JP2002368183A - Resin-sealed module device and method for manufacturing the same - Google Patents

Resin-sealed module device and method for manufacturing the same

Info

Publication number
JP2002368183A
JP2002368183A JP2001170823A JP2001170823A JP2002368183A JP 2002368183 A JP2002368183 A JP 2002368183A JP 2001170823 A JP2001170823 A JP 2001170823A JP 2001170823 A JP2001170823 A JP 2001170823A JP 2002368183 A JP2002368183 A JP 2002368183A
Authority
JP
Japan
Prior art keywords
resin
sealed
wiring board
module device
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001170823A
Other languages
Japanese (ja)
Other versions
JP4381630B2 (en
Inventor
Enjiyou Tsuyuno
円丈 露野
Toshiaki Ishii
利昭 石井
Akira Nagai
永井  晃
Takao Miwa
崇夫 三輪
Mitsuyasu Masuda
光泰 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001170823A priority Critical patent/JP4381630B2/en
Publication of JP2002368183A publication Critical patent/JP2002368183A/en
Application granted granted Critical
Publication of JP4381630B2 publication Critical patent/JP4381630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85095Temperature settings
    • H01L2224/85099Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

PROBLEM TO BE SOLVED: To provide a small resin-sealed type module device which has less warpage, has high airtightness and high mass producitivity, and is superior in mass productivity and temperature cycle reliability. SOLUTION: In the resin-sealed module device, in which a plurality of circuit elements are mounted on a wiring substrate and the elements are electrically connected to outer leads, at least one of the elements is sealed with a thermosetting resin composition, and the entire wiring substrate, all the elements and the connection side of the outer leads with the substrate are sealed with resin by transfer molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子、コンデ
ンサ、抵抗器等の電子部品を内蔵したモジュールを樹脂
封止により一体成型した新規な樹脂封止型モジュール装
置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel resin-sealed module device in which a module containing electronic components such as semiconductor elements, capacitors, resistors and the like is integrally molded by resin sealing, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体集積回路を用いたモジュールはビ
デオカメラ、携帯電話等の小型電子機器のみならず、自
動車エンジンの制御、電車の車輪の回転制御にも用いら
れてきている。この様なモジュールは半導体機能を有す
る電子部品や抵抗機能を有する電子部品を回路基板に実
装して、信号制御を行うものである。このようなモジュ
ールの例として、信頼性を向上するためケース内に配線
基板を接着し、電子部品を搭載したのち、広い温度範囲
で柔軟なシリコーンゲルで封止し耐電圧特性を向上する
発明が開示されている(特開平11-67977)。
2. Description of the Related Art Modules using semiconductor integrated circuits have been used not only for small electronic devices such as video cameras and cellular phones, but also for controlling automobile engines and controlling the rotation of train wheels. In such a module, an electronic component having a semiconductor function or an electronic component having a resistance function is mounted on a circuit board to perform signal control. As an example of such a module, there is an invention in which a wiring board is bonded in a case to improve reliability, electronic components are mounted, and then sealed with a flexible silicone gel in a wide temperature range to improve withstand voltage characteristics. It is disclosed (JP-A-11-67977).

【0003】しかし、ケースを用いるためサイズが大き
くなり、また、シリコーンゲルを用いるため注入及び硬
化に時間がかかる問題があった。熱硬化性樹脂組成物を
用い成型するものに(特開平10−79453)(特開2000−1
2769)がある。これらの成型方法は配線基板の片面を熱
硬化性樹脂組成物により成型するものであるため、基板
と封止樹脂の熱膨張率の違いによりそりが生じる問題が
あった。
[0003] However, there is a problem that the size is increased due to the use of the case, and it takes a long time to inject and cure because of the use of the silicone gel. For molding using a thermosetting resin composition (JP-A-10-79453) (JP-A-2000-1)
2769). In these molding methods, since one surface of the wiring substrate is molded with the thermosetting resin composition, there is a problem that warpage occurs due to a difference in thermal expansion coefficient between the substrate and the sealing resin.

【0004】また、(特開平10−135377)のように成型
に用いる樹脂組成物の熱膨張率を基板の熱膨張率に近づ
ける検討もなされているが片面モールドであるため、基
板と樹脂組成物の界面が多く外気に曝されるため剥離が
生じやすかった。更に、(特開平9−51056)のようにセ
ラミック多層基板を封止材で封止する発明が開示されて
いる。
[0004] As described in Japanese Patent Application Laid-Open No. Hei 10-135377, studies have been made to make the coefficient of thermal expansion of the resin composition used for molding close to the coefficient of thermal expansion of the substrate. Since many of the interfaces were exposed to the outside air, peeling was likely to occur. Further, as disclosed in Japanese Patent Application Laid-Open No. 9-51056, there is disclosed an invention in which a ceramic multilayer substrate is sealed with a sealing material.

【0005】[0005]

【発明が解決しようとする課題】近年、自動車の制御は
快適な走行と低燃費を両立するため複雑な制御を実現す
る高機能化が求められている。また、部品点数を削減し
低コスト化することが求められている。このため、制御
装置においては複数の半導体素子や抵抗、コンデンサを
組み合わせるモジュール化が行われている。そして、近
年、更なる部品点数の削減のため機械部品内部に制御装
置を組み込むことが要求されている。
In recent years, the control of automobiles has been required to be sophisticated to realize complicated control in order to achieve both comfortable running and low fuel consumption. In addition, it is required to reduce the number of parts and to reduce the cost. For this reason, the control device is modularized by combining a plurality of semiconductor elements, resistors, and capacitors. In recent years, it has been required to incorporate a control device inside a mechanical component in order to further reduce the number of components.

【0006】例えば、トランスミッション内部に制御装
置を組み込み機械部品と制御装置が一体化したユニット
として製造することが試みられている。このような制御
装置には下記の課題を克服することが必要とされてい
る。第一には小型化の課題がある。機械部品内部の限ら
れた空間に収納するため小型化が必要となっている。第
二には反りの課題がある。限られた空間に収納するため
反り量が少ないことが必要となっている。第三は気密性
の課題がある。オイルから生じるミストや機械部品から
生じる金属粉から制御装置を保護するために高い気密性
が必要となっている。第四には温度変化に対する耐久性
の課題がある。機械部品の近傍で激しい冷熱環境にさら
されても長時間信頼性を維持する事が必要である。第五
には高い量産性による低コスト化の課題がある。
For example, an attempt has been made to incorporate a control device inside a transmission and manufacture it as a unit in which mechanical parts and the control device are integrated. Such a control device is required to overcome the following problems. First, there is a problem of miniaturization. Miniaturization is required to accommodate in a limited space inside mechanical parts. Second, there is the issue of warpage. It is necessary that the amount of warpage be small in order to be stored in a limited space. Third, there is the problem of airtightness. High airtightness is required to protect the control device from mist generated from oil and metal powder generated from mechanical parts. Fourth, there is a problem of durability against a temperature change. It is necessary to maintain long-term reliability even when exposed to a severe cold environment near mechanical parts. Fifth, there is a problem of cost reduction due to high mass productivity.

【0007】更に前述の公報では、電極の接続部が多層
基板の層方向に段差を設けて設置するもので、また、部
品の電気的接続には鉛が63%、錫が37%の共晶半田
(溶融開始温度約183℃)を用いているため、トランス
ファーモールド成型時にはんだが溶融する可能性があ
り、得られるモジュール装置等の信頼性が低下すること
が懸念される。
Further, in the above-mentioned publication, the connection portion of the electrode is provided with a step in the layer direction of the multi-layer substrate, and eutectic of 63% lead and 37% tin is used for electrical connection of parts. Since solder (a melting start temperature of about 183 ° C.) is used, there is a possibility that the solder may be melted at the time of transfer molding, and there is a concern that the reliability of the obtained module device or the like is reduced.

【0008】本発明の目的は、小型で反りが少なく、気
密性が高く、量産性及び温度サイクル信頼性に優れ、高
い量産性を有する樹脂封止型モジュール装置及びその製
造方法を提供するにある。
An object of the present invention is to provide a resin-sealed type module device which is small in size, has little warpage, has high airtightness, is excellent in mass productivity and temperature cycle reliability, and has high mass productivity, and a method of manufacturing the same. .

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため種々検討した結果、信頼性の保証された
樹脂封止型の電子部品を配線基板に搭載し、電子部品を
搭載した配線基板全体を熱硬化性樹脂組成物で一体成型
することで高い量産性により低コスト、小型化を図ると
同時に反り量が少なく、気密性が高く、温度変化に対し
ても信頼性の高い樹脂封止型モジュール装置が得られる
事実を見出し、本発明を完成するに至った。すなわち、
本発明は、以下の樹脂封止型モジュール装置及びその製
造方法にある。
Means for Solving the Problems The present inventors have conducted various studies to solve the above problems, and as a result, mounted a resin-encapsulated electronic component whose reliability was guaranteed on a wiring board, and mounted the electronic component. By molding the entire wiring substrate in one piece with a thermosetting resin composition, high mass productivity enables low cost and miniaturization, while reducing the amount of warpage, high airtightness, and high reliability against temperature changes. The present inventors have found that a resin-sealed module device can be obtained, and have completed the present invention. That is,
The present invention resides in the following resin-sealed module device and its manufacturing method.

【0010】本発明は、配線基板上に制御素子と記憶素
子と受動素子から構成される回路素子、それがアウター
リードと電気的に接続された半導体モジュール装置にお
いて、前記素子の少なくとも1つ、特に制御素子と記憶
素子と受動素子の少なくとも1つが熱硬化性樹脂組成物
を用いた樹脂封止型の電子部品であり、前記素子と配線
基板との電気的接続材料の流動温度が200℃以上、好ま
しくは200〜300℃であり、素子、配線基板全体とアウタ
ーリードの配線基板側の一部を熱硬化性樹脂を用いてト
ランスファーモールドにて一体封止成型することを特徴
とする。このように、配線基板全体を被覆した一体封止
成型のため反りが少なく、気密性が高く、トランスファ
ーモールド成型のため量産性が高く、受動素子と配線基
板の電気的接続材料の流動温度が200℃以上であるた
め、トランスファーモールド成型による部品の位置ずれ
がなく、温度サイクル信頼性に優れる効果がある。本発
明における流動温度は、溶融開始温度を示すものであ
る。
The present invention relates to a circuit element including a control element, a storage element, and a passive element on a wiring board, and a semiconductor module device in which the element is electrically connected to an outer lead. At least one of the control element, the storage element, and the passive element is a resin-sealed electronic component using a thermosetting resin composition, and a flow temperature of an electrical connection material between the element and the wiring board is 200 ° C. or higher, The temperature is preferably 200 to 300 ° C., and the whole element and the wiring board and a part of the outer leads on the wiring board side are integrally molded by transfer molding using a thermosetting resin. As described above, the integral sealing molding covering the entire wiring board has a small warpage, high airtightness, high mass productivity due to transfer molding, and a flow temperature of the electrical connection material of the passive element and the wiring board of 200. Since the temperature is not less than ° C, there is no displacement of components due to transfer molding, and there is an effect that the temperature cycle reliability is excellent. The flow temperature in the present invention indicates the melting start temperature.

【0011】前記配線基板としてガラス繊維強化樹脂基
板、セラミックス基板が好ましい。特に、セラミックス
基板を用いることにより受動部品の内の抵抗の一部を基
板内部に埋め込むことが出来、高密度実装出来る効果が
ある。
As the wiring substrate, a glass fiber reinforced resin substrate or a ceramic substrate is preferable. In particular, by using a ceramic substrate, a part of the resistance in the passive component can be embedded in the substrate, and there is an effect that high-density mounting can be performed.

【0012】又、本発明は、特に受動素子、制御素子及
び記憶素子がいずれも熱硬化性樹脂組成物を用いた樹脂
封止型の電子部品を用いたことにより、前述と同様に、
ベアチップを用いた場合のように金ワイヤとベアチップ
の接合部の断線等が生じず温度サイクル信頼性がさらに
優れる効果がある。また、モジュールの構成要素である
受動素子、制御素子及び記憶素子を電気的接続材料によ
り一括にて電気的接続できるため、更に量産性が向上で
きる効果がある。
[0012] Further, the present invention, in particular, all the passive element, the control element, and the storage element use resin-encapsulated electronic parts using a thermosetting resin composition.
As in the case where a bare chip is used, there is no disconnection or the like at the joining portion between the gold wire and the bare chip, so that there is an effect that the temperature cycle reliability is further improved. In addition, since the passive element, the control element, and the storage element, which are components of the module, can be electrically connected collectively by using an electrical connection material, there is an effect that mass productivity can be further improved.

【0013】本発明は、制御素子、記憶素子、受動素子
と配線基板との電気的接続材料は流動温度が200℃以上
の半田を用いることにより、前述と同様にトランスファ
ーモールド成型による信頼性に優れる効果がある上に、
受動素子と配線基板との電気的接続材料は半田であるた
め、熱硬化性銀ペーストや熱硬化性銀ペースト等を用い
た場合に比べ接続抵抗が10分の1以下になり電気特性が
優れる効果がある。また、受動素子と配線基板の接続が
不良であった場合、半田を再溶融してリペアできる効果
がある。
According to the present invention, a solder having a flow temperature of 200 ° C. or more is used as an electrical connection material between the control element, the storage element, the passive element and the wiring board, so that the reliability by transfer molding is excellent as described above. In addition to being effective,
Since the electrical connection material between the passive element and the wiring board is solder, the connection resistance is 1/10 or less compared to the case of using thermosetting silver paste or thermosetting silver paste, and the electrical characteristics are excellent. There is. Further, when the connection between the passive element and the wiring board is poor, there is an effect that the solder can be re-melted and repaired.

【0014】更に、前述の素子と該配線基板との電気的
接続材料は流動温度が200℃以上の熱硬化性導電性材料
を用いることにより前述と同様な効果が得られ、又受動
素子と配線基板との電気的接続材料は熱硬化性導電性材
料であるため、電子部品が発熱により一時的に200℃以
上の高温に達しても再溶融しないため、温度サイクル等
を含めた各種信頼性に優れる効果がある。また、200℃
以上の高温に達しても再溶融しないため、この樹脂封止
型モジュール装置を回路に接続する際、リフローにより
接続できる効果がある。
Furthermore, the same effect as described above can be obtained by using a thermosetting conductive material having a flow temperature of 200 ° C. or more as an electrical connection material between the above-described element and the wiring board. Since the electrical connection material with the substrate is a thermosetting conductive material, it does not re-melt even if the electronic parts temporarily reach a high temperature of 200 ° C or more due to heat generation, ensuring various reliability including temperature cycles. Has an excellent effect. Also, 200 ℃
Since it does not re-melt even when the temperature reaches the above-mentioned high temperature, there is an effect that when the resin-sealed module device is connected to a circuit, the module device can be connected by reflow.

【0015】又、前述の素子と該配線基板との電気的接
続材料は流動温度が200℃以上の半田と熱硬化性導電性
材料の混合物を用いることにおいても前述と同様であ
り、更にリフローに耐える耐熱性のある部品をまず半田
により電気的に接続し、耐熱性が低くリフローに耐えら
れない部品を後に熱硬化性導電性材料により低温で電気
的に接続できるためモジュールに搭載できる材料の選択
の幅が広がる効果がある。
[0015] Further, the same as described above can be applied to the case where a mixture of solder and a thermosetting conductive material having a flow temperature of 200 ° C or higher is used as an electrical connection material between the above-described element and the wiring board. Selection of materials that can be mounted on a module because components with heat resistance that can withstand are electrically connected first by soldering, and components that cannot withstand reflow due to low heat resistance can be electrically connected later with thermosetting conductive material. This has the effect of widening the range.

【0016】本発明は、又熱硬化性樹脂組成物を用いた
樹脂封止型電子部品の表面積の40%以上に対してその表
面粗さを1≦Ra≦500(μm)とすることにより、配線基
板全体を被覆した一体封止成型のため反りが少なく、気
密性が高く、トランスファーモールド成型のため量産性
が高く、受動素子と配線基板の電気的接続材料の流動温
度が200℃以上であるため、トランスファーモールド成
型による部品の位置ずれがなく、温度サイクル信頼性に
優れる効果がある上に、熱硬化性樹脂組成物を用いた樹
脂封止型の電子部品の表面積の40%以上における表面粗
さが1≦Ra≦500(μm)であるため、電子部品と封止材
の接着性が高くなりより温度サイクル信頼性に優れる効
果がある。
The present invention also provides a resin-encapsulated electronic component using a thermosetting resin composition having a surface roughness of 1 ≦ Ra ≦ 500 (μm) for at least 40% of the surface area. Low warpage, high airtightness due to integral sealing molding covering the entire wiring board, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher Therefore, there is no displacement of parts due to transfer molding, and there is an effect of excellent temperature cycle reliability. In addition, the surface roughness of more than 40% of the surface area of resin-encapsulated electronic parts using thermosetting resin composition Since 1 ≦ Ra ≦ 500 (μm), the adhesiveness between the electronic component and the encapsulant is increased, and there is an effect that the temperature cycle reliability is more excellent.

【0017】本発明は、配線基板上に制御素子と記憶素
子と受動素子の少なくとも1つの回路素子が熱硬化性樹
脂組成物を用いた樹脂封止型の電子部品から構成され、
それをアウターリードと電気的に接続した後、素子全
部、配線基板全体及びアウターリードの基板側を熱硬化
性樹脂を用いトランスファーモールドにて一体封止成型
することを特徴とし、特に配線基板上に素子を流動温度
が200℃以の電気的接続材料で電気的に接続した後、前
述のトランスファーモールドにて一体封止成型すること
を特徴とする樹脂封止型モジュール装置の製造方法であ
る。このようにすれば、配線基板全体を被覆した一体封
止成型のため反りが少なく、気密性が高く、トランスフ
ァーモールド成型のため量産性が高く、受動素子と配線
基板の電気的接続材料の流動温度が200℃以上であるた
め、トランスファーモールド成型による部品の位置ずれ
がなく、温度サイクル信頼性に優れる樹脂封止型のモジ
ュール装置を製造できる効果がある。
According to the present invention, at least one circuit element of a control element, a memory element, and a passive element is formed of a resin-sealed electronic component using a thermosetting resin composition on a wiring board,
After electrically connecting it to the outer leads, the whole element, the entire wiring board and the substrate side of the outer leads are integrally molded by transfer molding using a thermosetting resin. A method for manufacturing a resin-sealed module device, comprising: electrically connecting elements with an electric connection material having a flow temperature of 200 ° C. or higher, and then integrally sealing and molding by the transfer molding described above. By doing so, the warpage is small, the airtightness is high, the mass productivity is high due to the transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is low because of the integral sealing molding covering the entire wiring board. Is 200 ° C. or more, there is no displacement of components due to transfer molding, and there is an effect that a resin-sealed module device excellent in temperature cycle reliability can be manufactured.

【0018】本発明は、配線基板上に熱硬化性樹脂組成
物によって封止された複数の回路素子が搭載され、該素
子が電気的接続材料によりアウターリードに電気的に接
続された樹脂封止型モジュール装置であって、前記配線
基板全体、回路素子の全部及び前記アウターリードの前
記基板との接続側が熱硬化性樹脂組成物によってトラン
スファーモールドにて封止され、前記トランスファーモ
ールドによる金型温度が前記電気的接続材料の流動温度
より低いことを特徴とし、前述と同様の効果が得られ
る。
According to the present invention, a plurality of circuit elements sealed with a thermosetting resin composition are mounted on a wiring board, and the elements are electrically connected to outer leads by an electrical connection material. In the mold module device, the entire wiring substrate, all of the circuit elements, and the connection side of the outer leads to the substrate are sealed with a thermosetting resin composition by transfer molding, and the mold temperature by the transfer molding is reduced. The temperature is lower than the flow temperature of the electrical connection material, and the same effects as described above can be obtained.

【0019】本発明は、前述の熱硬化性樹脂組成物を用
いた樹脂封止型の電子部品に対して紫外線を照射し、そ
の後該配線基板全体と該アウターリードの一部をトラン
スファーモールドにて一体封止成型することを特徴と
し、前述の効果似加え、紫外線照射により電子部品表面
の汚染物質を除去し、より温度サイクル信頼性に優れる
樹脂封止型のモジュール装置を製造できる効果がある。
According to the present invention, a resin-sealed electronic component using the above-mentioned thermosetting resin composition is irradiated with ultraviolet rays, and thereafter, the entire wiring board and a part of the outer leads are subjected to transfer molding. In addition to the above-described effects, there is an effect that a contaminant on the surface of an electronic component is removed by ultraviolet irradiation, and a resin-sealed module device having more excellent temperature cycle reliability can be manufactured.

【0020】本発明は、熱硬化性樹脂組成物を用いた樹
脂封止型の電子部品に対してプラズマを照射し、その後
該配線基板全体と該アウターリードの一部をトランスフ
ァーモールドにて一体封止成型することを特徴とし、前
述に加え、プラズマ照射により電子部品表面の汚染を除
去しより温度サイクル信頼性に優れる樹脂封止型のモジ
ュール装置を製造できる効果がある。
According to the present invention, a resin-sealed electronic component using a thermosetting resin composition is irradiated with plasma, and then the entire wiring board and a part of the outer lead are integrally sealed by transfer molding. In addition to the above, there is an effect that the contamination on the surface of the electronic component is removed by plasma irradiation, and a resin-sealed module device having more excellent temperature cycle reliability can be manufactured.

【0021】本発明において用いられる制御素子は、演
算又はスイッチング機能を有する素子のことを意味して
いる。これには、演算機能を有する素子にはマイコン等
が用いられる。スイッチング機能を有する素子にはトラ
ンジスタ等が用いられる。記憶素子は制御プログラムや
信号を記憶するメモリを意味している。マイコンに内蔵
される場合が多いが、マイコンとは別に設ける事もでき
る。受動素子は、抵抗、コンデンサ、ダイオード等を意
味している。
The control element used in the present invention means an element having an arithmetic or switching function. For this purpose, a microcomputer or the like is used for an element having an arithmetic function. A transistor or the like is used as an element having a switching function. The storage element means a memory for storing control programs and signals. It is often built into a microcomputer, but it can also be provided separately from the microcomputer. The passive element means a resistor, a capacitor, a diode, or the like.

【0022】本発明に用いられる配線基板は、配線回路
を形成した基板であれば特に制限されないが、例えば基
板材料としてアルミナを主成分として用いたセラミック
ス配線基板、エポキシ樹脂含浸ガラス繊維を用いたガラ
スエポキシ配線基板、フェノール樹脂含浸紙を用いた紙
フェノール配線基板、エポキシ樹脂含浸紙を用いた紙エ
ポキシ配線基板、BTレジン(Bismaleimide triazine re
sin)含浸ガラス繊維を用いたガラスBTレジン配線基
板、ポリイミドを用いたポリイミド製配線基板、テフロ
ン(登録商標)を用いたテフロン製配線基板、ポリフェ
ニレンエーテルを用いたポリフェニレンエーテル製配線
基板等のうち一つあるいは複数の組み合わせで用いるこ
とができる。望ましくは、セラミックス配線基板が良
い。これは、受動部品の内の抵抗の一部を基板内部に埋
め込むことができるため高密度実装化が出来るからであ
る。
The wiring substrate used in the present invention is not particularly limited as long as it is a substrate on which a wiring circuit is formed. For example, a ceramic wiring substrate using alumina as a main component as a substrate material, or a glass using epoxy resin impregnated glass fiber is used. Epoxy printed circuit board, paper phenol printed circuit board using phenol resin impregnated paper, paper epoxy printed circuit board using epoxy resin impregnated paper, BT resin (Bismaleimide triazine re
sin) Glass BT resin wiring board using impregnated glass fiber, polyimide wiring board using polyimide, Teflon wiring board using Teflon (registered trademark), polyphenylene ether wiring board using polyphenylene ether, etc. One or more combinations can be used. Preferably, a ceramic wiring substrate is used. This is because high-density mounting can be performed because a part of the resistance of the passive component can be embedded in the substrate.

【0023】本発明に用いるアウターリードは、電気伝
導性の材料であれば特に制約されるものではないが、好
ましくはCuを主成分としてFe、P、Zn、Ni、Si、Cr、S
n、Mgのいずれか又は複数を合計で5重量%以下添加し
たものや、Fe−Ni系合金からなるリードが用いられる。
これらはそのまま用いることも出来るが、信頼性向上の
ために外部に露出する部分に必要に応じて有機コート膜
や金属メッキで保護することも出来る。
The outer lead used in the present invention is not particularly limited as long as it is an electrically conductive material. However, it is preferable that Cu is a main component and Fe, P, Zn, Ni, Si, Cr, S
A lead to which one or more of n and Mg are added in a total amount of 5% by weight or less, or a lead made of an Fe-Ni alloy is used.
These can be used as they are, but they can be protected by an organic coat film or metal plating on the portions exposed to the outside as necessary for improving the reliability.

【0024】この有機コート膜には、ポリアミドイミ
ド、ポリイミド、エポキシ樹脂、カップリング剤、キレ
ート剤等を用いることが出来る。金属メッキにはAu、又
はNiを主成分とするメッキが用いられるが、コストの点
からNiを主成分とするメッキが望ましい。
For the organic coating film, polyamide imide, polyimide, epoxy resin, coupling agent, chelating agent and the like can be used. As the metal plating, plating containing Au or Ni as a main component is used, but plating containing Ni as a main component is preferable in terms of cost.

【0025】本発明に用いられる熱硬化性樹脂組成物を
用いた樹脂封止型の電子部品には、例えばDIP(Dual Inl
ine Package)、SIP(Single Inline Package)、ZIP(Zigz
ag Inline Package)、PGA(Pin Grid Array)、SOP(Small
Outline Package)、QFP(Quad Flat Package)、SOJ(Sma
ll Outline J-bend Package)、PLCC(Plastic Lead Chip
Carrier)、MSP(Mini Square Package)等のトランスフ
ァーモールド成型による封止やCSP(Chip Scale Packag
e)、BGA(Ball Grid Aray)等のディスペンス封止や注型
封止、コーティング封止、シーリング封止、ディップ封
止やこれらに準じる封止をした電子部品が用いられる。
The resin-sealed electronic parts using the thermosetting resin composition used in the present invention include, for example, DIP (Dual Inl.
ine Package), SIP (Single Inline Package), ZIP (Zigz
ag Inline Package), PGA (Pin Grid Array), SOP (Small
Outline Package), QFP (Quad Flat Package), SOJ (Sma
ll Outline J-bend Package), PLCC (Plastic Lead Chip)
Carrier), MSP (Mini Square Package), etc.
e), electronic parts sealed by dispense sealing such as BGA (Ball Grid Aray), casting sealing, coating sealing, sealing sealing, dip sealing or sealing according to these are used.

【0026】これらは大量生産に適した熱硬化性樹脂を
用いた樹脂封止成型により成型された低コスト電子部品
である。これらの電子部品を用いモジュールを作れば、
耐熱性に優れる上にモジュールのコストを下げることが
できる。樹脂封止型電子部品の多くは、トランスファー
モールド成型により成型されている。この電子部品はモ
ールド時の金型と成型された電子部品の取り外しを容易
にするため電子部品表面に離型性向上のワックス等の有
機物質が付着している場合がある。
These are low-cost electronic components molded by resin molding using a thermosetting resin suitable for mass production. If you make a module using these electronic components,
Excellent heat resistance and lower module cost. Most of the resin-sealed electronic components are formed by transfer molding. In this electronic component, an organic substance such as wax for improving releasability may be attached to the surface of the electronic component in order to facilitate removal of the mold and the molded electronic component during molding.

【0027】この時は市販のままの電子部品を配線基板
に接続し配線基板の一体成型を行うことも出来るが、紫
外線照射やプラズマ照射、表面粗化等の処理を行いこの
ような有機物質を取り除いてから配線基板の一体成型を
行うことも可能である。紫外線照射量としては500mJ/cm
2以上10000mJ/cm2以下が望ましい。500mJ/cm2未満では
有機物質の除去効果が低く、10000mJ/cm2より多いと表
面を酸化劣化し逆に接着性を悪くしてしまう。プラズマ
照射に関しては500Wで1分以上20分以下が望ましい。1
分未満では有機物質除去の効果が低く、20分より長いと
時間がかかりすぎ量産性が悪くなってしてしまう。
At this time, it is possible to connect the electronic parts as they are commercially available to the wiring board and to integrally mold the wiring board. However, the organic substance is subjected to treatment such as ultraviolet irradiation, plasma irradiation, surface roughening, etc. It is also possible to integrally mold the wiring board after removing it. 500mJ / cm for UV irradiation
It is desirable to be 2 or more and 10,000 mJ / cm2 or less. If it is less than 500 mJ / cm2, the effect of removing organic substances is low, and if it is more than 10,000 mJ / cm2, the surface is oxidized and deteriorated, and conversely the adhesiveness is deteriorated. Regarding the plasma irradiation, it is desirable that the power of 500 W is 1 minute or more and 20 minutes or less. 1
If it is less than minutes, the effect of removing organic substances is low, and if it is longer than 20 minutes, it takes too much time and mass productivity is deteriorated.

【0028】表面粗化に関しては電子部品の表面積の40
%以上がJIS B 0660 1998による表面粗さが1≦Ra≦500
(μm)であること望ましい。表面積の40%未満では改
善の効果が少ないためである。また、Ra<1(μm)では
接着力向上の効果がすくなく、Ra>500(μm)では粗化
により電子部品の強度が低下し破損しやすくなるためで
ある。
Regarding the surface roughening, the surface area of the electronic component is 40%.
% JIS B 0660 1998 surface roughness is 1 ≦ Ra ≦ 500
(Μm). If the surface area is less than 40%, the effect of improvement is small. Further, when Ra <1 (μm), the effect of improving the adhesive strength is not so large, and when Ra> 500 (μm), the strength of the electronic component is reduced due to roughening, and the electronic component is easily broken.

【0029】本発明において一体成型に用いる熱硬化性
樹脂組成物は、樹脂封止成型できる熱硬化性樹脂組成物
であれば特に制限されないが、望ましくはエポキシ樹
脂、硬化剤、硬化促進剤及び無機質充填剤を必須成分と
する。
In the present invention, the thermosetting resin composition used for the integral molding is not particularly limited as long as it is a thermosetting resin composition which can be molded with a resin. Preferably, the epoxy resin, the curing agent, the curing accelerator and the inorganic material are used. Filler is an essential component.

【0030】特に、エポキシ樹脂組成物が望ましい。エ
ポキシ樹脂は、1分子中にエポキシ基を2個以上有する
ものであれば特に限定されない。例えば、o-クレゾール
ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹
脂、ジシクロペンタジエン型エポキシ樹脂、臭素化エポ
キシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノール
A型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等
が挙げられ、溶融粘度が低いビフェニル型エポキシ樹脂
が好ましい。
Particularly, an epoxy resin composition is desirable. The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule. For example, o-cresol novolak type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, brominated epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc. A biphenyl type epoxy resin having a low value is preferred.

【0031】硬化剤は、フェノール性水酸基、アミノ
基、カルボキシル基、酸無水物基等エポキシ樹脂を硬化
する官能基を有するものであれば特に限定されない。例
えば、フェノールノボラック、キシリレン型フェノール
樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾ
ールフェノールノボラック等が挙げられ、溶融粘度が低
いフェノールノボラックが好ましい。
The curing agent is not particularly limited as long as it has a functional group for curing the epoxy resin, such as a phenolic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride group. For example, phenol novolak, xylylene type phenol resin, dicyclopentadiene type phenol resin, cresol phenol novolak and the like can be mentioned, and phenol novolak having a low melt viscosity is preferable.

【0032】無機質充填剤には、シリカ、アルミナ、窒
化ホウ素、水酸化マグネシウム、水酸化マグネシウム等
が用いられるが機械的特性や硬化性等のバランスのとれ
たシリカが望ましい。シリカは溶融シリカ及び結晶シリ
カがあるが、熱膨張係数が小さい溶融シリカが好まし
い。粒子形状については、球、角どちらでもよいが、流
動性のためには球が好ましい。無機質充填剤は、充填剤
の95重量%以上が粒径0.1〜100μmの範囲にあ
り、かつ平均粒径が2〜20μmで球状の粉末が好まし
い。特に、20μm以下とすることでも、又この範囲の
充填剤は最大充填分率が高く、高充填してもエポキシ樹
脂組成物の溶融粘度は上昇しにくい。無機質充填剤の充
填量はエポキシ樹脂組成物の全容積に対して50容積%
以上であるのが望ましく、特に熱膨張率の観点から70
容積%以上であるのが好ましい。又、65容量%以上で
は上述の球形のみのもの、それ以下は球形と角状との混
合で、球形を角状に対して2〜3倍とするのが好まし
い。
As the inorganic filler, silica, alumina, boron nitride, magnesium hydroxide, magnesium hydroxide or the like is used, and silica having good balance in mechanical properties and curability is desirable. Silica includes fused silica and crystalline silica, and fused silica having a small coefficient of thermal expansion is preferred. The particle shape may be spherical or angular, but spherical is preferable for fluidity. The inorganic filler is preferably a spherical powder in which 95% by weight or more of the filler has a particle size in the range of 0.1 to 100 μm and an average particle size of 2 to 20 μm. In particular, even when the thickness is set to 20 μm or less, the filler in this range has a high maximum filling fraction, and the melt viscosity of the epoxy resin composition does not easily increase even if the filling is performed at a high level. The filling amount of the inorganic filler is 50% by volume based on the total volume of the epoxy resin composition.
It is desirable that the above value be satisfied.
It is preferably at least volume%. When the content is 65% by volume or more, only the above-described spherical shape is used. When the content is less than 65% by volume, the spherical shape is mixed with the angular shape, and the spherical shape is preferably set to be two to three times the angular shape.

【0033】硬化促進剤は、エポキシ樹脂との場合には
硬化反応を促進させるものならば種類は限定されない。
例えば、トリフェニルホスフィン、トリフェニルホスフ
ィン・トリフェニルボロン、テトラフェニルホスホニウ
ム・テトラフェニルボレート、ブチルトリフェニルホス
ホニウム・テトラフェニルボレート等のリン化合物、2
−フェニル−4−ベンジル−5−ヒドロキシメチルイミ
ダゾール、2−フェニル−4−メチル−5−ヒドロキシ
メチルイミダゾール、2−エチル−4−メチルイミダゾ
ール等のイミダゾール化合物、1,8−ジアザビシクロ
[5.4.0]ウンデセン−7、ジアミノジフェニルメタ
ン、トリエチレンジアミン等のアミン化合物等が挙げら
れる。
The type of the curing accelerator is not limited as long as it accelerates the curing reaction with the epoxy resin.
For example, phosphorus compounds such as triphenylphosphine, triphenylphosphine / triphenylboron, tetraphenylphosphonium / tetraphenylborate, and butyltriphenylphosphonium / tetraphenylborate;
Imidazole compounds such as -phenyl-4-benzyl-5-hydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-ethyl-4-methylimidazole, and 1,8-diazabicyclo
[5.4.0] Undecene-7, diaminodiphenylmethane, amine compounds such as triethylenediamine and the like.

【0034】本発明で用いたエポキシ樹脂組成物には、
上記成分以外にも、必要に応じて離型剤、着色剤、可と
う化剤、難燃助剤等を添加することができる。
The epoxy resin composition used in the present invention includes:
In addition to the above components, a release agent, a coloring agent, a flexibilizing agent, a flame retardant auxiliary, and the like can be added as necessary.

【0035】樹脂封止成型の成型方法にはトランスファ
ーモールド成型、射出成型、ポッティング成型等を用い
ることができるが、トランスファーモールド成型が量産
性の観点から望ましい。これは、トランスファーモール
ド成型が量産性、信頼性の点で優れているからである。
上記のエポキシ樹脂組成物を用いトランスファーモール
ド成型する場合、成型温度は150℃以上200℃未満の範囲
が好ましい。150℃未満では硬化反応が遅く、離型性が
悪い。離型性を上げるには長い成型時間が必要となり量
産性が悪い。また、200℃以上では、硬化反応が早く進
行し流動性が低下するため未充填となってしまう。この
ため、通常180℃付近の成型温度で成型される。
Transfer molding, injection molding, potting molding, and the like can be used as a molding method of resin sealing molding. Transfer molding is desirable from the viewpoint of mass productivity. This is because transfer molding is excellent in mass productivity and reliability.
When performing transfer mold molding using the above epoxy resin composition, the molding temperature is preferably in the range of 150 ° C. or more and less than 200 ° C. If it is lower than 150 ° C., the curing reaction is slow and the releasability is poor. A long molding time is required to improve the releasability, and the mass productivity is poor. On the other hand, at a temperature of 200 ° C. or higher, the curing reaction proceeds quickly and the fluidity is reduced, so that the resin is not filled. For this reason, it is usually molded at a molding temperature of around 180 ° C.

【0036】本発明で電子部品と配線基板の電気的接続
に半田を用いる場合には溶融開始温度が200℃以上であ
れば特に制限されないが、例えば半田には元素記号で示
すとSnとAu合金系、SnとPb合金系、SnとAg合金系、Snと
AgとCu合金系、SnとAgとBi合金系等の半田が用いられ
る。
In the present invention, when solder is used for electrical connection between an electronic component and a wiring board, there is no particular limitation as long as the melting start temperature is 200 ° C. or higher. System, Sn and Pb alloy system, Sn and Ag alloy system, Sn and
Solder of Ag-Cu alloy type, Sn-Ag-Bi alloy type or the like is used.

【0037】具体的には、元素記号と質量比で示すと、
Au:Sn=80:20の合金(溶融開始温度約280℃)、P
b:Sn=5.0:95.0の合金(溶融開始温度約232
℃)、Ag:Sn=3.5:96.5の合金(溶融開始温度
約222℃)、Ag:Sn=2.0:98.0の合金(溶融開
始温度約221℃)、Ag:Cu:Sn=3.5:0.3:9
6.2の合金(溶融開始温度約217℃)、Ag:Cu:Sn=
3.5:0.7:95.8の合金(溶融開始温度約217
℃)、Ag:Cu:Sn=3.5:1.2:95.3の合金
(溶融開始温度約217℃)、Ag:Cu:Sn=3.5:2.
0:94.5の合金(溶融開始温度約217℃)、Sn=100
の金属(溶融開始温度約232℃)、Ag:Bi:Sn=3.
0:3.0:94.0の合金(溶融開始温度約217
℃)、Ag:Bi:Sn=3.0:5.0:92.0の合金
(溶融開始温度約201℃)等である。
Specifically, when expressed in terms of an element symbol and a mass ratio,
Au: Sn = 80: 20 alloy (melting start temperature about 280 ℃), P
b: alloy of Sn = 5.0: 95.0 (melting start temperature about 232
C), an alloy of Ag: Sn = 3.5: 96.5 (melting onset temperature: about 222 ° C.), an alloy of Ag: Sn = 2.0: 98.0 (melting onset temperature: about 221 ° C.), Ag: Cu : Sn = 3.5: 0.3: 9
6.2 alloy (melting start temperature about 217 ° C), Ag: Cu: Sn =
3.5: 0.7: 95.8 alloy (melting start temperature about 217
° C), an alloy of Ag: Cu: Sn = 3.5: 1.2: 95.3 (melting start temperature about 217 ° C), Ag: Cu: Sn = 3.5: 2.
0: 94.5 alloy (melting start temperature about 217 ° C), Sn = 100
Metal (melting start temperature: about 232 ° C.), Ag: Bi: Sn = 3.
0: 3.0: 94.0 alloy (melting start temperature about 217
° C), an alloy of Ag: Bi: Sn = 3.0: 5.0: 92.0 (melting start temperature about 201 ° C), and the like.

【0038】本発明によれば、半田の溶融開始温度が20
0℃以上の高温であるため、トランスファーモールド成
型しても、金型温度が150℃以上200℃未満であるため成
型時に合金は溶融せず、良好な成型品を得ることができ
る。しかも、電子部品と配線基板の接続が不良であった
場合、半田を再溶融してリペアできる効果がある。
According to the present invention, the melting start temperature of the solder is 20
Because of the high temperature of 0 ° C. or higher, even when transfer molding is performed, the mold temperature is 150 ° C. or higher and lower than 200 ° C., so that the alloy does not melt at the time of molding and a good molded product can be obtained. In addition, when the connection between the electronic component and the wiring board is poor, there is an effect that the solder can be re-melted and repaired.

【0039】本発明では、電子部品と配線基板の電気的
接続に導電性材料を含有する熱硬化性樹脂組組成物を用
いる場合には導電性材料としては特に制限されないが、
Ag、Cu、Sn、Pb、Al、Pt、Au等の金属系材料、ポリアセ
チレン等の有機系材料、黒鉛、フラーレン、ナノチュー
ブ等の炭素化合物の何れか又は併用して用いられる。熱
硬化性樹脂としては、特に制限されないが例えばエポキ
シ樹脂、アクリル樹脂、ビスマレイミド系樹脂等が用い
られる。これらは、一旦硬化すると流動しないためトラ
ンスファーモールド成型により、良好な成型品を得るこ
とができる。また、電子部品が発熱により一時的に200
℃以上の高温に達しても再溶融しないため、温度サイク
ル信頼性に優れる効果がある。
In the present invention, when a thermosetting resin composition containing a conductive material is used for the electrical connection between the electronic component and the wiring board, the conductive material is not particularly limited.
It is used in combination with any of metal materials such as Ag, Cu, Sn, Pb, Al, Pt, and Au, organic materials such as polyacetylene, and carbon compounds such as graphite, fullerene, and nanotube. The thermosetting resin is not particularly limited, but for example, an epoxy resin, an acrylic resin, a bismaleimide-based resin, or the like is used. Since these do not flow once cured, good molded products can be obtained by transfer molding. In addition, electronic components may temporarily generate 200
Since it does not re-melt even if it reaches a high temperature of not less than ℃, it has the effect of excellent temperature cycle reliability.

【0040】本発明では、電子部品と配線基板の電気的
接続に半田と導電性材料を混載して用いることが出来
る。これらは、リフローに耐える耐熱性のある部品をま
ず半田により電気的に接続し、耐熱性が低くリフローに
耐えられない部品を後に熱硬化性導電性材料により低温
で電気的に接続できる効果がある。
In the present invention, solder and a conductive material can be mixedly used for the electrical connection between the electronic component and the wiring board. These have the effect of first electrically connecting parts with heat resistance that can withstand reflow by soldering, and then electrically connecting parts with low heat resistance that cannot withstand reflow at a low temperature with a thermosetting conductive material. .

【0041】本発明で電子部品と配線基板の電気的接続
に導電性材料を含有する融点が200℃以上の熱可塑性樹
脂組成物を用いる事ができる。熱可塑性樹脂としては融
点が200℃以上のものであれば特に制限されないが、熱
可塑性ポリイミド、ポリエーテルイミド、ポリアミドイ
ミド等が用いられる。熱可塑性樹脂の融点が200℃以上
であるため、トランスファーモールド成型により良好な
成型品を得ることができる。
In the present invention, a thermoplastic resin composition containing a conductive material and having a melting point of 200 ° C. or more can be used for electrical connection between an electronic component and a wiring board. The thermoplastic resin is not particularly limited as long as it has a melting point of 200 ° C. or higher, but thermoplastic polyimide, polyetherimide, polyamideimide and the like are used. Since the melting point of the thermoplastic resin is 200 ° C. or higher, a good molded product can be obtained by transfer molding.

【0042】[0042]

【発明の実施の形態】(実施例1)図1は、本発明の樹
脂封止型モジュール装置の断面図である。配線基板1は6
層配線からなるガラスBTレジン配線基板(50mm×50mm)
である。まず、配線基板1に熱硬化性銀ペーストをベア
チップのマイコン3及びトランジスタ14の搭載位置に
ディスペンスし、品質保証されたマイコン3及びトラン
ジスタ14をその上に搭載した。次に150℃1時間の硬
化条件で熱硬化性銀ペーストを硬化し接着した。次に、
マイコン3を加熱ステージを用い配線基板側から200℃
に加熱し、ワイヤ8として金ワイヤを用い超音波ワイヤ
ボンディングにてマイコン3のパットと配線基板1のラ
ンドを電気的に接続した。
(Embodiment 1) FIG. 1 is a sectional view of a resin-sealed module device according to the present invention. Wiring board 1 is 6
Glass BT resin wiring board consisting of layer wiring (50mm x 50mm)
It is. First, a thermosetting silver paste was dispensed on the wiring substrate 1 at a mounting position of the bare chip microcomputer 3 and the transistor 14, and the microcomputer 3 and the transistor 14 whose quality was guaranteed were mounted thereon. Next, the thermosetting silver paste was cured and bonded at 150 ° C. for 1 hour. next,
200 ° C from the wiring board side using a heating stage for the microcomputer 3
The pad of the microcomputer 3 and the land of the wiring board 1 were electrically connected by ultrasonic wire bonding using a gold wire as the wire 8.

【0043】その後、導電材9として、融点が230℃の
熱可塑性ポリイミド系銀ペーストを配線基板1のランド
部にディスペンスした。そして、抵抗4、樹脂封止型電
子部品のタンタルコンデンサ5(Ra=0.5(μm))、樹
脂封止型電子部品のメモリ13(Ra=0.5(μm))、樹
脂封止型電子部品のダイオード16(Ra=0.5(μm))
に代表される部品を配線基板1に搭載した。その後、赤
外線リフロー装置を用い導電材9を一旦270℃で加熱溶
融し、再び固化させることで電子部品4、5、13と配
線基板1の電気的接続を行った。この後、銅製リードフ
レームのアウターリード2を接着材6としてエポキシ樹
脂系接着剤を用い150℃1時間の硬化条件で配線基板1
に接着した。
Thereafter, a thermoplastic polyimide silver paste having a melting point of 230 ° C. as a conductive material 9 was dispensed on the land portion of the wiring board 1. Then, the resistor 4, the resin-encapsulated electronic component tantalum capacitor 5 (Ra = 0.5 (μm)), the resin-encapsulated electronic component memory 13 (Ra = 0.5 (μm)), and the resin-encapsulated electronic component diode 16 (Ra = 0.5 (μm))
Are mounted on the wiring board 1. Thereafter, the conductive material 9 was once heated and melted at 270 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 4, 5 and 13 to the wiring board 1. Thereafter, the outer lead 2 of the copper lead frame is used as the adhesive 6 using an epoxy resin adhesive under the curing condition of 150 ° C. for 1 hour.
Adhered to.

【0044】次に、アウターリード2、トランジスタ1
4、ダイオード16と配線基板1の電気的接続は室温に
てワイヤ8としてAlワイヤを用い超音波ワイヤボンディ
ングにて行った。その後、180℃におけるゲル化時間が3
0秒である熱硬化性樹脂組成物を用い金型温度180℃、ト
ランスファー圧力7MPa、成型時間3分で低圧トランスフ
ァーモールド成型を行った。用いた封止材は硬化後の特
性が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/
℃、ガラス転移温度が120℃のものである。
Next, outer lead 2, transistor 1
4. The electrical connection between the diode 16 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Then, the gel time at 180 ° C is 3
Using a thermosetting resin composition of 0 seconds, low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The sealing material used has properties after curing, an elastic modulus at room temperature of 30 GPa and a linear expansion coefficient at room temperature of 8 ppm /
° C and a glass transition temperature of 120 ° C.

【0045】表1は樹脂封止型電子部品に用いた樹脂組
成物及び樹脂封止モジュールに用いた樹脂組成物の組成
(A)及び(B)を示す。又、表2はこれらの樹脂の適用
例を示す。
Table 1 shows the composition of the resin composition used for the resin-sealed electronic component and the resin composition used for the resin-sealed module.
(A) and (B) are shown. Table 2 shows application examples of these resins.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、実施例1〜12と比較例1〜4の
樹脂封止型モジュール装置の構造の概要、配線基板の材
料、配線基板と樹脂封止型電子部品の接続材料、熱硬化
性樹脂組成物の材料、成形条件、電子部品の表面処理等
の構成と共に、表3に結果をしめした。
Using the resin-sealed module device manufactured in this manner, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined, and the resins of Examples 1 to 12 and Comparative Examples 1 to 4 were examined. Along with the outline of the structure of the sealed module device, the material of the wiring board, the connection material between the wiring board and the resin-sealed electronic component, the material of the thermosetting resin composition, the molding conditions, the configuration of the surface treatment of the electronic component, etc. Table 3 shows the results.

【0049】[0049]

【表3(a)】 [Table 3 (a)]

【表3(b)】 [Table 3 (b)]

【0050】なお、樹脂封止型電子部品の表面粗さ測定
は触針式の表面粗さ計を用い測定した。表面粗さRaはJI
S B 0660:1998で定義される算術平均粗さである。反り
の測定は3次元計測器を用い測定し、反りが200μm以
上の場合は不良で(×)で示した。200μm未満の場合
は合格で(○)で示した。気密性は温度サイクル試験を
3000サイクル行ったサンプルに対し、染色浸透探傷剤を
用いた染色浸透探傷法(カラーチェック)により行っ
た。基準は浸透インク長さが1.0mm以上になったものは
×、0.5mm以上1mm未満は△、0.5mm未満は○とした。
The surface roughness of the resin-sealed electronic component was measured using a stylus type surface roughness meter. Surface roughness Ra is JI
Arithmetic mean roughness as defined in SB 0660: 1998. The warpage was measured using a three-dimensional measuring device. When the warpage was 200 μm or more, it was indicated as poor (×). If it was less than 200 μm, it was accepted and indicated by (○). Airtightness requires temperature cycle test
A sample that had been subjected to 3000 cycles was subjected to a dye penetrant inspection (color check) using a dye penetrant. The criteria were x when the penetrated ink length was 1.0 mm or more, Δ when it was 0.5 mm or more and less than 1 mm, and ○ when it was less than 0.5 mm.

【0051】成形性はモジュールの封止において、流動
性や離型性の問題なく成型できた場合は○、成型出来な
かった場合は×とした。量産性に関しては、樹脂封止の
工程時間で評価し30分未満は○、30分以上のものは×に
した。温度サイクル信頼性の試験条件は以下のとおりで
ある。−55℃から150℃まで1時間かけて昇温した後すぐ
に150℃から-55℃まで1時間かけて冷却し、これを1サイ
クルとした。サンプル数は10個で行い断線不良の割合が
50%に達した時点のサイクル数を示した。
The moldability was evaluated as ○ when molding was possible without problems in fluidity and mold release in sealing the module, and as × when molding was not possible. Regarding mass productivity, the evaluation was made based on the resin sealing process time, and was evaluated as ○ for less than 30 minutes, and x for more than 30 minutes. The test conditions for the temperature cycle reliability are as follows. Immediately after the temperature was raised from −55 ° C. to 150 ° C. over 1 hour, it was cooled from 150 ° C. to −55 ° C. over 1 hour, and this was taken as one cycle. The number of samples is 10 and the rate of disconnection failure is
The number of cycles when 50% was reached is shown.

【0052】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability There is an effect that is excellent in properties.

【0053】(実施例2)図2は、本発明の樹脂封止型
モジュール装置の断面図である。図2において、配線基
板1は6層配線からなり抵抗素子を埋め込んだセラミッ
クス配線基板(40mm×50mm)である。まず、配線基板1
に熱硬化性銀ペーストをベアチップのマイコン3、トラ
ンジスタ14の搭載位置にディスペンスし、品質保証さ
れたマイコン3及びトランジスタ14をその上に搭載し
た。次に150℃1時間の硬化条件で熱硬化性銀ペースト
を硬化し接着した。次に、マイコン3を加熱ステージを
用い配線基板側から200℃に加熱し、ワイヤ8として金
ワイヤを用い超音波ワイヤボンディングにてマイコン3
のパットと配線基板1ランドを電気的に接続した。
(Embodiment 2) FIG. 2 is a sectional view of a resin-sealed module device of the present invention. In FIG. 2, a wiring board 1 is a ceramic wiring board (40 mm × 50 mm) made of six-layer wiring and having a resistance element embedded therein. First, the wiring board 1
Then, a thermosetting silver paste was dispensed at a mounting position of the bare chip microcomputer 3 and the transistor 14, and the microcomputer 3 and the transistor 14 whose quality was guaranteed were mounted thereon. Next, the thermosetting silver paste was cured and bonded at 150 ° C. for 1 hour. Next, the microcomputer 3 is heated to 200 ° C. from the wiring board side using a heating stage, and a gold wire is used as the wire 8 and the microcomputer 3 is ultrasonically bonded.
Was electrically connected to one land of the wiring board.

【0054】その後、導電材9として、融点が230℃の
熱可塑性ポリイミド系銀ペーストを配線基板1のランド
部にディスペンスした。そして、樹脂封止型電子部品の
タンタルコンデンサ5(Ra=0.5(μm))、樹脂封止型
電子部品のメモリ13(Ra=0.5(μm))、樹脂封止型
電子部品のダイオード16(Ra=0.5(μm))に代表さ
れる部品を配線基板1に搭載した。その後、赤外線リフ
ロー装置を用い導電材9を一旦270℃で加熱溶融し、再
び固化させることで電子部品5、13と配線基板1の電
気的接続を行った。
Thereafter, a thermoplastic polyimide silver paste having a melting point of 230 ° C. as a conductive material 9 was dispensed on the land of the wiring board 1. Then, the resin-encapsulated electronic component tantalum capacitor 5 (Ra = 0.5 (μm)), the resin-encapsulated electronic component memory 13 (Ra = 0.5 (μm)), and the resin-encapsulated electronic component diode 16 (Ra = 0.5 (μm)) was mounted on the wiring board 1. After that, the conductive material 9 was once heated and melted at 270 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 5 and 13 to the wiring board 1.

【0055】この後、銅製リードフレームのアウターリ
ード2を接着材6としてエポキシ樹脂系接着剤を用い15
0℃1時間の硬化条件で配線基板1に接着した。次にア
ウターリード2、トランジスタ14、ダイオード16と
配線基板1の電気的接続は室温にてワイヤ8としてAlワ
イヤを用い超音波ワイヤボンディングにて行った。その
後、180℃におけるゲル化時間が30秒である熱硬化性樹
脂組成物を用い金型温度180℃、トランスファー圧力7MP
a、成型時間3分で低圧トランスファーモールド成型を行
った。用いた封止材は硬化後の特性が、室温の弾性率30
GPa、室温の線膨脹係数が8ppm/℃、ガラス転移温度が12
0℃のものである。
Thereafter, an epoxy resin adhesive is used as the adhesive 6 for the outer leads 2 of the copper lead frame.
It adhered to the wiring board 1 under the curing condition of 0 ° C. for 1 hour. Next, the electrical connection between the outer lead 2, the transistor 14, the diode 16 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Thereafter, using a thermosetting resin composition having a gel time of 30 seconds at 180 ° C., a mold temperature of 180 ° C., and a transfer pressure of 7 MP
a, Low pressure transfer molding was performed in a molding time of 3 minutes. The properties of the encapsulant after curing have an elastic modulus of 30 at room temperature.
GPa, linear expansion coefficient at room temperature 8ppm / ℃, glass transition temperature 12
It is at 0 ° C.

【0056】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. The results are shown in Table 1.

【0057】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。なお、表
面粗さの測定、反りの測定、温度サイクル信頼性の試
験、成形性の評価、気密性の評価、量産性の評価は実施
例1と同様にして行った。
In addition, measurement of surface roughness, measurement of warpage, test of temperature cycle reliability, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1. The measurement of surface roughness, the measurement of warpage, the test of temperature cycle reliability, the evaluation of moldability, the evaluation of airtightness, and the evaluation of mass productivity were performed in the same manner as in Example 1.

【0058】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、セラミックス基板を用いるた
め受動部品の内の抵抗の一部を基板内部に埋め込むこと
が出来、高密度実装出来る効果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect that the ceramic substrate is used, a part of the resistance of the passive component can be embedded in the substrate, so that high-density mounting can be achieved.

【0059】(実施例3)図3は、本発明の樹脂封止型
モジュール装置の断面図である。図3において、配線基
板1は6層配線からなり抵抗素子を埋め込んだセラミッ
クス配線基板(40mm×50mm)である。まず、導電材9と
して、融点が230℃の熱可塑性ポリイミド系銀ペースト
を配線基板1のランド部にディスペンスした。そして、
樹脂封止型電子部品のマイコン3(Ra=0.5(μm))、
樹脂封止型電子部品のトランジスタ14(Ra=0.5(μ
m))、樹脂封止型電子部品のタンタルコンデンサ5(R
a=0.5(μm))、樹脂封止型電子部品のメモリ13(R
a=0.5(μm))、樹脂封止型電子部品のダイオード1
6(Ra=600(μm))に代表される部品を配線基板1に
搭載した。
(Embodiment 3) FIG. 3 is a sectional view of a resin-sealed module device according to the present invention. In FIG. 3, a wiring board 1 is a ceramic wiring board (40 mm × 50 mm) having six layers of wiring and in which resistance elements are embedded. First, a thermoplastic polyimide silver paste having a melting point of 230 ° C. as a conductive material 9 was dispensed on a land portion of the wiring board 1. And
Microcomputer 3 (Ra = 0.5 (μm)) for resin-encapsulated electronic components,
Transistor 14 of resin-encapsulated electronic component (Ra = 0.5 (μ
m)), a resin-sealed electronic component tantalum capacitor 5 (R
a = 0.5 (μm)), the memory 13 (R
a = 0.5 (μm)), Diode 1 of resin-encapsulated electronic component
6 (Ra = 600 (μm)) was mounted on the wiring board 1.

【0060】その後、赤外線リフロー装置を用い導電材
9を一旦270℃で加熱溶融し、再び固化させることで電
子部品3、5、13、14と配線基板1の電気的接続を
行った。この後、銅製リードフレームのアウターリード
2を接着材6としてエポキシ樹脂系接着剤を用い150℃
1時間の硬化条件で配線基板1に接着した。次に、アウ
ターリード2と配線基板1の電気的接続は室温にてワイ
ヤ8としてAlワイヤを用い超音波ワイヤボンディングに
て行った。
Thereafter, the conductive material 9 was once heated and melted at 270 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 3, 5, 13, and 14 to the wiring board 1. Thereafter, the outer lead 2 of the copper lead frame is used as an adhesive 6 using an epoxy resin adhesive at 150 ° C.
It adhered to the wiring board 1 under the curing condition for 1 hour. Next, the electrical connection between the outer leads 2 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using Al wires as the wires 8.

【0061】その後、180℃におけるゲル化時間が30秒
である熱硬化性樹脂組成物を用い金型温度180℃、トラ
ンスファー圧力7MPa、成型時間3分で低圧トランスファ
ーモールド成型を行った。用いた封止材は硬化後の特性
が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/℃、
ガラス転移温度が120℃のものである。
Thereafter, using a thermosetting resin composition having a gelation time of 30 seconds at 180 ° C., low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The properties of the encapsulant after curing are as follows: room temperature elastic modulus 30 GPa, room temperature linear expansion coefficient 8 ppm / ° C,
The glass transition temperature is 120 ° C.

【0062】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0063】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
In addition, measurement of surface roughness, measurement of warpage, test of temperature cycle reliability, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0064】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子、制御素子及び記憶素子と配線基板
の電気的接続材料の流動温度が200℃以上であるため、
トランスファーモールド成型による部品の位置ずれがな
く、温度サイクル信頼性に優れる効果がある上に、受動
素子、制御素子及び記憶素子が熱硬化性樹脂組成物を用
いた樹脂封止型の電子部品であるため、ベアチップを用
いた場合のように金ワイヤとベアチップの接合部の断線
等が生じず温度サイクル信頼性がさらに優れる効果があ
る。また、モジュールの構成要素である受動素子、制御
素子及び記憶素子を電気的接続材料により一括にて電気
的接続できるため、更に量産性が向上できる効果があ
る。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element, control element, storage element and the wiring board is 200 ° C or higher,
There is no displacement of parts due to transfer molding, and there is an effect that the temperature cycle reliability is excellent, and the passive element, the control element, and the storage element are resin-encapsulated electronic parts using a thermosetting resin composition. Therefore, unlike the case where a bare chip is used, there is no disconnection or the like at the joining portion between the gold wire and the bare chip, and the temperature cycle reliability is further improved. In addition, since the passive element, the control element, and the storage element, which are components of the module, can be electrically connected collectively by using an electrical connection material, there is an effect that mass productivity can be further improved.

【0065】(実施例4)本実施例は、図3において、
配線基板1は6層配線からなり抵抗素子を埋め込んだセ
ラミックス配線基板(40mm×50mm)を用いたものであ
る。まず、導電材9として、組成がAg:Cu:Sn=3.
5:0.7:95.8(質量%)の合金の半田ペースト
(溶融開始温度約217℃)を配線基板1のランド部にデ
ィスペンスした。そして、樹脂封止型電子部品のマイコ
ン3(Ra=0.5(μm))、樹脂封止型電子部品のトラン
ジスタ14(Ra=0.5(μm))、樹脂封止型電子部品の
タンタルコンデンサ5(Ra=0.5(μm))、樹脂封止型
電子部品のメモリ13(Ra=0.5(μm))、樹脂封止型
電子部品のダイオード16(Ra=0.5(μm))に代表さ
れる部品を配線基板1に搭載した。その後、赤外線リフ
ロー装置を用い導電材9を一旦260℃で加熱溶融し、再
び固化させることで電子部品3、5、13、14と配線
基板1の電気的接続を行った。
(Embodiment 4) This embodiment is different from the embodiment shown in FIG.
The wiring substrate 1 is a ceramic wiring substrate (40 mm × 50 mm) having six-layer wiring and having a resistance element embedded therein. First, as the conductive material 9, the composition is Ag: Cu: Sn = 3.
A 5: 0.7: 95.8 (mass%) alloy solder paste (melting start temperature: about 217 ° C.) was dispensed on the land of the wiring board 1. The microcomputer 3 (Ra = 0.5 (μm)) of the resin-sealed electronic component, the transistor 14 (Ra = 0.5 (μm)) of the resin-sealed electronic component, and the tantalum capacitor 5 (Ra) of the resin-sealed electronic component = 0.5 (μm)), a memory 13 of a resin-encapsulated electronic component (Ra = 0.5 (μm)), and a component typified by a diode 16 (Ra = 0.5 (μm)) of a resin-encapsulated electronic component are connected to a wiring board. 1 mounted. Thereafter, the conductive material 9 was once heated and melted at 260 ° C. using an infrared reflow device, and then solidified again, thereby making an electrical connection between the electronic components 3, 5, 13, and 14 and the wiring board 1.

【0066】この後、銅製リードフレームのアウターリ
ード2を接着材6としてエポキシ樹脂系接着剤を用い15
0℃1時間の硬化条件で配線基板1に接着した。次に、
アウターリード2と配線基板1の電気的接続は室温にて
ワイヤ8としてAlワイヤを用い超音波ワイヤボンディン
グにて行った。その後、180℃におけるゲル化時間が30
秒である熱硬化性樹脂組成物を用い金型温度180℃、ト
ランスファー圧力7MPa、成型時間3分で低圧トランスフ
ァーモールド成型を行った。用いた封止材は硬化後の特
性が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/
℃、ガラス転移温度が120℃のものである。
Thereafter, an epoxy resin adhesive is used as the adhesive 6 for the outer lead 2 of the copper lead frame.
It adhered to the wiring board 1 under the curing condition of 0 ° C. for 1 hour. next,
The electrical connection between the outer leads 2 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Then, the gel time at 180 ° C. is 30
Using a thermosetting resin composition in seconds, low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The sealing material used has properties after curing, an elastic modulus at room temperature of 30 GPa and a linear expansion coefficient at room temperature of 8 ppm /
° C and a glass transition temperature of 120 ° C.

【0067】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0068】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
The measurement of surface roughness, the measurement of warpage, the test of temperature cycle reliability, the evaluation of moldability, the evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0069】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、受動素子と配線基板との電気
的接続材料は半田であるため、熱硬化性銀ペーストや熱
硬化性銀ペースト等を用いた場合に比べ接続抵抗が10分
の1以下になり電気特性が優れる効果がある。また、受
動素子と配線基板の接続が不良であった場合、半田を再
溶融してリペアできる効果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect of excellent heat resistance, since the electrical connection material between the passive element and the wiring board is solder, the connection resistance is 10 minutes less than when a thermosetting silver paste or a thermosetting silver paste is used. 1 or less, which has the effect of improving the electrical characteristics. Further, when the connection between the passive element and the wiring board is poor, there is an effect that the solder can be re-melted and repaired.

【0070】(実施例5)本実施例は、図3において、
配線基板1は6層配線からなり抵抗素子を埋め込んだセ
ラミックス配線基板(40mm×50mm)を用いたものであ
る。まず、導電材9として、組成がAg:Bi:Sn=3.
0:5.0:92.0(質量%)の合金の半田ペースト
(溶融開始温度約201℃)を配線基板1のランド部にデ
ィスペンスした。そして、樹脂封止型電子部品のマイコ
ン3(Ra=0.5(μm))、樹脂封止型電子部品のトラン
ジスタ14(Ra=0.5(μm))、樹脂封止型電子部品の
タンタルコンデンサ5(Ra=0.5(μm))、樹脂封止型
電子部品のメモリ13(Ra=0.5(μm))、樹脂封止型
電子部品のダイオード16(Ra=0.5(μm))に代表さ
れる部品を配線基板1に搭載した。
(Embodiment 5) This embodiment is different from the embodiment shown in FIG.
The wiring substrate 1 is a ceramic wiring substrate (40 mm × 50 mm) having six-layer wiring and having a resistance element embedded therein. First, as the conductive material 9, the composition is Ag: Bi: Sn = 3.
An alloy solder paste of 0: 5.0: 92.0 (% by mass) (melting start temperature: about 201 ° C.) was dispensed on the land of the wiring board 1. The microcomputer 3 (Ra = 0.5 (μm)) of the resin-sealed electronic component, the transistor 14 (Ra = 0.5 (μm)) of the resin-sealed electronic component, and the tantalum capacitor 5 (Ra) of the resin-sealed electronic component = 0.5 (μm)), a memory 13 of a resin-encapsulated electronic component (Ra = 0.5 (μm)), and a component typified by a diode 16 (Ra = 0.5 (μm)) of a resin-encapsulated electronic component are connected to a wiring board. 1 mounted.

【0071】その後、赤外線リフロー装置を用い導電材
9を一旦240℃で加熱溶融し、再び固化させることで電
子部品3、5、13、14と配線基板1の電気的接続を
行った。この後、銅製リードフレームのアウターリード
2を接着材6としてエポキシ樹脂系接着剤を用い150℃
1時間の硬化条件で配線基板1に接着した。次に、アウ
ターリード2と配線基板1の電気的接続は室温にてワイ
ヤ8としてAlワイヤを用い超音波ワイヤボンディングに
て行った。その後、180℃におけるゲル化時間が30秒で
ある熱硬化性樹脂組成物を用い金型温度180℃、トラン
スファー圧力7MPa、成型時間3分で低圧トランスファー
モールド成型を行った。用いた封止材は硬化後の特性
が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/℃、
ガラス転移温度が120℃のものである。
Thereafter, the conductive material 9 was once heated and melted at 240 ° C. using an infrared reflow device, and then solidified again, thereby making the electrical connection between the electronic components 3, 5, 13, and 14 and the wiring board 1. Thereafter, the outer lead 2 of the copper lead frame is used as an adhesive 6 using an epoxy resin adhesive at 150 ° C.
It adhered to the wiring board 1 under the curing condition for 1 hour. Next, the electrical connection between the outer leads 2 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using Al wires as the wires 8. Thereafter, using a thermosetting resin composition having a gel time of 30 seconds at 180 ° C., low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The properties of the encapsulant after curing are as follows: room temperature elastic modulus 30 GPa, room temperature linear expansion coefficient 8 ppm / ° C,
The glass transition temperature is 120 ° C.

【0072】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device manufactured as described above, warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. The results are shown in Table 1.

【0073】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
The surface roughness measurement, warpage measurement, temperature cycle reliability test, moldability evaluation, airtightness evaluation,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0074】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、受動素子と配線基板との電気
的接続材料は半田であるため、熱硬化性銀ペーストや熱
硬化性銀ペースト等を用いた場合に比べ接続抵抗が10分
の1以下になり電気特性が優れる効果がある。また、受
動素子と配線基板の接続が不良であった場合、半田を再
溶融してリペアできる効果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect of excellent heat resistance, since the electrical connection material between the passive element and the wiring board is solder, the connection resistance is 10 minutes less than when a thermosetting silver paste or a thermosetting silver paste is used. 1 or less, which has the effect of improving the electrical characteristics. Further, when the connection between the passive element and the wiring board is poor, there is an effect that the solder can be re-melted and repaired.

【0075】(実施例6)本実施例は図3において、配
線基板1は6層配線からなり抵抗素子を埋め込んだセラ
ミックス配線基板(40mm×50mm)を用いたものである。
まず、導電材9として、組成がAu:Sn=80:20(質
量%)の合金の半田ペースト(溶融開始温度約280℃)
を配線基板1のランド部にディスペンスした。そして、
樹脂封止型電子部品のマイコン3(Ra=0.5(μm))、
樹脂封止型電子部品のトランジスタ14(Ra=0.5(μ
m))、樹脂封止型電子部品のタンタルコンデンサ5(R
a=0.5(μm))、樹脂封止型電子部品のメモリ13(R
a=0.5(μm))、樹脂封止型電子部品のダイオード1
6(Ra=0.5(μm))に代表される部品を配線基板1に
搭載した。その後、赤外線リフロー装置を用い導電材9
を一旦320℃で加熱溶融し、再び固化させることで電子
部品3、5、13、14と配線基板1の電気的接続を行
った。
(Embodiment 6) In this embodiment, the wiring board 1 shown in FIG. 3 uses a ceramic wiring board (40 mm × 50 mm) formed of six-layer wiring and having a resistance element embedded therein.
First, as the conductive material 9, a solder paste of an alloy having a composition of Au: Sn = 80: 20 (% by mass) (melting start temperature: about 280 ° C.)
Was dispensed on the land portion of the wiring board 1. And
Microcomputer 3 (Ra = 0.5 (μm)) for resin-encapsulated electronic components,
Transistor 14 of resin-encapsulated electronic component (Ra = 0.5 (μ
m)), a resin-sealed electronic component tantalum capacitor 5 (R
a = 0.5 (μm)), the memory 13 (R
a = 0.5 (μm)), Diode 1 of resin-encapsulated electronic component
6 (Ra = 0.5 (μm)) was mounted on the wiring board 1. Then, using an infrared reflow device, conductive material 9
Was once heated and melted at 320 ° C., and then solidified again, so that the electronic components 3, 5, 13, and 14 were electrically connected to the wiring board 1.

【0076】この後、銅製リードフレームのアウターリ
ード2を接着材6としてエポキシ樹脂系接着剤を用い15
0℃1時間の硬化条件で配線基板1に接着した。次に、
アウターリード2と配線基板1の電気的接続は室温にて
ワイヤ8としてAlワイヤを用い超音波ワイヤボンディン
グにて行った。その後、180℃におけるゲル化時間が30
秒である熱硬化性樹脂組成物を用い金型温度180℃、ト
ランスファー圧力7MPa、成型時間3分で低圧トランスフ
ァーモールド成型を行った。用いた封止材は硬化後の特
性が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/
℃、ガラス転移温度が120℃のものである。
Thereafter, an epoxy resin adhesive is used as the adhesive 6 for the outer leads 2 of the copper lead frame.
It adhered to the wiring board 1 under the curing condition of 0 ° C. for 1 hour. next,
The electrical connection between the outer leads 2 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Then, the gel time at 180 ° C. is 30
Using a thermosetting resin composition in seconds, low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The sealing material used has properties after curing, an elastic modulus at room temperature of 30 GPa and a linear expansion coefficient at room temperature of 8 ppm /
° C and a glass transition temperature of 120 ° C.

【0077】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were studied. Table 1 shows the results.

【0078】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
Incidentally, measurement of surface roughness, measurement of warpage, test of temperature cycle reliability, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0079】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、受動素子と配線基板との電気
的接続材料は半田であるため、熱硬化性銀ペーストや熱
硬化性銀ペースト等を用いた場合に比べ接続抵抗が10分
の1以下になり電気特性が優れる効果がある。また、受
動素子と配線基板の接続が不良であった場合、半田を再
溶融してリペアできる効果がある。
The resin-sealed type module device thus manufactured is small in size, and has little warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect of excellent heat resistance, since the electrical connection material between the passive element and the wiring board is solder, the connection resistance is 10 minutes less than when a thermosetting silver paste or a thermosetting silver paste is used. 1 or less, which has the effect of improving the electrical characteristics. Further, when the connection between the passive element and the wiring board is poor, there is an effect that the solder can be re-melted and repaired.

【0080】(実施例7)本実施例は、図3において、
配線基板1は6層配線からなり抵抗素子を埋め込んだセ
ラミックス配線基板(40mm×50mm)を用いたものであ
る。まず、導電材9として、熱硬化性銀ペーストを配線
基板1のランド部にディスペンスした。そして、樹脂封
止型電子部品のマイコン3(Ra=0.5(μm))、樹脂封
止型電子部品のトランジスタ14(Ra=0.5(μm))、
樹脂封止型電子部品のタンタルコンデンサ5(Ra=0.5
(μm))、樹脂封止型電子部品のメモリ13(Ra=0.5
(μm))、樹脂封止型電子部品のダイオード16(Ra
=0.5(μm))に代表される部品を配線基板1に搭載し
た。次に150℃1時間の硬化条件で熱硬化性銀ペースト
を硬化させることで電子部品3、5、13、14と配線
基板1の電気的接続を行った。
(Embodiment 7) This embodiment is different from the embodiment shown in FIG.
The wiring substrate 1 is a ceramic wiring substrate (40 mm × 50 mm) having six-layer wiring and having a resistance element embedded therein. First, a thermosetting silver paste as the conductive material 9 was dispensed on the land portion of the wiring board 1. Then, the microcomputer 3 (Ra = 0.5 (μm)) of the resin-sealed electronic component, the transistor 14 (Ra = 0.5 (μm)) of the resin-sealed electronic component,
Resin-sealed electronic component tantalum capacitor 5 (Ra = 0.5
(Μm)), the memory 13 of the resin-encapsulated electronic component (Ra = 0.5
(Μm)), a diode 16 (Ra
= 0.5 (μm)) was mounted on the wiring board 1. Next, the electronic components 3, 5, 13, and 14 were electrically connected to the wiring board 1 by curing the thermosetting silver paste under a curing condition of 150 ° C. for 1 hour.

【0081】この後、銅製リードフレームのアウターリ
ード2を接着材6としてエポキシ樹脂系接着剤を用い15
0℃1時間の硬化条件で配線基板1に接着した。次に、
アウターリード2と配線基板1の電気的接続は室温にて
ワイヤ8としてAlワイヤを用い超音波ワイヤボンディン
グにて行った。その後、180℃におけるゲル化時間が30
秒である熱硬化性樹脂組成物を用い金型温度180℃、ト
ランスファー圧力7MPa、成型時間3分で低圧トランスフ
ァーモールド成型を行った。用いた封止材は硬化後の特
性が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/
℃、ガラス転移温度が120℃のものである。
Then, an epoxy resin adhesive is used as the adhesive 6 for the outer lead 2 of the copper lead frame.
It adhered to the wiring board 1 under the curing condition of 0 ° C. for 1 hour. next,
The electrical connection between the outer leads 2 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Then, the gel time at 180 ° C. is 30
Using a thermosetting resin composition in seconds, low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The sealing material used has properties after curing, an elastic modulus at room temperature of 30 GPa and a linear expansion coefficient at room temperature of 8 ppm /
° C and a glass transition temperature of 120 ° C.

【0082】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0083】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
Incidentally, measurement of surface roughness, measurement of warpage, test of temperature cycle reliability, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0084】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、受動素子と配線基板との電気
的接続材料は熱硬化性導電性材料であるため、電子部品
が発熱により一時的に200℃以上の高温に達しても再溶
融しないため、温度サイクル等を含めた各種信頼性に優
れる効果がある。また、200℃以上の高温に達しても再
溶融しないため、この樹脂封止型モジュール装置を回路
に接続する際、リフローにより接続できる効果がある。
The resin-sealed type module device thus manufactured is small in size, and has little warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect of excellent heat resistance, the electrical connection between the passive element and the wiring board is a thermosetting conductive material. Therefore, there is an effect that various reliability including temperature cycle and the like is excellent. In addition, since the resin-sealed module device is not re-melted even when the temperature reaches 200 ° C. or higher, there is an effect that the resin-sealed module device can be connected by reflow when connected to a circuit.

【0085】(実施例8)本実施例は、図4において、
配線基板1は6層配線からなり抵抗素子を埋め込んだセ
ラミックス配線基板(40mm×50mm)を用いたものであ
る。まず、導電材9として、組成がAg:Cu:Sn=3.
5:0.7:95.8(質量%)の合金の半田ペースト
(溶融開始温度約217℃)を配線基板1のランド部にデ
ィスペンスした。そして、樹脂封止型電子部品のマイコ
ン3(Ra=0.5(μm))、樹脂封止型電子部品のトラン
ジスタ14(Ra=0.5(μm))、樹脂封止型電子部品の
タンタルコンデンサ5(Ra=0.5(μm))、樹脂封止型
電子部品のメモリ13(Ra=0.5(μm))、樹脂封止型
電子部品のダイオード16(Ra=0.5(μm))に代表さ
れる部品を配線基板1に搭載した。
(Embodiment 8) This embodiment is different from the embodiment shown in FIG.
The wiring substrate 1 is a ceramic wiring substrate (40 mm × 50 mm) having six-layer wiring and having a resistance element embedded therein. First, as the conductive material 9, the composition is Ag: Cu: Sn = 3.
A 5: 0.7: 95.8 (mass%) alloy solder paste (melting start temperature: about 217 ° C.) was dispensed on the land of the wiring board 1. The microcomputer 3 (Ra = 0.5 (μm)) of the resin-sealed electronic component, the transistor 14 (Ra = 0.5 (μm)) of the resin-sealed electronic component, and the tantalum capacitor 5 (Ra) of the resin-sealed electronic component = 0.5 (μm)), a memory 13 of a resin-encapsulated electronic component (Ra = 0.5 (μm)), and a component typified by a diode 16 (Ra = 0.5 (μm)) of a resin-encapsulated electronic component are connected to a wiring board. 1 mounted.

【0086】その後、赤外線リフロー装置を用い導電材
9を一旦260℃で加熱溶融し、再び固化させることで電
子部品3、5、13、14と配線基板1の電気的接続を
行った。この後、銅製リードフレームのアウターリード
2を接着材6としてエポキシ樹脂系接着剤を用い150℃
1時間の硬化条件で配線基板1に接着した。次に、耐熱
温度が180℃のコネクタ端子17を配線基板に搭載し、
導電材として熱硬化性銀ペーストを用い150℃1時間の
硬化条件で硬化し電気的接続を行った。その後、180℃
におけるゲル化時間が30秒である熱硬化性樹脂組成物を
用い金型温度180℃、トランスファー圧力7MPa、成型時
間3分で低圧トランスファーモールド成型を行った。用
いた封止材は硬化後の特性が、室温の弾性率30GPa、室
温の線膨脹係数が8ppm/℃、ガラス転移温度が120℃のも
のである。
Thereafter, the conductive material 9 was once heated and melted at 260 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 3, 5, 13, and 14 to the wiring board 1. Thereafter, the outer lead 2 of the copper lead frame is used as an adhesive 6 using an epoxy resin adhesive at 150 ° C.
It adhered to the wiring board 1 under the curing condition for 1 hour. Next, the connector terminal 17 having a heat-resistant temperature of 180 ° C. is mounted on the wiring board,
Using a thermosetting silver paste as a conductive material, the composition was cured under a curing condition of 150 ° C. for 1 hour to perform an electrical connection. Then 180 ° C
A low pressure transfer molding was performed using a thermosetting resin composition having a gelation time of 30 seconds at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The encapsulant used after curing has an elastic modulus of 30 GPa at room temperature, a linear expansion coefficient of 8 ppm / ° C. at room temperature, and a glass transition temperature of 120 ° C.

【0087】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0088】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
Incidentally, measurement of surface roughness, measurement of warpage, test of temperature cycle reliability, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0089】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、受動素子と配線基板との電気
的接続材料は半田と熱硬化性導電性材料の混載であるた
め、リフローに耐える耐熱性のある部品をまず半田によ
り電気的に接続し、耐熱性が低くリフローに耐えられな
い部品を後に熱硬化性導電性材料により低温で電気的に
接続できるためモジュールに搭載できる材料の選択の幅
が広がる効果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect of excellent heat resistance, the electrical connection material between the passive element and the wiring board is a mixture of solder and thermosetting conductive material. The parts that are connected and have low heat resistance and cannot withstand reflow can be electrically connected later with a thermosetting conductive material at a low temperature, so that there is an effect that the choice of materials that can be mounted on the module is expanded.

【0090】(実施例9)本実施例は、図4において、
配線基板1は6層配線からなり抵抗素子を埋め込んだセ
ラミックス配線基板(40mm×50mm)を用いたものであ
る。まず、導電材9として、組成がAg:Cu:Sn=3.
5:0.7:95.8(質量%)の合金の半田ペースト
(溶融開始温度約217℃)を配線基板1のランド部にデ
ィスペンスした。そして、マイコン3、トランジスタ1
4(、タンタルコンデンサ5、メモリ13、ダイオード
16に代表される、あらかじめサンドブラスト処理によ
り表面積の40%以上を表面粗さRa=3(μm)に粗化した
樹脂封止型電子部品を配線基板1に搭載した。その後、
赤外線リフロー装置を用い導電材9を一旦260℃で加熱
溶融し、再び固化させることで電子部品3、5、13、
14と配線基板1の電気的接続を行った。
(Embodiment 9) This embodiment is different from the embodiment shown in FIG.
The wiring substrate 1 is a ceramic wiring substrate (40 mm × 50 mm) having six-layer wiring and having a resistance element embedded therein. First, as the conductive material 9, the composition is Ag: Cu: Sn = 3.
A 5: 0.7: 95.8 (mass%) alloy solder paste (melting start temperature: about 217 ° C.) was dispensed on the land of the wiring board 1. And microcomputer 3, transistor 1
4 (resin-sealed electronic component, such as a tantalum capacitor 5, a memory 13, and a diode 16, whose surface area has been roughened to a surface roughness Ra = 3 (μm) by sandblasting in advance, as represented by the wiring board 1 , And then
The conductive material 9 is once heated and melted at 260 ° C. using an infrared reflow device, and then solidified again, so that the electronic components 3, 5, 13,.
14 and the wiring board 1 were electrically connected.

【0091】この後、銅製リードフレームのアウターリ
ード2を接着材6としてエポキシ樹脂系接着剤を用い15
0℃1時間の硬化条件で配線基板1に接着した。次に、
アウターリード2と配線基板1の電気的接続は室温にて
ワイヤ8としてAlワイヤを用い超音波ワイヤボンディン
グにて行った。次に、180℃におけるゲル化時間が30秒
である熱硬化性樹脂組成物を用い金型温度180℃、トラ
ンスファー圧力7MPa、成型時間3分で低圧トランスファ
ーモールド成型を行った。用いた封止材は硬化後の特性
が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/℃、
ガラス転移温度が120℃のものである。
Thereafter, an epoxy resin adhesive is used as the adhesive 6 for the outer leads 2 of the copper lead frame.
It adhered to the wiring board 1 under the curing condition of 0 ° C. for 1 hour. next,
The electrical connection between the outer leads 2 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Next, using a thermosetting resin composition having a gel time of 30 seconds at 180 ° C., low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The properties of the encapsulant after curing are as follows: room temperature elastic modulus 30 GPa, room temperature linear expansion coefficient 8 ppm / ° C,
The glass transition temperature is 120 ° C.

【0092】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. The results are shown in Table 1.

【0093】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
The surface roughness measurement, warpage measurement, temperature cycle reliability test, moldability evaluation, airtightness evaluation,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0094】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがなく、温度サイクル信頼性
に優れる効果がある上に、熱硬化性樹脂組成物を用いた
樹脂封止型の電子部品の表面積の40%以上における表面
粗さが1≦Ra≦500(μm)であるため、電子部品と封止
材の接着性が高くなりより温度サイクル信頼性に優れる
効果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher, so there is no displacement of parts due to transfer molding, and temperature cycle reliability In addition to the effect of excellent heat resistance, the surface roughness of 40% or more of the surface area of the resin-encapsulated electronic component using the thermosetting resin composition is 1 ≦ Ra ≦ 500 (μm). This has the effect of increasing the adhesiveness between the sealing material and the sealing material, thereby improving the temperature cycle reliability.

【0095】(実施例10)本実施例は、図4におい
て、配線基板1は6層配線からなり抵抗素子を埋め込ん
だセラミックス配線基板(40mm×50mm)を用いたもので
ある。まず、導電材9として、組成がAg:Cu:Sn=3.
5:0.7:95.8(質量%)の合金の半田ペースト
(溶融開始温度約217℃)を配線基板1のランド部にデ
ィスペンスした。そして、樹脂封止型電子部品のマイコ
ン3(Ra=0.5(μm))、樹脂封止型電子部品のトラン
ジスタ14(Ra=0.5(μm))、樹脂封止型電子部品の
タンタルコンデンサ5(Ra=0.5(μm))、樹脂封止型
電子部品のメモリ13(Ra=0.5(μm))、樹脂封止型
電子部品のダイオード16(Ra=0.5(μm))に代表さ
れる部品を配線基板1に搭載した。
(Embodiment 10) In this embodiment, in FIG. 4, the wiring substrate 1 is a ceramic wiring substrate (40 mm × 50 mm) having six layers of wirings and in which resistance elements are embedded. First, as the conductive material 9, the composition is Ag: Cu: Sn = 3.
A 5: 0.7: 95.8 (mass%) alloy solder paste (melting start temperature: about 217 ° C.) was dispensed on the land of the wiring board 1. The microcomputer 3 (Ra = 0.5 (μm)) of the resin-sealed electronic component, the transistor 14 (Ra = 0.5 (μm)) of the resin-sealed electronic component, and the tantalum capacitor 5 (Ra) of the resin-sealed electronic component = 0.5 (μm)), a memory 13 of a resin-encapsulated electronic component (Ra = 0.5 (μm)), and a component typified by a diode 16 (Ra = 0.5 (μm)) of a resin-encapsulated electronic component are connected to a wiring board. 1 mounted.

【0096】その後、赤外線リフロー装置を用い導電材
9を一旦260℃で加熱溶融し、再び固化させることで電
子部品3、5、13、14と配線基板1の電気的接続を
行った。その後、樹脂封止型電子部品3、5、13、1
4を含む配線基板に紫外線を2000mJ/cm2照射した。この
後、銅製リードフレームのアウターリード2を接着材6
としてエポキシ樹脂系接着剤を用い150℃1時間の硬化
条件で配線基板1に接着した。次に、アウターリード2
と配線基板1の電気的接続は室温にてワイヤ8としてAl
ワイヤを用い超音波ワイヤボンディングにて行った。そ
の後、180℃におけるゲル化時間が30秒である熱硬化性
樹脂組成物を用い金型温度180℃、トランスファー圧力7
MPa、成型時間3分で低圧トランスファーモールド成型を
行った。用いた封止材は硬化後の特性が、室温の弾性率
30GPa、室温の線膨脹係数が8ppm/℃、ガラス転移温度が
120℃のものである。
Thereafter, the conductive material 9 was once heated and melted at 260 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 3, 5, 13, and 14 to the wiring board 1. Then, the resin-sealed electronic components 3, 5, 13, 1
The wiring board containing No. 4 was irradiated with ultraviolet rays at 2000 mJ / cm2. Thereafter, the outer lead 2 of the copper lead frame is bonded to the adhesive 6.
Was bonded to the wiring board 1 under the curing condition of 150 ° C. for 1 hour using an epoxy resin adhesive. Next, outer lead 2
Is electrically connected to the wiring board 1 at room temperature as a wire 8 by Al.
This was performed by ultrasonic wire bonding using a wire. Thereafter, using a thermosetting resin composition having a gel time of 30 seconds at 180 ° C., a mold temperature of 180 ° C. and a transfer pressure of 7
Low pressure transfer molding was performed at a pressure of MPa and a molding time of 3 minutes. The properties of the encapsulant after curing are elastic at room temperature.
30GPa, room temperature linear expansion coefficient 8ppm / ℃, glass transition temperature
120 ° C.

【0097】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0098】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
[0098] Measurement of surface roughness, measurement of warpage, temperature cycle reliability test, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0099】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがない上に、紫外線照射によ
り電子部品表面の汚染を除去しより温度サイクル信頼性
に優れる樹脂封止型のモジュール装置を製造できる効果
がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher. Irradiation has the effect of removing contamination on the surface of the electronic component and producing a resin-sealed module device having more excellent temperature cycle reliability.

【0100】(実施例11)本実施例は、図4におい
て、配線基板1は6層配線からなり抵抗素子を埋め込ん
だセラミックス配線基板(40mm×50mm)を用いたもので
ある。まず、銅製リードフレームのアウターリード2を
接着材6としてエポキシ樹脂系接着剤を用い150℃1時
間の硬化条件で配線基板1に接着した。次に、導電材9
として、組成がAg:Cu:Sn=3.5:0.7:95.8
(質量%)の合金の半田ペースト(溶融開始温度約217
℃)を配線基板1のランド部にディスペンスした。そし
て、樹脂封止型電子部品のマイコン3(Ra=0.5(μ
m))、樹脂封止型電子部品のトランジスタ14(Ra=
0.5(μm))、樹脂封止型電子部品のタンタルコンデン
サ5(Ra=0.5(μm))、樹脂封止型電子部品のメモリ
13(Ra=0.5(μm))、樹脂封止型電子部品のダイオ
ード16(Ra=0.5(μm))に代表される部品を配線基
板1に搭載した。
(Embodiment 11) In this embodiment, the wiring board 1 shown in FIG. 4 uses a ceramic wiring board (40 mm × 50 mm) having six layers of wiring and in which resistance elements are embedded. First, the outer lead 2 of the copper lead frame was adhered to the wiring board 1 using an epoxy resin adhesive as the adhesive 6 under the curing condition of 150 ° C. for 1 hour. Next, the conductive material 9
The composition is Ag: Cu: Sn = 3.5: 0.7: 95.8
(Mass%) alloy solder paste (melting start temperature about 217
° C) was dispensed on the land of the wiring board 1. The microcomputer 3 (Ra = 0.5 (μ)
m)), the transistor 14 (Ra =
0.5 (μm)), a resin-encapsulated electronic component tantalum capacitor 5 (Ra = 0.5 (μm)), a resin-encapsulated electronic component memory 13 (Ra = 0.5 (μm)), and a resin-encapsulated electronic component. A component typified by a diode 16 (Ra = 0.5 (μm)) was mounted on the wiring board 1.

【0101】その後、赤外線リフロー装置を用い導電材
9を一旦260℃で加熱溶融し、再び固化させることで電
子部品3、5、13、14と配線基板1の電気的接続を
行った。その後、樹脂封止型電子部品3、5、13、1
4を含む配線基板に酸素プラズマを500Wで5分間照射し
た。この後、アウターリード2、ダイオード16配線基
板1の電気的接続は室温にてワイヤ8としてAlワイヤを
用い超音波ワイヤボンディングにて行った。その後、18
0℃におけるゲル化時間が30秒である熱硬化性樹脂組成
物を用い金型温度180℃、トランスファー圧力7MPa、成
型時間3分で低圧トランスファーモールド成型を行っ
た。用いた封止材は硬化後の特性が、室温の弾性率30GP
a、室温の線膨脹係数が8ppm/℃、ガラス転移温度が120
℃のものである。
Thereafter, the conductive material 9 was once heated and melted at 260 ° C. using an infrared reflow device, and then solidified again, so that the electronic components 3, 5, 13, 14 and the wiring board 1 were electrically connected. Then, the resin-sealed electronic components 3, 5, 13, 1
4 was irradiated with oxygen plasma at 500 W for 5 minutes. Thereafter, the electrical connection between the outer leads 2 and the diode 16 wiring board 1 was performed at room temperature by ultrasonic wire bonding using Al wires as the wires 8. Then 18
Using a thermosetting resin composition having a gel time of 30 seconds at 0 ° C., low pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The properties of the encapsulant after curing are 30GP at room temperature.
a, Room temperature linear expansion coefficient is 8ppm / ℃, glass transition temperature is 120
° C.

【0102】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0103】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
Incidentally, measurement of surface roughness, measurement of warpage, test of temperature cycle reliability, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0104】このようにして作成した樹脂封止型モジュ
ール装置は小型で、一体封止成型のため反りが少なく、
気密性が高く、トランスファーモールド成型のため量産
性が高く、受動素子と配線基板の電気的接続材料の流動
温度が200℃以上であるため、トランスファーモールド
成型による部品の位置ずれがない上に、プラズマ照射に
より電子部品表面の汚染を除去しより温度サイクル信頼
性に優れる樹脂封止型のモジュール装置を製造できる効
果がある。
The resin-sealed type module device thus manufactured is small in size, and has a small warpage due to integral sealing molding.
High airtightness, high mass productivity due to transfer molding, and the flow temperature of the electrical connection material between the passive element and the wiring board is 200 ° C or higher. Irradiation has the effect of removing contamination on the surface of the electronic component and producing a resin-sealed module device having more excellent temperature cycle reliability.

【0105】(比較例1)比較例1のモジュール装置の
断面図を図5に示す。セラミックス配線基板1を一体成
型した樹脂製ケース12を用いた。まず、配線基板1上
のマイコン3、トランジスタ14及びダイオード16を
搭載する位置に組成がPb:Sn=5.0:95.0(質量
%)の合金の半田ペースト(溶融開始温度約232℃)を
ディスペンスした。次に、赤外線リフロー炉を用い、半
田ペーストを一旦溶融させた後、固化しマイコン3、ト
ランジスタ14及びダイオード16と配線基板1との接
着を行った。次に、マイコン3を加熱ステージを用い配
線基板側から200℃に加熱し、ワイヤ8として金ワイヤ
を用い超音波ワイヤボンディングにてマイコン3のパッ
トと配線基板1ランドを電気的に接続した。そして、ト
ランジスタ14、ダイオード16と配線基板1の電気的
接続は室温にてワイヤ8としてAlワイヤを用い超音波ワ
イヤボンディングにて行った。
Comparative Example 1 FIG. 5 is a sectional view of a module device of Comparative Example 1. A resin case 12 in which the ceramic wiring substrate 1 was integrally molded was used. First, a solder paste of an alloy having a composition of Pb: Sn = 5.0: 95.0 (mass%) at a position where the microcomputer 3, the transistor 14, and the diode 16 are mounted on the wiring board 1 (melting start temperature: about 232 ° C.) Was dispensed. Next, using an infrared reflow furnace, the solder paste was once melted, then solidified, and the microcomputer 3, the transistor 14, the diode 16, and the wiring board 1 were bonded. Next, the microcomputer 3 was heated to 200 ° C. from the wiring board side using a heating stage, and a pad of the microcomputer 3 was electrically connected to the land of the wiring board 1 by ultrasonic wire bonding using a gold wire as the wire 8. The electrical connection between the transistor 14 and the diode 16 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8.

【0106】次に配線基板1上のリード材2、抵抗4、
樹脂封止型電子部品のタンタルコンデンサ5(Ra=0.5
(μm))、樹脂封止型電子部品のメモリ13(Ra=0.5
(μm))に代表される部品を接合するランド部に導電
材9として組成がPb:Sn=37:63(質量%)の合金
の半田ペースト(溶融開始温度約183℃)をディスペン
スした。その後、抵抗4、樹脂封止型電子部品のタンタ
ルコンデンサ5(Ra=0.5(μm))、樹脂封止型電子部
品のメモリ13(Ra=0.5(μm))に代表される部品を
配線基板1上に搭載した。次に、あらかじめ、ふた11
にリード材2を挿入し接着固定したブロックをリード材
2の足が配線基板1のランド部にくるよう搭載した。
Next, the lead material 2 on the wiring board 1, the resistor 4,
Resin-sealed electronic component tantalum capacitor 5 (Ra = 0.5
(Μm)), the memory 13 of the resin-encapsulated electronic component (Ra = 0.5
(Μm)), a solder paste (melting start temperature of about 183 ° C.) of an alloy having a composition of Pb: Sn = 37: 63 (mass%) was dispensed as a conductive material 9 on a land portion for joining parts represented by (μm). Thereafter, components represented by the resistor 4, the resin-sealed electronic component tantalum capacitor 5 (Ra = 0.5 (μm)), and the resin-sealed electronic component memory 13 (Ra = 0.5 (μm)) are connected to the wiring board 1. Mounted on top. Next, cover 11
The lead material 2 was inserted into and bonded to the block, and the block was mounted such that the foot of the lead material 2 came to the land of the wiring board 1.

【0107】次に赤外線リフロー炉を用い、半田ペース
トを一旦溶融させた後、固化しリード材2、抵抗4、樹
脂封止型電子部品のタンタルコンデンサ5(Ra=0.5
(μm))、樹脂封止型電子部品のメモリ13(Ra=0.5
(μm))に代表される部品と配線基板1との電気的接
続を行った。次に、ケースとふたの接触部分にシリコー
ン接着材を塗布し、150℃1時間の条件で恒温槽にて接
着材の硬化を行った。その後、ふた11に空いている穴
からシリコーンゲルを減圧環境下にて注入した。ケース
深さの8割までゲルを注入したら、常圧に戻し150℃1
時間の条件でシリコーンゲルの硬化を行った。次に、ゲ
ルを流し込んだ穴にシリコーン系接着剤を塗布したキャ
ップ18を入れ恒温槽にて接着剤の硬化を150℃1時間
の条件で行った。
Next, using an infrared reflow furnace, the solder paste was once melted, then solidified, and the lead material 2, the resistor 4, and the tantalum capacitor 5 for a resin-sealed electronic component (Ra = 0.5
(Μm)), the memory 13 of the resin-encapsulated electronic component (Ra = 0.5
(Μm)) and the wiring board 1 were electrically connected. Next, a silicone adhesive was applied to the contact portion between the case and the lid, and the adhesive was cured in a thermostat at 150 ° C. for 1 hour. Thereafter, a silicone gel was injected from a hole in the lid 11 under a reduced pressure environment. After injecting gel to 80% of the case depth, return to normal pressure and
The silicone gel was cured under the conditions of time. Next, a cap 18 coated with a silicone adhesive was placed in the hole into which the gel was poured, and the adhesive was cured in a thermostat at 150 ° C. for 1 hour.

【0108】このようにして作製したモジュール装置を
用い、反り、気密性、成型性、量産性、温度サイクル信
頼性を検討し、表1に結果を示した。
Using the module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0109】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
The surface roughness measurement, the warpage measurement, the temperature cycle reliability test, the moldability evaluation, the airtightness evaluation,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0110】このようにして作成した樹脂封止型半導体
装置は成型に30分以上の時間がかかり量産性が悪かっ
た。
The resin-encapsulated semiconductor device fabricated in this manner took more than 30 minutes to mold, and was poor in mass productivity.

【0111】(比較例2)図6は、比較例の樹脂封止型モ
ジュール装置の断面図である。図6において、配線基板
1は6層配線からなるガラスBTレジン配線基板(60mm×5
0mm)である。まず、配線基板1に熱硬化性銀ペースト
をベアチップのマイコン3、トランジスタ14及びダイ
オード16の搭載位置にディスペンスし、品質保証され
たマイコン3、トランジスタ14及びダイオード16を
その上に搭載した。次に150℃1時間の硬化条件で熱硬
化性銀ペーストを硬化し接着した。次に、マイコン3を
加熱ステージを用い配線基板側から200℃に加熱し、ワ
イヤ8として金ワイヤを用い超音波ワイヤボンディング
にてマイコン3のパットと配線基板1のランドを電気的
に接続した。
Comparative Example 2 FIG. 6 is a sectional view of a resin-sealed module device of a comparative example. In FIG. 6, the wiring board 1 is a glass BT resin wiring board (60 mm × 5
0 mm). First, a thermosetting silver paste was dispensed on the wiring board 1 at the mounting position of the microcomputer 3, the transistor 14 and the diode 16 of the bare chip, and the microcomputer 3, the transistor 14 and the diode 16 whose quality was guaranteed were mounted thereon. Next, the thermosetting silver paste was cured and bonded at 150 ° C. for 1 hour. Next, the microcomputer 3 was heated to 200 ° C. from the wiring board side using a heating stage, and a pad of the microcomputer 3 and a land of the wiring board 1 were electrically connected by ultrasonic wire bonding using a gold wire as the wire 8.

【0112】その後、導電材9として、融点が230℃の
熱可塑性ポリイミド系銀ペーストを配線基板1のランド
部にディスペンスした。そして、抵抗4、樹脂封止型電
子部品のタンタルコンデンサ5(Ra=0.5(μm))、樹
脂封止型電子部品のメモリ13(Ra=0.5(μm))に代
表される部品を配線基板1に搭載した。その後、赤外線
リフロー装置を用い導電材9を一旦270℃で加熱溶融
し、再び固化させることで電子部品4、5、13と配線
基板1の電気的接続を行った。この後、銅製リードフレ
ームのアウターリード2を接着材6としてエポキシ樹脂
系接着剤を用い150℃1時間の硬化条件で配線基板1に
接着した。
Thereafter, a thermoplastic polyimide silver paste having a melting point of 230 ° C. as a conductive material 9 was dispensed on the land portion of the wiring board 1. Then, components represented by the resistor 4, the tantalum capacitor 5 of resin-encapsulated electronic component (Ra = 0.5 (μm)), and the memory 13 of resin-encapsulated electronic component (Ra = 0.5 (μm)) are connected to the wiring board 1. Mounted on. Thereafter, the conductive material 9 was once heated and melted at 270 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 4, 5 and 13 to the wiring board 1. Thereafter, the outer leads 2 of the copper lead frame were adhered to the wiring board 1 using an epoxy resin adhesive as the adhesive 6 under the curing conditions of 150 ° C. for 1 hour.

【0113】次に、アウターリード2、トランジスタ1
4、ダイオード16と配線基板1の電気的接続は室温に
てワイヤ8としてAlワイヤを用い超音波ワイヤボンディ
ングにて行った。その後、180℃におけるゲル化時間が3
0秒である熱硬化性樹脂組成物を用い金型温度180℃、ト
ランスファー圧力7MPa、成型時間3分で低圧トランスフ
ァーモールド成型を行った。用いた封止材は硬化後の特
性が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/
℃、ガラス転移温度が120℃のものである。
Next, outer lead 2, transistor 1
4. The electrical connection between the diode 16 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Then, the gel time at 180 ° C is 3
Using a thermosetting resin composition of 0 seconds, low-pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The sealing material used has properties after curing, an elastic modulus at room temperature of 30 GPa and a linear expansion coefficient at room temperature of 8 ppm /
° C and a glass transition temperature of 120 ° C.

【0114】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. The results are shown in Table 1.

【0115】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
Incidentally, measurement of surface roughness, measurement of warpage, temperature cycle reliability test, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0116】このようにして作成した樹脂封止型モジュ
ール装置は反りが発生し、温度サイクル信頼性が悪かっ
た。
[0116] The resin-sealed module device produced in this manner was warped and had poor temperature cycle reliability.

【0117】(比較例3)本比較例は、図1において、
配線基板1は6層配線からなるガラスBTレジン配線基板
(50mm×50mm)を用いたものである。まず、配線基板1
に熱硬化性銀ペーストをベアチップのマイコン3、トラ
ンジスタ14及びダイオード16の搭載位置にディスペ
ンスし、品質保証されたマイコン3、トランジスタ14
及びダイオード16をその上に搭載した。次に150℃1
時間の硬化条件で熱硬化性銀ペーストを硬化し接着し
た。次に、マイコン3を加熱ステージを用い配線基板側
から200℃に加熱し、ワイヤ8として金ワイヤを用い超
音波ワイヤボンディングにてマイコン3のパットと配線
基板1のランドを電気的に接続した。その後、導電材9
として、組成がPb:Sn=37:63(質量%)の合金の
半田ペースト(溶融開始温度約183℃)を配線基板1の
ランド部にディスペンスした。そして、抵抗4、樹脂封
止型電子部品のタンタルコンデンサ5(Ra=0.5(μ
m))、樹脂封止型電子部品のメモリ13(Ra=0.5(μ
m))に代表される部品を配線基板1に搭載した。
(Comparative Example 3) In this comparative example, FIG.
The wiring board 1 uses a glass BT resin wiring board (50 mm × 50 mm) composed of six layers of wiring. First, the wiring board 1
Then, a thermosetting silver paste is dispensed to the mounting position of the bare chip microcomputer 3, the transistor 14 and the diode 16, and the quality of the microcomputer 3 and the transistor 14 is guaranteed.
And a diode 16 mounted thereon. Then 150 ℃ 1
The thermosetting silver paste was cured and adhered under curing conditions for a long time. Next, the microcomputer 3 was heated to 200 ° C. from the wiring board side using a heating stage, and a pad of the microcomputer 3 and a land of the wiring board 1 were electrically connected by ultrasonic wire bonding using a gold wire as the wire 8. Then, the conductive material 9
A solder paste of an alloy having a composition of Pb: Sn = 37: 63 (% by mass) (melting start temperature: about 183 ° C.) was dispensed on the land portion of the wiring board 1. Then, a resistor 4 and a tantalum capacitor 5 (Ra = 0.5 (μ)
m)), the memory 13 of the resin-encapsulated electronic component (Ra = 0.5 (μ
m)) was mounted on the wiring board 1.

【0118】その後、赤外線リフロー装置を用い導電材
9を一旦220℃で加熱溶融し、再び固化させることで電
子部品4、5、13と配線基板1の電気的接続を行っ
た。この後、銅製リードフレームのアウターリード2を
接着材6としてエポキシ樹脂系接着剤を用い150℃1時
間の硬化条件で配線基板1に接着した。次に、アウター
リード2、トランジスタ14、ダイオード16と配線基
板1の電気的接続は室温にてワイヤ8としてAlワイヤを
用い超音波ワイヤボンディングにて行った。その後、18
0℃におけるゲル化時間が30秒である熱硬化性樹脂組成
物を用い金型温度180℃、トランスファー圧力7MPa、成
型時間3分で低圧トランスファーモールド成型を行っ
た。用いた封止材は硬化後の特性が、室温の弾性率30GP
a、室温の線膨脹係数が8ppm/℃、ガラス転移温度が120
℃のものである。
Thereafter, the conductive material 9 was once heated and melted at 220 ° C. using an infrared reflow device, and then solidified again, thereby electrically connecting the electronic components 4, 5 and 13 to the wiring board 1. Thereafter, the outer leads 2 of the copper lead frame were adhered to the wiring board 1 using an epoxy resin adhesive as the adhesive 6 under the curing conditions of 150 ° C. for 1 hour. Next, the electrical connection between the outer lead 2, the transistor 14, the diode 16 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8. Then 18
Using a thermosetting resin composition having a gel time of 30 seconds at 0 ° C., low pressure transfer molding was performed at a mold temperature of 180 ° C., a transfer pressure of 7 MPa, and a molding time of 3 minutes. The properties of the encapsulant after curing are 30GP at room temperature.
a, Room temperature linear expansion coefficient is 8ppm / ℃, glass transition temperature is 120
° C.

【0119】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. Table 1 shows the results.

【0120】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
Incidentally, measurement of surface roughness, measurement of warpage, temperature cycle reliability test, evaluation of moldability, evaluation of airtightness,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0121】このようにして作成した樹脂封止型モジュ
ール装置は温度サイクル試験において直ぐに断線不良を
おこした。これは成形時に導電材の半田が部分的に溶融
し、電子部品が初期位置からずれたためと思われる。
The resin-sealed type module device thus produced immediately suffered a disconnection failure in the temperature cycle test. This is presumably because the solder of the conductive material was partially melted during molding, and the electronic component was displaced from the initial position.

【0122】(比較例4)図7は、比較例の樹脂封止型
モジュール装置の断面図である。図7において、配線基
板1は6層配線からなり抵抗素子を埋め込んだセラミッ
クス配線基板(40mm×50mm)である。まず、配線基板1
に熱硬化性銀ペーストをベアチップのマイコン3、トラ
ンジスタ14、メモリ13、ダイオード16の搭載位置
にディスペンスし、品質保証されたマイコン3、トラン
ジスタ14、メモリ13、ダイオード16をその上に搭
載した。次に150℃1時間の硬化条件で熱硬化性銀ペー
ストを硬化し接着した。次に、マイコン3、メモリ13
を加熱ステージを用い配線基板側から200℃に加熱し、
ワイヤ8として金ワイヤを用い超音波ワイヤボンディン
グにてマイコン3、メモリ13のパットと配線基板1の
ランドを電気的に接続した。
Comparative Example 4 FIG. 7 is a sectional view of a resin-sealed module device of a comparative example. In FIG. 7, a wiring board 1 is a ceramic wiring board (40 mm × 50 mm) made of six-layer wiring and having a resistance element embedded therein. First, the wiring board 1
Then, a thermosetting silver paste was dispensed at the mounting position of the microcomputer 3, the transistor 14, the memory 13, and the diode 16 of the bare chip, and the microcomputer 3, the transistor 14, the memory 13, and the diode 16 whose quality was guaranteed were mounted thereon. Next, the thermosetting silver paste was cured and bonded at 150 ° C. for 1 hour. Next, the microcomputer 3 and the memory 13
Is heated to 200 ° C from the wiring board side using a heating stage,
Using a gold wire as the wire 8, the pads of the microcomputer 3, the memory 13 and the lands of the wiring board 1 were electrically connected by ultrasonic wire bonding.

【0123】その後、導電材9として、融点が230℃の
熱可塑性ポリイミド系銀ペーストを配線基板1のランド
部にディスペンスした。そして、ポリ塩化ビニルでシー
ルされたアルミ電解コンデンサ15を配線基板1に搭載
した。その後、赤外線リフロー装置を用い導電材9を一
旦270℃で加熱溶融し、再び固化させることで電子部品
15と配線基板1の電気的接続を行った。この後、銅製
リードフレームのアウターリード2を接着材6としてエ
ポキシ樹脂系接着剤を用い150℃1時間の硬化条件で配
線基板1に接着した。次に、アウターリード2、トラン
ジスタ14、ダイオード16と配線基板1の電気的接続
は室温にてワイヤ8としてAlワイヤを用い超音波ワイヤ
ボンディングにて行った。
Thereafter, a thermoplastic polyimide silver paste having a melting point of 230 ° C. as a conductive material 9 was dispensed on the lands of the wiring board 1. Then, the aluminum electrolytic capacitor 15 sealed with polyvinyl chloride was mounted on the wiring board 1. Thereafter, the conductive material 9 was once heated and melted at 270 ° C. using an infrared reflow device, and then solidified again, thereby making the electrical connection between the electronic component 15 and the wiring board 1. Thereafter, the outer leads 2 of the copper lead frame were adhered to the wiring board 1 using an epoxy resin adhesive as the adhesive 6 under the curing conditions of 150 ° C. for 1 hour. Next, the electrical connection between the outer lead 2, the transistor 14, the diode 16 and the wiring board 1 was performed at room temperature by ultrasonic wire bonding using an Al wire as the wire 8.

【0124】その後、180℃におけるゲル化時間が30秒
である熱硬化性樹脂組成物を用い金型温度180℃、トラ
ンスファー圧力7MPa、成型時間3分で低圧トランスファ
ーモールド成型を行った。用いた封止材は硬化後の特性
が、室温の弾性率30GPa、室温の線膨脹係数が8ppm/℃、
ガラス転移温度が120℃のものである。
Thereafter, low-pressure transfer molding was performed using a thermosetting resin composition having a gelling time at 180 ° C. of 30 seconds at a mold temperature of 180 ° C., a transfer pressure of 7 MPa and a molding time of 3 minutes. The properties of the encapsulant after curing are as follows: room temperature elastic modulus 30 GPa, room temperature linear expansion coefficient 8 ppm / ° C,
The glass transition temperature is 120 ° C.

【0125】このようにして作製した樹脂封止型モジュ
ール装置を用い、反り、気密性、成型性、量産性、温度
サイクル信頼性を検討し、表1に結果を示した。
Using the resin-sealed type module device thus manufactured, the warpage, airtightness, moldability, mass productivity, and temperature cycle reliability were examined. The results are shown in Table 1.

【0126】なお、表面粗さの測定、反りの測定、温度
サイクル信頼性の試験、成形性の評価、気密性の評価、
量産性の評価は実施例1と同様にして行った。
The surface roughness measurement, warpage measurement, temperature cycle reliability test, moldability evaluation, airtightness evaluation,
Evaluation of mass productivity was performed in the same manner as in Example 1.

【0127】このようにして作成した樹脂封止型モジュ
ール装置は温度サイクル試験において直ぐに断線不良を
おこした。これは、成型時にポリ塩化ビニルでシールさ
れたアルミ電解コンデンサが熱により劣化したためと思
われる。
The resin-sealed module device thus produced immediately suffered a disconnection failure in the temperature cycle test. This is presumably because the aluminum electrolytic capacitor sealed with polyvinyl chloride was deteriorated by heat during molding.

【0128】[0128]

【発明の効果】以上のように、本発明の構造の樹脂封止
型モジュール装置にすることにより、小型でそりが少な
く、気密性が高く、量産性及び、温度サイクル信頼性に
優れた低コストの樹脂封止型モジュール装置を得ること
ができる。従って、本発明の複数の半導体集積回路を配
線基板上に搭載した樹脂封止型モジュール装置は高い信
頼性を有し、自動車エンジンの制御装置、電車の車輪の
回転制御装置に適用することが出来るものである。
As described above, the resin-encapsulated module device having the structure of the present invention is small in size, has little warpage, has high airtightness, has low mass production, and has excellent temperature cycle reliability. Can be obtained. Therefore, the resin-sealed module device of the present invention in which a plurality of semiconductor integrated circuits are mounted on a wiring board has high reliability and can be applied to a control device of an automobile engine and a rotation control device of a train wheel. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による樹脂封止型モジュール装置の断
面図。
FIG. 1 is a cross-sectional view of a resin-sealed module device according to the present invention.

【図2】 本発明による樹脂封止型モジュール装置の断
面図。
FIG. 2 is a sectional view of a resin-sealed module device according to the present invention.

【図3】 本発明による樹脂封止型モジュール装置の断
面図。
FIG. 3 is a sectional view of a resin-sealed module device according to the present invention.

【図4】 本発明による樹脂封止型モジュール装置の断
面図及び底面図。
FIG. 4 is a cross-sectional view and a bottom view of the resin-sealed module device according to the present invention.

【図5】 比較例による樹脂封止型モジュール装置断面
図。
FIG. 5 is a sectional view of a resin-sealed module device according to a comparative example.

【図6】 比較例による樹脂封止型モジュール装置断面
図。
FIG. 6 is a sectional view of a resin-sealed module device according to a comparative example.

【図7】 比較例による樹脂封止型モジュール装置断面
図。
FIG. 7 is a cross-sectional view of a resin-sealed module device according to a comparative example.

【符号の説明】[Explanation of symbols]

1…配線基板、2…アウターリード、3…マイコン、4
…抵抗、5…樹脂封止型の電子部品、6…接着材、7…
封止材、8…ワイヤ、9…導電材、10…ゲル、11…
ふた、12…ケース、13…樹脂封止型電子部品のメモ
リ、14…トランジスタ、15…ポリ塩化ビニルでシー
ルされたアルミ電解コンデンサ、16…ダイオード、1
7…コネクタ端子、18…キャップ。
DESCRIPTION OF SYMBOLS 1 ... Wiring board, 2 ... Outer lead, 3 ... Microcomputer, 4
... resistance, 5 ... resin-sealed electronic components, 6 ... adhesive, 7 ...
Sealing material, 8: wire, 9: conductive material, 10: gel, 11 ...
Lid, 12 ... Case, 13: Memory of resin-encapsulated electronic parts, 14: Transistor, 15: Aluminum electrolytic capacitor sealed with polyvinyl chloride, 16: Diode, 1
7: Connector terminal, 18: Cap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 晃 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 三輪 崇夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 増田 光泰 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 Fターム(参考) 5F061 AA01 BA01 BA03 CA21 DB01 FA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Nagai 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takao Miwa 7-1, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratories (72) Inventor Mitsuyasu Masuda 2520 Oji Takaba, Hitachinaka-shi, Ibaraki F-term in Hitachi Automotive Equipment Group 5F061 AA01 BA01 BA03 CA21 DB01 FA02

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】配線基板上に熱硬化性樹脂組成物によって
封止された複数の回路素子が搭載され、該素子がアウタ
ーリードに電気的に接続された樹脂封止型モジュール装
置であって、前記配線基板全体、回路素子の全部及び前
記アウターリードの前記基板との接続側が熱硬化性樹脂
組成物を用いてトランスファーモールドにて封止されて
いることを特徴とする樹脂封止型モジュール装置。
1. A resin-sealed module device having a plurality of circuit elements sealed by a thermosetting resin composition mounted on a wiring board, and the elements are electrically connected to outer leads. A resin-sealed module device wherein the entire wiring substrate, all of the circuit elements, and the connection side of the outer leads to the substrate are sealed by transfer molding using a thermosetting resin composition.
【請求項2】配線基板上に熱硬化性樹脂組成物によって
封止された複数の回路素子が搭載され、該素子が電気的
接続材料によりアウターリードに電気的に接続された樹
脂封止型モジュール装置であって、前記電気的接続材料
の流動温度が200℃以上であり、前記配線基板全体、回
路素子の全部及び前記アウターリードの前記基板との接
続側が熱硬化性樹脂組成物によってトランスファーモー
ルドにて封止されていることを特徴とする樹脂封止型モ
ジュール装置。
2. A resin-sealed module in which a plurality of circuit elements sealed with a thermosetting resin composition are mounted on a wiring board, and the elements are electrically connected to outer leads by an electrical connection material. The device, wherein the flow temperature of the electrical connection material is 200 ° C. or more, and the entire wiring substrate, all of the circuit elements, and the connection side of the outer leads to the substrate are formed into a transfer mold by a thermosetting resin composition. A resin-sealed type module device which is sealed by sealing.
【請求項3】配線基板上に熱硬化性樹脂組成物によって
封止された複数の回路素子が搭載され、該素子が電気的
接続材料によりアウターリードに電気的に接続された樹
脂封止型モジュール装置であって、前記配線基板全体、
回路素子の全部及び前記アウターリードの前記基板との
接続側が熱硬化性樹脂組成物によってトランスファーモ
ールドにて封止され、前記トランスファーモールドによ
る金型温度が前記電気的接続材料の流動温度より低いこ
とを特徴とする樹脂封止型モジュール装置。
3. A resin-sealed module in which a plurality of circuit elements sealed with a thermosetting resin composition are mounted on a wiring board, and the elements are electrically connected to outer leads by an electrical connection material. A device, wherein the entire wiring board;
All of the circuit elements and the connection side of the outer leads to the substrate are sealed by a transfer mold with a thermosetting resin composition, and a mold temperature by the transfer mold is lower than a flow temperature of the electrical connection material. Characteristic resin-sealed module device.
【請求項4】請求項1〜3のいずれかにおいて、前記回
路素子が制御素子、記憶素子及び受動素子であり、該素
子の少なくとも1つが熱硬化性樹脂組成物によって封止
されていることを特徴とする樹脂封止型モジュール装
置。
4. The method according to claim 1, wherein the circuit element is a control element, a storage element, and a passive element, and at least one of the elements is sealed with a thermosetting resin composition. Characteristic resin-sealed module device.
【請求項5】請求項1〜4のいずれかにおいて、前記配
線基板が多層であり、樹脂基板、ガラス繊維強化樹脂基
板およびセラミックス基板のいずれかであることを特徴
とする樹脂封止型モジュール装置。
5. The resin-sealed module device according to claim 1, wherein said wiring substrate is a multilayer, and is one of a resin substrate, a glass fiber reinforced resin substrate and a ceramic substrate. .
【請求項6】請求項1〜5のいずれかにおいて、前記電
気的接続材料が熱可塑性銀ペースト、熱硬化性銀ペース
ト及び半田の1種又は2種以上の混合物であることを特
徴とする樹脂封止型モジュール装置。
6. A resin according to claim 1, wherein said electrical connection material is one or a mixture of two or more of a thermoplastic silver paste, a thermosetting silver paste and a solder. Sealed module device.
【請求項7】請求項1〜5のいずれかにおいて、前記電
気的接続材料が熱硬化性導電性材料又は半田と熱硬化性
導電性材料の混在であることを特徴とする樹脂封止型モ
ジュール装置。
7. A resin-sealed module according to claim 1, wherein said electrical connection material is a thermosetting conductive material or a mixture of a solder and a thermosetting conductive material. apparatus.
【請求項8】請求項1〜7のいずれかにおいて、前記熱
硬化性樹脂組成物によって封止された回路素子の表面積
の40%以上が表面粗さ(Ra)が1μm以上500μm以下
(但し、RaはJIS B 0660:1998で定義される算術平均粗
さ)であることを特徴とする樹脂封止型モジュール装
置。
8. The method according to claim 1, wherein at least 40% of the surface area of the circuit element sealed with the thermosetting resin composition has a surface roughness (Ra) of 1 μm or more and 500 μm or less (provided that: Ra is an arithmetic average roughness defined in JIS B 0660: 1998).
【請求項9】配線基板上に熱硬化性樹脂組成物によって
封止された複数の回路素子を搭載し、該素子をアウター
リードに電気的に接続した後、前記配線基板の全体、回
路素子の全部及びアウターリードの前記基板側を熱硬化
性樹脂組成物によってトランスファーモールドにて一体
封止成型することを特徴とする樹脂封止型モジュール装
置の製造方法。
9. A plurality of circuit elements sealed with a thermosetting resin composition are mounted on a wiring board, and the elements are electrically connected to outer leads. A method of manufacturing a resin-sealed module device, wherein all of the substrate side of the outer lead and the outer lead are integrally molded by transfer molding using a thermosetting resin composition.
【請求項10】配線基板上に熱硬化性樹脂組成物によっ
て封止された複数の回路素子を搭載し、該素子を電気的
接続材料によってアウターリードに電気的に接続した
後、熱硬化性樹脂組成物によって封止する樹脂封止型モ
ジュール装置の製造方法であって、前記電気的接続材料
の流動温度が200℃以上であり、前記配線基板の全体、
回路素子の全部及びアウターリードの前記基板側を熱硬
化性樹脂組成物によってトランスファーモールドにて一
体封止成型することを特徴とする樹脂封止型モジュール
装置の製造方法。
10. A plurality of circuit elements sealed by a thermosetting resin composition are mounted on a wiring board, and the elements are electrically connected to outer leads by an electrical connection material. A method for manufacturing a resin-sealed module device for sealing with a composition, wherein the flow temperature of the electrical connection material is 200 ° C. or higher, and the entirety of the wiring substrate,
A method of manufacturing a resin-sealed module device, wherein all of the circuit elements and the substrate side of the outer lead are integrally molded by transfer molding with a thermosetting resin composition.
【請求項11】配線基板上に熱硬化性樹脂組成物によっ
て封止された複数の回路素子を搭載し、該素子を電気的
接続材料によりアウターリードに電気的に接続した後、
熱硬化性樹脂組成物によって封止する樹脂封止型モジュ
ール装置の製造方法であって、前記配線基板の全体、回
路素子の全部及びアウターリードの前記基板側をトラン
スファーモールドにおける金型温度又は封止樹脂の注入
時の温度が前記電気的接続材料の流動温度より低い温度
で一体封止成型することを特徴とする樹脂封止型モジュ
ール装置の製造方法。
11. A plurality of circuit elements sealed by a thermosetting resin composition are mounted on a wiring board, and the elements are electrically connected to outer leads by an electrical connection material.
A method for manufacturing a resin-sealed module device for sealing with a thermosetting resin composition, wherein the entirety of the wiring substrate, all of the circuit elements, and the substrate side of outer leads are subjected to mold temperature or sealing in transfer molding. A method of manufacturing a resin-sealed type module device, comprising integrally molding at a temperature at the time of injecting a resin lower than the flow temperature of the electrical connection material.
【請求項12】請求項9〜11のいずれかにおいて、前
記回路素子が制御素子、記憶素子及び受動素子であり、
該素子の少なくとも1つが熱硬化性樹脂組成物によって
封止されていることを特徴とする樹脂封止型モジュール
装置の製造方法。
12. The device according to claim 9, wherein the circuit elements are a control element, a storage element, and a passive element;
A method for manufacturing a resin-sealed module device, wherein at least one of the elements is sealed with a thermosetting resin composition.
【請求項13】請求項9〜12のいずれかにおいて、前
記一体封止成型する前に、前記素子の表面に対して紫外
線又はプラズマを照射することを特徴とする樹脂封止型
モジュール装置の製造方法。
13. A method of manufacturing a resin-sealed module device according to claim 9, wherein the surface of the element is irradiated with ultraviolet light or plasma before the integral sealing molding. Method.
JP2001170823A 2001-06-06 2001-06-06 Resin-sealed module device for automobile control Expired - Fee Related JP4381630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001170823A JP4381630B2 (en) 2001-06-06 2001-06-06 Resin-sealed module device for automobile control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001170823A JP4381630B2 (en) 2001-06-06 2001-06-06 Resin-sealed module device for automobile control

Publications (2)

Publication Number Publication Date
JP2002368183A true JP2002368183A (en) 2002-12-20
JP4381630B2 JP4381630B2 (en) 2009-12-09

Family

ID=19012681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001170823A Expired - Fee Related JP4381630B2 (en) 2001-06-06 2001-06-06 Resin-sealed module device for automobile control

Country Status (1)

Country Link
JP (1) JP4381630B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002954A (en) * 2001-06-19 2003-01-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2005004563A1 (en) * 2003-07-03 2005-01-13 Hitachi, Ltd. Module and method for fabricating the same
WO2006013860A1 (en) * 2004-08-03 2006-02-09 Olympus Corporation Resin composition for medical equipment sealing and medical equipment for endoscope having been sealed therewith
JP2006121861A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Power converter
JP2006190726A (en) * 2005-01-04 2006-07-20 Hitachi Ltd Electronic controller and its manufacturing method
JP2006518800A (en) * 2003-02-20 2006-08-17 ヘンケル コーポレイション Quaternary organic phosphonium salt-containing molding composition
JP2010179401A (en) * 2009-02-05 2010-08-19 Toshiba Corp Method of manufacturing semiconductor apparatus and semiconductor apparatus
JP2011049442A (en) * 2009-08-28 2011-03-10 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
JP2013105761A (en) * 2011-11-10 2013-05-30 Fuji Electric Co Ltd Manufacturing method of power semiconductor device
WO2015064213A1 (en) * 2013-10-31 2015-05-07 日立オートモティブシステムズ株式会社 Airflow measurement device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002954A (en) * 2001-06-19 2003-01-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006518800A (en) * 2003-02-20 2006-08-17 ヘンケル コーポレイション Quaternary organic phosphonium salt-containing molding composition
WO2005004563A1 (en) * 2003-07-03 2005-01-13 Hitachi, Ltd. Module and method for fabricating the same
WO2006013860A1 (en) * 2004-08-03 2006-02-09 Olympus Corporation Resin composition for medical equipment sealing and medical equipment for endoscope having been sealed therewith
JP2006121861A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Power converter
JP2006190726A (en) * 2005-01-04 2006-07-20 Hitachi Ltd Electronic controller and its manufacturing method
JP2010179401A (en) * 2009-02-05 2010-08-19 Toshiba Corp Method of manufacturing semiconductor apparatus and semiconductor apparatus
JP2011049442A (en) * 2009-08-28 2011-03-10 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
JP2013105761A (en) * 2011-11-10 2013-05-30 Fuji Electric Co Ltd Manufacturing method of power semiconductor device
WO2015064213A1 (en) * 2013-10-31 2015-05-07 日立オートモティブシステムズ株式会社 Airflow measurement device
JPWO2015064213A1 (en) * 2013-10-31 2017-03-09 日立オートモティブシステムズ株式会社 Air flow measurement device

Also Published As

Publication number Publication date
JP4381630B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US20060272150A1 (en) Module and method for fabricating the same
JP3884354B2 (en) Electrical / electronic module with integrated molded structure of connector and electronic component
US7394663B2 (en) Electronic component built-in module and method of manufacturing the same
JP3607655B2 (en) MOUNTING MATERIAL, SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
WO1998028788A1 (en) Manufacture of semiconductor device
US20040212965A1 (en) Electronic circuit apparatus and method of manufacturing the same
KR20010090354A (en) Semiconductor module and mounting method for same
JPH09505444A (en) Multi-chip electronic package module using adhesive sheet
JP4381630B2 (en) Resin-sealed module device for automobile control
JP3999840B2 (en) Resin sheet for sealing
JP3492025B2 (en) Circuit board structure
JPH10242333A (en) Semiconductor device and its manufacture
JP3931855B2 (en) Electronic circuit equipment
JP3205686B2 (en) Semiconductor device for mounting and its mounting method
JP2009147014A (en) Resin sealed type electronic control unit and sealing molding method thereof
JP4283741B2 (en) Resin mold module and manufacturing method thereof
JPH04132245A (en) Resin sealed type semiconductor device, and manufacture thereof and resin composition for sealing semiconductor device
JP3666576B2 (en) Multilayer module and manufacturing method thereof
JP3779091B2 (en) Resin composition for sealing
JP3957244B2 (en) Manufacturing method of semiconductor devices
JPH0855867A (en) Resin sealed semiconductor device
JP2001291804A (en) Semiconductor element and semiconductor device and semiconductor mounting structure
JPH09199523A (en) Resin-sealed semiconductor device
JP2001313315A (en) Semiconductor device for mounting and its mounting method
Tanigawa et al. The resin molded chip size package (MCSP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070620

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees