JP2002367160A - Manufacturing method of magnetic recording medium, and magnetic recording medium - Google Patents

Manufacturing method of magnetic recording medium, and magnetic recording medium

Info

Publication number
JP2002367160A
JP2002367160A JP2001169809A JP2001169809A JP2002367160A JP 2002367160 A JP2002367160 A JP 2002367160A JP 2001169809 A JP2001169809 A JP 2001169809A JP 2001169809 A JP2001169809 A JP 2001169809A JP 2002367160 A JP2002367160 A JP 2002367160A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
magnetic recording
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001169809A
Other languages
Japanese (ja)
Inventor
Shunji Takenoiri
俊司 竹野入
Yasushi Sakai
泰志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001169809A priority Critical patent/JP2002367160A/en
Publication of JP2002367160A publication Critical patent/JP2002367160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a spike noise caused by a soft magnetic backing layer added with an antiferromagnetic pin layer in a perpendicular magnetic storage medium and further to increase a switched connection magnetic field. SOLUTION: The medium is rapidly cooled in a magnetic field immediately after the film formation of a magnetic layer, or rapidly heated after the film formation of the magnetic layer and after that, rapidly cooled in the magnetic field. This method is suitable also for the mass production, since the heat treatment in the film forming process and the cooling in the magnetic field are adopted in this method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種磁気記録装置
に搭載される垂直磁気記録媒体の製造方法およびその製
造方法により製造された磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a perpendicular magnetic recording medium mounted on various magnetic recording devices and a magnetic recording medium manufactured by the method.

【0002】[0002]

【従来の技術】磁気記録の高密度化を実現する技術とし
て、従来の長手磁気記録方式に代えて、垂直磁気記録方
式が注目されつつある。
2. Description of the Related Art As a technique for realizing a higher density of magnetic recording, a perpendicular magnetic recording method is attracting attention instead of a conventional longitudinal magnetic recording method.

【0003】垂直磁気記録媒体は、硬質磁性材料の磁気
記録層と、この記録層への記録に用いられる、磁気ヘッ
ドが発生する磁束を集中させる役割を担う軟磁性材料の
裏打ち層から構成される。このような構造の垂直磁気記
録媒体において問題となるノイズのひとつであるスパイ
クノイズは、裏打ち層である軟磁性層に形成された磁壁
によるものであることが知られている。
[0003] A perpendicular magnetic recording medium comprises a magnetic recording layer of a hard magnetic material and a backing layer of a soft magnetic material used for recording on this recording layer and concentrating the magnetic flux generated by a magnetic head. . It is known that spike noise, which is one of the problematic noises in a perpendicular magnetic recording medium having such a structure, is caused by a domain wall formed in a soft magnetic layer as a backing layer.

【0004】上記磁壁の形成およびノイズ発生のメカニ
ズムは以下の通りである。すなわち、基体上に軟磁性層
を形成すると、異方性が小さいため、軟磁性層内外周端
部において静磁エネルギーを減少させるために還流磁区
が発生する。実用程度の軟磁性層の膜厚では磁壁はブロ
ッホ(Bloch)型となっていることから、磁壁内でスピ
ンは膜厚方向に回転しているため、磁壁上下端に垂直方
向の磁極が現れることとなり、これがノイズの原因とな
る。そのため、垂直磁気記録媒体の低ノイズ化のために
は、軟磁性層内外周端部における磁壁形成を阻止する必
要がある。
[0004] The mechanism of the formation of the domain wall and the generation of noise are as follows. That is, when the soft magnetic layer is formed on the substrate, since the anisotropy is small, a return magnetic domain is generated at the inner and outer peripheral end portions of the soft magnetic layer to reduce the magnetostatic energy. Since the domain wall is a Bloch type at the thickness of the soft magnetic layer of practical use, the spin rotates in the direction of the film thickness in the domain wall, so that a vertical magnetic pole appears at the upper and lower ends of the domain wall. Which causes noise. Therefore, in order to reduce the noise of the perpendicular magnetic recording medium, it is necessary to prevent the formation of domain walls at the inner and outer peripheral edges of the soft magnetic layer.

【0005】従来、この軟磁性裏打ち層の磁壁の制御に
ついては、軟磁性裏打ち層の上層や下層に反強磁性薄膜
を形成し、交換結合を利用して磁化をピン止めする方法
が提案されている。しかし、この提案方法で、十分な交
換結合磁界を得るためには、成膜後に数分〜数時間を要
する熱処理をする必要があったり、また熱処理無しでも
比較的大きな交換結合磁界が得られるFeMnやIrM
n等の不規則合金系反強磁性材料を使用した場合には、
磁性層成膜時の加熱によりブロッキング温度(反強磁性
材料が交換結合磁界を消失する温度。交換結合磁界はブ
ロッキング温度以下でのみ発生する。)を越えてピンが
外れ、磁壁が形成されてしまうなど、実用上解決すべき
点が多々あるというのが現状であった。
Conventionally, for controlling the domain wall of the soft magnetic underlayer, a method has been proposed in which an antiferromagnetic thin film is formed on the upper and lower layers of the soft magnetic underlayer, and magnetization is pinned using exchange coupling. I have. However, in order to obtain a sufficient exchange coupling magnetic field with this proposed method, it is necessary to perform a heat treatment requiring several minutes to several hours after film formation, or to obtain a FeMn that can obtain a relatively large exchange coupling magnetic field without heat treatment. And IrM
When using an irregular alloy-based antiferromagnetic material such as n,
Heating during the formation of the magnetic layer causes the pin to come off beyond the blocking temperature (the temperature at which the antiferromagnetic material loses the exchange coupling magnetic field. The exchange coupling magnetic field is generated only at or below the blocking temperature), and a domain wall is formed. At present, there are many points that need to be solved in practice.

【0006】[0006]

【発明が解決しようとする課題】反強磁性膜を用いて軟
磁性裏打ち層との交換結合により障壁の制御を行なう従
来の方法は、交換結合が十分に得られた場合には、軟磁
性裏打ち層の磁壁形成を阻止することができ、非常に効
果的である。しかしながら、ブロッキング温度が高く、
大きな交換結合磁界が得られるPtMnやNiMnなど
の規則合金系反強磁性材料では、十分な交換結合磁界を
得るために成膜後に数分〜数時間を要する加熱処理をす
る必要があり、大量生産を行なう場合に非常に不利であ
った。また成膜後に加熱処理が必要無いFeMn、Ir
Mn、NiOなどの不規則合金系や酸化物系の反強磁性
材料はブロッキング温度が300℃以下と低いため、磁
性層成膜時の加熱(通常300℃程度)によりピンが外
れ、軟磁性裏打ち層内外周端部に磁壁を形成したり、ま
た磁壁形成を防ぐために磁性層成膜時の加熱温度をブロ
ッキング温度以下にした場合には十分な磁気特性が得ら
れないという解決すべき点があった。
A conventional method of controlling a barrier by exchange coupling with a soft magnetic underlayer using an antiferromagnetic film is based on a conventional method of providing a soft magnetic underlayer when exchange coupling is sufficiently obtained. The formation of domain walls in the layer can be prevented, which is very effective. However, the blocking temperature is high,
In an ordered alloy antiferromagnetic material such as PtMn or NiMn, which can provide a large exchange coupling magnetic field, it is necessary to perform a heat treatment requiring several minutes to several hours after film formation in order to obtain a sufficient exchange coupling magnetic field. Was very disadvantageous. Further, FeMn, Ir which does not require heat treatment after film formation.
Anti-ferromagnetic materials such as Mn and NiO, which are based on disordered alloys or oxides, have a low blocking temperature of 300 ° C. or less. A problem to be solved is that sufficient magnetic properties cannot be obtained if a magnetic wall is formed at the outer peripheral end of the layer or if the heating temperature at the time of forming the magnetic layer is set to a blocking temperature or lower to prevent the formation of the magnetic wall. Was.

【0007】本発明の目的は、上記の課題を解決し、反
強磁性ピン層の結晶性を改善して交換結合磁界を増大さ
せ、かつ成膜後に数分〜数時間を要する加熱処理をする
必要がなく、磁性層成膜時の加熱温度以下という低いブ
ロッキング温度を持つ反強磁性材料を用いても、成膜過
程で、ノイズ源となる軟磁性裏打ち層の磁壁形成の抑止
が得られる磁気記録媒体の製造方法およびその製造方法
で製造した磁気記録媒体を提供することにある。
An object of the present invention is to solve the above-mentioned problems, improve the crystallinity of the antiferromagnetic pinned layer, increase the exchange coupling magnetic field, and perform a heat treatment requiring several minutes to several hours after film formation. Even if an antiferromagnetic material having a low blocking temperature, which is lower than the heating temperature at the time of forming the magnetic layer, is used, it is possible to suppress the formation of the magnetic domain wall of the soft magnetic backing layer which is a noise source during the film formation process. An object of the present invention is to provide a method for manufacturing a recording medium and a magnetic recording medium manufactured by the method.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、磁性層成膜直後に磁場中急冷する、また
は磁性層成膜直後に急加熱・磁場中急冷する「磁場中フ
ラッシュアニール法」ことを行うことを提案する。具体
的には以下の方法を用いる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method of rapidly cooling in a magnetic field immediately after forming a magnetic layer, or rapidly heating and rapidly cooling in a magnetic field immediately after forming a magnetic layer. We propose to do "annealing". Specifically, the following method is used.

【0009】(1)通常の構成では、磁性膜成膜後に保
護膜が成膜されているが、本発明では磁性層成膜→磁場
中冷却→保護膜成膜という構成とし、磁性層成膜直後に
磁場を印加しながらブロッキング温度以下まで急冷する
ことで磁壁の形成を防止する。
(1) In a normal configuration, a protective film is formed after a magnetic film is formed. However, in the present invention, a magnetic layer is formed, cooling in a magnetic field is performed, and a protective film is formed. Immediately after that, while applying a magnetic field, the film is rapidly cooled to a temperature equal to or lower than a blocking temperature to prevent formation of a domain wall.

【0010】(2)磁性層成膜後の構成を、加熱→磁場
中冷却→保護膜成膜とし、磁性層成膜後に更に加熱する
ことで熱処理効果により交換結合磁界を増加させ、その
直後に磁場を印加しながらブロッキング温度以下まで急
冷することで磁壁の形成を防止する。
(2) The structure after the formation of the magnetic layer is heating → cooling in a magnetic field → the formation of a protective film, and further heating after the formation of the magnetic layer increases the exchange coupling magnetic field due to the heat treatment effect. Rapid cooling to a blocking temperature or lower while applying a magnetic field prevents the formation of domain walls.

【0011】なお、上記(1)と(2)の磁場中冷却に
おける磁場の向きは、基板面と平行で半径方向内向きま
たは外向きとし、磁場の強さは〜千数百[×10
−4T]程度とする。
The direction of the magnetic field during the cooling in the magnetic field in the above (1) and (2) is parallel to the substrate surface and inward or outward in the radial direction.
−4 T].

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、本発明の
好ましい実施の形態について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】(垂直磁気記録媒体の構成例)図1は本発
明を適用した垂直磁気記録媒体の断面模式図である。磁
気記録媒体10は非磁性基体11上に少なくとも反強磁
性ピン層12、軟磁性裏打ち層13、磁気記録層14及
び保護膜15が順に形成された積層構造を有しており、
さらにその上に液体潤滑材層16が形成されている。非
磁性基体11としては、通常の磁気記録媒体用に用いら
れる、NiPメッキを施したAl合金や強化ガラス、結
晶化ガラス等を用いることができる。磁気記録層14は
少なくともCoとCrを含む合金の強磁性材料が好適に
用いられ、その六方細密充填構造のc軸が膜面に垂直方
向に配向していることが垂直磁気記録媒体20として用
いるために必要である。
FIG. 1 is a schematic sectional view of a perpendicular magnetic recording medium to which the present invention is applied. The magnetic recording medium 10 has a laminated structure in which at least an antiferromagnetic pinned layer 12, a soft magnetic underlayer 13, a magnetic recording layer 14, and a protective film 15 are sequentially formed on a nonmagnetic substrate 11.
Further, a liquid lubricant layer 16 is formed thereon. As the non-magnetic substrate 11, a NiP-plated Al alloy, tempered glass, crystallized glass, or the like, which is used for a normal magnetic recording medium, can be used. For the magnetic recording layer 14, a ferromagnetic material of an alloy containing at least Co and Cr is preferably used, and the c-axis of the hexagonal close-packed structure is oriented perpendicular to the film surface to be used as the perpendicular magnetic recording medium 20. Is necessary for

【0014】軟磁性裏打ち層13と磁気記録層14の間
に、磁気記録層14の結晶配向性や結晶粒径を好ましく
制御するために、例えばTiやTiCr合金からなる下
地層を用いることもできる。保護膜15は、例えばカー
ボンを主体とする薄膜が用いられる。また液体潤滑材層
16は、例えばパーフルオロポリエーテル系の潤滑剤を
用いることができる。
An underlayer made of, for example, Ti or a TiCr alloy may be used between the soft underlayer 13 and the magnetic recording layer 14 in order to preferably control the crystal orientation and crystal grain size of the magnetic recording layer 14. . As the protective film 15, for example, a thin film mainly composed of carbon is used. For the liquid lubricant layer 16, for example, a perfluoropolyether-based lubricant can be used.

【0015】反強磁性ピン層12としては、PtMn、
NiMn等の規則合金材料、FeMn、IrMn等の不
規則合金材料、またNiO等の酸化物材料などを用いる
ことができる。反強磁性ピン層12の膜厚は、使用する
材料や軟磁性層との組合せにより変化するが、おおむね
1nm以上100nm以下程度であることが、生産性と
の兼ね合いから望ましい。
As the antiferromagnetic pinned layer 12, PtMn,
An ordered alloy material such as NiMn, an irregular alloy material such as FeMn and IrMn, and an oxide material such as NiO can be used. The thickness of the antiferromagnetic pinned layer 12 varies depending on the material to be used and the combination with the soft magnetic layer. However, the thickness is preferably about 1 nm or more and 100 nm or less from the viewpoint of productivity.

【0016】軟磁性裏打ち層13としては、結晶のNi
Fe合金、センダスト(FeSiAl)合金等、また非
晶質のCo合金であるCoZrNbなどを用いることが
できる。軟磁性裏打ち層13の膜厚は、記録に使用する
磁気ヘッドの構造や特性によって最適値が変化するが、
おおねね10nm以上500nm以下程度であること
が、生産性との兼ね合いから望ましい。
The soft magnetic underlayer 13 is made of crystalline Ni.
An Fe alloy, a sendust (FeSiAl) alloy, or the like, or an amorphous Co alloy, CoZrNb, or the like can be used. The optimum value of the thickness of the soft magnetic underlayer 13 varies depending on the structure and characteristics of the magnetic head used for recording.
It is preferably about 10 nm or more and about 500 nm or less from the viewpoint of productivity.

【0017】(冷却チャンバの構成例)図2は本発明に
関わる磁場中冷却に用いるマグネット付き冷却チャンバ
の断面模式図である。マグネット付き冷却チャンバ20
は、冷却ブロック24、磁場印加用マグネット25およ
びチャンバ本体から構成される。基板26の冷却は、冷
却ガス入口21からHe、H等の熱容量の大きいガス
を導入し、更に冷却ブロック24が基板からの輻射熱を
奪うことで達成される。
(Structural Example of Cooling Chamber) FIG. 2 is a schematic sectional view of a cooling chamber with a magnet used for cooling in a magnetic field according to the present invention. Cooling chamber with magnet 20
Is composed of a cooling block 24, a magnetic field applying magnet 25, and a chamber body. The cooling of the substrate 26 is achieved by introducing a gas having a large heat capacity, such as He or H 2 , from the cooling gas inlet 21, and the cooling block 24 removing radiation heat from the substrate.

【0018】冷却チャンバ内部は通常時には1.0×1
−4Pa以下の高真空に保たれることが望ましく、ま
た冷却ガス導入時には数秒間で最大10Pa台まで上
昇させることができることが望ましい。また、冷却ブロ
ック24は基板26からの輻射熱による温度上昇を防ぐ
ため、冷水、フロン、液体窒素等の冷媒により冷却され
ていることが望ましい。22、23はその冷媒の入口と
出口である。
The inside of the cooling chamber is usually 1.0 × 1
It is desirable to maintain a high vacuum of 0-4 Pa or less, and it is desirable that the pressure can be raised to a maximum of 10 < 3 > Pa in a few seconds at the time of introducing the cooling gas. The cooling block 24 is preferably cooled by a coolant such as cold water, chlorofluorocarbon, or liquid nitrogen in order to prevent a rise in temperature due to radiant heat from the substrate 26. 22 and 23 are the inlet and outlet of the refrigerant.

【0019】磁場印加用マグネット25にはNdFe
B、SmCo、アルニコ(FeNiAlCo)、FeC
rCo等の強磁性体が使用されることが望ましく、その
発生磁場は、基板位置において軟磁性裏打ち層(図1の
13)の保磁力以上であることが最低限必要であり、お
おむね数十〜千数百[×10−4T]程度であることが
望ましい。
NdFe is applied to the magnet 25 for applying a magnetic field.
B, SmCo, Alnico (FeNiAlCo), FeC
It is desirable to use a ferromagnetic material such as rCo, and the generated magnetic field must be at least as large as the coercive force of the soft magnetic underlayer (13 in FIG. 1) at the substrate position. It is desirable to be on the order of one thousand and several hundred [× 10 −4 T].

【0020】(第1の実施形態)図3に本発明の第1の
実施形態における垂直磁気記録媒体の製造工程を示す。
(First Embodiment) FIG. 3 shows a manufacturing process of a perpendicular magnetic recording medium according to a first embodiment of the present invention.

【0021】まず、最初の工程S1において、非磁性基
体11として表面が平滑な化学強化ガラス基板(例えば
HOYA社製N−10ガラス基板)を用い、これを洗浄
後スパッタ装置内に導入し、反強磁性ピン層12を配向
させるための下地層としてNi22Fe軟磁性下地層を
5nm成膜した。この時、軟磁性下地層を配向させるた
めに基板面と平行の方向に数十〜数百[×10−4T]
程度の磁場を印加する必要があるが、これにはターゲッ
トのマグネトロンからのもれ磁場(約1.0×10−2
T)を利用した。
First, in the first step S1, a chemically strengthened glass substrate (for example, N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the non-magnetic substrate 11, and after cleaning, introduced into a sputtering apparatus. A Ni22Fe soft magnetic underlayer having a thickness of 5 nm was formed as an underlayer for orienting the ferromagnetic pinned layer 12. At this time, in order to orient the soft magnetic underlayer, several tens to several hundreds [× 10 −4 T] in a direction parallel to the substrate surface.
It is necessary to apply a magnetic field on the order of about 1.0 × 10 −2 to the leakage magnetic field from the target magnetron.
T) was used.

【0022】次に、工程S2において、Ir50Mnタ
ーゲットを用いてIrMn反強磁性ピン層12を10n
m成膜し、引き続いて工程S3において、Co10Zr
5Nbターゲットを用いてCoZrNb非晶質軟磁性裏
打ち層13を100nm成膜した。
Next, in step S2, the IrMn antiferromagnetic pinned layer 12 is
m, and subsequently, in step S3, Co10Zr
Using a 5Nb target, a 100 nm CoZrNb amorphous soft magnetic underlayer 13 was formed.

【0023】引き続いて、工程S4で、ランプヒータ
(図示しない)を用いて基板表面温度が300℃になる
ように加熱を行なった後、工程S5において、Tiター
ゲットを用いてTiCr下地膜を10nm成膜し、引き
続き工程S6において、Co20Cr10Ptターゲッ
トを用いてCoCrPt磁気記録層を30nm成膜し
た。
Subsequently, in step S4, heating is performed using a lamp heater (not shown) so that the substrate surface temperature becomes 300 ° C., and in step S5, a TiCr underlayer is formed to a thickness of 10 nm using a Ti target. Then, in step S6, a CoCrPt magnetic recording layer was formed to a thickness of 30 nm using a Co20Cr10Pt target.

【0024】次に、工程S7で、上記の磁気記録層14
まで成膜された基板26を図2に示したマグネット付き
冷却チャンバ20内に挿入し、基板表面位置での半径方
向外向きの平均磁場が8.0×10−2Tになるような
磁場を印加しながらチャンバ中に入口21からHeを導
入し、4秒間2.7×10Paの真空度で冷却を行っ
た。この時、冷却ブロック24には無酸素銅を用い、そ
の内部を冷媒のフロンによりマイナス150℃まで冷却
した。この冷却により、4秒間で基板表面温度は300
℃から150℃まで低下した。
Next, in step S7, the magnetic recording layer 14
The substrate 26 formed as described above is inserted into the cooling chamber 20 with magnet shown in FIG. 2, and a magnetic field such that the average magnetic field outward in the radial direction at the surface of the substrate becomes 8.0 × 10 −2 T. He was introduced into the chamber from the inlet 21 while applying the voltage, and cooling was performed at a degree of vacuum of 2.7 × 10 3 Pa for 4 seconds. At this time, oxygen-free copper was used for the cooling block 24, and the inside thereof was cooled to minus 150 ° C. by Freon as a refrigerant. By this cooling, the substrate surface temperature becomes 300 in 4 seconds.
C. to 150.degree.

【0025】図4に上記工程S7の磁場中冷却に用いる
マグネット25の構造および磁場発生の概念図を示す。
図中の矢印は磁束の方向を表す。マグネット25を構成
する強磁性マグネット41にはSmCoを用い、強磁性
マグネット41の後ろ側に配置されて磁束を漏らさずに
ループさせる役割を果たす軟磁性台座42には軟鉄を用
いた。マグネット25の磁束は、中心部にあるN極の強
磁性マグネット41から出て外周部のS極の強磁性マグ
ネット41に入る方向となっており、この時の半径方向
外向きの磁場を基板26に印加している。
FIG. 4 is a conceptual diagram of the structure of the magnet 25 used for cooling in the magnetic field in the above step S7 and the generation of a magnetic field.
The arrow in the figure indicates the direction of the magnetic flux. SmCo was used for the ferromagnetic magnet 41 constituting the magnet 25, and soft iron was used for the soft magnetic pedestal 42 arranged behind the ferromagnetic magnet 41 and serving to loop without leaking magnetic flux. The magnetic flux of the magnet 25 is directed out of the N-pole ferromagnetic magnet 41 at the center portion and into the S-pole ferromagnetic magnet 41 at the outer peripheral portion. Is applied.

【0026】最後に、工程S8において、カーボンター
ゲットを用いてカーボンからなる保護膜10nmを成膜
後、工程S9において、これを真空装置から取り出し
た。上記のヒータ加熱および磁場中冷却を除くこれらの
成膜は、すべてArガス圧0.67Pa下でDCマグネ
トロンスパッタリング法により行なった。その後、工程
S10において、パーフルオロポリエーテルからなる液
体潤滑材層2nmをディップ法により形成し、垂直磁気
記録媒体10とした。
Finally, in step S8, after forming a protective film made of carbon with a thickness of 10 nm using a carbon target, in step S9, the protective film was taken out of the vacuum apparatus. All of these film formations except for the above-described heater heating and cooling in a magnetic field were performed by a DC magnetron sputtering method under an Ar gas pressure of 0.67 Pa. Thereafter, in step S10, a liquid lubricant layer made of perfluoropolyether having a thickness of 2 nm was formed by a dipping method to obtain a perpendicular magnetic recording medium 10.

【0027】完成した垂直磁気記録媒体10の軟磁性裏
打ち層13に形成される磁壁の有無を確認するために、
スピンスタンドテスターを用いて、DCイレーズした媒
体の再生波形を観察することで、スパイクノイズの有無
を調べた。
In order to confirm the presence or absence of a domain wall formed in the soft magnetic underlayer 13 of the completed perpendicular magnetic recording medium 10,
Using a spin stand tester, the presence or absence of spike noise was examined by observing the reproduced waveform of the DC erased medium.

【0028】図5に、従来の磁場中急冷法を用いない垂
直磁気記憶媒体の再生波形に現れるスパイクノイズを示
し、また図6に本実施形態を用いて製造した垂直記憶媒
体の再生波形を示す。図5に矢印で示したスパイクノイ
ズが図6では消失しており、本実施形態で示した磁性層
成膜直後の磁場中急冷によりスパイクノイズが抑制され
たことがわかる。
FIG. 5 shows spike noise appearing in a reproduced waveform of a perpendicular magnetic storage medium not using the conventional quenching method in a magnetic field, and FIG. 6 shows a reproduced waveform of a perpendicular storage medium manufactured by using this embodiment. . The spike noise indicated by the arrow in FIG. 5 has disappeared in FIG. 6, indicating that the spike noise was suppressed by the rapid cooling in the magnetic field immediately after the formation of the magnetic layer shown in the present embodiment.

【0029】(第2の実施形態)本発明の第2の実施形
態では、上記の工程S3における軟磁性裏打ち層13の
成膜の際にNi22Fe合金ターゲットを用いたこと以
外は、上記の第1の実施形態と全く同様に、磁性層14
の成膜直後に図2に示した磁場中冷却チャンバ20を用
いて磁場中急冷し、その後カーボン保護膜15を成膜し
た。このとき、スピンスタンドテスターを用いてDCイ
レーズした媒体の再生波形を観察することでスパイクノ
イズの有無を調べたところ、第1の実施形態と同様に、
磁壁の形成が阻止され、スパイクノイズの発生が抑制さ
れていた。
(Second Embodiment) The second embodiment of the present invention is different from the first embodiment in that a Ni22Fe alloy target is used in forming the soft magnetic underlayer 13 in the step S3. Just as in the embodiment of FIG.
Immediately after film formation, the film was rapidly cooled in a magnetic field using the magnetic field cooling chamber 20 shown in FIG. 2, and then a carbon protective film 15 was formed. At this time, the presence or absence of spike noise was examined by observing the reproduction waveform of the DC erased medium using a spin stand tester. As in the first embodiment,
The formation of the domain wall was prevented, and the generation of spike noise was suppressed.

【0030】(第3の実施形態)本発明の第3の実施形
態では、非磁性基体11として表面が平滑な化学強化ガ
ラス基板(例えばHOYA社製N−10ガラス基板)を
用い、これを洗浄後スパッタ装置内に導入し、反強磁性
ピン層を配向させるための下地層としてNi22Fe軟
磁性下地層を5nm成膜した。この時、軟磁性下地層を
配向させるために基板面と平行の方向に数十〜数百[×
10−4T]程度の磁場を印加する必要があるが、これ
にはターゲットのマグネトロンからのもれ磁場(約1.
0×10 T)を利用した。次に、ランプヒータ(図
示しない)を用いて基板表面温度が300℃になるよう
に加熱を行なった後、Ni50Mnターゲットを用いて
NiMn反強磁性ピン層12を10nm成膜し、引き続
いてCo10Zr5Nbターゲットを用いてCoZrN
b非晶質軟磁性裏打ち層13を100nm成膜した。
(Third Embodiment) In the third embodiment of the present invention, a chemically strengthened glass substrate (for example, N-10 glass substrate manufactured by HOYA) having a smooth surface is used as the nonmagnetic substrate 11, and this is cleaned. After being introduced into a sputtering apparatus, a Ni22Fe soft magnetic underlayer having a thickness of 5 nm was formed as an underlayer for orienting the antiferromagnetic pinned layer. At this time, in order to orient the soft magnetic underlayer, several tens to several hundreds [×] in a direction parallel to the substrate surface.
It is necessary to apply a magnetic field of the order of 10 −4 T], which involves a leakage magnetic field from the target magnetron (approximately 1.
0 × 10 - 2 T) was used. Next, after heating using a lamp heater (not shown) so that the substrate surface temperature becomes 300 ° C., a 10 nm NiMn antiferromagnetic pinned layer 12 is formed using a Ni50Mn target, and subsequently, a Co10Zr5Nb target is formed. Using CoZrN
b An amorphous soft magnetic underlayer 13 was formed to a thickness of 100 nm.

【0031】引き続いて、ランプヒータを用いて基板表
面温度が320℃になるように更に加熱を行なった後、
Tiターゲットを用いてTi下地膜10nm、引き続き
Co20Cr10Ptターゲットを用いてCoCrPt
磁気記録層30nmを成膜した。
Subsequently, after further heating using a lamp heater so that the substrate surface temperature becomes 320 ° C.,
10 nm of Ti base film using a Ti target, and then CoCrPt using a Co20Cr10Pt target.
A 30 nm magnetic recording layer was formed.

【0032】磁気記録層14の成膜に引き続いて、ラン
プヒータを用いて基板表面温度が450℃になるように
加熱を行なった後、第1の実施形態と同様に、磁場中冷
却チャンバ20を用いて平均8.0×10−2Tの磁場
を印加しながら8秒間4.0×10Paの真空度で基
板温度を150℃まで急冷した。
Subsequent to the formation of the magnetic recording layer 14, heating is performed using a lamp heater so that the substrate surface temperature becomes 450 ° C., and the cooling chamber 20 in a magnetic field is cooled in the same manner as in the first embodiment. The substrate temperature was rapidly cooled to 150 ° C. at a degree of vacuum of 4.0 × 10 3 Pa for 8 seconds while applying a magnetic field of 8.0 × 10 −2 T on average.

【0033】ここで、磁気記録層の成膜直後に磁場中急
冷する工程における冷却速度は、冷却ブロック24の温
度(本実施形態では−150℃)および冷却チャンバ2
0の真空度(第1の実施形態では2.7×10Pa,
第3の実施形態では4.0×10Pa)で調節した。
また、上記のように、基板の出発温度はブロッキング温
度よりも十分高い温度に設定し、急冷後のその到達温度
はブロッキング温度よりも十分に低い150℃になるよ
うに設定して冷却した。
Here, the cooling rate in the step of quenching in a magnetic field immediately after the formation of the magnetic recording layer depends on the temperature of the cooling block 24 (−150 ° C. in the present embodiment) and the cooling chamber 2.
0 degree of vacuum (2.7 × 10 3 Pa in the first embodiment,
In the third embodiment, the pressure was adjusted to 4.0 × 10 3 Pa).
Further, as described above, the starting temperature of the substrate was set to a temperature sufficiently higher than the blocking temperature, and the temperature reached after quenching was set to 150 ° C., which was sufficiently lower than the blocking temperature, for cooling.

【0034】最後に、カーボンターゲットを用いてカー
ボンからなる保護膜10nmを成膜後、真空装置から取
り出した。ヒータ加熱および磁場中冷却を除くこれらの
成膜はすべてArガス圧0.67Pa下でDCマグネト
ロンスパッタリング法により行なった。その後、パーフ
ルオロポリエーテルからなる液体潤滑材層2nmをディ
ップ法により形成し、垂直磁気記録媒体とした。
Finally, a protective film made of carbon having a thickness of 10 nm was formed using a carbon target, and then taken out of the vacuum apparatus. All of these film formations except for the heater heating and the cooling in the magnetic field were performed by DC magnetron sputtering under an Ar gas pressure of 0.67 Pa. Thereafter, a liquid lubricant layer of 2 nm made of perfluoropolyether was formed by a dipping method to obtain a perpendicular magnetic recording medium.

【0035】下記の表1に本第3の実施形態に従って製
造した垂直磁気記憶媒体の交換結合磁界の大きさを従来
法(磁性層成膜後に急加熱、磁場中急冷を用いない)と
比較して示す。
Table 1 below compares the magnitude of the exchange coupling magnetic field of the perpendicular magnetic storage medium manufactured according to the third embodiment with that of the conventional method (rapid heating after forming the magnetic layer and without quenching in the magnetic field). Shown.

【0036】[0036]

【表1】交換結合磁界の比較 [Table 1] Comparison of exchange coupling magnetic fields

【0037】表1から、磁性層成膜後に加熱をすること
で、交換結合磁界が大きく増加していることがわかる。
これは、加熱により反強磁性ピン層12に用いたNiM
nの結晶性および規則化度が改善したためであること
が、X線回折による分析で確認されている。また、スピ
ンスタンドテスターを用いてDCイレーズした媒体の再
生波形を観察することで、スパイクノイズの有無を調べ
たところ、第1、第2の実施形態の場合と同様に、磁場
中急冷の効果により、磁壁の形成が阻止され、スパイク
ノイズの発生が抑制されていた。
From Table 1, it can be seen that the exchange coupling magnetic field is greatly increased by heating after the formation of the magnetic layer.
This is because the NiM used for the antiferromagnetic pinned layer 12 is heated.
It has been confirmed by X-ray diffraction analysis that this was due to the improvement in the crystallinity and ordering degree of n. Further, the presence or absence of spike noise was examined by observing the reproduced waveform of the DC erased medium using a spin stand tester. As in the first and second embodiments, the effect of rapid cooling in a magnetic field was obtained. Thus, the formation of domain walls was prevented, and the generation of spike noise was suppressed.

【0038】[0038]

【発明の効果】以上述べたように、本発明によれば、軟
磁性層成膜直後に磁場中急冷することにより、ノイズ源
となる軟磁性裏打ち層の磁壁形成の抑止を行うことがで
きる。
As described above, according to the present invention, it is possible to suppress the formation of the magnetic domain wall of the soft magnetic underlayer which becomes a noise source by rapidly cooling in the magnetic field immediately after the soft magnetic layer is formed.

【0039】また、本発明によれば、磁性層成膜直後に
急加熱・磁場中急冷することで、反強磁性ピン層の結晶
性を改善して、交換結合磁界を増大させ、かつ軟磁性裏
打ち層の磁壁形成の抑止を行うことができる。
Further, according to the present invention, the crystallinity of the antiferromagnetic pinned layer is improved by rapid heating and rapid cooling in a magnetic field immediately after the formation of the magnetic layer, the exchange coupling magnetic field is increased, and the soft magnetic property is improved. The formation of the domain wall of the backing layer can be suppressed.

【0040】また、本発明は、成膜後に数分〜数時間を
要する加熱処理をする必要がなく、磁性層成膜時の加熱
温度以下という低いブロッキング温度を持つ反強磁性材
料を用いても成膜過程で磁壁の形成を抑止できることか
ら、大量生産にも非常に適している。
Further, the present invention does not require a heat treatment requiring several minutes to several hours after film formation, and can use an antiferromagnetic material having a low blocking temperature not higher than the heating temperature at the time of magnetic layer film formation. Since the formation of domain walls can be suppressed during the film formation process, it is very suitable for mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による磁気記録媒体の構成例を示す断面
模式図である。
FIG. 1 is a schematic sectional view showing a configuration example of a magnetic recording medium according to the present invention.

【図2】本発明における磁場中冷却に用いるマグネット
付き冷却チャンバの断面模式図である。
FIG. 2 is a schematic sectional view of a cooling chamber with a magnet used for cooling in a magnetic field according to the present invention.

【図3】本発明による磁気記録媒体の製造方法を示す工
程の流れ図である。
FIG. 3 is a flowchart of a process showing a method for manufacturing a magnetic recording medium according to the present invention.

【図4】本発明における磁場中冷却に用いるマグネット
の構造と磁場を示し(A)は上面模式図、(B)は断面
模式図である。
4A and 4B show a structure and a magnetic field of a magnet used for cooling in a magnetic field according to the present invention, wherein FIG. 4A is a schematic top view, and FIG.

【図5】従来の磁場中冷却法を用いない垂直磁気記憶媒
体の再生波形に現れるスパイクノイズを示す波形図であ
り、図中の矢印で指した部分がスパイクノイズである。
FIG. 5 is a waveform diagram showing spike noise appearing in a reproduction waveform of a perpendicular magnetic storage medium that does not use the conventional magnetic field cooling method, and a portion indicated by an arrow in the drawing is the spike noise.

【図6】本発明を用いて製造した垂直記憶媒体の再生波
形を示す波形図である。
FIG. 6 is a waveform diagram showing a reproduction waveform of a perpendicular storage medium manufactured by using the present invention.

【符号の説明】[Explanation of symbols]

11 非磁性基体 12 反強磁性ピン層 13 軟磁性裏打ち層 14 磁気記録層 15 保護膜 16 液体潤滑材層 21 冷却ガス入口 22 冷媒入口 23 冷媒出口 24 冷却ブロック 25 磁場印加用マグネット 26 垂直磁気記録媒体(図1において12〜14まで
成膜したもの) 41 強磁性マグネット 42 軟磁性台座
DESCRIPTION OF SYMBOLS 11 Nonmagnetic substrate 12 Antiferromagnetic pinned layer 13 Soft magnetic underlayer 14 Magnetic recording layer 15 Protective film 16 Liquid lubricant layer 21 Cooling gas inlet 22 Refrigerant inlet 23 Refrigerant outlet 24 Cooling block 25 Magnetic field applying magnet 26 Perpendicular magnetic recording medium (Those formed from 12 to 14 in FIG. 1) 41 Ferromagnetic magnet 42 Soft magnetic pedestal

フロントページの続き Fターム(参考) 5D006 BB02 CA03 CA05 DA08 EA03 EA05 FA09 5D112 AA04 AA05 BB01 BD03 BD05 FA04 GB01 Continued on the front page F term (reference) 5D006 BB02 CA03 CA05 DA08 EA03 EA05 FA09 5D112 AA04 AA05 BB01 BD03 BD05 FA04 GB01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に少なくとも反強磁性ピン
層、軟磁性裏打ち層、磁気記録層、保護膜及び液体潤滑
剤層が順次積層されてなる垂直磁気記録媒体の製造方法
において、 前記磁気記録層の成膜直後に磁場中急冷する工程を有す
ることを特徴とする垂直磁気記録媒体の製造方法。
1. A method for manufacturing a perpendicular magnetic recording medium comprising a non-magnetic substrate and at least an antiferromagnetic pinned layer, a soft magnetic underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer sequentially laminated on the nonmagnetic substrate. A method for manufacturing a perpendicular magnetic recording medium, comprising a step of quenching in a magnetic field immediately after forming a recording layer.
【請求項2】 非磁性基体上に少なくとも反強磁性ピン
層、軟磁性裏打ち層、磁気記録層、保護膜及び液体潤滑
剤層が順次積層されてなる垂直磁気記録媒体の製造方法
において、 前記磁気記録層の成膜直後に急加熱した後、磁場中急冷
する工程を有することを特徴とする垂直磁気記録媒体の
製造方法。
2. A method for manufacturing a perpendicular magnetic recording medium comprising a non-magnetic substrate and at least an antiferromagnetic pinned layer, a soft magnetic underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer sequentially laminated on the non-magnetic substrate. A method for manufacturing a perpendicular magnetic recording medium, comprising a step of rapidly heating immediately after forming a recording layer and then rapidly cooling in a magnetic field.
【請求項3】 請求項1または2に記載の製造方法にお
いて、前記磁場中急冷時に、基板の半径方向に平行に、
少なくとも軟磁性裏打ち層の保磁力以上で、好ましくは
数十〜千数百[×10−4T]の磁場を印加しているこ
とを特徴とする垂直磁気記録媒体の製造方法。
3. The manufacturing method according to claim 1, wherein the quenching in the magnetic field is performed in parallel with a radial direction of the substrate.
A method for manufacturing a perpendicular magnetic recording medium, characterized in that a magnetic field of at least the coercive force of the soft magnetic backing layer, preferably several tens to several hundreds [× 10 -4 T], is applied.
【請求項4】 請求項2に記載の製造方法において、前
記磁気記録層の成膜直後の急加熱において、加熱温度を
少なくとも反強磁性ピン層のブロッキング温度程度とす
ることを特徴とする垂直磁気記録媒体の製造方法。
4. The manufacturing method according to claim 2, wherein the heating temperature is set to at least about the blocking temperature of the antiferromagnetic pinned layer in the rapid heating immediately after the formation of the magnetic recording layer. Manufacturing method of recording medium.
【請求項5】 請求項1ないし4のいずれかに記載の垂
直磁気記録媒体の製造方法を用いて製造されたことを特
徴とする垂直磁気記録媒体。
5. A perpendicular magnetic recording medium manufactured by using the method for manufacturing a perpendicular magnetic recording medium according to claim 1.
JP2001169809A 2001-06-05 2001-06-05 Manufacturing method of magnetic recording medium, and magnetic recording medium Pending JP2002367160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169809A JP2002367160A (en) 2001-06-05 2001-06-05 Manufacturing method of magnetic recording medium, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169809A JP2002367160A (en) 2001-06-05 2001-06-05 Manufacturing method of magnetic recording medium, and magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2002367160A true JP2002367160A (en) 2002-12-20

Family

ID=19011836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169809A Pending JP2002367160A (en) 2001-06-05 2001-06-05 Manufacturing method of magnetic recording medium, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2002367160A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821166B2 (en) * 1990-12-11 1996-03-04 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetoresistive sensor
JPH10214719A (en) * 1997-01-29 1998-08-11 Fujitsu Ltd Vertical magnetic recording medium and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821166B2 (en) * 1990-12-11 1996-03-04 インターナショナル・ビジネス・マシーンズ・コーポレイション Magnetoresistive sensor
JPH10214719A (en) * 1997-01-29 1998-08-11 Fujitsu Ltd Vertical magnetic recording medium and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3653007B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
KR100823010B1 (en) Magnetic recording medium and magnetic storage unit
JP4207140B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US6080476A (en) Magnetic recording medium and magnetic recording system using such a magnetic recording medium
JP2002190108A (en) Magnetic recording medium and its production method
US20090061106A1 (en) Perpendicular magnetic memory medium, a manufacturing method thereof, and a magnetic memory storage
JP2002208129A (en) Magnetic recording medium, its manufacturing method and magnetic recording device
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4917200B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US6268024B1 (en) Process for producing magnetic recording medium
JP2004272957A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2002367160A (en) Manufacturing method of magnetic recording medium, and magnetic recording medium
JP4491768B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
EP1887568B1 (en) Heat assisted magnetic recording medium and method for fabricating the same
JP2004022082A (en) Vertical magnetic recording medium and its manufacturing method
JP4591806B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
Tanahashi et al. Exchange-biased CoTaZr soft underlayer for perpendicular recording
JP2002074639A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2006147130A (en) Method of manufacturing perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP4557277B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4557276B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4353654B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20060280972A1 (en) Magnetic recording medium and magnetic storage
JP2001148109A (en) Magnetic disk and magnetic disk device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413