JP2002365453A - Waveguide - Google Patents

Waveguide

Info

Publication number
JP2002365453A
JP2002365453A JP2001172042A JP2001172042A JP2002365453A JP 2002365453 A JP2002365453 A JP 2002365453A JP 2001172042 A JP2001172042 A JP 2001172042A JP 2001172042 A JP2001172042 A JP 2001172042A JP 2002365453 A JP2002365453 A JP 2002365453A
Authority
JP
Japan
Prior art keywords
waveguide
line defect
photonic crystal
total reflection
confined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001172042A
Other languages
Japanese (ja)
Other versions
JP3846228B2 (en
Inventor
Masatoshi Tokushima
正敏 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001172042A priority Critical patent/JP3846228B2/en
Priority to US10/162,764 priority patent/US6795621B2/en
Publication of JP2002365453A publication Critical patent/JP2002365453A/en
Application granted granted Critical
Publication of JP3846228B2 publication Critical patent/JP3846228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waveguide which is capable of connecting a total reflection confinement type waveguide and a photonic crystal line defect waveguide with high optical coupling efficiency. SOLUTION: The waveguide 100 is constituted by connecting the total reflection confinement type waveguide 120 to the end face of the line defect section 113 of the photonic crystal line defect waveguide 110. The photonic crystal line defect waveguide 110 is arrayed with holes 112 by photonic crystals within a high dielectric constant medium 1111 by dividing these holes to two groups in a triangular grid form and the line defect section 113 is formed at their boundary. The total reflection confinement type waveguide 120 has the same or approximately the same width as the width of the line defect section 113. The coupling loss by the reflection arising in consequence of the widths which are not the same is reduced and the optical coupling efficiency is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導波路に関し、特
に、フォトニック結晶線欠陥導波路と全反射閉じこめ型
導波路の接続部を有する構造の導波路にあって、その光
結合効率を高めるための導波路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide, and more particularly, to a waveguide having a structure having a junction between a photonic crystal line defect waveguide and a total reflection confined waveguide, and improving the optical coupling efficiency thereof. Related to a waveguide.

【0002】[0002]

【従来の技術】フォトニック結晶(photonic crystal)
は、周期的に誘電率が大きく変調された人工光学結晶で
あり、一般に、光がそのフォトニック結晶内のどの方向
にも伝播できないフォトニック・バンド・ギャップ(P
BG)と呼ばれる角振動数帯域を有する。
2. Description of the Related Art Photonic crystals
Is an artificial optical crystal in which the dielectric constant is periodically modulated to a large extent, and generally, a photonic band gap (P) in which light cannot propagate in any direction in the photonic crystal.
BG).

【0003】図7は、2次元フォトニック結晶の構造例
を示す。この2次元三角格子フォトニック結晶体3は、
高誘電率媒質1の中に微細径のフォトニック結晶の孔2
を三角格子状に配列した構造を有している。高誘電率媒
質1には、通常、半導体(その多くは比誘電率が約1
2)が用いられる。この2次元三角格子フォトニック結
晶体3の場合、PBGが得られる孔のピッチ(または格
子定数)と孔径の組み合わせの目安は、例えば、「フォ
トニック・クリスタルズ・モデリング・ザ・フロー・オ
ブ・ライト」の125〜126頁(「J.D.Joan
nopoulos,R.D.Meade and J.
N.Winn,Photonic Crystals,
Modeling the Flowof Ligh
t」Princeton University Pr
ess、pp.125〜126)に開示されている。孔
の半径をr、フォトニック結晶の円孔のピッチをa、光
の角振動数をω、真空中の光速をcとするとき、例え
ば、誘電率11.4の誘電体基板に三角格子状にフォト
ニック結晶の円孔を配列する場合であれば、(r/a)
が0.48で、{(ω×a)/(2π×c)}が0.5
程度のときに、電界の振動方向と孔が伸びている向きの
関係に依らず、PBGが生じる。
FIG. 7 shows an example of the structure of a two-dimensional photonic crystal. This two-dimensional triangular lattice photonic crystal 3
Holes 2 of photonic crystal of small diameter in high dielectric constant medium 1
Are arranged in a triangular lattice. The high dielectric constant medium 1 usually includes a semiconductor (most of which have a relative dielectric constant of about 1).
2) is used. In the case of the two-dimensional triangular lattice photonic crystal 3, the standard of the combination of the hole pitch (or lattice constant) and the hole diameter for obtaining PBG is, for example, “Photonic Crystals Modeling the Flow of Light, pages 125-126 ("JD Joan"
nopoulos, R .; D. Meade and J.M.
N. Winn, Photonic Crystals,
Modeling the Flowof Light
t "Princeton University Pr
ess, pp. 125-126). When the radius of the hole is r, the pitch of the circular holes of the photonic crystal is a, the angular frequency of light is ω, and the speed of light in vacuum is c, for example, a triangular lattice is formed on a dielectric substrate having a dielectric constant of 11.4. In the case of arranging circular holes of the photonic crystal in (r / a),
Is 0.48 and {(ω × a) / (2π × c)} is 0.5
In this case, PBG occurs regardless of the relationship between the vibration direction of the electric field and the direction in which the hole extends.

【0004】図8は図7の2次元三角格子フォトニック
結晶体3を用いて作られたフォトニック結晶線欠陥導波
路の一例を示す。このフォトニック結晶線欠陥導波路5
は、図7の2次元三角格子フォトニック結晶体3の2枚
を近接配置した構造を有している。高誘電率媒質1の中
には、多数の孔2が三角格子状に配列されている。この
多数の孔2の中間部に1列の無孔部分、すなわち、線欠
陥部4が形成されている。これにより、PBG内の角振
動数の光は、線欠陥部4以外の完全結晶部分を伝搬する
ことはできないが、線欠陥部4の部分は伝搬できるよう
になる。すなわち、この線欠陥部4は導波路として働く
ことになる。
FIG. 8 shows an example of a photonic crystal line defect waveguide formed using the two-dimensional triangular lattice photonic crystal 3 of FIG. This photonic crystal line defect waveguide 5
Has a structure in which two two-dimensional triangular lattice photonic crystals 3 of FIG. In the high dielectric constant medium 1, many holes 2 are arranged in a triangular lattice. One row of non-porous portions, that is, line defect portions 4 are formed in the middle of the large number of holes 2. As a result, the light of the angular frequency in the PBG cannot propagate through the complete crystal portion other than the line defect portion 4, but can propagate through the line defect portion 4. That is, the line defect 4 functions as a waveguide.

【0005】図8に示したフォトニック結晶線欠陥導波
路5は、光を導くだけでなく、フォトニック結晶の性質
を反映して、小さな群速度、或いは群速度の波長分散な
どの性質を示すので、この性質を利用した光デバイスの
形成が考えられる。しかしながら、フォトニック結晶線
欠陥導波路5は、光を導く導波路としての性質にのみ着
目した場合、全反射閉じ込め型導波路に劣ることがあ
る。
The photonic crystal line defect waveguide 5 shown in FIG. 8 not only guides light but also exhibits properties such as a small group velocity or wavelength dispersion of the group velocity reflecting the properties of the photonic crystal. Therefore, formation of an optical device utilizing this property is conceivable. However, the photonic crystal line defect waveguide 5 may be inferior to the total reflection confined waveguide when focusing only on the property as a waveguide for guiding light.

【0006】図9は、全反射閉じ込め型導波路の構成を
示す。この全反射閉じ込め型導波路10は、光ファイバ
と同様に、一端に導入した光を他端に導くことができ
る。全反射閉じ込め型導波路10は表面の滑らかな誘電
体線路であり、構造が単純で、図8のフォトニック結晶
線欠陥導波路5よりも構造揺らぎが少ないため、設計通
りの形状を作製し易い。そのため、フォトニック結晶線
欠陥導波路5よりも損失の少ない導波路を作製し易い。
しかしながら、全反射閉じ込め型導波路10はフォトニ
ック結晶線欠陥導波路5が持つ小さい群速度、群速度の
波長分散などの性質は強くないので、全反射閉じ込め型
導波路10とフォトニック結晶線欠陥導波路5の互いの
利点を生かすため、フォトニック結晶線欠陥導波路5と
チャネル導波路を接続することが考えられる。
FIG. 9 shows a configuration of a total reflection confined waveguide. This total reflection confined waveguide 10 can guide the light introduced at one end to the other end similarly to the optical fiber. The total reflection confined waveguide 10 is a dielectric line having a smooth surface, has a simple structure, and has less structural fluctuation than the photonic crystal line defect waveguide 5 of FIG. 8, so that it is easy to produce a shape as designed. . Therefore, a waveguide having less loss than the photonic crystal line defect waveguide 5 can be easily manufactured.
However, since the total reflection confined waveguide 10 does not have strong properties such as the small group velocity and the wavelength dispersion of the group velocity of the photonic crystal line defect waveguide 5, the total reflection confinement waveguide 10 and the photonic crystal line defect are not strong. In order to take advantage of the mutual advantages of the waveguides 5, it is conceivable to connect the photonic crystal line defect waveguide 5 and the channel waveguide.

【0007】図10は、従来の導波路を示す。この導波
路は、図9に示した全反射閉じ込め型導波路と図8に示
したフォトニック結晶線欠陥導波路を接続した構造を有
している。図8に示した構造のフォトニック結晶線欠陥
導波路5の線欠陥部4の端面11には、チャネル導波路
としての全反射閉じ込め型導波路10の端面が接続され
ている。線欠陥部4の端面11は、線欠陥部4の部分と
これ以外の部分を含めて、線欠陥部の近傍で平面であ
る。全反射閉じ込め型導波路10の表面12,13とフ
ォトニック結晶線欠陥導波路5の端面11が接続する接
続部14,15の角度は90°である。全反射閉じ込め
型導波路10の材料は、フォトニック結晶線欠陥導波路
5の高誘電率媒質1と同一の高誘電率媒質16を用いて
いる。
FIG. 10 shows a conventional waveguide. This waveguide has a structure in which the total reflection confined waveguide shown in FIG. 9 and the photonic crystal line defect waveguide shown in FIG. 8 are connected. An end face of a total reflection confined waveguide 10 as a channel waveguide is connected to an end face 11 of the line defect portion 4 of the photonic crystal line defect waveguide 5 having the structure shown in FIG. The end face 11 of the line defect 4 is a flat surface near the line defect, including the line defect 4 and other parts. The angles of the connecting portions 14 and 15 where the surfaces 12 and 13 of the total reflection confined waveguide 10 are connected to the end face 11 of the photonic crystal line defect waveguide 5 are 90 °. As the material of the total reflection confined waveguide 10, the same high dielectric constant medium 16 as the high dielectric constant medium 1 of the photonic crystal line defect waveguide 5 is used.

【0008】全反射閉じ込め型導波路10は、高誘電率
媒質16で形成されているので、全反射閉じ込め型導波
路10における光の閉じ込めが強く、全反射閉じ込め型
導波路10を伝搬する光の横方向分布(プロファイル)
の幅は、ほぼ全反射閉じ込め型導波路10に等しくなる
が、フォトニック結晶線欠陥導波路5を伝搬する光の幾
らかは線欠陥部4の部分から横の孔の列に広がる。その
ため、この広がった光のプロファイルに全反射閉じ込め
型導波路10の伝搬光のプロファイルを合わせるため、
全反射閉じ込め型導波路10の幅はフォトニック結晶線
欠陥導波路5の幅に比べて大きく設定されている。
[0008] Since the total reflection confined waveguide 10 is formed of the high dielectric constant medium 16, the light is strongly confined in the total reflection confined waveguide 10, and the light propagating through the total reflection confined waveguide 10 is reduced. Lateral distribution (profile)
Is almost equal to the total reflection confined waveguide 10, but some of the light propagating through the photonic crystal line defect waveguide 5 spreads from the line defect portion 4 to the horizontal row of holes. Therefore, in order to match the profile of the propagated light of the total reflection confined waveguide 10 to the profile of the spread light,
The width of the total reflection confined waveguide 10 is set to be larger than the width of the photonic crystal line defect waveguide 5.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の導波路
によると、全反射閉じ込め型導波路10とフォトニック
結晶線欠陥導波路5の接続部は、全反射閉じ込め型導波
路10の幅がフォトニック結晶線欠陥導波路5の幅に比
べて広くとられているため、全反射閉じ込め型導波路1
0の中心付近では、フォトニック結晶線欠陥導波路5の
中心付近(線欠陥部4付近)との連続性が保たれるのに
対して、全反射閉じ込め型導波路10の中心から離れた
周辺付近では、全反射閉じ込め型導波路10側の一様な
構造からフォトニック結晶線欠陥導波路5側の孔の周期
配列構造への接続になるため、構造上の不連続が生じ
る。フォトニック結晶自体はPBG内の角振動数の光を
透過させないので、全反射閉じ込め型導波路10の線欠
陥部4の幅の外に分布する光の電磁界エネルギーは、フ
ォトニック結晶線欠陥導波路5の端面11の近傍で反射
してしまい、フォトニック結晶線欠陥導波路5に入射で
きない。そのため、全反射閉じ込め型導波路10とフォ
トニック結晶線欠陥導波路5では、伝搬光のプロファイ
ルが近いにも関わらず、光結合効率が悪いという問題が
あった。
However, according to the conventional waveguide, the connecting portion between the total reflection confined waveguide 10 and the photonic crystal line defect waveguide 5 has the width of the total reflection confined waveguide 10 of the photonic crystal line defect. Since the width is larger than the width of the nick crystal line defect waveguide 5, the total reflection confined waveguide 1
In the vicinity of the center of 0, the continuity with the vicinity of the center of the photonic crystal line defect waveguide 5 (the vicinity of the line defect portion 4) is maintained, while the periphery far from the center of the total reflection confined waveguide 10 is maintained. In the vicinity, since the connection from the uniform structure on the side of the total reflection confined waveguide 10 to the periodic array of holes on the side of the photonic crystal line defect waveguide 5 is made, a structural discontinuity occurs. Since the photonic crystal itself does not transmit the light of the angular frequency in the PBG, the electromagnetic field energy of the light distributed outside the width of the line defect portion 4 of the total reflection confined waveguide 10 depends on the photonic crystal line defect conduction. The light is reflected near the end face 11 of the waveguide 5 and cannot enter the photonic crystal line defect waveguide 5. For this reason, the total reflection confined waveguide 10 and the photonic crystal line defect waveguide 5 have a problem that the optical coupling efficiency is poor, although the profile of the propagating light is close.

【0010】したがって、本発明の目的は、全反射閉じ
込め型導波路とフォトニック結晶線欠陥導波路とを高い
光結合効率で接続することが可能な導波路を提供するこ
とにある。
Accordingly, it is an object of the present invention to provide a waveguide capable of connecting a total reflection confined waveguide and a photonic crystal line defect waveguide with high optical coupling efficiency.

【0011】[0011]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、第1の特徴として、高誘電率媒質内にフ
ォトニック結晶による孔が所定のパターンで2つのグル
ープに分けて配列され、前記2つのグループの境界部に
は前記孔を有しない線欠陥部が形成されたフォトニック
結晶線欠陥導波路と、前記フォトニック結晶線欠陥導波
路の前記線欠陥部の幅と同一又は略同一の幅を有して前
記線欠陥部の端面に接続される全反射閉じ込め型導波路
を備えることを特徴とする導波路を提供する。
In order to achieve the above object, the present invention has, as a first feature, holes of photonic crystals arranged in a high dielectric constant medium in a predetermined pattern in two groups. A photonic crystal line defect waveguide in which the line defect portion having no hole is formed at the boundary between the two groups, and the same or the same width as the line defect portion of the photonic crystal line defect waveguide. A waveguide having a total reflection confined waveguide having substantially the same width and connected to an end face of the line defect portion is provided.

【0012】この構成によれば、フォトニック結晶線欠
陥導波路上に形成された線欠陥部と、これに接続される
全反射閉じ込め型導波路の幅が同一又は略同一であるた
め、フォトニック結晶線欠陥導波路と全反射閉じ込め型
導波路の接続部における反射に起因する結合損失が低減
され、光結合効率を高めることが可能になる。
According to this structure, the line defect formed on the photonic crystal line defect waveguide and the total reflection confined waveguide connected thereto have the same or substantially the same width. The coupling loss due to reflection at the connection between the crystal beam defect waveguide and the total reflection confined waveguide is reduced, and the optical coupling efficiency can be increased.

【0013】本発明は、上記の目的を達成するため、第
2の特徴として、高誘電率媒質内にフォトニック結晶に
よる孔を所定のパターンで2つのグループに分けて配列
され、前記2つのグループの境界部には前記孔を有しな
い線欠陥部が形成され、前記線欠陥部の一方の側面に沿
って配設された前記孔の内の一列のそれぞれの孔が半円
形をなすように切断加工されているフォトニック結晶線
欠陥導波路と、前記フォトニック結晶線欠陥導波路の前
記線欠陥部の幅と同一又は略同一の幅を有して前記線欠
陥部の端面に接続される全反射閉じ込め型導波路を備え
ることを特徴とする導波路を提供する。
In order to achieve the above object, the present invention has, as a second characteristic, holes in a high dielectric constant medium in which a photonic crystal hole is divided into two groups in a predetermined pattern, and the two groups are arranged. A line defect having no hole is formed at a boundary of the line defect, and cut so that each line of the holes arranged along one side surface of the line defect forms a semicircle. A photonic crystal line defect waveguide being processed, and all of the photonic crystal line defect waveguides having the same or substantially the same width as the line defect portion of the photonic crystal line defect waveguide and connected to the end face of the line defect portion A waveguide provided with a reflective confinement waveguide is provided.

【0014】この構成によれば、フォトニック結晶線欠
陥導波路上に形成された線欠陥部と、これに接続される
全反射閉じ込め型導波路の幅が同一又は略同一であるた
め、フォトニック結晶線欠陥導波路と全反射閉じ込め型
導波路の接続部における反射に起因する結合損失が低減
され、光結合効率を高めることが可能になる。更に、フ
ォトニック結晶線欠陥導波路は、全反射閉じ込め型導波
路を接続する側の側面に沿うフォトニック結晶の一列が
半円形に切断されているため、線欠陥部の端面が幅方向
に広がりを持たない構造になり、フォトニック結晶表面
への漏洩による損失が低減する。
According to this configuration, the width of the line defect formed on the photonic crystal line defect waveguide and the width of the total reflection confined waveguide connected thereto are the same or substantially the same. The coupling loss due to reflection at the connection between the crystal beam defect waveguide and the total reflection confined waveguide is reduced, and the optical coupling efficiency can be increased. Furthermore, in the photonic crystal line defect waveguide, since a row of photonic crystals along the side surface on the side connecting the total reflection confined waveguide is cut into a semicircle, the end face of the line defect part spreads in the width direction. And the loss due to leakage to the photonic crystal surface is reduced.

【0015】本発明は、上記の目的を達成するため、第
3の特徴として、所定の幅と長さを有する全反射閉じ込
め型導波路と、高誘電率媒質内にフォトニック結晶によ
る孔が所定のパターンで2つのグループに分けて配列さ
れると共に、前記全反射閉じ込め型導波路の幅と同一又
は略同一な幅を有して前記孔を有しない線欠陥部が前記
2つのグループの境界部に形成され、前記線欠陥部に前
記全反射閉じ込め型導波路の一端が接続され、前記全反
射閉じ込め型導波路の両側に前記高誘電率媒質を突出さ
せて保護部が形成されているフォトニック結晶線欠陥導
波路を備えることを特徴とする導波路を提供する。
In order to achieve the above object, the present invention has, as a third feature, a total reflection confined waveguide having a predetermined width and length, and a hole made of a photonic crystal in a high dielectric constant medium. And a line defect portion having the same or substantially the same width as that of the total reflection confined waveguide and having no hole is provided at a boundary portion between the two groups. A photonic, wherein one end of the total reflection confined waveguide is connected to the line defect portion, and a protective portion is formed by projecting the high dielectric constant medium on both sides of the total reflection confined waveguide. A waveguide provided with a crystal defect waveguide is provided.

【0016】この構成によれば、フォトニック結晶線欠
陥導波路上に形成された線欠陥部と、これに接続される
全反射閉じ込め型導波路の幅が同一又は略同一であるた
め、フォトニック結晶線欠陥導波路と全反射閉じ込め型
導波路の接続部における反射に起因する結合損失が低減
され、光結合効率を高めることが可能になる。更に、全
反射閉じ込め型導波路の両側を埋める如くに保護部が形
成されているため、光結合損失が低減すると同時に、接
合部近傍のフォトニック結晶の機械的強度を増すことが
できる。
According to this configuration, the width of the line defect formed on the photonic crystal line defect waveguide and the width of the total reflection confined waveguide connected thereto are the same or substantially the same. The coupling loss due to reflection at the connection between the crystal beam defect waveguide and the total reflection confined waveguide is reduced, and the optical coupling efficiency can be increased. Furthermore, since the protection portion is formed so as to fill both sides of the total reflection confined waveguide, the optical coupling loss can be reduced and the mechanical strength of the photonic crystal near the junction can be increased.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を基に説明する。図1は、本発明の第1の実施形
態を示す。本実施の形態による導波路は、2次元三角格
子フォトニック結晶による線欠陥導波路と全反射閉じ込
め型導波路を接続して構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. The waveguide according to the present embodiment is configured by connecting a line defect waveguide made of a two-dimensional triangular lattice photonic crystal and a total reflection confined waveguide.

【0018】本発明の導波路100は、フォトニック結
晶線欠陥導波路110と全反射閉じ込め型導波路120
からなり、全反射閉じ込め型導波路120はフォトニッ
ク結晶線欠陥導波路110の端面130に、これと一直
線上になる様に接続されている。フォトニック結晶線欠
陥導波路110は、母体媒質(高誘電率媒質)111
と、この中に三角格子状に配列された多数のフォトニッ
ク結晶の孔112が設けられた構成になっている。ただ
し、母体媒質111の中間部の所定幅には孔112は設
けられておらず、この部分には線欠陥部113が形成さ
れている。母体媒質111には、半導体(一般には、比
誘電率が約12のシリコン)が用いられる。全反射閉じ
込め型導波路120は母体媒質111と同一の材料が用
いられ、その幅Wは線欠陥部113とほぼ同一にされ
る。
The waveguide 100 of the present invention comprises a photonic crystal beam defect waveguide 110 and a total reflection confined waveguide 120.
The total reflection confined waveguide 120 is connected to the end face 130 of the photonic crystal line defect waveguide 110 so as to be in line with the end face 130. The photonic crystal line defect waveguide 110 includes a host medium (high dielectric constant medium) 111
And a large number of photonic crystal holes 112 arranged in a triangular lattice. However, the hole 112 is not provided in a predetermined width of the intermediate portion of the base medium 111, and a line defect portion 113 is formed in this portion. For the base medium 111, a semiconductor (generally, silicon having a relative dielectric constant of about 12) is used. The total reflection confined waveguide 120 is made of the same material as the base medium 111, and has a width W substantially equal to that of the line defect portion 113.

【0019】全反射閉じ込め型導波路120は、その一
端面が線欠陥部113の側面(端面130)に接続され
るが、線欠陥部113とは一直線上(同一軸線上)にな
り、かつ同一平面になるように接続される。そして、全
反射閉じ込め型導波路120の表面(側面)121,1
22と端面130は直角または、ほぼ直角になってい
る。
One end face of the total reflection confined waveguide 120 is connected to the side face (end face 130) of the line defect part 113, but is aligned with the line defect part 113 (on the same axis) and is the same. It is connected so that it may become a plane. The surface (side surface) 121, 1 of the total reflection confined waveguide 120
22 and the end face 130 are at right angles or almost at right angles.

【0020】図1の構成においては、全反射閉じ込め型
導波路120の幅Wとフォトニック結晶線欠陥導波路1
10の線欠陥部113の幅がほぼ等しく、かつ、材料が
同一で連続している。このため、全反射閉じ込め型導波
路120を伝搬してきた光は、殆ど全てがフォトニック
結晶線欠陥導波路110の線欠陥部113に入光する。
線欠陥部113の部分に入った光は、周囲に配列された
孔112で回折されるが、この回折によって全反射閉じ
込め型導波路120からの伝搬光の入射方向と逆向きに
回折され、全反射閉じ込め型導波路120に反射光とし
て戻る光の割合は、伝搬光のプロファイルを合わせるこ
とを優先した図9の構造よりも小さくなり、結果として
光結合効率は本発明の方が高くなる。
In the configuration shown in FIG. 1, the width W of the total reflection confined waveguide 120 and the photonic crystal defect waveguide 1
The widths of the ten line defect portions 113 are substantially equal, and the materials are the same and continuous. Therefore, almost all of the light propagating through the total reflection confined waveguide 120 enters the line defect portion 113 of the photonic crystal line defect waveguide 110.
The light that has entered the line defect portion 113 is diffracted by the holes 112 arranged on the periphery, and is diffracted in the direction opposite to the incident direction of the propagating light from the total reflection confined waveguide 120 by this diffraction. The ratio of light returning as reflected light to the reflective confinement waveguide 120 is smaller than that of the structure of FIG. 9 in which priority is given to matching the profile of propagating light, and as a result, the optical coupling efficiency is higher in the present invention.

【0021】〔実施例〕ここで、第1の実施の形態に対
応した実施例について説明する。フォトニック結晶線欠
陥導波路110の母体材料(母体媒質111)として誘
電率11.4のシリコン(Si)を用い、三角格子(孔
112)のピッチを0.7μm、孔112の直径を0.
64μmとし、更に、線欠陥部113の幅を0.57μ
mとした。全反射閉じ込め型導波路120の幅Wは、線
欠陥部113の幅と同じ0.57μmとした。また、フ
ォトニック結晶線欠陥導波路110の端面130と、こ
の端面130に最も近い孔112との間の距離(領域1
14,115)を0.06μmとした。
Example An example corresponding to the first embodiment will now be described. Silicon (Si) having a dielectric constant of 11.4 is used as a base material (base medium 111) of the photonic crystal line defect waveguide 110, the pitch of the triangular lattice (holes 112) is 0.7 μm, and the diameter of the holes 112 is 0.1 μm.
64 μm, and the width of the line defect portion 113 is set to 0.57 μm.
m. The width W of the total reflection confined waveguide 120 was set to 0.57 μm, which is the same as the width of the line defect portion 113. Further, the distance between the end face 130 of the photonic crystal line defect waveguide 110 and the hole 112 closest to the end face 130 (region 1).
14, 115) was set to 0.06 μm.

【0022】上記した各部の寸法のもとに、数値計算シ
ミュレーションを実施した。その結果、PBG内の角振
動数を有する光に対して、フォトニック結晶線欠陥導波
路110と全反射閉じ込め型導波路120の結合損失と
して、0.5dBが得られた。全反射閉じ込め型導波路
120の幅を2.2μmとし、他の構造や数値は同じと
した従来構造の場合、同じ角振動数の光に対して2.3
dBの結合損失があり、このことから、本発明により、
1.8dB改善できることがわかった。
A numerical simulation was performed based on the dimensions of each part described above. As a result, for light having an angular frequency in the PBG, 0.5 dB was obtained as a coupling loss between the photonic crystal line defect waveguide 110 and the total reflection confined waveguide 120. In the case of a conventional structure in which the width of the total reflection confined waveguide 120 is 2.2 μm and other structures and numerical values are the same, 2.3 for light having the same angular frequency.
There is a coupling loss of dB, from which, according to the invention,
It was found that 1.8 dB could be improved.

【0023】図2は、図1の導波路の変形例を示す。図
2においては、図1と同一であるものには同一引用数字
を用いたので、重複する説明は省略する。図1において
は、線欠陥部113と全反射閉じ込め型導波路120の
接続角は0°、すなわち一直線であったが、本実施の形
態では、或る角度θを持たせている。導波路の幅方向の
波数分布が、全反射閉じ込め型導波路120とフォトニ
ック結晶線欠陥導波路110で異なる場合、このように
角度θを設けることによって一致性が向上し、光結合効
率が向上する場合がある。
FIG. 2 shows a modification of the waveguide of FIG. In FIG. 2, the same reference numerals are used for the same components as those in FIG. In FIG. 1, the connection angle between the line defect portion 113 and the total reflection confined waveguide 120 is 0 °, that is, a straight line. However, in the present embodiment, a certain angle θ is provided. When the wave number distribution in the width direction of the waveguide is different between the total reflection confined waveguide 120 and the photonic crystal line defect waveguide 110, providing the angle θ in this way improves the coherence and improves the optical coupling efficiency. May be.

【0024】図3は、本発明の第2の実施の形態を示
す。本実施の形態においても、図3においては、図1と
同一であるものには同一引用数字を用いたので、ここで
は重複する説明を省略する。上記第1の実施の形態の構
造においては、フォトニック結晶線欠陥導波路110の
端面130と、この端面130に最も近い孔112a,
112bとの間の距離は、全反射閉じ込め型導波路12
0とフォトニック結晶線欠陥導波路110の光結合効率
を向上させるために重要である。この距離が大きくなる
と、全反射閉じ込め型導波路120とフォトニック結晶
線欠陥導波路110の線欠陥部113までの距離が遠く
なり、全反射閉じ込め型導波路120を伝搬してきた光
の一部が、端面130と最も近い孔112a,112b
の列との間の領域114,115に回り込み、光結合効
率を低下させる。この問題を解決するのが、図3に示す
第2の実施の形態である。
FIG. 3 shows a second embodiment of the present invention. Also in the present embodiment, in FIG. 3, the same reference numerals are used for the same components as those in FIG. 1, and the duplicate description is omitted here. In the structure of the first embodiment, the end face 130 of the photonic crystal line defect waveguide 110 and the holes 112a,
112b is the total reflection confined waveguide 12
0 is important for improving the optical coupling efficiency of the photonic crystal line defect waveguide 110. When this distance increases, the distance between the total reflection confined waveguide 120 and the line defect portion 113 of the photonic crystal line defect waveguide 110 increases, and part of the light propagating through the total reflection confinement waveguide 120 becomes smaller. Holes 112a and 112b closest to the end face 130
Wrap around the regions 114 and 115 between the columns and reduce the optical coupling efficiency. The second embodiment shown in FIG. 3 solves this problem.

【0025】図3に示すように、線欠陥部113を含む
フォトニック結晶、即ち、フォトニック結晶線欠陥導波
路140の端面141は、線欠陥部113と交差し、か
つ、フォトニック結晶線欠陥導波路140の全反射閉じ
込め型導波路120に寄った各孔112を横切るように
切断する面である。全反射閉じ込め型導波路120は、
その端面141の線欠陥部113の部分に接続されてい
る。全反射閉じ込め型導波路120の幅Wは、線欠陥部
113の幅に等しくし、或いはほぼ等しくしている。端
面141の線欠陥部113の部分の両脇に位置する半円
孔の表面142,143は、全反射閉じ込め型導波路1
20の表面121,122と滑らかに接続されている。
As shown in FIG. 3, the photonic crystal including the line defect portion 113, that is, the end face 141 of the photonic crystal line defect waveguide 140 crosses the line defect portion 113 and has a photonic crystal line defect. This is a surface that is cut so as to cross each hole 112 of the waveguide 140 that approaches the total reflection confined waveguide 120. The total reflection confined waveguide 120 is
The end surface 141 is connected to the line defect portion 113. The width W of the total reflection confined waveguide 120 is equal to or approximately equal to the width of the line defect portion 113. The surfaces 142 and 143 of the semicircular holes located on both sides of the line defect portion 113 of the end face 141 are the total reflection confined waveguide 1
20 and are smoothly connected to the surfaces 121 and 122.

【0026】図3の実施の形態によれば、フォトニック
結晶線欠陥導波路140の全反射閉じ込め型導波路12
0に接続される端面141が側面方向(線欠陥部113
の幅方向又は図の上下方向)に広がりを持たない構造に
なり、全反射閉じ込め型導波路120の伝搬光の一部が
フォトニック結晶線欠陥導波路140の線欠陥部113
の脇の結晶表面に漏れることがないため、光結合損失が
向上する。
According to the embodiment of FIG. 3, the total reflection confined waveguide 12 of the photonic crystal line defect waveguide 140 is used.
0 is connected to the side surface (line defect portion 113).
(The width direction or the vertical direction in the figure) of the photonic crystal line defect waveguide 140.
Since there is no leakage to the crystal surface beside the above, the optical coupling loss is improved.

【0027】図4は、図3の導波路の変形例を示す。図
4においては、図1〜図3に示したと同一であるものに
は同一引用数字を用いたので、ここでは重複する説明を
省略する。図3においては、線欠陥部113と全反射閉
じ込め型導波路120の接続角は0°、即ち一直線であ
るが、図4に示すように、角度θを持たせることによ
り、図2と同様に、導波路の幅方向の波数分布が、全反
射閉じ込め型導波路120とフォトニック結晶線欠陥導
波路140で異なる場合、このように角度θを設けるこ
とにより、光結合効率が向上する場合がある。
FIG. 4 shows a modification of the waveguide of FIG. In FIG. 4, the same reference numerals are used for the same components as those shown in FIGS. 1 to 3, and thus, redundant description will be omitted here. In FIG. 3, the connection angle between the line defect portion 113 and the total reflection confined waveguide 120 is 0 °, that is, a straight line. However, as shown in FIG. When the wave number distribution in the width direction of the waveguide is different between the total reflection confined waveguide 120 and the photonic crystal line defect waveguide 140, the optical coupling efficiency may be improved by providing the angle θ in this manner. .

【0028】ここで、本発明の第2の実施の形態に対応
した実施例について説明する。フォトニック結晶線欠陥
導波路140の母体材料(母体媒質)として誘電率1
1.4のシリコン(Si)を用い、三角格子(孔11
2)のピッチを0.7μm、孔112の直径を0.64
μmとした。このとき、線欠陥部113の幅は0.57
μmとした。全反射閉じ込め型導波路120の幅Wは、
線欠陥部113の幅と同一の0.57μmとした。
Here, an example corresponding to the second embodiment of the present invention will be described. As a base material (base medium) of the photonic crystal line defect waveguide 140, a dielectric constant of 1
Using a silicon (Si) of 1.4, a triangular lattice (hole 11
2) The pitch is 0.7 μm and the diameter of the hole 112 is 0.64.
μm. At this time, the width of the line defect portion 113 is 0.57
μm. The width W of the total reflection confined waveguide 120 is
The width was 0.57 μm, which was the same as the width of the line defect 113.

【0029】上記した各部の寸法のもとに、数値計算シ
ミュレーションを実施した。PBG内の角振動数を有す
る光に対して、フォトニック結晶線欠陥導波路140と
全反射閉じ込め型導波路120の結合損失として、0.
3dBが得られた。上記第1の実施の形態で得られた結
合損失0.5dBに対し、本実施の形態では結合損失が
0.2dB改善されていた。
Numerical simulations were performed based on the dimensions of the above-described parts. For light having an angular frequency in the PBG, the coupling loss between the photonic crystal line defect waveguide 140 and the total reflection confined waveguide 120 is set to 0.
3 dB was obtained. In contrast to the coupling loss of 0.5 dB obtained in the first embodiment, the present embodiment has improved the coupling loss by 0.2 dB.

【0030】図3において、全反射閉じ込め型導波路1
20とフォトニック結晶線欠陥導波路140の接続部
は、端面141の線欠陥部113以外の部分においてフ
ォトニック結晶の劈開面が露出した構造になっている。
これは図4においても同様である。このように、フォト
ニック結晶の劈開面が露出した構造は、機械的強度が弱
いことが問題になることがある。これを解決する構造に
ついて次に説明する。
In FIG. 3, a total reflection confined waveguide 1 is shown.
The connection between the photonic crystal line waveguide 20 and the photonic crystal line defect waveguide 140 has a structure in which the cleavage plane of the photonic crystal is exposed at a portion other than the line defect portion 113 on the end face 141.
This is the same in FIG. As described above, the structure in which the cleavage plane of the photonic crystal is exposed may have a problem that the mechanical strength is weak. A structure for solving this will be described below.

【0031】図5は、本発明の第3の実施の形態を示
し、フォトニック結晶の劈開面の機械的強度を高めた導
波路となっている。図5の構造は、図1(又は図3)の
構造において、全反射閉じ込め型導波路120との接続
部以外のフォトニック結晶の周囲に孔112の無い、母
体媒質111のみの周辺保護部151,152を付加し
てフォトニック結晶線欠陥導波路150を形成してい
る。この周辺保護部151,152の機械的強度は、孔
の有るフォトニック結晶部分よりも高いので、フォトニ
ック結晶部分を破損から保護することができる。
FIG. 5 shows a third embodiment of the present invention, which is a waveguide in which the mechanical strength of the cleavage plane of the photonic crystal is increased. The structure shown in FIG. 5 is different from the structure shown in FIG. 1 (or FIG. 3) in that there is no hole 112 around the photonic crystal other than the connection with the total reflection confined waveguide 120, and the peripheral protection portion 151 only includes the base medium 111. , 152 are added to form a photonic crystal line defect waveguide 150. Since the mechanical strength of the peripheral protection portions 151 and 152 is higher than that of the photonic crystal portion having holes, the photonic crystal portion can be protected from damage.

【0032】更に、図5の構造には、図3の接続部の構
造よりも光結合損失を低減するための工夫が施されてい
る。図5のA−A’面から右側は、図3に示すフォトニ
ック結晶線欠陥導波路140と同じであるが、図5で
は、A−A’面、即ち、全反射閉じ込め型導波路120
とフォトニック結晶線欠陥導波路150が接続されてい
る位置を通る面よりも全反射閉じ込め型導波路120の
側(図5の左側)にもフォトニック結晶の孔153の複
数個を周辺保護部151,152の付け根部に設けてい
る。
Further, the structure of FIG. 5 is devised to reduce the optical coupling loss as compared with the structure of the connecting portion of FIG. The right side from the AA ′ plane in FIG. 5 is the same as the photonic crystal line defect waveguide 140 shown in FIG. 3, but in FIG. 5, the AA ′ plane, that is, the total reflection confined waveguide 120 is shown.
A plurality of holes 153 of the photonic crystal are also provided on the side of the total reflection confined waveguide 120 (left side in FIG. 5) with respect to the plane passing through the position where the waveguide 150 and the photonic crystal line defect waveguide 150 are connected. It is provided at the base of 151 and 152.

【0033】このようにすると、全反射閉じ込め型導波
路120からの光は、線欠陥部113に入った後、線欠
陥部113の周囲に配列された孔112で回折され、線
欠陥部113の両側に配列された孔112を通り抜け、
全反射閉じ込め型導波路120の側の表面から放射して
いく光の割合が低減される。これにより、フォトニック
結晶線欠陥導波路150と全反射閉じ込め型導波路12
0の接続部の光結合損失を低減できる。
In this way, the light from the total reflection confined waveguide 120 enters the line defect portion 113, is diffracted by the holes 112 arranged around the line defect portion 113, and Through the holes 112 arranged on both sides,
The proportion of light radiating from the surface on the side of the total reflection confined waveguide 120 is reduced. Thus, the photonic crystal line defect waveguide 150 and the total reflection confined waveguide 12
It is possible to reduce the optical coupling loss of the connection part of No. 0.

【0034】ここで、本発明の図5の構造に対応した実
施例について説明する。フォトニック結晶線欠陥導波路
150の母体材料(母体媒質)を誘電率11.4のシリ
コン(Si)、三角格子(孔112)のピッチを0.7
μm、孔112の直径を0.64μm、線欠陥3の幅を
0.57μmとした。上記した各部の寸法のもとに、数
値計算シミュレーションを実施した。その結果、結合損
失として0.2dBが得られた。これは、先に述べた本
発明の第2の実施の形態における結合損失0.3dBか
ら、更に、結合損失を0.1dB低減できたことにな
る。
Here, an embodiment corresponding to the structure of FIG. 5 of the present invention will be described. The base material (base medium) of the photonic crystal line defect waveguide 150 is silicon (Si) having a dielectric constant of 11.4, and the pitch of the triangular lattice (hole 112) is 0.7.
μm, the diameter of the hole 112 was 0.64 μm, and the width of the line defect 3 was 0.57 μm. Numerical simulation was performed based on the dimensions of the above-described parts. As a result, 0.2 dB was obtained as the coupling loss. This means that the coupling loss can be further reduced by 0.1 dB from the coupling loss of 0.3 dB in the above-described second embodiment of the present invention.

【0035】図5においても、全反射閉じ込め導波路1
20をフォトニック結晶線欠陥導波路150に対して図
2又は図4に示したように、斜めに接続し、更に結合損
失を低減することができる。
Also in FIG. 5, the total reflection confined waveguide 1
As shown in FIG. 2 or FIG. 4, 20 can be connected obliquely to the photonic crystal line defect waveguide 150 to further reduce the coupling loss.

【0036】上記各実施の形態においては、2次元フォ
トニック結晶について述べたが、本発明は、擬似的な2
次元フォトニック結晶であるスラブ型フォトニック結晶
にも適用できることは言うもまでもない。このとき、全
反射閉じこめ型導波路も有限の厚みを持つので、特にチ
ャネル導波路と呼ばれる。
In each of the above embodiments, a two-dimensional photonic crystal has been described.
Needless to say, the present invention can be applied to a slab type photonic crystal which is a two-dimensional photonic crystal. At this time, since the total reflection confined waveguide also has a finite thickness, it is particularly called a channel waveguide.

【0037】図6は、スラブ型フォトニック結晶の構造
を示す。図中、60は母体媒質であり、61は孔、62
は劈開面を示す。この様な有限の厚みを有するフォトニ
ック結晶の場合でも、本発明による全反射閉じ込め型導
波路とフォトニック結晶線欠陥導波路の接続部の断面
は、2次元フォトニック結晶の場合と同じである。
FIG. 6 shows the structure of a slab type photonic crystal. In the figure, 60 is a parent medium, 61 is a hole, 62
Indicates a cleavage plane. Even in the case of the photonic crystal having such a finite thickness, the cross section of the connection portion between the total reflection confined waveguide according to the present invention and the photonic crystal line defect waveguide is the same as that of the two-dimensional photonic crystal. .

【0038】また、上記実施の形態においては、三角格
子フォトニック結晶について述べたが、正方格子や長方
格子や斜方格子などのフォトニック結晶の格子の形態が
三角格子から微妙に異なる格子のフォトニック結晶につ
いても本発明を適用できることは明らかである。
In the above embodiment, the description has been given of the triangular lattice photonic crystal. However, the lattice form of the photonic crystal such as a square lattice, a rectangular lattice, and an oblique lattice is slightly different from the triangular lattice. It is clear that the present invention can be applied to a photonic crystal.

【0039】さらに、フォトニック結晶線欠陥導波路の
線欠陥部は、一列のみの線欠陥としたが、2列以上の幅
の広い線欠陥についても本発明が適用できることは言う
までもない。また、上記各実施例においては、シリコン
(Si)を母体材料(母体媒質)として用いたが、他の
材料、特に、化合物半導体を用いてもよいことは言うま
でもない。
Further, the line defect portion of the photonic crystal line defect waveguide is a line defect of only one line, but it is needless to say that the present invention can be applied to a line defect having a width of two or more lines. Further, in each of the above embodiments, silicon (Si) is used as the base material (base medium), but it is needless to say that other materials, in particular, a compound semiconductor may be used.

【0040】[0040]

【発明の効果】以上説明したように、本発明の導波路に
よれば、フォトニック結晶線欠陥導波路に全反射閉じ込
め型導波路を接続して構成される導波路において、フォ
トニック結晶線欠陥導波路上に形成された線欠陥部と、
これに接続される全反射閉じ込め型導波路の幅を同一又
は略同一にしたため、フォトニック結晶線欠陥導波路と
全反射閉じ込め型導波路の接続部における反射に起因す
る結合損失が低減され、光結合効率を高めることが可能
になる。
As described above, according to the waveguide of the present invention, in a waveguide formed by connecting a total reflection confined waveguide to a photonic crystal line defect waveguide, a photonic crystal line defect A line defect formed on the waveguide;
Since the width of the total reflection confined waveguide connected thereto is the same or substantially the same, the coupling loss due to reflection at the connection between the photonic crystal line defect waveguide and the total reflection confined waveguide is reduced, and the light It is possible to increase the coupling efficiency.

【0041】また、本発明の他の導波路によれば、フォ
トニック結晶線欠陥導波路上に形成された線欠陥部と、
これに接続される全反射閉じ込め型導波路の幅を同一又
は略同一にし、フォトニック結晶線欠陥導波路と全反射
閉じ込め型導波路の接続部における反射に起因する結合
損失を低減した構造にしたため、光結合効率を高めるこ
とが可能になる。更に、フォトニック結晶線欠陥導波路
は、全反射閉じ込め型導波路を接続する側の側面に沿う
フォトニック結晶の一列が半円形に切断された構造にし
たため、線欠陥部の端面が幅方向に広がりを持たない構
造になり、フォトニック結晶表面への漏洩による損失を
低減できる。
According to another waveguide of the present invention, there is provided a line defect portion formed on a photonic crystal line defect waveguide,
The width of the total reflection confined waveguide connected to this is made the same or almost the same, and the coupling loss due to reflection at the connection between the photonic crystal line defect waveguide and the total reflection confined waveguide is reduced. , It is possible to increase the optical coupling efficiency. Furthermore, since the photonic crystal line defect waveguide has a structure in which a row of photonic crystals along the side surface connecting the total reflection confined waveguide is cut into a semicircle, the end face of the line defect portion is in the width direction. The structure has no spread, and loss due to leakage to the photonic crystal surface can be reduced.

【0042】さらに、本発明の他の導波路によれば、フ
ォトニック結晶線欠陥導波路上に形成された線欠陥部
と、これに接続される全反射閉じ込め型導波路の幅が同
一であるため、フォトニック結晶線欠陥導波路と全反射
閉じ込め型導波路の接続部における反射に起因する結合
損失が低減され、光結合効率を高めることが可能にな
る。更に、全反射閉じ込め型導波路の両側を埋めるよう
に保護部を形成したことにより、光結合損失が低減する
と同時に、接合部近傍のフォトニック結晶の機械的強度
を増すことができる。
Further, according to another waveguide of the present invention, the width of the line defect formed on the photonic crystal line defect waveguide and the total reflection confined waveguide connected thereto are the same. Therefore, the coupling loss due to reflection at the connection between the photonic crystal line defect waveguide and the total reflection confined waveguide is reduced, and the optical coupling efficiency can be increased. Further, by forming the protective portion so as to fill both sides of the total reflection confined waveguide, the optical coupling loss can be reduced and the mechanical strength of the photonic crystal near the junction can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.

【図2】図1の導波路の変形例を示す断面図である。FIG. 2 is a sectional view showing a modification of the waveguide of FIG. 1;

【図3】本発明の第2の実施の形態を示す断面図であ
る。
FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】図3の導波路の変形例を示す断面図である。FIG. 4 is a sectional view showing a modification of the waveguide of FIG. 3;

【図5】本発明の第3の実施の形態を示す断面図であ
る。
FIG. 5 is a sectional view showing a third embodiment of the present invention.

【図6】スラブ型フォトニック結晶を示す斜視図であ
る。
FIG. 6 is a perspective view showing a slab type photonic crystal.

【図7】2次元フォトニック結晶の構造例を示す断面図
である。
FIG. 7 is a cross-sectional view illustrating a structural example of a two-dimensional photonic crystal.

【図8】フォトニック結晶線欠陥導波路の一例を示す断
面図である。
FIG. 8 is a sectional view showing an example of a photonic crystal line defect waveguide.

【図9】全反射閉じ込め型導波路の構成を示す断面図で
ある。
FIG. 9 is a cross-sectional view illustrating a configuration of a total reflection confined waveguide.

【図10】従来の導波路を示す断面図である。FIG. 10 is a cross-sectional view showing a conventional waveguide.

【符号の説明】[Explanation of symbols]

1 高誘電率媒質 2 フォトニック結晶の孔 3 2次元三角格子フォトニック結晶 4 線欠陥部 5 フォトニック結晶線欠陥導波路 10 全反射閉じ込め型導波路 100 導波路 110,140,150 フォトニック結晶線欠陥導波
路 111 母体媒質(高誘電率媒質) 112,112a,112b,153 孔 113 線欠陥部 120 全反射閉じ込め型導波路 130,141 端面 151,152 周辺保護部
DESCRIPTION OF SYMBOLS 1 High dielectric constant medium 2 Photonic crystal hole 3 Two-dimensional triangular lattice photonic crystal 4 Line defect part 5 Photonic crystal line defect waveguide 10 Total reflection confinement type waveguide 100 Waveguide 110, 140, 150 Photonic crystal line Defect waveguide 111 Base medium (high dielectric constant medium) 112, 112a, 112b, 153 Hole 113 Line defect part 120 Total reflection confined waveguide 130, 141 End face 151, 152 Peripheral protection part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高誘電率媒質内にフォトニック結晶によ
る孔が所定のパターンで2つのグループに分けて配列さ
れ、前記2つのグループの境界部には前記孔を有しない
線欠陥部が形成されたフォトニック結晶線欠陥導波路
と、 前記フォトニック結晶線欠陥導波路の前記線欠陥部の幅
と同一又は略同一の幅を有して前記線欠陥部の端面に接
続される全反射閉じ込め型導波路を備えることを特徴と
する導波路。
In a high dielectric constant medium, holes made of a photonic crystal are arranged in two groups in a predetermined pattern, and a line defect having no holes is formed at a boundary between the two groups. A photonic crystal line defect waveguide, and a total reflection confinement type having the same or substantially the same width as the width of the line defect portion of the photonic crystal line defect waveguide and connected to an end face of the line defect portion. A waveguide comprising a waveguide.
【請求項2】 前記全反射閉じ込め型導波路は、前記線
欠陥部と同一軸線上に配置して接続され、或いは、前記
線欠陥部の軸線に対して角度をもって接続されているこ
とを特徴とする請求項1記載の導波路。
2. The total reflection confined waveguide is arranged and connected on the same axis as the line defect, or connected at an angle to the axis of the line defect. 2. The waveguide according to claim 1, wherein:
【請求項3】 高誘電率媒質内にフォトニック結晶によ
る孔が所定のパターンで2つのグループに分けて配列さ
れ、前記2つのグループの境界部には前記孔を有しない
線欠陥部が形成され、前記線欠陥部の一方の側面に沿っ
て配設された前記孔の内の一列のそれぞれの孔が半円形
をなすように切断加工されているフォトニック結晶線欠
陥導波路と、 前記フォトニック結晶線欠陥導波路の前記線欠陥部の幅
と同一又は略同一の幅を有して前記線欠陥部の端面に接
続される全反射閉じ込め型導波路を備えることを特徴と
する導波路。
3. A high-dielectric medium in which holes made of a photonic crystal are arranged in a predetermined pattern in two groups, and a line defect having no holes is formed at a boundary between the two groups. A photonic crystal line defect waveguide in which one row of the holes arranged along one side surface of the line defect portion is cut so as to form a semicircle; A waveguide comprising a total reflection confined waveguide having the same or substantially the same width as the width of the line defect portion of the crystal defect waveguide and connected to an end face of the line defect portion.
【請求項4】 前記全反射閉じ込め型導波路は、前記線
欠陥部と同一軸線上に配置して接続され、或いは、前記
線欠陥部の軸線に対して角度をもって接続されているこ
とを特徴とする請求項3記載の導波路。
4. The total reflection confined waveguide is arranged and connected on the same axis as the line defect, or connected at an angle to the axis of the line defect. The waveguide according to claim 3, wherein
【請求項5】 所定の幅と長さを有する全反射閉じ込め
型導波路と、 高誘電率媒質内にフォトニック結晶による孔を所定のパ
ターンで2つのグループに分けて配列され、前記全反射
閉じ込め型導波路の幅と同一又は略同一な幅を有して前
記孔を有しない線欠陥部が前記2つのグループの境界部
に形成され、前記線欠陥部に前記全反射閉じ込め型導波
路の一端が接続され、前記全反射閉じ込め型導波路の両
側に前記高誘電率媒質を突出させて保護部が形成されて
いるフォトニック結晶線欠陥導波路を備えることを特徴
とする導波路。
5. A total reflection confined waveguide having a predetermined width and a predetermined length, and holes formed of a photonic crystal in a medium having a high dielectric constant and divided into two groups in a predetermined pattern. A line defect having the same or substantially the same width as the width of the waveguide and having no hole is formed at the boundary between the two groups, and one end of the total reflection confined waveguide is formed at the line defect. And a photonic crystal line defect waveguide in which a protective portion is formed by protruding the high dielectric constant medium on both sides of the total reflection confined waveguide.
JP2001172042A 2001-06-07 2001-06-07 Waveguide Expired - Fee Related JP3846228B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001172042A JP3846228B2 (en) 2001-06-07 2001-06-07 Waveguide
US10/162,764 US6795621B2 (en) 2001-06-07 2002-06-06 Waveguide comprising a connection of a photonic-crystal line-defect-waveguide to a total reflection confinement waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172042A JP3846228B2 (en) 2001-06-07 2001-06-07 Waveguide

Publications (2)

Publication Number Publication Date
JP2002365453A true JP2002365453A (en) 2002-12-18
JP3846228B2 JP3846228B2 (en) 2006-11-15

Family

ID=19013724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172042A Expired - Fee Related JP3846228B2 (en) 2001-06-07 2001-06-07 Waveguide

Country Status (2)

Country Link
US (1) US6795621B2 (en)
JP (1) JP3846228B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073194A1 (en) * 2005-01-06 2006-07-13 Nec Corporation Optical waveguide, optical device and optical communication device
US7778509B2 (en) 2003-03-14 2010-08-17 Nec Corporation Method for incidence of light into a photonic crystal optical waveguide and structure thereof
KR101012505B1 (en) * 2008-12-04 2011-02-08 인하대학교 산학협력단 Photonic crystal waveduide inlet structure
KR101107624B1 (en) 2010-07-02 2012-01-25 인하대학교 산학협력단 A interface structure between a photonic crystal waveguide and a strip waveguide with the modification of inlet holes for enhanced coupling efficiency
JP2014197837A (en) * 2013-03-04 2014-10-16 国立大学法人大阪大学 Terahertz wave connector, terahertz wave integrated circuit, waveguide, and antenna structure
JP2016004147A (en) * 2014-06-17 2016-01-12 日本電信電話株式会社 Optical circuit

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728457B2 (en) * 2002-07-10 2004-04-27 Agilent Technologies, Inc. Waveguides in two dimensional slab photonic crystals with noncircular holes
US20060153500A1 (en) * 2002-08-14 2006-07-13 Javier Marti Sendra Coupling system between dielectric optical guides and planar photonic crystal guides
ES2199693B1 (en) * 2002-08-14 2005-05-01 Universidad Politecnica De Valencia COUPLING SYSTEM BETWEEN DIELECTRIC OPTICAL GUIDES AND GUIDES IN PLANAR PHOTONIC CRYSTALS.
CN1761897A (en) * 2003-03-04 2006-04-19 日本板硝子株式会社 Waveguide device using photonic crystal
JP2004347991A (en) * 2003-05-23 2004-12-09 Sony Corp Photonic crystal fiber, optical controller, projector, and method for manufacturing photonic crystal fiber
JP4063740B2 (en) * 2003-08-29 2008-03-19 国立大学法人京都大学 Two-dimensional photonic crystal having air bridge structure and manufacturing method thereof
EP1666940A4 (en) * 2003-08-29 2007-10-17 Univ Kyoto Two-dimensional photonic crystal with air bridge structure and manufacturing method for the crystal
US7248770B2 (en) * 2003-11-04 2007-07-24 Mesophotonics Limited Photonic band structure devices
JP4398275B2 (en) * 2003-11-25 2010-01-13 株式会社リコー Light control element
DE10359666B4 (en) * 2003-12-18 2011-06-16 Eastman Kodak Co. Method and fixing device for fixing toner on a printing substrate
JP4208754B2 (en) * 2004-03-24 2009-01-14 株式会社リコー Optical delay element
JP4278597B2 (en) * 2004-10-29 2009-06-17 株式会社リコー Light control element
WO2007074876A1 (en) * 2005-12-27 2007-07-05 Nec Corporation Coupling structure of waveguide
US20080057442A1 (en) * 2006-09-06 2008-03-06 Dongbu Hitek Co., Ltd. Method and apparatus for manufacturing band stop filter
CN100582656C (en) * 2006-12-27 2010-01-20 清华大学 Micro-displacement transducer
US8189968B2 (en) * 2008-08-28 2012-05-29 Board Of Regents, The University Of Texas Multimode interference coupler for use with slot photonic crystal waveguides
US9086583B1 (en) * 2012-07-18 2015-07-21 Wei Jiang Systems and methods for controlling and measuring modes possessing even and odd symmetry in a photonic crystal waveguide
CN104459989B (en) * 2014-12-10 2017-03-08 深圳市浩源光电技术有限公司 High Extinction Ratio TE photoswitch based on slab photonic crystal
CN111157491B (en) * 2020-01-10 2021-09-14 燕山大学 Array sensing structure with photonic crystal microcavity and optical waveguide laterally coupled
US10955614B1 (en) * 2020-01-14 2021-03-23 Globalfoundries U.S. Inc. Optical fiber coupler structure having manufacturing variation-sensitive transmission blocking region

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US6134369A (en) * 1999-03-31 2000-10-17 Matsushita Electric Industrial Co. Compact optical waveguide
JP3456166B2 (en) * 1999-06-23 2003-10-14 日本電気株式会社 Optical coupling element and optical coupling method using photonic crystal
JP3925769B2 (en) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 Two-dimensional photonic crystal and multiplexer / demultiplexer
DE60129286T2 (en) * 2000-12-27 2007-11-22 Nippon Telegraph And Telephone Corp. Photonic crystal waveguide
AU2002327226A1 (en) * 2001-01-12 2002-12-16 California Institute Of Technology Methods for controlling positions of the guided modes of the photonic crystal waveguides
US6957003B2 (en) * 2002-06-27 2005-10-18 The Board Of Trustees Of The Leland Stanford Junior University Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778509B2 (en) 2003-03-14 2010-08-17 Nec Corporation Method for incidence of light into a photonic crystal optical waveguide and structure thereof
WO2006073194A1 (en) * 2005-01-06 2006-07-13 Nec Corporation Optical waveguide, optical device and optical communication device
KR101012505B1 (en) * 2008-12-04 2011-02-08 인하대학교 산학협력단 Photonic crystal waveduide inlet structure
KR101107624B1 (en) 2010-07-02 2012-01-25 인하대학교 산학협력단 A interface structure between a photonic crystal waveguide and a strip waveguide with the modification of inlet holes for enhanced coupling efficiency
JP2014197837A (en) * 2013-03-04 2014-10-16 国立大学法人大阪大学 Terahertz wave connector, terahertz wave integrated circuit, waveguide, and antenna structure
JP2016004147A (en) * 2014-06-17 2016-01-12 日本電信電話株式会社 Optical circuit

Also Published As

Publication number Publication date
JP3846228B2 (en) 2006-11-15
US20020191933A1 (en) 2002-12-19
US6795621B2 (en) 2004-09-21

Similar Documents

Publication Publication Date Title
JP3846228B2 (en) Waveguide
US7068887B1 (en) Polarization splitting grating couplers
US7164823B2 (en) Optical isolator using photonic crystal
JP2000056146A (en) Light self-guide optical circuit
WO2012002222A1 (en) Design for achieving low loss in intersecting region of optical waveguide
WO2007074876A1 (en) Coupling structure of waveguide
US9971098B2 (en) Coupler and optical waveguide chip applying the coupler
KR101515870B1 (en) Dielectric waveguide intersection with reduced losses
CN112965167A (en) High-efficiency grating waveguide optical element
US10295741B2 (en) Single mode grating coupler with vertical coupling direction and small back reflection
EP4018233A1 (en) Periscope optical assembly
US6690876B2 (en) Three-dimensional photonic crystal waveguide apparatus
US20090154880A1 (en) Photonics device
JP2002350657A (en) Photonic crystal waveguide
JPH11167032A (en) Curved optical waveguide circuit
JP4948185B2 (en) Planar lightwave circuit
JP7208098B2 (en) Optical isolator and light source device
US20170160471A1 (en) Optical waveguide and arrayed waveguide grating
US11112552B2 (en) Light-guide sheet and photoelectric conversion device
JP7134443B2 (en) optical deflection device
JP2006267385A (en) Optical waveguide element
CN112180507A (en) Multi-waveguide cross device, waveguide chip and forming method thereof
CN115201970B (en) Silicon-based optical chip with grating coupler
JP7151939B1 (en) grating coupler
JP4372588B2 (en) Light control element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees