JP2002365170A - Tunnel excavator model test method and device - Google Patents

Tunnel excavator model test method and device

Info

Publication number
JP2002365170A
JP2002365170A JP2001175027A JP2001175027A JP2002365170A JP 2002365170 A JP2002365170 A JP 2002365170A JP 2001175027 A JP2001175027 A JP 2001175027A JP 2001175027 A JP2001175027 A JP 2001175027A JP 2002365170 A JP2002365170 A JP 2002365170A
Authority
JP
Japan
Prior art keywords
earth
chamber
tunnel excavator
model
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001175027A
Other languages
Japanese (ja)
Inventor
Yoshinori Okawa
賢紀 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001175027A priority Critical patent/JP2002365170A/en
Publication of JP2002365170A publication Critical patent/JP2002365170A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily acquire highly-accurate various operation data in a tunnel excavator model test method and a device. SOLUTION: A control device 21 executes dynamic evaluation of both the earth pressure in a chamber and an excavating torque from the values thereof, and mass balance evaluation of both a propulsion speed and the earth removal quantity from the values thereof, compares each evaluation value with tolerances set beforehand, changes the propulsion speed or the earth removal quantity corresponding to the comparison result, and determines the propulsion speed and the earth removal quantity optimum for the nature of the soil and the excavator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル掘削機模
型試験方法及び装置に関し、特に土圧式シールド掘削機
に用いて好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for testing a model of a tunnel excavator, and is particularly suitable for use in an earth-pressure shield excavator.

【0002】[0002]

【従来の技術】一般に、土圧式シールド掘削機は、円筒
形状をなす掘削機本体の前部にカッタヘッドが回転自在
に装着され、このカッタヘッドが駆動モータにより駆動
回転可能に支持されると共に、掘削土砂を排出するスク
リューコンベヤが配設される一方、後部に掘削機本体を
前進させる多数のシールドジャッキと、既設トンネルの
内壁面にセグメントを組み付けるエレクタ装置が装着さ
れて構成されている。従って、カッタヘッドを回転させ
ながらシールドジャッキを伸長させると、既設セグメン
トからの反力を得て掘削機本体が前進し、カッタヘッド
が前方の地盤を掘削してトンネルを形成する一方、スク
リューコンベヤにより掘削土砂が外部に排出される。
2. Description of the Related Art In general, an earth-pressure shield excavator has a cutter head rotatably mounted on a front portion of a cylindrical excavator body, and the cutter head is rotatably supported by a drive motor. A screw conveyor for discharging excavated earth and sand is provided, and a number of shield jacks for advancing the excavator body at the rear and an erector device for attaching a segment to an inner wall surface of an existing tunnel are mounted. Therefore, when the shield jack is extended while rotating the cutter head, the excavator body moves forward by obtaining the reaction force from the existing segment, and the cutter head excavates the ground in front to form a tunnel, while the screw conveyor is used. Excavated earth and sand is discharged to the outside.

【0003】このような土圧式シールド掘削機によるト
ンネル掘削作業にあっては、カッタヘッドの前方の切羽
と掘削機本体のバルクヘッドとの間に掘削土砂を充満、
加圧して切羽を安定させるために、掘削機の推進量に見
合う土量を排土している。土圧式シールド掘削機は掘削
するトンネル径、地質、掘削深さなどによりその構成や
形状等が異なることから、各シールド掘削機ごとに掘進
速度や排土量等を設定し、掘削を安定して円滑に行われ
るようにする必要がある。
[0003] In tunnel excavation work using such an earth pressure type shield excavator, a gap between a face in front of a cutter head and a bulkhead of an excavator body is filled with excavated earth and sand.
In order to stabilize the face by applying pressure, the soil volume corresponding to the propulsion amount of the excavator is discharged. Because the construction and shape of earth pressure shield excavators differ depending on the tunnel diameter, geology, excavation depth, etc., to be excavated, the excavation speed and the amount of soil removal are set for each shield excavator to stably excavate. It needs to be done smoothly.

【0004】そこで、土圧式シールド掘削機によるトン
ネル掘削作業時の運転データを得るために、実際の土圧
式シールド掘削機よりも縮小したシールド掘削機模型を
製作し、このシールド掘削機模型を用いて、運転条件や
地盤条件をパラメトリックに変えた作動試験を行い、こ
の試験で各種の運転データを得ることが考えられてい
る。
[0004] Therefore, in order to obtain operation data during tunnel excavation work using an earth pressure type shield excavator, a shield excavator model smaller than an actual earth pressure type shield excavator is manufactured, and this shield excavator model is used. It is considered that an operation test in which operating conditions and ground conditions are changed parametrically is performed, and various kinds of operating data are obtained by this test.

【0005】[0005]

【発明が解決しようとする課題】ところが、縮小したシ
ールド掘削機模型を実際の掘削条件下で作動し、掘削が
安定して円滑に行われるように、掘進速度や排土量等を
変更して運転データを得ることは困難である。なお、
「シールド掘進模型試験方法及び装置」として、特開平
8-29297号公報に開示されたものがある。但し、この技
術は、試験土槽の側面開口より外筒に嵌着したトンネル
覆工模型を挿入し、所定量進入後に外筒を抜き出して覆
工荷重センサで検出することで、実際のシールドトンネ
ル掘進に適合した覆工積載荷重を測定・確認するもので
あり、掘進速度や排土量等による掘削の安定性のための
試験方法ではない。
However, the reduced shield excavator model is operated under actual excavation conditions, and the excavation speed and the earth removal amount are changed so that the excavation can be performed stably and smoothly. It is difficult to obtain driving data. In addition,
“Shielding excavation model test method and apparatus”
There is one disclosed in 8-29297. However, this technique involves inserting a tunnel lining model fitted into the outer cylinder from the side opening of the test soil tank, extracting the outer cylinder after entering a predetermined amount, and detecting with a lining load sensor, the actual shield tunnel is used. It measures and confirms the lining loading load suitable for excavation, and is not a test method for excavation stability based on excavation speed or earth removal amount.

【0006】本発明はこのような問題点を解決するもの
であって、容易に高精度な各種の運転データを求めるこ
とができるトンネル掘削機模型試験方法及び装置を提供
することを目的とする。
An object of the present invention is to solve such a problem, and an object of the present invention is to provide a method and an apparatus for testing a model of a tunnel excavator capable of easily obtaining various kinds of operation data with high accuracy.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めの請求項1の発明のトンネル掘削機模型試験方法は、
所定密度及び含水比の地盤材料が充填された試験土槽内
にトンネル掘削機模型を設置して供試体を製作し、該供
試体を遠心加速度場にて前記模型内に実物と同じ土の自
重応力状態を実現して、カッタを回転させながら推進し
て前記地盤材料を掘削し、掘削土砂を前記カッタ後方の
チャンバ内に取り込んでから排土管を通して排出し、こ
の掘削時に、前記チャンバ内の土圧と該チャンバからの
排土量及び掘削速度をモニターしながら該排土量を調整
し、掘削トルクの変化を検出することを特徴とするもの
である。
According to the first aspect of the present invention, there is provided a method for testing a model of a tunnel excavator.
A test sample is manufactured by installing a tunnel excavator model in a test soil tank filled with a ground material having a predetermined density and a water content, and the test sample is placed in the model in a centrifugal acceleration field and the same weight of the soil as the real soil is put in the model. A stress state is realized, the cutter is rotated and propelled while rotating to excavate the ground material, the excavated earth and sand is taken into a chamber behind the cutter, and then discharged through a sewer pipe. The method is characterized in that the amount of earth removal is adjusted while monitoring the pressure, the amount of earth removed from the chamber, and the excavation speed, and a change in excavation torque is detected.

【0008】請求項2の発明のトンネル掘削機模型試験
方法では、前記チャンバ内の土圧及び前記掘削トルクに
基づいて前記排土量を調整し、最適な推進速度及び排土
量を求めることを特徴としている。
According to a second aspect of the present invention, there is provided a method for testing a tunnel excavator model, wherein the earth removal amount is adjusted based on the earth pressure in the chamber and the earth excavation torque, and an optimum propulsion speed and earth removal amount are obtained. Features.

【0009】請求項3の発明のトンネル掘削機模型試験
方法では、前記チャンバ内の土圧と前記掘削トルクから
両者の力学的評価を行うと共に、前記カッタの推進速度
と前記排土量から両者のマスバランスの評価を行い、評
価値と予め設定された許容値とを比較することで、前記
推進速度及び排土量を調整して最適値を求めることを特
徴としている。
In the method for testing a model of a tunnel excavator according to a third aspect of the present invention, both the mechanical evaluation is performed based on the earth pressure in the chamber and the excavation torque, and the two are evaluated based on the propulsion speed of the cutter and the earth removal amount. The present invention is characterized in that the mass balance is evaluated and the propulsion speed and the earth removal amount are adjusted to obtain an optimum value by comparing the evaluation value with a preset allowable value.

【0010】また、請求項4の発明のトンネル掘削機模
型試験装置は、所定密度及び含水比の地盤材料が充填さ
れた試験土槽と、該試験土槽に連設された枠体と、前記
試験土槽及び該枠体を遠心加速度場にて前記模型内に実
物と同じ土の自重応力状態を実現する遠心加速度付与装
置と、前記枠体に回転自在で且つ軸方向に所定距離移動
自在に支持された回転軸と、該回転軸を駆動回転する駆
動モータと、前記回転軸の先端部に固結されて前記試験
土槽内の地盤材料を掘削可能なカッタと、該カッタを前
進させる推進手段と、前記カッタの後方に位置して掘削
土砂を取り込むチャンバと、該チャンバ内の土砂を排出
する排土管と、該排土管からの排土量を検出する排土量
検出手段と、前記排土管による排土量を調整する排土量
調整手段と、前記チャンバ内の土圧を検出する土圧検出
手段と、前記カッタによる掘削トルクを検出する掘削ト
ルク検出手段とを具えたことを特徴とするものである。
In a fourth aspect of the present invention, there is provided a tunnel excavator model test apparatus, comprising: a test soil tank filled with a ground material having a predetermined density and a water content; a frame connected to the test soil tank; A centrifugal acceleration imparting device for realizing the same weight stress state of the soil as the actual soil in the model in the test soil tank and the frame in the centrifugal acceleration field, and a rotatable and axially movable predetermined distance in the frame; A rotating shaft supported, a driving motor for driving and rotating the rotating shaft, a cutter fixed to a tip end of the rotating shaft and capable of excavating ground material in the test soil tank, and a propulsion for moving the cutter forward. Means, a chamber positioned behind the cutter for taking excavated earth and sand, an earth discharging pipe for discharging earth and sand in the chamber, an earth discharging amount detecting means for detecting an earth discharging amount from the earth discharging pipe, Earth removal amount adjusting means for adjusting the earth removal amount by the earth pipe; And soil pressure detecting means for detecting the earth pressure in Yanba, is characterized in that comprises a drilling torque detecting means for detecting a drilling torque by said cutter.

【0011】請求項5の発明のトンネル掘削機模型試験
装置では、前記土圧検出手段と前記排土量検出手段と前
記掘削トルク検出手段の検出結果が入力される制御手段
を設け、該制御手段は前記土圧及び前記掘削トルクに基
づいて前記排土量を調整し、最適な推進速度及び排土量
を求めることを特徴としている。
According to a fifth aspect of the present invention, there is provided a model testing apparatus for a tunnel excavator, wherein control means for inputting detection results of the earth pressure detecting means, the earth discharging amount detecting means and the excavating torque detecting means are provided. Is characterized in that the earth removal amount is adjusted based on the earth pressure and the excavation torque, and an optimum propulsion speed and earth removal amount are obtained.

【0012】[0012]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1に本発明の一実施形態に係るトンネル
掘削機模型試験方法のブロック構成、図2にトンネル掘
削機模型試験方法のフローチャート、図3にトンネル掘
削機模型試験装置の概略構成、図4にトンネル掘削機模
型試験装置の断面、図5にトンネル掘削機模型試験装置
の正面視を示す。
FIG. 1 is a block diagram of a tunnel excavator model test method according to an embodiment of the present invention, FIG. 2 is a flowchart of a tunnel excavator model test method, and FIG. 3 is a schematic configuration of a tunnel excavator model test apparatus. 4 shows a cross section of the tunnel excavator model test apparatus, and FIG. 5 shows a front view of the tunnel excavator model test apparatus.

【0014】本実施形態に係るトンネル掘削機模型試験
方法及び装置は、図1及び図3に示すように、所定密度
の地盤材料が充填された試験土槽11内にトンネル掘削
機模型12を設置して供試体13を製作し、この供試体
13を遠心加速度付与装置14に搭載し、実地盤の土圧
が再現できるだけの遠心力を作用させ、この状態で、ト
ンネル掘削機模型12を作動して試験土槽11の地盤材
料を掘削し、この掘削時に、チャンバ内の土圧と排土量
をモニターしながら掘削トルクの変化を検出し、この土
圧及び掘削トルクに基づいて排土量を調整し、最適な推
進速度及び排土量を求めるものである。
As shown in FIGS. 1 and 3, a tunnel excavator model test method and apparatus according to the present embodiment installs a tunnel excavator model 12 in a test soil tank 11 filled with a ground material having a predetermined density. Then, the specimen 13 is manufactured, and the specimen 13 is mounted on the centrifugal acceleration imparting device 14, and a centrifugal force that can reproduce the earth pressure of the actual ground is applied. In this state, the tunnel excavator model 12 is operated. The ground material of the test soil tank 11 is excavated to detect a change in the excavation torque while monitoring the earth pressure and the earth removal amount in the chamber during the excavation. It adjusts to determine the optimal propulsion speed and the amount of earth removal.

【0015】この遠心加速度付与装置14において、図
3に示すように、架台15上に鉛直方向に沿った回転軸
16が回転自在に支持され、この回転軸16に水平アー
ム17の中間部が連結され、この水平アーム17の各端
部にはそれぞれ支持台18,19が回動自在に吊下げ支
持されており、一方の支持台18には供試体13を搭載
可能であり、他方の支持台19にはカウンタウエイト2
0が搭載可能となっている。そして、遠心加速度付与装
置14には制御装置21が接続されており、制御装置2
1は回転軸16を所定の速度で回転することで、水平ア
ーム17の支持台18に搭載された供試体13に対して
所定の遠心力を付与し、実地盤の土圧を再現できる遠心
加速度場を得ることができる。
In the centrifugal acceleration applying device 14, as shown in FIG. 3, a rotating shaft 16 extending vertically is rotatably supported on a gantry 15, and an intermediate portion of a horizontal arm 17 is connected to the rotating shaft 16. Supports 18 and 19 are rotatably suspended and supported at respective ends of the horizontal arm 17. One of the supports 18 can mount the test piece 13, and the other support 19 has counter weight 2
0 can be mounted. The control device 21 is connected to the centrifugal acceleration imparting device 14, and the control device 2
Reference numeral 1 denotes a centrifugal acceleration that rotates the rotating shaft 16 at a predetermined speed to apply a predetermined centrifugal force to the specimen 13 mounted on the support base 18 of the horizontal arm 17 and reproduce the earth pressure of the actual ground. You can get a place.

【0016】また、供試体13において、図1、図4及
び図5に示すように、試験土槽11は所定密度及び所定
の含水比の地盤材料が充填されたものであり、側部に円
形をなす開口が形成されており、枠体22に取付けられ
ている。この枠体22には試験土槽11に隣接してトン
ネル掘削機の縮尺模型12が取付けられている。
In the specimen 13, as shown in FIGS. 1, 4 and 5, the test soil tank 11 is filled with a ground material having a predetermined density and a predetermined water content, and has a circular shape on a side portion. Is formed and attached to the frame 22. A scale model 12 of a tunnel excavator is attached to the frame 22 adjacent to the test soil tank 11.

【0017】即ち、枠体22の前壁部23及び後壁部
(図示略)には軸受24により中空の回転軸25が回転
自在で、且つ、軸方向に所定距離移動自在に支持されて
おり、この回転軸25の基端部にはキー26により従動
ギヤ27が固結されている。また、回転軸25には軸受
28が軸方向移動不能に装着され、この軸受28には駆
動モータ29が取付けられ、駆動モータ29の駆動ギヤ
30が従動ギヤ27に噛み合っている。従って、この駆
動モータ29により従動ギヤ27を介して回転軸25を
所定速度で回転することができる。
That is, a hollow rotating shaft 25 is rotatably supported by a bearing 24 on a front wall portion 23 and a rear wall portion (not shown) of the frame 22 and is movably supported in the axial direction by a predetermined distance. A driven gear 27 is fixed to the base end of the rotating shaft 25 by a key 26. A bearing 28 is mounted on the rotating shaft 25 so as not to move in the axial direction. A driving motor 29 is mounted on the bearing 28, and a driving gear 30 of the driving motor 29 is meshed with the driven gear 27. Therefore, the rotation shaft 25 can be rotated at a predetermined speed by the drive motor 29 via the driven gear 27.

【0018】一方、回転軸25の先端部に円盤形状をな
すカッタヘッド31が固結されており、このカッタヘッ
ド31の後部にはチャンバ32が一体に軸方向移動可能
で、且つ、相対回転可能に装着されている。このカッタ
ヘッド31は放射状のスポーク33の両側に地盤を掘削
するカッタビット34が多数の取付けられると共に、掘
削土砂をチャンバ32内に取り込む取込開口35が形成
されている。そして、カッタヘッド31の下方には排土
管36が配設され、上端部がチャンバ32に連通し、下
端部が枠体22の下部に配設された収納容器37に延出
されている。また、回転軸25の後方にはこの回転軸2
5を介してカッタヘッド31を前進させる推進ジャッキ
48が装着されている。従って、カッタヘッド31が回
転しながら推進ジャッキ48により前進すると、多数の
カッタビット34が地盤を掘削し、掘削土砂を取込開口
35からチャンバ32内に取り込み、排土管36を通し
て収納容器37に排出することができる。このとき、チ
ャンバ32はカッタヘッド31の回転に伴って回転しな
いが、カッタヘッド31と一体に前進する。
On the other hand, a disk-shaped cutter head 31 is fixed to the tip of the rotating shaft 25, and a chamber 32 is integrally movable axially at the rear of the cutter head 31 and is relatively rotatable. It is attached to. The cutter head 31 is provided with a number of cutter bits 34 for excavating the ground on both sides of the radial spokes 33, and is formed with an intake opening 35 for taking excavated earth and sand into the chamber 32. An earth discharging pipe 36 is provided below the cutter head 31, an upper end thereof communicates with the chamber 32, and a lower end extends to a storage container 37 arranged below the frame 22. Behind the rotating shaft 25, the rotating shaft 2
A propulsion jack 48 for advancing the cutter head 31 through 5 is mounted. Therefore, when the cutter head 31 rotates and advances by the propulsion jack 48, the cutter bits 34 excavate the ground, take excavated earth and sand into the chamber 32 from the intake opening 35, and discharge the excavated soil into the storage container 37 through the earth discharging pipe 36. can do. At this time, the chamber 32 does not rotate with the rotation of the cutter head 31, but advances integrally with the cutter head 31.

【0019】そして、排土管36の中途部にはチャンバ
32から収納容器37に排出する排土量を調整可能な調
整開口38を有するシャッタ(排土量調整手段)39が
水平移動自在に設けられ、エアシリンダ40により移動
可能となっている。このエアシリンダ40は制御装置2
1により電磁弁41の開度が制御されることで、作動ス
トロークが変更され、排土量の開口面積を調整可能とな
っている。また、収納容器37の下部には収納した土砂
の重量を計測するロードセル(排土量検出手段)42が
装着されると共に、収納容器37の内部には排土管36
から土砂排出状況を観察するCCDカメラ43が装着さ
れている。
In the middle of the discharging pipe 36, a shutter (discharging amount adjusting means) 39 having an adjusting opening 38 for adjusting the discharging amount discharged from the chamber 32 to the storage container 37 is provided so as to be horizontally movable. , And can be moved by an air cylinder 40. The air cylinder 40 is connected to the control device 2
By controlling the opening degree of the solenoid valve 41 by 1, the operation stroke is changed, and the opening area of the earth removal amount can be adjusted. Further, a load cell (discharge amount detecting means) 42 for measuring the weight of the stored earth and sand is attached to a lower portion of the storage container 37, and a discharge pipe 36 is provided inside the storage container 37.
A CCD camera 43 for observing the state of earth and sand discharge is mounted.

【0020】更に、チャンバ32には内部の土圧を検出
する複数の土圧計(土圧検出手段)44が、その上下方
向において中間部及び下部に装着されている。また、カ
ッタヘッド31による掘削トルク(モータトルク)を検
出するトルクセンサ(掘削トルク検出手段)45が装着
されており、このトルクセンサ45は、例えば、駆動モ
ータ29に接続された電流センサであって、駆動モータ
29の電流波形の変化を検出している。なお、回転軸2
5内にはカッタヘッド31の回転角度位置を検出するロ
ータリエンコーダ46が設けられ、また、枠体22には
従動ギヤ27(カッタヘッド31)の前進位置を検出す
る位置センサ47が設けられている。
Further, a plurality of earth pressure gauges (earth pressure detecting means) 44 for detecting the earth pressure inside the chamber 32 are mounted on the middle part and the lower part in the vertical direction. Further, a torque sensor (excavation torque detecting means) 45 for detecting an excavation torque (motor torque) by the cutter head 31 is mounted. The torque sensor 45 is, for example, a current sensor connected to the drive motor 29. , The change in the current waveform of the drive motor 29 is detected. In addition, the rotating shaft 2
5 is provided with a rotary encoder 46 for detecting the rotational angle position of the cutter head 31, and the frame 22 is provided with a position sensor 47 for detecting the forward position of the driven gear 27 (the cutter head 31). .

【0021】このように試験土槽11、トンネル掘削機
模型12、供試体13、遠心加速度付与装置14が構成
されたことで、図1に示すように、制御装置21には、
ロードセル42が検出した土砂の重量(排土量)、土圧
計44が検出したチャンバ32内の土圧、トルクセンサ
45が検出した掘削トルク、予め設定された推進ジャッ
キ48の推進力(推進速度)が入力される。この制御装
置21は評価部51と判定部52とを有しており、評価
部51はチャンバ内の土圧と掘削トルクから両者の力学
的評価と、推進速度と排土量から両者のマスバランスの
評価を行い、判定部52は各評価値と予め設定された許
容値とを比較する。そして、制御装置21はその判定結
果に基づいて推進ジャッキ48とエアシリンダ40の電
磁弁41を制御する。
With the test soil tank 11, the tunnel excavator model 12, the specimen 13, and the centrifugal acceleration imparting device 14 configured as described above, as shown in FIG.
The weight of the earth and sand detected by the load cell 42 (the amount of earth removed), the earth pressure in the chamber 32 detected by the earth pressure gauge 44, the excavation torque detected by the torque sensor 45, and a predetermined thrust (propulsion speed) of the propulsion jack 48. Is entered. The control device 21 has an evaluation unit 51 and a determination unit 52. The evaluation unit 51 dynamically evaluates the two based on the earth pressure and the excavation torque in the chamber, and mass balances the two based on the propulsion speed and the amount of earth removal. Is determined, and the determination unit 52 compares each evaluation value with a preset allowable value. Then, the control device 21 controls the propulsion jack 48 and the solenoid valve 41 of the air cylinder 40 based on the determination result.

【0022】ここで、上述した本実施形態のトンネル掘
削機模型試験装置による試験方法について説明する。
Here, a test method using the above-described model apparatus for testing a tunnel excavator according to the present embodiment will be described.

【0023】まず、図3に示すように、試験土槽11内
に所定密度の地盤材料を充填し、この試験土槽11の側
部開口にトンネル掘削機模型12の先端部(カッタヘッ
ド31)を挿入して供試体13を製作し、この供試体1
3を遠心加速度付与装置14に搭載する。そして、制御
装置21は回転軸16を所定の速度で回転し、水平アー
ム17の支持台18に搭載された供試体13に対して所
定の遠心加速度を付与することで、トンネル掘削機模型
12に実地盤の土圧と同様の遠心加速度場を作用させ
る。
First, as shown in FIG. 3, a test soil tank 11 is filled with a ground material having a predetermined density, and a tip portion (a cutter head 31) of a tunnel excavator model 12 is inserted into a side opening of the test soil tank 11. Is inserted to produce a test piece 13, and this test piece 1
3 is mounted on the centrifugal acceleration imparting device 14. Then, the control device 21 rotates the rotating shaft 16 at a predetermined speed and applies a predetermined centrifugal acceleration to the specimen 13 mounted on the support base 18 of the horizontal arm 17, thereby giving the tunnel excavator model 12 a A centrifugal acceleration field similar to the actual ground pressure is applied.

【0024】次に、このトンネル掘削機模型12に所定
の土圧が作用した状態で掘削試験を開始する。即ち、図
4に示すように、駆動モータ29によりカッタヘッド3
1を駆動回転しながら、推進ジャッキを所定速度で伸長
すると、回転軸25を介してカッタヘッド31が前進
し、試験土槽11内の地盤を掘削する。そして、掘削土
砂は取込開口35からチャンバ32内に取り込まれ、排
土管36を通して収納容器37に排出される。
Next, an excavation test is started with a predetermined earth pressure acting on the tunnel excavator model 12. That is, as shown in FIG.
When the propulsion jack is extended at a predetermined speed while driving and rotating the cutter 1, the cutter head 31 advances through the rotating shaft 25 and excavates the ground in the test soil tank 11. Then, the excavated earth and sand is taken into the chamber 32 from the intake opening 35 and discharged to the storage container 37 through the discharge pipe 36.

【0025】このとき、図1に示すように、制御装置2
1は推進ジャッキ48を予め設定された推進速度により
作動制御すると共に、電磁弁41を介してエアシリンダ
40をの作動ストロークを制御することで、シャッタ3
9による排土管36の開口面積を予め設定された開口面
積に調整している。そして、制御装置21には、ロード
セル42が検出した排土量、土圧計44が検出したチャ
ンバ32内の土圧、トルクセンサ45が検出した掘削ト
ルクが入力されている。ここで、図2に示すように、こ
の制御装置21は、評価部51がチャンバ32内の土圧
と掘削トルクから両者の力学的評価を行うと共に、推進
速度と排土量から両者のマスバランスの評価を行う。そ
して、判定部52は各評価値と予め設定された許容値と
を比較し、評価値が許容値内にあればそのまま掘削試験
を続行する。一方、評価値が許容値内になければ、制御
装置21は推進ジャッキ48の推進速度を変更するか、
あるいは、電磁弁41を介してエアシリンダ40を制御
し、シャッタ39による排土管36の開口面積を変更し
て排土量を変更する。
At this time, as shown in FIG.
1 controls the operation of the propulsion jack 48 at a predetermined propulsion speed, and controls the operation stroke of the air cylinder 40 via the electromagnetic valve 41 to thereby control the shutter 3.
9, the opening area of the discharge pipe 36 is adjusted to a preset opening area. The controller 21 receives the earth removal amount detected by the load cell 42, the earth pressure in the chamber 32 detected by the earth pressure gauge 44, and the excavation torque detected by the torque sensor 45. Here, as shown in FIG. 2, the control unit 21 is configured such that the evaluation unit 51 performs the mechanical evaluation of the two based on the earth pressure and the excavation torque in the chamber 32 and the mass balance between the two based on the propulsion speed and the amount of earth removal. Is evaluated. Then, the determination unit 52 compares each evaluation value with a preset allowable value, and if the evaluation value is within the allowable value, continues the excavation test as it is. On the other hand, if the evaluation value is not within the allowable value, the control device 21 changes the propulsion speed of the propulsion jack 48, or
Alternatively, the air cylinder 40 is controlled via the electromagnetic valve 41 to change the opening area of the discharging pipe 36 by the shutter 39 to change the discharging amount.

【0026】このようにチャンバ32内の土圧と掘削ト
ルクに基づく力学的評価と、推進速度と排土量に基づく
マスバランスの評価に応じて、推進速度、あるいは排土
量を変更し、地盤材料に応じた最適な推進速度及び排土
量を求める。特に、土圧式シールド掘削機では、カッタ
ヘッドの前方の切羽と掘削機本体のバルクヘッドとの間
に掘削土砂を充満、加圧して切羽を安定させるために、
掘削機の推進速度に見合う排土量を適正に設定する必要
があり、上述した掘削試験を行うことで、地質や掘削機
に最適な推進速度及び排土量を求めることができる。
As described above, the propulsion speed or the earth removal amount is changed according to the dynamic evaluation based on the earth pressure and the excavation torque in the chamber 32 and the evaluation of the mass balance based on the propulsion speed and the earth removal amount. Find the optimum propulsion speed and earth removal amount according to the material. In particular, in the earth pressure type shield excavator, the gap between the face in front of the cutter head and the bulkhead of the excavator body is filled with excavated soil and pressurized to stabilize the face by pressing.
It is necessary to properly set the earth removal amount corresponding to the propulsion speed of the excavator. By performing the above-described excavation test, it is possible to obtain the optimum propulsion speed and earth removal amount for the geology and the excavator.

【0027】[0027]

【発明の効果】以上、実施形態において詳細に説明した
ように請求項1の発明のトンネル掘削機模型試験方法に
よれば、所定密度の地盤材料が充填された試験土槽内に
トンネル掘削機模型を設置して供試体を製作し、供試体
を遠心加速度場にて模型内に実物と同じ土の自重応力状
態を実現して、カッタを回転させながら推進して地盤材
料を掘削し、掘削土砂をカッタ後方のチャンバ内に取り
込んでから排土管を通して排出し、この掘削時にチャン
バ内の土圧とチャンバからの排土量をモニターしながら
排土量を調整し、掘削トルクの変化を検出するようにし
たので、最適な排土量と掘削トルクとを設定することが
でき、容易に高精度な各種の運転データを求めることが
できる。
As described above in detail in the embodiment, according to the method for testing a model of a tunnel excavator according to the first aspect of the present invention, the model of the tunnel excavator is placed in a test soil tank filled with a ground material having a predetermined density. The specimen is manufactured by installing the specimen, and the specimen is subjected to centrifugal acceleration field in the model to realize the same state of its own weight stress of the soil as the real thing, and while propelling while rotating the cutter, excavating the ground material, After taking into the chamber behind the cutter, it is discharged through the discharging pipe, and during this excavation, the change in the excavating torque is detected by adjusting the discharging amount while monitoring the earth pressure in the chamber and the discharging amount from the chamber. Therefore, it is possible to set an optimum earth removal amount and excavation torque, and easily obtain various kinds of high-precision operation data.

【0028】請求項2の発明のトンネル掘削機模型試験
方法によれば、チャンバ内の土圧及び掘削トルクに基づ
いて排土量を調整し、最適な推進速度及び排土量を求め
るようにしたので、トンネル掘削機の最適な運転データ
を求めることができる。
According to the tunnel excavator model test method of the second aspect of the present invention, the amount of earth removal is adjusted based on the earth pressure and the excavation torque in the chamber, and the optimum propulsion speed and the amount of earth removal are obtained. Therefore, optimum operation data of the tunnel excavator can be obtained.

【0029】請求項3の発明のトンネル掘削機模型試験
方法によれば、チャンバ内の土圧と掘削トルクから両者
の力学的評価を行うと共に、カッタの推進速度と排土量
から両者のマスバランスの評価を行い、評価値と予め設
定された許容値とを比較することで、推進速度及び排土
量を調整して最適値を求めるようにしたので、最適な運
転データを確実に簡単な手法で求めることができる。
According to the method for testing a model of a tunnel excavator according to the third aspect of the present invention, both the mechanical evaluation is performed based on the earth pressure in the chamber and the excavation torque, and the mass balance between the two is determined based on the propulsion speed of the cutter and the amount of earth removal. The propulsion speed and the amount of earth removal are adjusted to obtain the optimum value by comparing the evaluation value with the preset allowable value. Can be obtained by

【0030】請求項4の発明のトンネル掘削機模型試験
装置によれば、所定密度の地盤材料が充填された試験土
槽と、試験土槽に連設された枠体と、試験土槽及び枠体
を遠心加速度場にて実物と同じ土の自重応力状態を実現
する遠心加速度付与装置と、枠体に回転自在で且つ軸方
向に所定距離移動自在に支持された回転軸と、回転軸を
駆動回転する駆動モータと、回転軸の先端部に固結され
て試験土槽内の地盤材料を掘削可能なカッタと、カッタ
を前進させる推進手段と、カッタの後方に位置して掘削
土砂を取り込むチャンバと、チャンバ内の土砂を排出す
る排土管と、排土管からの排土量を検出する排土量検出
手段と、排土管による排土量を調整する排土量調整手段
と、チャンバ内の土圧を検出する土圧検出手段と、カッ
タによる掘削トルクを検出する掘削トルク検出手段とを
設けたので、掘削時におけるチャンバ内の土圧とチャン
バからの排土量をモニターしながら、この排土量を調整
して掘削トルクの変化を検出することとなり、最適な排
土量と掘削トルクとを設定することができ、容易に高精
度な各種の運転データを求めることができる。
According to the fourth aspect of the present invention, a test soil tank filled with a ground material having a predetermined density, a frame connected to the test soil tank, a test soil tank and a frame are provided. A centrifugal acceleration imparting device that realizes the same gravity state of the soil as a real object in a centrifugal acceleration field, a rotating shaft rotatably supported by a frame body and capable of moving a predetermined distance in an axial direction, and driving the rotating shaft A rotating drive motor, a cutter fixed to the tip of the rotating shaft and capable of excavating the ground material in the test soil tank, a propulsion means for advancing the cutter, and a chamber positioned behind the cutter to take excavated earth and sand. An earth removal pipe for discharging earth and sand in the chamber, earth removal amount detecting means for detecting the earth removal amount from the earth removal pipe, earth removal amount adjusting means for adjusting the earth removal amount by the earth removal pipe, soil in the chamber, Earth pressure detecting means for detecting pressure, And the excavation torque detecting means for detecting the change in excavation torque is detected by monitoring the earth pressure in the chamber and the amount of earth removal from the chamber during excavation while adjusting the earth removal amount. Optimum earth removal amount and excavation torque can be set, and high-precision various operation data can be easily obtained.

【0031】請求項5の発明のトンネル掘削機模型試験
装置によれば、土圧検出手段と排土量検出手段と掘削ト
ルク検出手段の検出結果が入力される制御手段を設け、
制御手段が土圧及び掘削トルクに基づいて排土量を調整
し、最適な推進速度及び排土量を求めるので、トンネル
掘削機の最適な運転データを求めることができる。
According to a fifth aspect of the present invention, there is provided a tunnel excavator model test apparatus, wherein control means for inputting detection results of earth pressure detecting means, earth removal amount detecting means and excavating torque detecting means is provided.
Since the control means adjusts the earth removal amount based on the earth pressure and the excavation torque to obtain the optimum propulsion speed and the earth removal amount, it is possible to obtain the optimum operation data of the tunnel excavator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るトンネル掘削機模型
試験方法のブロック構成図である。
FIG. 1 is a block configuration diagram of a tunnel excavator model test method according to an embodiment of the present invention.

【図2】トンネル掘削機模型試験方法のフローチャート
である。
FIG. 2 is a flowchart of a tunnel excavator model test method.

【図3】トンネル掘削機模型試験装置の概略構成図であ
る。
FIG. 3 is a schematic configuration diagram of a tunnel excavator model test apparatus.

【図4】トンネル掘削機模型試験装置の断面図である。FIG. 4 is a sectional view of a tunnel excavator model test apparatus.

【図5】トンネル掘削機模型試験装置の正面図である。FIG. 5 is a front view of the tunnel excavator model test apparatus.

【符号の説明】[Explanation of symbols]

11 試験土槽 12 トンネル掘削機模型 13 供試体 14 遠心加速度付与装置 21 制御装置 22 枠体 25 回転軸 29 駆動モータ 31 カッタヘッド 32 チャンバ 36 排土管 37 収納容器 39 シャッタ(排土量調整手段) 40 エアシリンダ 41 電磁弁 42 ロードセル(排土量検出手段) 43 CCDカメラ 44 土圧計(土圧検出手段) 45 トルクセンサ(掘削トルク検出手段) 48 推進ジャッキ 51 評価部 52 判定部 DESCRIPTION OF SYMBOLS 11 Test soil tank 12 Tunnel excavator model 13 Specimen 14 Centrifugal acceleration imparting device 21 Control device 22 Frame 25 Rotating shaft 29 Drive motor 31 Cutter head 32 Chamber 36 Drainage pipe 37 Storage container 39 Shutter (Ejection amount adjustment means) 40 Air cylinder 41 Solenoid valve 42 Load cell (discharge amount detection means) 43 CCD camera 44 Earth pressure gauge (earth pressure detection means) 45 Torque sensor (digging torque detection means) 48 Propulsion jack 51 Evaluation unit 52 Judgment unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定密度及び含水比の地盤材料が充填さ
れた試験土槽内にトンネル掘削機模型を設置して供試体
を製作し、該供試体を遠心加速度場にて前記模型内に実
物と同じ土の自重応力状態を実現して、カッタを回転さ
せながら推進して前記地盤材料を掘削し、掘削土砂を前
記カッタ後方のチャンバ内に取り込んでから排土管を通
して排出し、この掘削時に、前記チャンバ内の土圧と該
チャンバからの排土量及び掘削速度をモニターしながら
該排土量を調整し、掘削トルクの変化を検出することを
特徴とするトンネル掘削機模型試験方法。
1. A test sample is manufactured by installing a tunnel excavator model in a test soil tank filled with a ground material having a predetermined density and a water content, and the test sample is placed inside the model in a centrifugal acceleration field. In order to achieve the same weight stress state of the soil as the above, the ground material is excavated by propelling while rotating the cutter, the excavated earth and sand is taken into the chamber behind the cutter, and then discharged through the earth discharging pipe. A method for testing a model of a tunnel excavator, comprising adjusting the earth removal amount while monitoring the earth pressure in the chamber, the earth removal amount from the chamber, and the excavation speed, and detecting a change in the excavation torque.
【請求項2】 請求項1記載のトンネル掘削機模型試験
方法において、前記チャンバ内の土圧及び前記掘削トル
クに基づいて前記排土量を調整し、最適な推進速度及び
排土量を求めることを特徴とするトンネル掘削機模型試
験方法。
2. The tunnel excavator model test method according to claim 1, wherein the earth removal amount is adjusted based on the earth pressure in the chamber and the earth excavation torque, and an optimum propulsion speed and earth removal amount are obtained. A method for testing a model of a tunnel excavator.
【請求項3】 請求項1記載のトンネル掘削機模型試験
方法において、前記チャンバ内の土圧と前記掘削トルク
から両者の力学的評価を行うと共に、前記カッタの推進
速度と前記排土量から両者のマスバランスの評価を行
い、評価値と予め設定された許容値とを比較すること
で、前記推進速度及び排土量を調整して最適値を求める
ことを特徴とするトンネル掘削機模型試験方法。
3. The tunnel excavator model test method according to claim 1, wherein both mechanical evaluation is performed based on the earth pressure in the chamber and the excavation torque, and both are evaluated based on the propulsion speed of the cutter and the amount of earth removal. The mass balance of the tunnel excavator is evaluated by comparing the evaluation value with a preset allowable value to adjust the propulsion speed and the earth removal amount to obtain an optimum value. .
【請求項4】 所定密度及び含水比の地盤材料が充填さ
れた試験土槽と、該試験土槽に連設された枠体と、前記
試験土槽及び該枠体を遠心加速度場にて前記模型内に実
物と同じ土の自重応力状態を実現する遠心加速度付与装
置と、前記枠体に回転自在で且つ軸方向に所定距離移動
自在に支持された回転軸と、該回転軸を駆動回転する駆
動モータと、前記回転軸の先端部に固結されて前記試験
土槽内の地盤材料を掘削可能なカッタと、該カッタを前
進させる推進手段と、前記カッタの後方に位置して掘削
土砂を取り込むチャンバと、該チャンバ内の土砂を排出
する排土管と、該排土管からの排土量を検出する排土量
検出手段と、前記排土管による排土量を調整する排土量
調整手段と、前記チャンバ内の土圧を検出する土圧検出
手段と、前記カッタによる掘削トルクを検出する掘削ト
ルク検出手段とを具えたことを特徴とするトンネル掘削
機模型試験装置。
4. A test soil tank filled with a ground material having a predetermined density and a water content ratio, a frame connected to the test soil tank, and the test soil tank and the frame are subjected to a centrifugal acceleration field. A centrifugal acceleration imparting device for realizing the same weight stress state of the soil as the real thing in the model, a rotating shaft rotatably supported on the frame body and movable by a predetermined distance in the axial direction, and driving and rotating the rotating shaft A drive motor, a cutter fixed to the tip of the rotating shaft and capable of excavating the ground material in the test soil tank, a propulsion means for advancing the cutter, and excavated earth and sand located behind the cutter. A take-in chamber, a discharging pipe for discharging earth and sand in the chamber, a discharging amount detecting means for detecting a discharging amount from the discharging pipe, and a discharging amount adjusting means for adjusting a discharging amount by the discharging pipe. Earth pressure detecting means for detecting earth pressure in the chamber, and the cutter An excavation torque detecting means for detecting an excavation torque by means of a tunnel excavator model testing device.
【請求項5】 請求項4記載のトンネル掘削機模型試験
装置において、前記土圧検出手段と前記排土量検出手段
と前記掘削トルク検出手段の検出結果が入力される制御
手段を設け、該制御手段は前記土圧及び前記掘削トルク
に基づいて前記排土量を調整し、最適な推進速度及び排
土量を求めることを特徴とするトンネル掘削機模型試験
装置。
5. A tunnel excavator model test apparatus according to claim 4, further comprising control means to which detection results of said earth pressure detecting means, said earth removal amount detecting means, and said excavating torque detecting means are inputted. Means for adjusting the earth removal amount based on the earth pressure and the excavation torque to obtain an optimum propulsion speed and earth removal amount.
JP2001175027A 2001-06-11 2001-06-11 Tunnel excavator model test method and device Withdrawn JP2002365170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175027A JP2002365170A (en) 2001-06-11 2001-06-11 Tunnel excavator model test method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175027A JP2002365170A (en) 2001-06-11 2001-06-11 Tunnel excavator model test method and device

Publications (1)

Publication Number Publication Date
JP2002365170A true JP2002365170A (en) 2002-12-18

Family

ID=19016233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175027A Withdrawn JP2002365170A (en) 2001-06-11 2001-06-11 Tunnel excavator model test method and device

Country Status (1)

Country Link
JP (1) JP2002365170A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343650C (en) * 2004-12-09 2007-10-17 上海隧道工程股份有限公司 Large shield tunnelling analogue test platform
CN100343485C (en) * 2004-12-09 2007-10-17 上海隧道工程股份有限公司 Analogue soil box for analogue shiold tunnelling machine testing
KR100877580B1 (en) 2008-01-03 2009-01-07 주식회사 동아지질 Eexperiment of grout stability for shield method
CN101915106A (en) * 2010-08-05 2010-12-15 中山大学 Optimal tunneling speed control method for built tunnel shield driving
CN101629872B (en) * 2009-08-04 2011-03-09 上海盾构设计试验研究中心有限公司 Side hydraulic loading system for simulation test bed
KR101058198B1 (en) * 2009-01-05 2011-08-22 성균관대학교산학협력단 Loading Automation Experiment Device of Wheel Loader
KR101322125B1 (en) * 2011-11-30 2013-10-28 호서대학교 산학협력단 Tunnel boring machine simulator
CN104359612A (en) * 2014-11-19 2015-02-18 中国船舶重工集团公司第七0四研究所 Force arm cross beam micro jacking device of ultra-large tool edge type torque standard machine
CN104653193A (en) * 2014-12-22 2015-05-27 天津大学 Energy theory-based prediction method for stress of TMB (tunnel boring machine) disk hob
CN104713987A (en) * 2015-01-25 2015-06-17 北京工业大学 Model test apparatus for stimulating tunnel excavation process
CN105957435A (en) * 2016-07-06 2016-09-21 上海盾构设计试验研究中心有限公司 Test device and method for simulating plastic drainage plate cutting by soft soil shield tunneling
CN106246197A (en) * 2016-08-26 2016-12-21 中国铁建重工集团有限公司 A kind of cutter head torque method for monitoring abnormality for TBM
JP2017166295A (en) * 2016-03-18 2017-09-21 公益財団法人鉄道総合技術研究所 Excavation method simulation device
CN107831073A (en) * 2017-11-02 2018-03-23 中山大学 Shield-tunneling construction synchronous grouting experimental rig and test method
CN108343445A (en) * 2018-04-19 2018-07-31 中国矿业大学 Simulate the multifunctional intellectual mole and method of tunnel partial excavation
KR20180117014A (en) * 2017-04-18 2018-10-26 한국과학기술원 Digging performance testting apparatus for fore-end of small section tunnel boring machine
KR101917942B1 (en) * 2017-01-12 2018-11-13 현대건설주식회사 Test apparatus for measuring shear strength of foam mixed soil for design optimum foam mix factor
KR101921408B1 (en) * 2017-01-12 2018-11-23 현대건설주식회사 Test apparatus for predicting performance of soft ground Tunnel Boring Machine
CN110057676A (en) * 2019-05-29 2019-07-26 国网河北省电力有限公司石家庄供电分公司 A kind of pipe jacking tunnel work progress model test hole
JP2020169559A (en) * 2017-07-28 2020-10-15 株式会社奥村組 Bit vibration testing machine
CN113671150A (en) * 2021-07-16 2021-11-19 长安大学 Combined loess stratum shield tunnel construction full-stage test device capable of uniformly humidifying
CN114136970A (en) * 2021-12-02 2022-03-04 内蒙古科技大学 Experimental method for researching back soil effect caused by rectangular pipe jacking tunneling
CN114136675A (en) * 2021-11-25 2022-03-04 中铁隧道局集团有限公司 Shield pressure maintaining system experiment device and using method thereof
CN114136557A (en) * 2021-11-16 2022-03-04 中建三局集团有限公司 Sliding sealing structure testing device of hinged sliding drum type continuous tunneling shield machine
CN114198107A (en) * 2021-12-13 2022-03-18 西安交通大学 Multifunctional reduced-scale shield model free of shield machine model and test method thereof
CN114279612A (en) * 2022-03-08 2022-04-05 华东交通大学 System and method for testing frictional resistance of jacking pipe
CN115163120A (en) * 2022-07-12 2022-10-11 华南理工大学 Model test device and test method for shield tunnel lining
WO2023109054A1 (en) * 2021-12-17 2023-06-22 中铁隧道局集团有限公司 Shield tunnelling test platform suitable for multiple large mechanical occasions and use method of platform
CN116384074A (en) * 2023-03-16 2023-07-04 华中科技大学 Self-adaptive assembly method and wear calculation method for shield cutter head and cutter

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343485C (en) * 2004-12-09 2007-10-17 上海隧道工程股份有限公司 Analogue soil box for analogue shiold tunnelling machine testing
CN100343650C (en) * 2004-12-09 2007-10-17 上海隧道工程股份有限公司 Large shield tunnelling analogue test platform
KR100877580B1 (en) 2008-01-03 2009-01-07 주식회사 동아지질 Eexperiment of grout stability for shield method
KR101058198B1 (en) * 2009-01-05 2011-08-22 성균관대학교산학협력단 Loading Automation Experiment Device of Wheel Loader
CN101629872B (en) * 2009-08-04 2011-03-09 上海盾构设计试验研究中心有限公司 Side hydraulic loading system for simulation test bed
CN101915106A (en) * 2010-08-05 2010-12-15 中山大学 Optimal tunneling speed control method for built tunnel shield driving
KR101322125B1 (en) * 2011-11-30 2013-10-28 호서대학교 산학협력단 Tunnel boring machine simulator
CN104359612A (en) * 2014-11-19 2015-02-18 中国船舶重工集团公司第七0四研究所 Force arm cross beam micro jacking device of ultra-large tool edge type torque standard machine
CN104653193A (en) * 2014-12-22 2015-05-27 天津大学 Energy theory-based prediction method for stress of TMB (tunnel boring machine) disk hob
CN104713987A (en) * 2015-01-25 2015-06-17 北京工业大学 Model test apparatus for stimulating tunnel excavation process
JP2017166295A (en) * 2016-03-18 2017-09-21 公益財団法人鉄道総合技術研究所 Excavation method simulation device
CN105957435A (en) * 2016-07-06 2016-09-21 上海盾构设计试验研究中心有限公司 Test device and method for simulating plastic drainage plate cutting by soft soil shield tunneling
CN106246197A (en) * 2016-08-26 2016-12-21 中国铁建重工集团有限公司 A kind of cutter head torque method for monitoring abnormality for TBM
KR101917942B1 (en) * 2017-01-12 2018-11-13 현대건설주식회사 Test apparatus for measuring shear strength of foam mixed soil for design optimum foam mix factor
KR101921408B1 (en) * 2017-01-12 2018-11-23 현대건설주식회사 Test apparatus for predicting performance of soft ground Tunnel Boring Machine
KR20180117014A (en) * 2017-04-18 2018-10-26 한국과학기술원 Digging performance testting apparatus for fore-end of small section tunnel boring machine
KR101987866B1 (en) 2017-04-18 2019-09-30 한국과학기술원 Digging performance testting apparatus for fore-end of small section tunnel boring machine
JP2020169559A (en) * 2017-07-28 2020-10-15 株式会社奥村組 Bit vibration testing machine
CN107831073A (en) * 2017-11-02 2018-03-23 中山大学 Shield-tunneling construction synchronous grouting experimental rig and test method
CN108343445A (en) * 2018-04-19 2018-07-31 中国矿业大学 Simulate the multifunctional intellectual mole and method of tunnel partial excavation
CN110057676A (en) * 2019-05-29 2019-07-26 国网河北省电力有限公司石家庄供电分公司 A kind of pipe jacking tunnel work progress model test hole
CN113671150B (en) * 2021-07-16 2023-06-20 长安大学 Combined loess stratum shield tunnel construction full-stage test device capable of uniformly humidifying
CN113671150A (en) * 2021-07-16 2021-11-19 长安大学 Combined loess stratum shield tunnel construction full-stage test device capable of uniformly humidifying
CN114136557B (en) * 2021-11-16 2024-02-20 中建三局集团有限公司 Sliding seal structure testing device of hinged sliding drum type continuous tunneling shield machine
CN114136557A (en) * 2021-11-16 2022-03-04 中建三局集团有限公司 Sliding sealing structure testing device of hinged sliding drum type continuous tunneling shield machine
CN114136675A (en) * 2021-11-25 2022-03-04 中铁隧道局集团有限公司 Shield pressure maintaining system experiment device and using method thereof
CN114136675B (en) * 2021-11-25 2024-02-02 中铁隧道局集团有限公司 Experimental device for shield pressure maintaining system and using method thereof
CN114136970B (en) * 2021-12-02 2024-01-26 内蒙古科技大学 Experimental method for researching back soil effect caused by rectangular pipe-jacking tunneling
CN114136970A (en) * 2021-12-02 2022-03-04 内蒙古科技大学 Experimental method for researching back soil effect caused by rectangular pipe jacking tunneling
CN114198107A (en) * 2021-12-13 2022-03-18 西安交通大学 Multifunctional reduced-scale shield model free of shield machine model and test method thereof
WO2023109054A1 (en) * 2021-12-17 2023-06-22 中铁隧道局集团有限公司 Shield tunnelling test platform suitable for multiple large mechanical occasions and use method of platform
CN114279612B (en) * 2022-03-08 2022-05-10 华东交通大学 System and method for testing frictional resistance of jacking pipe
CN114279612A (en) * 2022-03-08 2022-04-05 华东交通大学 System and method for testing frictional resistance of jacking pipe
CN115163120A (en) * 2022-07-12 2022-10-11 华南理工大学 Model test device and test method for shield tunnel lining
CN115163120B (en) * 2022-07-12 2024-03-05 华南理工大学 Model test device and test method for shield tunnel lining
CN116384074A (en) * 2023-03-16 2023-07-04 华中科技大学 Self-adaptive assembly method and wear calculation method for shield cutter head and cutter
CN116384074B (en) * 2023-03-16 2023-12-05 华中科技大学 Self-adaptive assembly method and wear calculation method for shield cutter head and cutter

Similar Documents

Publication Publication Date Title
JP2002365170A (en) Tunnel excavator model test method and device
CN108414259B (en) Soil pressure balance shield model test system capable of realizing cutter head and lining pressure monitoring function
CN108266199A (en) A kind of experimental rig and method for the simulation of earth pressure balanced shield, EPBS cutterhead mud lining
JP2002286625A (en) Method for execution and loading test in model sand ground, device therefor, and ground creating method
CN104849429A (en) Stratum adaptability test method of shield with soil chamber simulation
CN204594983U (en) With the shield structure ground adaptability tester of native cabin simulation
CN104832167A (en) Test method for stratum adaptability of shield
CN112196494B (en) Construction process and construction equipment for geological pipeline jointed between rock and soil layer
CN207989032U (en) A kind of experimental rig for the simulation of earth pressure balanced shield, EPBS cutterhead mud lining
CN109669024B (en) Installation method of similar material model test excavation and supporting structure based on laser positioning
JPH11131472A (en) Inner excavation device for rotatably pressing-in hollow pile
JP5048601B2 (en) Sediment flow measuring device in chamber and shield machine
CN114776242A (en) Device and method for coring and testing
JP4495716B2 (en) Trench wall equipment
JP2010013895A (en) Measuring device for sediment property in chamber and shield excavator
CN220651509U (en) Special stratum shield excavation simulation device is consolidated to jet grouting stake
KR20170062288A (en) Drilling device for blasting core
JP2020193437A (en) Shield excavator
CN204646225U (en) Shield structure ground adaptability tester
CN217923782U (en) Foundation ditch support effect detection device
CN117740530B (en) High-water-pressure stratum environment shield excavation surface stability test device and method
JPH09125854A (en) Control method of vertical precision of excavated hole by all-casing excavator
JPH074178A (en) Shield device
CN116499895A (en) Segment-stratum integral torsional rigidity test device and method considering slurry solidification process
CN116642826A (en) Device and method for evaluating cohesive force in soil body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902