路 5 経路 6 経路 7 経路 8 経路 9 経路 10 経路 11 経路 12 経路 13 経路 14 経路 A 酸水溶液 B 界面活性剤 C 気体 DESCRIPTION OF SYMBOLS 1 Extraction apparatus 2 Solid-liquid separation apparatus 3 Ion flotation apparatus 4 Path 5 Path 6 Path 7 Path 8 Path 9 Path 10 Path 11 Path 12 Path 13 Path 14 Path A Acid aqueous solution B Surfactant C Gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/24 C22B 30/04 B09B 5/00 S C22B 3/04 3/00 304K 3/20 C22B 3/00 A // C22B 17/00 G 30/02 17/04 30/04 (72)発明者 佐藤 和広 愛媛県松山市北吉田町77番地 帝人株式会 社松山事業所内 Fターム(参考) 4D004 AA41 AB03 CA35 CA40 CA50 CC05 CC12 4D037 AA12 AB08 BA03 BA11 BB08 BB09 CA14 4D056 AB03 AC22 BA13 CA06 CA14 CA17 CA20 CA31 CA39 4K001 AA03 AA06 AA21 BA24 DB02 DB38 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int. Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/24 C22B 30/04 B09B 5/00 S C22B 3/04 3/00 304K 3/20 C22B 3 / 00 A // C22B 17/00 G 30/02 17/04 30/04 (72) Inventor Kazuhiro Sato 77, Kitayoshida-cho, Matsuyama-shi, Ehime Prefecture Teijin Limited Matsuyama Plant F-term (reference) 4D004 AA41 AB03 CA35 CA40 CA50 CC05 CC12 4D037 AA12 AB08 BA03 BA11 BB08 BB09 CA14 4D056 AB03 AC22 BA13 CA06 CA14 CA17 CA20 CA31 CA39 4K001 AA03 AA06 AA21 BA24 DB02 DB38

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属を含む土壌中から該金属を分離回収
する方法であって、該土壌を下記(a)〜(d)の各工
程を逐次的に通過させることを特徴とする、土壌中から
の金属成分回収方法。 (a)酸性の水を用いて、土壌中の金属成分を金属イオ
ンとして抽出する工程。 (b)工程(a)で得られる抽出水に、界面活性剤を添
加する工程。 (c)工程(b)で得られた抽出水を起泡させる工程。 (d)発生した泡に含まれる金属イオンを捕集して回収
する工程。
1. A method for separating and recovering a metal from a soil containing the metal, the method comprising sequentially passing the soil through the following steps (a) to (d). For recovering metal components from coal. (A) A step of extracting metal components in soil as metal ions using acidic water. (B) a step of adding a surfactant to the extraction water obtained in step (a). (C) a step of foaming the extracted water obtained in the step (b). (D) a step of collecting and collecting metal ions contained in the generated bubbles.
【請求項2】 工程(c)における起泡を、抽出水にガ
スを導入することによって行う、請求項1記載の回収方
法。
2. The method according to claim 1, wherein the foaming in the step (c) is performed by introducing a gas into the extraction water.
【請求項3】 導入するガスが空気である、請求項2記
載の回収方法。
3. The recovery method according to claim 2, wherein the gas to be introduced is air.
【請求項4】 工程(c)における起泡を、撹拌操作に
よって行う、請求項1記載の回収方法。
4. The method according to claim 1, wherein the foaming in the step (c) is performed by a stirring operation.
【請求項5】 工程(d)通過後、金属イオンを捕集し
た後の水を、工程(a)における酸性の水として、循環
・再利用する、請求項1記載の回収方法。
5. The recovery method according to claim 1, wherein after passing through the step (d), the water after collecting the metal ions is circulated and reused as the acidic water in the step (a).
JP2001178743A 2001-06-13 2001-06-13 Method for collecting metal component from soil Pending JP2002371324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178743A JP2002371324A (en) 2001-06-13 2001-06-13 Method for collecting metal component from soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178743A JP2002371324A (en) 2001-06-13 2001-06-13 Method for collecting metal component from soil

Publications (1)

Publication Number Publication Date
JP2002371324A true JP2002371324A (en) 2002-12-26

Family

ID=19019396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178743A Pending JP2002371324A (en) 2001-06-13 2001-06-13 Method for collecting metal component from soil

Country Status (1)

Country Link
JP (1) JP2002371324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039664A (en) * 2007-08-09 2009-02-26 Dowa Eco-System Co Ltd Acid treatment method for heavy metal contaminated soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039664A (en) * 2007-08-09 2009-02-26 Dowa Eco-System Co Ltd Acid treatment method for heavy metal contaminated soil

Similar Documents

Publication Publication Date Title
Ke et al. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching
JPWO2004037453A1 (en) Soil purification method
EP0460828B1 (en) Method and apparatus for treating contaminated particulate material
EP0605136B1 (en) Method for remediating soil containing radioactive contaminants
JPWO2006035630A1 (en) Cement kiln combustion gas extraction dust processing system and processing method
US6551378B2 (en) Recovery of precious metals from low concentration sources
JP2007098299A (en) Method for cleaning heavy metal contaminated soil using chelating agent as cleaning agent
JP2008036525A (en) System and method for producing cleaned soil
JP2006051440A (en) Purification method of heavy metal contaminated soil
JP2002371324A (en) Method for collecting metal component from soil
KR100928065B1 (en) Remediation technique to remove heavy metals from soil using soil washing combined with electrokinetics
KR101616174B1 (en) Method for the remediation of heavy metals polluted soil using recyclable leaching agent
JP4351930B2 (en) How to clean contaminated soil
JP6042237B2 (en) Purification method
KR101859145B1 (en) Method for treating arsenic contaminated soil using alkali solution washing with ulstrasonic wave
US20050207954A1 (en) Soil cleaning process
JP3178252B2 (en) Metal recovery from fly ash
KR20120087707A (en) Remediation method for heavy metal contaminated soil
JP2004337695A (en) Purification method for heavy-metal-contaminated soil
JP2004066129A (en) Method of restoring soil polluted with heavy metal
JP3633840B2 (en) Processing method of molten fly ash
JP4060679B2 (en) Heavy metal component recovery method
JP2005279529A (en) Method for cleaning heavy metal polluted soil
JP3590266B2 (en) Ash treatment method
JP3799736B2 (en) Purification method for heavy metal contaminated soil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410