JP2002364901A - Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning - Google Patents

Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning

Info

Publication number
JP2002364901A
JP2002364901A JP2001171891A JP2001171891A JP2002364901A JP 2002364901 A JP2002364901 A JP 2002364901A JP 2001171891 A JP2001171891 A JP 2001171891A JP 2001171891 A JP2001171891 A JP 2001171891A JP 2002364901 A JP2002364901 A JP 2002364901A
Authority
JP
Japan
Prior art keywords
heat
air conditioner
load
heat source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001171891A
Other languages
Japanese (ja)
Inventor
Masahiro Kikuchi
正浩 菊地
Izumi Furuya
泉 古谷
Masahiro Furukawa
正弘 古川
Koshiro Matsumura
幸四郎 松村
Hagumu Fujiwara
育 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001171891A priority Critical patent/JP2002364901A/en
Publication of JP2002364901A publication Critical patent/JP2002364901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Feedback Control In General (AREA)
  • Control By Computers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controlled method for making a plan wherein the rate of the consumption of electric power and the running cost both of the entire regenerative air conditioning equipment, by calculating the rate of the consumption of electric power and the cost of each of a heat source machine, a load side instrument and a conveying instrument in the regenerative air conditioning equipment. SOLUTION: For dealing with a predicted value of a heat load, after stored heat energy in a heat storage tank in a regenerative air conditioning equipment is detected, a first variable is estimated which minimizes the rate of the consumption of electric power of the whole of the regenerative air conditioning equipment under the conditions of operation of a heat source instrument. Then a second variable is estimated which minimizes the rate of the consumption of electric power of the whole of the regenerative air conditioning equipment under the conditions of the operation of a load side instrument. Further, a third variable is estimated which minimizes the rate of the consumption of the operation of electric power of the whole of the regenerative air conditioning equipment under the conditions of the operation of another instrument. By repeating the cycle of the calculations of those first, second, and third variables a controlled plan is calculated for minimizing the rate of the consumption of electric power of the whole of the regenerative air conditioning equipment and the running cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱式空調設備の
制御システム、制御計画立案装置、制御計画立案方法、
制御計画立案を実行するための記録媒体、プログラムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for a regenerative air conditioner, a control planning device, a control planning method,
The present invention relates to a recording medium and a program for executing control planning.

【0002】[0002]

【従来の技術】近年、電力需要の増大に伴って、電力負
荷の昼夜格差が拡大する傾向にあり、この対策として、
電力需要の平準化に有効な蓄熱式空調設備の開発及びそ
の制御システムのシミュレーション開発が進められてい
る。
2. Description of the Related Art In recent years, as power demand has increased, the day-night disparity in power load has tended to increase.
Development of regenerative air conditioning equipment effective for leveling power demand and simulation development of its control system are underway.

【0003】工場,ビル,公共施設,家屋等の空調設備
では、ヒートポンプ,ターボ冷凍機等の熱源機器によっ
て冷水や温水を生産し、得られた冷水や温水を蓄熱槽に
蓄え、必要に応じて蓄熱槽から空調機器(冷暖房機器)
等の負荷側機器へ冷水または温水を供給する構成となっ
ている。
In an air conditioner of a factory, a building, a public facility, a house, or the like, cold water or hot water is produced by a heat source device such as a heat pump or a centrifugal chiller, and the obtained cold water or hot water is stored in a heat storage tank. From heat storage tanks to air conditioning equipment (cooling and heating equipment)
It supplies cold water or hot water to the load-side equipment such as.

【0004】蓄熱式空調設備において、翌日の負荷側機
器(以下空調機器を例に説明する)で消費される熱量を
予測し、蓄熱槽に蓄えられている熱量に応じて熱源機器
の夜間自動運転を行うことで、過不足なく蓄熱量を確保
すれば、昼間の最大電力使用時におけるピークカット及
びランニングコストの低減が図れる。空調機器の空調負
荷の予測方法としては、天気予報,予想気温,季節,曜
日等から過去の類似データを検索し、これと蓄熱槽の温
度プロフィール,熱源機器等の各能力設定値,空調機器
で消費される熱量,熱源機器の運転目標等からファジイ
推論を行い、過去の類似データを修正し、予測値を得る
方法がある。また、過去の実績値から予測式を作成し
て、この予測した負荷と実際の負荷とのずれから予測式
自身を最適化し、未来負荷を予測する(カルマンフィル
タ)方法や、日毎,時間毎の周期的な変動を含むデータ
と、過去の日毎,時間毎の周期的な変動を含むデータを
用いて負荷予測を行い、この負荷予測と実際の負荷のず
れを最小にするよう、重み係数を調整していく自己回帰
和分移動平均(ARIMAモデル)による予測方式があ
る。
[0004] In a regenerative air conditioner, the amount of heat consumed by load-side equipment (to be described below as an example) is predicted on the next day, and the heat source equipment is automatically operated at night according to the amount of heat stored in the heat storage tank. By performing the above, if the heat storage amount is secured without excess or deficiency, it is possible to reduce the peak cut and the running cost when the maximum electric power is used in the daytime. As a method for predicting the air-conditioning load of the air-conditioning equipment, similar data in the past are searched from the weather forecast, the predicted temperature, the season, the day of the week, and the like. There is a method of performing fuzzy inference from the consumed amount of heat, the operation target of the heat source device, and the like, correcting past similar data, and obtaining a predicted value. In addition, a prediction formula is created from past actual values, the prediction formula itself is optimized based on the difference between the predicted load and the actual load, and a future load is predicted (Kalman filter). Load is estimated using data that includes periodic fluctuations and data that includes periodic fluctuations every day and every hour in the past, and the weighting factor is adjusted so that the difference between this load prediction and the actual load is minimized. There is a prediction method based on an autoregressive sum moving average (ARIMA model).

【0005】これらにより求められた負荷に基づき、熱
源機器から生産すべき熱量を求めるものである。
The amount of heat to be produced from the heat source equipment is obtained based on the load obtained as described above.

【0006】また、従来技術として、特開平5−887
15号公報がある。すなわち、蓄熱槽の温度分布、熱源
機器の出入口温度、熱供給系の流量、温度の計測値を曜
日ごとに分類して統計処理された実績値と気温等の気象
情報とに基づいて夜間の時間帯及び翌日の熱負荷を予測
する。次にこの予測値をもとに蓄熱槽運用計画を決め
る。次にこの運用計画値を目標として熱源機器の運転計
画を立て、この運転計画に沿って蓄熱プラントの起動及
び停止を制御する熱源予測制御装置である。またこの種
の技術として特開平1−300167号公報、特開平5
−256495号公報、特開平6−174285号公
報、特開平6−313605号公報、特開平11−13
2508号公報等がある。
As a prior art, Japanese Patent Laid-Open Publication No.
No. 15 publication. That is, the temperature distribution of the heat storage tank, the entrance / exit temperature of the heat source equipment, the flow rate of the heat supply system, and the measured value of the temperature are classified for each day of the week, and the nighttime is calculated based on the actual value statistically processed and weather information such as temperature. Predict the heat load of the belt and the next day. Next, a heat storage tank operation plan is determined based on the predicted value. Next, the heat source predictive control device sets an operation plan of the heat source equipment with the operation plan value as a target, and controls the start and stop of the heat storage plant according to the operation plan. Further, as this kind of technology, Japanese Patent Application Laid-Open Nos.
-256495, JP-A-6-174285, JP-A-6-313605, JP-A-11-13
No. 2508 and the like.

【0007】[0007]

【発明が解決しようとする課題】上記の各種負荷予測
は、熱源機器の制御計画立案及び立案した計画に基づく
熱源機器の運転制御に用いるものであり、空調機器と熱
源機器の相互関係における最適制御計画立案と立案した
計画に基づく前記空調機器ならびに前記熱源機器の双方
の運転制御については考慮されていない。また、前記空
調機器の構成変更と前記熱源機器の構成変更に伴う相互
関係の制御計画立案と立案した計画に基づく前記空調機
器ならびに前記熱源機器の双方の運転制御についても考
慮されていない。また、空調機器の構成変更と熱源機器
の構成変更に伴う相互関係における制御の設計検討も考
慮されていない。また、上記刊行物の従来技術は熱源の
安定供給及び安全運転を確保し、緊急時に熱源の起動及
び停止を適切に行なうことを目的としている。そして、
蓄熱プラントの情報に基づいて蓄熱プラントの起動及び
停止を制御するものであって、蓄熱プラントの熱負荷
(空調、冷却)及びその冷水槽又は温水槽の水を吸い上
げて熱負荷に供給するポンプを制御し、熱エネルギーを
有効活用し、電力消費量、稼動コストについては特に考
慮されていない。
The above-mentioned various load predictions are used for preparing a control plan for the heat source equipment and for controlling the operation of the heat source equipment based on the drafted plan. No consideration is given to planning and operating control of both the air conditioning equipment and the heat source equipment based on the drafted plan. Further, no consideration is given to the control plan drafting of the interrelationship with the configuration change of the air conditioner device and the configuration change of the heat source device and the operation control of both the air conditioner device and the heat source device based on the drafted plan. Further, no consideration is given to the design study of the control in the interrelationship between the configuration change of the air conditioner and the configuration change of the heat source device. Further, the prior art of the above publication aims at ensuring stable supply of a heat source and safe operation, and appropriately starting and stopping the heat source in an emergency. And
It controls the start and stop of the heat storage plant based on the information of the heat storage plant, and includes a heat load (air conditioning, cooling) of the heat storage plant and a pump that sucks water from the cold water tank or the hot water tank and supplies the water to the heat load. No particular consideration is given to control, efficient use of thermal energy, power consumption and operating costs.

【0008】本発明は、上記点に鑑みてなされたもの
で、その目的は、熱源機器と空調機器の各々及び相互関
係を考慮して、空調設備全体の省力化、例えば電力消費
量と稼動(運転)コストの最小化が図れる蓄熱式空調設
備の制御システム、制御計画立案装置、制御計画立案方
法、記録媒体、プログラムを提供することにある。
The present invention has been made in view of the above points, and has as its object to reduce the power consumption of the entire air conditioner, for example, the power consumption and the operation of the air conditioner, in consideration of each of the heat source device and the air conditioner and the mutual relationship. (Operation) It is an object of the present invention to provide a control system, a control planning device, a control planning method, a recording medium, and a program for a regenerative air conditioning system capable of minimizing costs.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、熱源機器の他に空調機器の稼動情報等を
考慮し、これらの情報を利用して、蓄熱式空調設備全体
の省力化が図れる運転制御信号を生成し、該制御信号を
もって空調設備機器を制御してなるものである。例えば
省力化として、蓄熱式空調設備の各機器の相互関係にお
ける空調設備全体の電力消費量(電力使用量)を最小化
することを制御条件とした場合、以下を備える。蓄熱槽
の温度データ,熱源機器(例えば冷凍機,冷却塔)の電
力データ,蓄熱槽と熱源機器、空調機器との間で熱源媒
体を循環する送水機器(例えばポンプ)の電力データ,
空調機器(例えばエアハンドリングユニット,ファンコ
イルユニット)の電力データ等の各稼動データや外気の
温度と湿度データ,冷却水の温度データ等を取り込みフ
ァイルする。ファイルデータを基に熱源機器(冷凍機)
の負荷特性学習,熱媒体循環機器(送水機器;ポンプ)
の負荷特性学習,空調機器(エアハンドリングユニッ
ト)の負荷特性学習,空調負荷と気温と湿度及び曜日の
相関学習,冷却水温と外気温度の相関学習,蓄熱槽温度
分布の実績値と予測値との比較による蓄熱槽温度分布修
正計算を行う。上記学習データより、熱負荷計算を行
い、熱負荷予測値を算出する。この熱負荷予測値と蓄熱
槽の水温から、ユーザにとって熱源機器(冷凍機等)の
電力消費量の最適化、例えば最小化計算を行う。また、
前記熱負荷予測値から空調機器(エアハンドリングユニ
ット,ファンコイルユニット)や送水機器(ポンプ)等
の冷温水戻り温度と流量等を算出し、この算出結果が、
前記負荷側機器の電力消費量が最小値(最適)となるよ
うに計算を行う。
In order to achieve the above object, the present invention considers the operation information of the air conditioning equipment in addition to the heat source equipment, and utilizes such information to make the whole of the heat storage type air conditioning equipment. An operation control signal that can save labor is generated, and the air conditioning equipment is controlled using the control signal. For example, when the control condition is to minimize the power consumption (electric power consumption) of the entire air conditioning equipment in the interrelationship of each device of the regenerative air conditioning equipment as labor saving, the following conditions are provided. Temperature data of a heat storage tank, power data of a heat source device (for example, a refrigerator or a cooling tower), power data of a water supply device (for example, a pump) that circulates a heat source medium between the heat storage tank and the heat source device or an air conditioner,
Each operation data such as power data of an air conditioner (for example, an air handling unit and a fan coil unit), temperature and humidity data of outside air, temperature data of cooling water, and the like are fetched and filed. Heat source equipment (refrigerator) based on file data
Load characteristics learning, heat medium circulation equipment (water supply equipment; pump)
Learning of load characteristics of air conditioners, learning of load characteristics of air conditioning equipment (air handling units), learning of correlation between air conditioning load and temperature, humidity and day of the week, learning of correlation between cooling water temperature and outside air temperature, comparison between actual and predicted values of thermal storage tank temperature distribution A heat storage tank temperature distribution correction calculation is performed by comparison. A heat load calculation is performed based on the learning data to calculate a heat load prediction value. From the predicted heat load value and the water temperature of the heat storage tank, the user optimizes, for example, minimizes the power consumption of the heat source device (such as a refrigerator). Also,
From the predicted heat load value, the return temperature and flow rate of cold / hot water of an air conditioner (air handling unit, fan coil unit), water supply device (pump), etc. are calculated, and the calculation result is as follows.
The calculation is performed so that the power consumption of the load-side device becomes a minimum value (optimum).

【0010】ここで、蓄熱式空調設備全体の電力消費量
を最小(最適)化するためには、前記熱源機器の運転時
間を単位時間だけ増加させる毎に設備全体の各機器の電
力消費量を算出して最小(最適)値を求める計算を行
い、その後に前記負荷側機器の冷温水戻り温度を単位温
度だけ増加させる毎に設備全体の各機器の電力消費量を
算出して最小(最適)値を求める計算を行い、これを繰
り返す。このことにより、蓄熱空調設備全体の電力消費
量の最小(最適)化が実現できる。
Here, in order to minimize (optimize) the power consumption of the entire regenerative air conditioning system, the power consumption of each device of the entire system is increased each time the operation time of the heat source device is increased by a unit time. After calculating the minimum (optimum) value, the power consumption of each device in the entire equipment is calculated every time the cooling / hot water return temperature of the load-side device is increased by the unit temperature. Perform a calculation to find a value and repeat. As a result, it is possible to minimize (optimize) the power consumption of the entire thermal storage air conditioning system.

【0011】この電力消費量最小(最適)化の計算時に
求めた前記熱源機器の運転時間、及び前記負荷側機器の
冷温水温度等を制御装置に送信し、蓄熱空調設備の電力
消費量最小(最適)化制御を行うことにより、蓄熱空調
設備の設計時に、上記の電力消費量最小(最適)化計算
による検討を行うこともできる。
[0011] The operation time of the heat source device and the temperature of the cold / hot water of the load-side device and the like determined at the time of the calculation of the minimization (optimization) of the power consumption are transmitted to the control device to minimize the power consumption of the heat storage air conditioning equipment. By performing the (optimization) control, it is also possible to conduct a study by the above-described power consumption minimization (optimization) calculation when designing the thermal storage air conditioning equipment.

【0012】[0012]

【発明の実施の形態】以下、図面に従って本発明の実施
形態を具体的に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0013】図1は本発明に係わる蓄熱式空調設備の一
実施例を示す構成図である。図1において、1は冷却塔
101、冷凍機102を含み、熱媒体例えば冷水または
温水を生成する熱源機器を示し、該熱源機器には、冷却
送水ポンプ25、冷却塔電力測定器23、冷却水送水ポ
ンプ電力測定器26、冷凍機電力測定器8を備えてい
る。ここで、冷凍機102には、その出力温度を可変す
ることが可能な冷凍機を使用する。例えば、エコノマイ
ザ付き多段式コンプレッサを用いる。この場合、単段式
コンプレッサに比べ、冷水温度設定範囲が広くとれる。
本発明はこの冷凍機の出力がユーザの使用環境によって
可変することが可能であることに着目している。2は冷
暖房に使用される冷水または温水を蓄積する蓄熱槽を示
し、該蓄熱層は複数の槽を有している。各槽にはそれぞ
れ温度センサ6(T1,T1,T1)が配置されている。
3は負荷側機器を示し、該機器は空調機器からなる。空
調機器3には空調機器の電力測定器10及び冷温水負荷
入口温度センサ13(T3)、冷温水負荷出口温度セン
サ16(T2)、換気温度センサ19(T7)、換気湿
度センサ20(H7)及び給気温度センサ21(T
8)、給気湿度センサ22(H8)を備えている。5は
二次側送水ポンプ、14は冷温水流量センサを示す。1
1,12は屋外の外気温度センサ、外気湿度センサであ
る。7は制御装置を示し、該制御装置は上記各測定器及
び上記各センサのデータを受けて上記空調機器及び上記
熱源機器と各ポンプを制御するものである。15は制御
装置7に接続され、該制御装置から上記各機器、測定
器、センサから得た稼動情報を得て上記熱源機器、上記
空調機器、上記ポンプ等の電力消費量が最小となるよう
な運転(稼動)制御信号を生成し、制御装置7を介して
上記各機器等を制御するための制御計画立案装置を示
し、該装置は例えばパーソナルコンピュータで構成され
ている。
FIG. 1 is a block diagram showing one embodiment of a regenerative air conditioner according to the present invention. In FIG. 1, reference numeral 1 denotes a heat source device that includes a cooling tower 101 and a refrigerator 102 and generates a heat medium such as cold water or hot water. The heat source device includes a cooling water pump 25, a cooling tower power meter 23, and cooling water. A water pump electric power meter 26 and a refrigerator electric power meter 8 are provided. Here, a refrigerator capable of varying its output temperature is used as the refrigerator 102. For example, a multi-stage compressor with an economizer is used. In this case, the chilled water temperature setting range can be set wider than in a single-stage compressor.
The present invention focuses on the fact that the output of the refrigerator can be varied depending on the usage environment of the user. Reference numeral 2 denotes a heat storage tank for storing cold water or hot water used for cooling and heating, and the heat storage layer has a plurality of tanks. A temperature sensor 6 (T1, T1, T1) is arranged in each bath.
Reference numeral 3 denotes a load-side device, which is an air-conditioning device. The air conditioner 3 includes a power meter 10 for the air conditioner, a cold / hot water load inlet temperature sensor 13 (T3), a cold / hot water load outlet temperature sensor 16 (T2), a ventilation temperature sensor 19 (T7), and a ventilation humidity sensor 20 (H7). And supply air temperature sensor 21 (T
8) and an air supply humidity sensor 22 (H8). Reference numeral 5 denotes a secondary water pump, and reference numeral 14 denotes a cold / hot water flow sensor. 1
Reference numerals 1 and 12 denote outdoor outdoor temperature sensors and outdoor air humidity sensors. Reference numeral 7 denotes a control device which controls the air conditioner, the heat source device, and the pumps by receiving data from the measuring devices and the sensors. Reference numeral 15 is connected to the control device 7 and obtains operation information obtained from the devices, measuring devices, and sensors from the control device, and minimizes the power consumption of the heat source device, the air conditioner, the pump, and the like. A control plan drafting device for generating an operation (operation) control signal and controlling each of the above-described devices and the like via the control device 7 is shown, and this device is constituted by, for example, a personal computer.

【0014】以下、その動作の概略について説明する。
熱源機器1で作られた冷水や温水は一次側送水ポンプ4
(熱媒体循環機器)により蓄熱槽2に送られる。この蓄
熱槽2は冷暖房に使用される冷水または温水を蓄える。
蓄熱槽2に蓄えられた冷水または温水は二次側送水ポン
プ5(熱媒体循環機器)により、空調機器3(エアハン
ドリングユニットやファンコイルユニット等)に送られ
る。空調機器3により室内熱負荷と熱交換された冷水ま
たは温水は、管を介して蓄熱槽2へ戻る。ここで再び所
定温度の冷水または温水を作るべく、1次側送水ポンプ
4により蓄熱槽2から熱源機器1の冷凍機に送水を行
う。ここで、熱媒体として水を使用しているが、これに
代わりえるものであれば、水に限らない。
The outline of the operation will be described below.
The cold water or hot water produced by the heat source equipment 1 is supplied to the primary side water pump 4
It is sent to the heat storage tank 2 by (heat medium circulation device). The heat storage tank 2 stores cold or hot water used for cooling and heating.
The cold water or hot water stored in the heat storage tank 2 is sent to the air conditioner 3 (air handling unit, fan coil unit, or the like) by the secondary water pump 5 (heat medium circulating device). The cold water or hot water heat-exchanged with the indoor heat load by the air conditioner 3 returns to the heat storage tank 2 via a pipe. Here, in order to make cold water or hot water of a predetermined temperature again, water is sent from the heat storage tank 2 to the refrigerator of the heat source device 1 by the primary water pump 4. Here, water is used as the heat medium, but is not limited to water as long as it can be used instead.

【0015】蓄熱槽2の各槽の温度センサ6で測定され
たデータは、データラインを介して制御装置7へ取り込
まれる。制御装置7は、各測定器からの電力データ及び
センサからの温度、湿度データ等も取り込む。すなわ
ち、制御装置7は、熱源機器1の冷凍機に設置された冷
凍機電力測定器8による電力データ,冷却塔電力測定器
23による電力データ,二次側送水ポンプ電力測定器9
による電力データ,空調機器3(エアハンドリングユニ
ット及びファンコイルユニット等)の電力測定器10に
よる電力データ,外気温度センサー11と外気湿度セン
サー12による外気温湿度データ,還気温度センサー1
9と還気湿度センサー20による還気温湿度データ,給
気温度センサー21と給気湿度センサー22による給気
温湿度データ,空調側の冷温水負荷入口温度センサー1
3と冷温水負荷出口温度センサー16による冷温水負荷
側温度データ,空調側の冷温水流量センサー14による
冷温水流量データ,熱源側の冷温水熱源入口温度センサ
ー17と冷温水熱源出口温度センサー18による冷温水
熱源側温度データ等を取り込む。 制御装置7はこれら
のデータを制御計画立案装置15へ送信する。
The data measured by the temperature sensors 6 in each of the heat storage tanks 2 is taken into a control device 7 via a data line. The control device 7 also captures power data from each measuring device and temperature and humidity data from sensors. That is, the control device 7 controls the power data from the refrigerator power meter 8 installed in the refrigerator of the heat source device 1, the power data from the cooling tower power meter 23, the secondary water pump power meter 9
Data, power data from a power measuring device 10 of the air conditioner 3 (air handling unit, fan coil unit, etc.), outside air temperature and humidity data from outside air temperature sensor 11 and outside air humidity sensor 12, return air temperature sensor 1
9 and return air humidity data by the return air humidity sensor 20, supply air temperature and humidity data by the supply air temperature sensor 21 and the supply air humidity sensor 22, and cold / hot water load inlet temperature sensor 1 on the air conditioning side
3, the cold / hot water load side temperature data by the cold / hot water load outlet temperature sensor 16, the cold / hot water flow data by the cold / hot water flow sensor 14 on the air conditioning side, the cold / hot water heat source inlet temperature sensor 17 on the heat source side and the cold / hot water heat source outlet temperature sensor 18 Take in the cold / hot water heat source side temperature data, etc. The control device 7 transmits these data to the control planning device 15.

【0016】この制御計画立案端末15は、各種検出デ
ータと目標として設定された室内温度等の条件から熱負
荷予測を行い、空調設備の電力消費量が下がる運転条
件、例えばユーザにとって適した条件、望ましくは最小
とするための運転条件を算出し、この結果を制御装置7
へ送信する。
The control planning terminal 15 predicts a heat load from various detection data and conditions such as a room temperature set as a target, and operates under conditions in which the power consumption of the air conditioner decreases, for example, conditions suitable for the user, Preferably, operating conditions for minimizing the operating conditions are calculated, and the results are stored in the controller 7.
Send to

【0017】制御装置7はこの結果に基づき、熱源機器
1と空調機器3と一次側送水ポンプ4や二次側送水ポン
プ5といった熱媒体循環機器(送水機器)等の空調設備
全体の運転制御を行う。
Based on the result, the control device 7 executes the heat source device
1, the air conditioner 3, and the operation control of the entire air conditioner such as a heat medium circulating device (water feeder) such as the primary side water pump 4 and the secondary side water pump 5.

【0018】次に、制御計画立案装置15について、図
2を用いて説明する。図2は制御計画立案装置を機能的
に示すブロック図であり、以下処理によって蓄熱式空調
設備の電力消費量(使用量)の効率化を図る。例えば電
力消費量及び運転コストを最小化する。
Next, the control planning device 15 will be described with reference to FIG. FIG. 2 is a block diagram functionally showing the control planning device. The following process aims at increasing the efficiency of the power consumption (usage) of the regenerative air conditioning equipment. For example, minimizing power consumption and operating costs.

【0019】まず、検出データ取り込み部151にて上
記制御装置7から各稼動情報のデータを取り込む。具体
的に取り込むデータは蓄熱槽の温度データ,冷凍機の電
力データ,冷却塔の電力データ,一次側ポンプの電力デ
ータ,二次側ポンプの電力データ,冷却塔ポンプの電力
データ,空調機器3のエアハンドリングユニット電力デ
ータ,ファンコイルユニット電力データ,外気温度デー
タ,外気湿度データ,室内温度データ,室内湿度デー
タ,エアハンドリングユニット還気温度データ,エアハ
ンドリングユニット還気温度データ,エアハンドリング
ユニット給気温度データ,エアハンドリングユニット給
気温度データ,冷温水流量データ,冷凍機の冷温水入口
温度データ,冷凍機の冷温水出口温度データ,ファンコ
イルユニットの冷温水入口温度データ,ファンコイルユ
ニットの冷温水出口温度データ,エアハンドリングユニ
ットの冷温水入口温度データ,エアハンドリングユニッ
トの冷温水出口温度データ等である。これらを図9に示
す。
First, the detection data capturing section 151 captures data of each operation information from the control device 7. Specifically, data to be captured include temperature data of the heat storage tank, electric power data of the refrigerator, electric power data of the cooling tower, electric power data of the primary side pump, electric power data of the secondary side pump, electric power data of the cooling tower pump, and an air conditioner 3. Air handling unit power data, fan coil unit power data, outside air temperature data, outside air humidity data, indoor temperature data, indoor humidity data, air handling unit return air temperature data, air handling unit return air temperature data, air handling unit air supply temperature Data, air handling unit supply air temperature data, cold / hot water flow data, refrigerator hot / cold water inlet temperature data, refrigerator cold / hot water outlet temperature data, fan coil unit cold / hot water inlet temperature data, fan coil unit cold / hot water outlet Temperature data, cold and hot water in air handling unit Temperature data is hot and cold water outlet temperature data and the like of the air handling unit. These are shown in FIG.

【0020】これらのデータを、測定現在値部152を
介してデータ蓄積ファイル部(メモリ部)153に記憶
保管する。
These data are stored and stored in a data storage file section (memory section) 153 via a measured current value section 152.

【0021】この検出データ取り込み部151による稼
動情報のデータ取り込みからデータ蓄積ファイル部15
3への記憶保管は、一定時間周期毎に行う。例えば、5
分間隔や10分間隔である。
The detection data acquisition unit 151 acquires operation information data from the data storage file unit 15.
3 is stored at regular time intervals. For example, 5
Minute intervals and 10 minute intervals.

【0022】次に、熱負荷予測処理部155においてデ
ータ蓄積ファイル部153に保管したデータをもとに熱
負荷予測処理を行う。具体的には、熱源機器1の冷凍機
102の運転時間と冷水入口温度センサ17により検出
された冷水入口温度と冷水出口温度センサ18により検
出された冷水出口温度と冷凍機電力測定器8により検出
された電力量と冷凍成績係数(COP)計算とによる負
荷特性学習,二次側送水ポンプ5における空調機器3の
ファンコイルユニットやエアハンドリングユニットに供
給する送水量と水温及びこのときの電力とによる負荷特
性学習,ファンコイルユニットにおける送水流量と水温
及び電力との負荷特性学習,エアハンドリングユニット
における給気と還気温度や送水流量と水温や電力との負
荷特性学習,空調の負荷と気温と湿度と曜日との相関に
おける熱負荷学習,冷凍機と冷却塔間の循環水温度と外
気温度との相関における冷却水温度学習等を行い、この
学習結果より蓄熱槽2の温度分布の予測を行う。この各
負荷特性学習の結果を用いて、熱負荷予測を行う。この
熱負荷予測そのものは公知であり、詳細な説明は省略す
る。
Next, the heat load prediction processing unit 155 performs a heat load prediction process based on the data stored in the data storage file unit 153. Specifically, the operation time of the refrigerator 102 of the heat source device 1, the chilled water inlet temperature detected by the chilled water inlet temperature sensor 17, the chilled water outlet temperature detected by the chilled water outlet temperature sensor 18, and the chiller power meter 8 are used. Load characteristic learning based on the calculated amount of power and refrigeration coefficient of performance (COP) calculation, based on the amount of water supplied to the fan coil unit and air handling unit of the air conditioner 3 in the secondary water pump 5, the water temperature, and the power at this time. Load characteristic learning, learning of load characteristics of water flow rate, water temperature and power in fan coil unit, learning of load characteristics of supply air and return air temperature, supply flow rate, water temperature and power in air handling unit, air conditioning load, temperature and temperature and humidity Load learning in correlation between day and week, learning of cooling water temperature in correlation between circulating water temperature between refrigerator and cooling tower and outside air temperature It was carried out, to predict the temperature distribution of the heat storage tank 2 from the result of the learning. The heat load prediction is performed using the result of each load characteristic learning. The heat load prediction itself is publicly known, and a detailed description is omitted.

【0023】また、制御計画立案装置15は各機器パラ
メータ範囲データを入力するデータ入力部156を備え
ており、該入力部にて上記各機器の運転条件のパラメー
タを入力し、これを各機器パラメータ範囲データファイ
ル部(メモリ部)157に蓄積する。パラメータ範囲デ
ータの入力対象機器の例を図10に示す。
The control planning device 15 is provided with a data input unit 156 for inputting each equipment parameter range data. The input unit inputs operation condition parameters of each equipment, and inputs the parameters to each equipment parameter. It is stored in a range data file section (memory section) 157. FIG. 10 shows an example of a target device for inputting parameter range data.

【0024】次に、処理部158において測定用現在値
152、熱負荷処理部155、各機器パレメータ範囲デ
ータ部(メモリ部)157の各データを元に蓄熱式空調
設備全体の電力量が下がる値、望ましくは最小値を求め
る算出処理を行う。すなわち、熱負荷予測処理部155
の結果と測定現在値部152のオンライン記憶と各機器
パラメータ範囲データ部157から、熱源機器1と空調
機器3と一次側送水ポンプ4と二次側送水ポンプ5等の
各機器から決定される空調設備全体の電力消費量が下が
る値、例えば最小値を算出する。この算出に際しては、
電力消費量の低下は勿論、低コストも図れることが望ま
しい。また、ここで、消費電力量が最小となることが望
ましいが、厳密に最小値でなくてはいけないとの意味で
はなく、消費電力量の省力化が図れる程度の値も含まれ
るものであり、ある幅をもっている。
Next, in the processing unit 158, based on the current data for measurement 152, the heat load processing unit 155, and the data of each device parameter range data unit (memory unit) 157, a value at which the electric energy of the entire regenerative air conditioning system decreases. Preferably, a calculation process for finding the minimum value is performed. That is, the heat load prediction processing unit 155
Air conditioner determined from each device such as the heat source device 1, the air conditioner 3, the primary water pump 4 and the secondary water pump 5, from the result of the measurement, the online storage of the measured current value unit 152 and the device parameter range data unit 157. A value that reduces the power consumption of the entire equipment, for example, a minimum value is calculated. For this calculation,
It is desirable that the cost can be reduced as well as the power consumption. Also, here, it is desirable that the power consumption is minimized, but this does not mean that the power consumption must be strictly the minimum value, but also includes a value that can reduce the power consumption. Has a certain width.

【0025】このとき、熱源機器1と空調機器3と一次
側送水ポンプ4と二次側送水ポンプ5等の各機器の運転
データが求まる。
At this time, operation data of each device such as the heat source device 1, the air conditioner 3, the primary water pump 4 and the secondary water pump 5 is obtained.

【0026】この蓄熱式空調設備全体の電力量及び運転
コストの最小値算出処理部158による計算結果におけ
る各機器の設定データは、データ蓄積ファイル部153
に蓄積され、予測精度の向上に反映する。
The setting data of each device in the calculation result of the minimum value calculation processing unit 158 of the electric energy and the operating cost of the entire regenerative air conditioner is stored in a data storage file unit 153.
And is reflected in the improvement of prediction accuracy.

【0027】次に、求めた各機器の運転データを制御計
画立案端末15から制御装置7に出力する。
Next, the obtained operation data of each device is output from the control planning terminal 15 to the control device 7.

【0028】以上により、蓄熱式空調設備の電力消費量
を最小化した制御が実現できる。
As described above, control that minimizes the power consumption of the regenerative air conditioner can be realized.

【0029】次に、熱負荷予測処理部155における負
荷特性学習の計算方法を示す。各機器の電力消費量は、
過去の検出データを要素とする関数で表わし、検出デー
タの重回帰分析により求める。計算式を(1)に示す。 Y(i)=f(X(i))…(1) 但し、Y(i):機器の電力消費量、X(i):運転条
件検出データ 次に、二次側ポンプ電力量の例を下記に示す。Y(1)
を二次側ポンプ電力量とすると 二次側ポンプ電力量=f(a,b,…,z) =A0+A1(a)+A2(a)+…+An(a) +B0+B1(b)+B2(b)+…+Bn(b) + … +Z0+Z1(z)+Z2(z)+…+Zn(z) ここで、A0,A1,…,An,B0,B1,…,B
n,Z0,Z1,…,Znは回帰係数である。これは、
過去の実績データの重回帰分析より求める。a,b,
…,zは、運転条件であり、例えばaは冷水量である。
Next, a calculation method of load characteristic learning in the heat load prediction processing unit 155 will be described. The power consumption of each device is
It is represented by a function having past detection data as an element, and is obtained by multiple regression analysis of the detection data. The calculation formula is shown in (1). Y (i) = f (X (i)) (1) where Y (i) is the power consumption of the device, X (i) is the operation condition detection data. Next, an example of the secondary pump power is shown. Shown below. Y (1)
Is the secondary-side pump power amount. Secondary-side pump power amount = f (a, b,..., Z) = A0 + A1 (a) + A2 (a) 2 +... + An (a) n + B0 + B1 (b) + B2 (b ) 2 + ... + Bn (b ) n + ... + Z0 + Z1 (z) + Z2 (z) 2 + ... + Zn (z) n where, A0, A1, ..., An , B0, B1, ..., B
.., Zn are regression coefficients. this is,
Determined from multiple regression analysis of past performance data. a, b,
.., Z are operating conditions, for example, a is the amount of cold water.

【0030】同様にして、冷凍機負荷特性学習,エアハ
ンドリングユニット負荷特性学習等を行い、電力消費量
を求める。
Similarly, refrigerator load characteristic learning, air handling unit load characteristic learning, and the like are performed to determine the power consumption.

【0031】図3と図4は、制御計画立案装置15にお
ける蓄熱空調設備全体の電力量及び運転コストの最小値
算出処理部158の処理手順を示すフローチャートであ
る。
FIGS. 3 and 4 are flowcharts showing the processing procedure of the minimum value calculation processing section 158 of the electric energy and the operating cost of the entire thermal storage air conditioning system in the control planning device 15.

【0032】図3において、まずステップ158Aにて
蓄熱槽2の温度データを取り込む。次に、ステップ15
8Bにて熱負荷予測値のデータを取り込む。ステップ1
58Cでは、蓄熱槽2の温度データから蓄熱量を求め
る。ステップ158Dでは、熱負荷予測値からエアハン
ドリングユニットの冷温水温度初期値を定める。ステッ
プ158Eでは、ステップ158Bで取り込んだ熱負荷
予測値とステップ158Cで求めた蓄熱量から冷凍機運
転時間初期値を求めて定める。ステップ158Fでは、
一定周期の時間間隔毎に各機器の電力量と蓄熱槽の温度
分布を求める。
In FIG. 3, first, at step 158A, temperature data of the heat storage tank 2 is fetched. Next, step 15
At step 8B, the data of the heat load predicted value is fetched. Step 1
At 58C, the heat storage amount is obtained from the temperature data of the heat storage tank 2. In step 158D, the initial value of the cold / hot water temperature of the air handling unit is determined from the predicted heat load. In step 158E, a refrigerator operating time initial value is determined by determining the heat load predicted value taken in step 158B and the heat storage amount obtained in step 158C. In step 158F,
The power distribution of each device and the temperature distribution of the heat storage tank are obtained at regular time intervals.

【0033】ステップ158Gでは、ステップ158F
で求めた各機器の電力量から蓄熱空調設備全体の電力合
計値を求める。
At step 158G, step 158F
From the electric energy of each device obtained in the above, the total electric power value of the entire thermal storage air conditioning equipment is obtained.

【0034】ステップ158Hでは、ステップ158F
で求めた各機器の電力量より、各機器の運転コストを求
める。ステップ158Iでは、ステップ158Hで求め
た各機器の運転コストから蓄熱空調設備全体の運転コス
ト合計値を求める。ステップ158Jでは、蓄熱空調設
備全体の運転コスト最小値を算出する評価を行う。ここ
で、N回目の運転コスト算出結果<N+1回目の運転コ
スト算出結果であれば、ステップ158Lを行い、N回
目の運転コスト算出結果>N+1回目の運転コスト算出
結果であれば、ステップ158Kを行う。ステップ15
8Kでは、冷凍機の運転時間を単位時間増加させ、この
データをステップ158Fへ与える。
At Step 158H, Step 158F
The operation cost of each device is obtained from the electric energy of each device obtained in the step. In step 158I, a total value of the operation costs of the entire thermal storage air-conditioning equipment is obtained from the operation costs of each device obtained in step 158H. In step 158J, evaluation for calculating the minimum operation cost of the entire thermal storage air conditioning system is performed. Here, if the N-th operation cost calculation result <N + 1-th operation cost calculation result, step 158L is performed, and if the N-th operation cost calculation result> N + 1-th operation cost calculation result, step 158K is performed. . Step 15
At 8K, the operation time of the refrigerator is increased by a unit time, and this data is provided to step 158F.

【0035】ここで、冷凍機の運転時間を単位時間増加
させ、非線形要素である冷温水流量や熱負荷等について
ステップ158Fからステップ158Iを行った場合の
冷凍機と蓄熱式空調設備全体の消費電力量との関係を示
すグラフを、図6に示す。
Here, the operation time of the refrigerator is increased by a unit time, and the power consumption of the refrigerator and the regenerative air-conditioning system as a whole when Steps 158F to 158I are performed for the non-linear elements such as the flow rate of the hot and cold water and the heat load. A graph showing the relationship with the amount is shown in FIG.

【0036】再びステップ158Fから158Iのデー
タ処理を行い、ステップ158Jにおいて蓄熱式空調設
備全体の運転コストが最小であれば、図4に示すステッ
プ158Lを行う。
The data processing of steps 158F to 158I is performed again. If the operation cost of the entire regenerative air conditioning system is minimum in step 158J, step 158L shown in FIG. 4 is performed.

【0037】ステップ158Lでは、ステップ158F
同様の処理を行う。ステップ158Mでは、ステップ1
58G同様の処理を行う。ステップ158Nでは、ステ
ップ158H同様の処理を行う。ステップ158Oで
は、ステップ158I同様の処理を行う。ステップ15
8Pでは、ステップ158J同様の処理を行う。ステッ
プ158Qでは、空調機器3のエアハンドリングユニッ
トの室内放熱後の冷温水温度を単位温度上昇させ、この
データをステップ158Lへ与える。
At step 158L, step 158F
The same processing is performed. In step 158M, step 1
The same processing as 58G is performed. In step 158N, a process similar to step 158H is performed. In step 158O, a process similar to step 158I is performed. Step 15
In 8P, the same processing as in step 158J is performed. In step 158Q, the temperature of the cold / hot water after the indoor heat radiation of the air handling unit of the air conditioner 3 is increased by a unit temperature, and this data is given to step 158L.

【0038】ここで、エアハンドリングユニットの室内
放熱後の冷温水温度を単位温度上昇させ、非線形要素で
ある熱負荷等についてステップ158Fからステップ1
58Iを行った場合のエアハンドリングユニット冷温水
と蓄熱式空調設備全体の消費電力量との関係を示すグラ
フを、図7に示す。
Here, the temperature of the cold / hot water after the indoor heat radiation of the air handling unit is increased by a unit temperature, and the heat load and the like as the non-linear elements are changed from step 158F to step 1
FIG. 7 is a graph showing the relationship between the air handling unit cold / hot water and the power consumption of the entire regenerative air conditioner when 58I is performed.

【0039】再びステップ158Rから158Uのデー
タ処理を行い、ステップ158Vにおいて蓄熱式空調設
備全体の運転コストが最小であれば、図5に示すステッ
プ158Wを行う。ステップ158Rでは、ステップ1
58F同様の処理を行う。ステップ158Sでは、ステ
ップ158G同様の処理を行う。ステップ158Tで
は、ステップ158H同様の処理を行う。ステップ15
8Uでは、ステップ158I同様の処理を行う。ステッ
プ158Vでは、ステップ158J同様の処理を行う。
ステップ158Wでは、空調機器3のファンコイルユニ
ットの室内放熱後の冷温水温度を単位温度上昇させ、こ
のデータをステップ158Rへ与える。
The data processing of steps 158R to 158U is performed again, and if the operation cost of the entire regenerative air conditioning system is minimum at step 158V, step 158W shown in FIG. 5 is performed. In step 158R, step 1
The same processing as 58F is performed. In step 158S, a process similar to step 158G is performed. In step 158T, a process similar to step 158H is performed. Step 15
In 8U, the same processing as in step 158I is performed. At step 158V, a process similar to step 158J is performed.
In step 158W, the temperature of the cold / hot water after the indoor heat radiation of the fan coil unit of the air conditioner 3 is increased by a unit temperature, and this data is given to step 158R.

【0040】ここで、ファンコイルユニットの室内放熱
後の冷温水温度を単位温度上昇させ、非線形要素である
熱負荷等についてステップ158Rからステップ158
Uを行った場合のファンコイルユニット冷温水と蓄熱式
空調設備全体の消費電力量との関係を示すグラフを、図
8に示す。
Here, the temperature of the cold / hot water after the indoor heat radiation of the fan coil unit is increased by a unit temperature, and steps 158R to 158 are executed for the heat load, which is a non-linear element.
FIG. 8 is a graph showing the relationship between the fan coil unit cold / hot water and the power consumption of the entire regenerative air conditioner when U is performed.

【0041】ステップ158Qによるエアハンドリング
ユニットの室内放熱後の冷温水温度と、ステップ158
Wによるファンコイルユニットの室内放熱後の冷温水温
度は異なって良く、同一である必要はない。蓄熱式空調
設備全体の消費電力量が最小となる各々の温度であれば
良い。
The temperature of the cold / hot water after the indoor unit of the air handling unit radiates heat in step 158Q,
The temperature of the cold / hot water after the indoor heat radiation of the fan coil unit by W may be different and need not be the same. Any temperature may be used as long as the power consumption of the entire thermal storage type air conditioner is minimized.

【0042】図11は、エアハンドリングユニットとフ
ァンコイルユニットの室内放熱後の冷温水温度が各々異
なる場合の消費電力量計算の例を示す表である。ここ
で、エアハンドリングユニットの冷温水入口と出口との
温度差が10度となり、ファンコイルユニットの冷温水入
口と出口との温度差が5度となる場合において、消費電
力量最小である。従来の冷温水入口と出口との温度差を
一定とした消費電力量計算よりも15%程度省エネとな
っている。
FIG. 11 is a table showing an example of calculation of power consumption when the temperature of the cold and hot water after indoor heat radiation of the air handling unit and the fan coil unit are different from each other. Here, when the temperature difference between the cold and hot water inlet and the outlet of the air handling unit is 10 degrees and the temperature difference between the cold and hot water inlet and the outlet of the fan coil unit is 5 degrees, the power consumption is minimum. The energy consumption is reduced by about 15% compared to the conventional power consumption calculation in which the temperature difference between the hot and cold water inlet and outlet is fixed.

【0043】図11の例では、エアハンドリングユニッ
トとファンコイルユニットで分類しているが、各エアハ
ンドリングユニット及び各ファンコイルユニット毎に室
内放熱後の冷温水温度差を個別に設定することも可能で
ある。
In the example of FIG. 11, the air handling unit and the fan coil unit are classified. However, it is also possible to individually set the temperature difference between the hot and cold water after the indoor heat radiation for each air handling unit and each fan coil unit. It is.

【0044】また、室内温度や外気温度及び蓄熱槽の冷
温水温度等は、時間経緯により変化するため、図11に
示す消費電力量計算は、1時間毎等の一定時間周期の値
を算出し、常に消費電力量最小としている。
Further, since the room temperature, the outside air temperature, the temperature of the cold / hot water in the heat storage tank, and the like change with time, the power consumption calculation shown in FIG. 11 calculates a value of a constant time period such as every hour. , The power consumption is always minimized.

【0045】前記のステップ158Fから158Wをス
テップ158Xによって繰り返すことにより、蓄熱式空
調設備全体の電力消費量及び運転コストの最小化計算処
理を行う。
By repeating the above steps 158F to 158W in step 158X, a process of minimizing the power consumption and operating cost of the entire regenerative air conditioning system is performed.

【0046】以上述べた処理(山登り法アルゴリズム)
によれば、従来のニュートン法に比べ、計算プログラム
を簡易にでき、また計算時間が短くなる。また、機器モ
ニタによる測定値により制御精度が向上し、省エネとな
る。これらにより、従来の負荷予測や冷凍機単体の効率
化に比べて5〜10%の省エネが図れる。また、このシ
ミュレーション結果を実際の空調設備設計時に活用する
ことができる。
Processing described above (climbing algorithm)
According to the method, the calculation program can be simplified and the calculation time can be reduced as compared with the conventional Newton method. Further, the control accuracy is improved by the measured value from the device monitor, and energy is saved. As a result, energy saving of 5 to 10% can be achieved as compared with the conventional load prediction and efficiency improvement of the refrigerator alone. In addition, the simulation result can be used when designing the actual air conditioning equipment.

【0047】本実施例は、熱媒体に水を用いるものであ
るが、熱媒体にブライン等を用いると共に蓄熱槽に氷を
用いる氷蓄熱式空調についても、本計画立案方法の適用
が可能である。
In this embodiment, water is used as a heat medium. However, the present planning method can be applied to an ice regenerative air conditioner using brine or the like as a heat medium and ice in a heat storage tank. .

【0048】また、本実施例では熱源機器に冷凍機を用
いているが、ヒートポンプ等を用いた場合についても、
本計画立案方法の適用が可能である。
In this embodiment, a refrigerator is used as a heat source device. However, when a heat pump or the like is used,
This planning method can be applied.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
蓄熱式空調設備の熱源機器と負荷側機器と搬送動力等の
相互関係から決定される蓄熱式空調設備全体の電力消費
量を算出でき、蓄熱式空調設備の省力化を図ることがで
きる。
As described above, according to the present invention,
It is possible to calculate the power consumption of the entire regenerative air conditioner, which is determined from the interrelation among the heat source device, the load side device, the transfer power, and the like of the regenerative air conditioner, and to save the power of the regenerative air conditioner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蓄熱式空調設備の全体構成を示すブロック図FIG. 1 is a block diagram showing the overall configuration of a regenerative air conditioning system.

【図2】制御計画立案装置の処理機能ブロックを示すブ
ロック図
FIG. 2 is a block diagram showing processing functional blocks of the control planning device;

【図3】制御計画立案装置の最小値算出処理のフローチ
ャート
FIG. 3 is a flowchart of a minimum value calculation process of the control planning device;

【図4】制御計画立案装置の最小値算出処理のフローチ
ャート
FIG. 4 is a flowchart of a minimum value calculation process of the control planning device;

【図5】冷凍機と蓄熱式空調設備全体の消費電力量との
関係を示すグラフ
FIG. 5 is a graph showing a relationship between the refrigerator and the power consumption of the entire regenerative air conditioning system.

【図6】制御計画立案装置の最小値算出処理のフローチ
ャート
FIG. 6 is a flowchart of a minimum value calculation process of the control planning device;

【図7】エアハンドリングユニット冷温水と蓄熱式空調
設備全体の消費電力量との関係を示すグラフ
FIG. 7 is a graph showing the relationship between the air handling unit cold / hot water and the power consumption of the entire regenerative air conditioning system.

【図8】ファンコイルユニット冷温水と蓄熱式空調設備
全体の消費電力量との関係を示すグラフ
FIG. 8 is a graph showing the relationship between the fan coil unit cold / hot water and the power consumption of the entire regenerative air conditioning system.

【図9】検出データの例を示す図FIG. 9 is a diagram showing an example of detection data.

【図10】パラメータ範囲データの入力対象機器の例を
示す図
FIG. 10 is a diagram showing an example of a target device for inputting parameter range data.

【図11】負荷側(空調)機器制御実施によるエネルギ
ー削減の例を示す図
FIG. 11 is a diagram showing an example of energy reduction by performing load-side (air conditioning) device control.

【符号の説明】[Explanation of symbols]

1…熱源機器、 2…蓄熱槽、 3…負荷側機器(空調機器)、 4…一次側送水ポンプ、 5…二次側送水ポンプ、 6…温度センサ、 7…制御装置、 8…冷凍機電力測定器、 9…二次側送水ポンプ電力測定器、 10…負荷側機器の電力測定器、 11…外気温度センサ、 12…外気湿度センサ、 13…冷温水負荷入口温度センサー、 14…冷温水流量センサ、 15…制御計画立案装置、 16…冷温水負荷出口温度センサ、 17…冷温水熱源入口温度センサ、 18…冷温水熱源出口温度センサ、 19…還気温度センサ、 20…還気湿度センサ、 21…給気温度センサ、 22…給気湿度センサ、 23…冷却塔電力測定器、 24…一次側押送水ポンプ電力測定器、 25…冷却水送水ポンプ、 26…冷却水送水ポンプ電力測定器、 102…冷凍機、 151…検出データ取り込み部、 152…現在測定値オンライン記憶部、 153…データ蓄積ファイル部、 155…熱負荷予測処理部、 156…各機器パラメータ範囲データ入力部、 157…各機器パラメータ範囲データファイル部、 158…蓄熱量全体の電力量及び運転コストの最少値算
出処理部、 159…制御信号を制御装置へ出力する処理部、 158A…蓄熱槽の温度情報取込みステップ、 158B…室内放熱負荷量の情報取込みステップ、 158C…蓄熱槽の蓄熱量算出ステップ、 158D…エアハンドリングユニットの室内放熱後の冷
水温度算出ステップ、 158E…冷凍機の運転時間初期値算出ステップ、 158F…時間毎の各機器電力量と蓄熱槽の温度分布を
算出するステップ、 158G…蓄熱空調設備全体の電力合計値を算出するス
テップ、 158H…各機器の電力使用量から各機器の運転コスト
を算出するステップ、 158I…蓄熱空調設備全体の運転コスト合計値を算出
するステップ、 158J…蓄熱空調設備全体の運転コスト最小値評価ス
テップ、 158K…冷凍機運転時間の単位時間増加処理ステッ
プ、 158Q…エアハンドリングユニットの室内放熱後の冷
水温度上昇処理ステップ、 158W…ファンコイルユニットの室内放熱後の冷水温
度上昇処理ステップ、 158P…空調設備全体の運転コスト最小値評価回数カ
ウントステップ、 158Y…ファンコイルユニットの室内放熱後の冷水温
度算出ステップ
DESCRIPTION OF SYMBOLS 1 ... Heat source equipment, 2 ... Heat storage tank, 3 ... Load side equipment (air conditioning equipment), 4 ... Primary side water pump, 5 ... Secondary side water pump, 6 ... Temperature sensor, 7 ... Control device, 8 ... Refrigerator power Measuring instrument, 9: Secondary side water pump electric power measuring instrument, 10: Electric power measuring instrument of load side equipment, 11: Outside air temperature sensor, 12: External air humidity sensor, 13: Cold / hot water load inlet temperature sensor, 14: Cold / hot water flow rate Sensors: 15: Control planning device, 16: Cold / hot water load outlet temperature sensor, 17: Cold / hot water heat source inlet temperature sensor, 18: Cold / hot water heat source outlet temperature sensor, 19: Return air temperature sensor, 20: Return air humidity sensor, 21: Supply air temperature sensor, 22: Supply air humidity sensor, 23: Cooling tower power measuring device, 24: Primary side pumping water pump power measuring device, 25: Cooling water water pump, 26: Cooling water water pump power measuring device, 102 ... Refrigerator, 151… Detection data acquisition unit, 152… Current measured value online storage unit, 153… Data storage file unit, 155… Heat load prediction processing unit, 156… Equipment parameter range data input unit, 157… Equipment parameter range Data file section, 158: processing section for calculating the minimum value of the electric energy and operating cost of the entire heat storage amount, 159: processing section for outputting a control signal to the control device, 158A: step of acquiring temperature information of the heat storage tank, 158B: indoor heat dissipation load 158C: Step of calculating the amount of heat stored in the heat storage tank, 158D: Step of calculating the chilled water temperature after indoor heat dissipation of the air handling unit, 158E: Step of calculating the initial value of the operation time of the refrigerator, 158F: Each device for each hour Step of calculating the electric energy and the temperature distribution of the heat storage tank, 158G: The whole heat storage air conditioning equipment 158H: a step of calculating the operation cost of each device from the power consumption of each device, 158I: a step of calculating the total operation cost of the heat storage air conditioner, 158J: the whole heat storage air conditioner 158K: A step for increasing the unit operating time of the refrigerator, 158Q: A step for increasing the temperature of the chilled water after radiating the indoor air of the air handling unit, 158W: A rising of the temperature of the chilled water after the indoor radiating of the fan coil unit Processing step, 158P: Counting the number of times of evaluation of the minimum operating cost of the entire air conditioning equipment, 158Y: Calculating the cold water temperature after indoor heat radiation of the fan coil unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G05B 17/02 G05B 17/02 (72)発明者 古川 正弘 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所通信事業部内 (72)発明者 松村 幸四郎 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所通信事業部内 (72)発明者 藤原 育 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所通信事業部内 Fターム(参考) 3L060 AA03 AA05 CC02 CC03 CC05 CC06 CC07 CC10 CC15 DD05 DD08 EE31 EE32 EE34 EE35 EE41 5H004 GA34 GA36 HA20 HB01 HB14 JA04 JA08 JA13 JA23 KA32 KC03 KC26 KD61 5H215 AA11 BB01 CC05 CX01 DD01 EE02 GG04 GG16 HH03 JJ22──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G05B 17/02 G05B 17/02 (72) Inventor Masahiro Furukawa 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Stock Company. Hitachi, Ltd.Communications Division (72) Inventor Koshiro Matsumura 216, Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Co., Ltd. F-term (reference) in Hitachi, Ltd. Communications Division GG16 HH03 JJ22

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】熱媒体を作る熱源機器と、前記熱源機器の
熱媒体を蓄える蓄熱槽と、前記熱源機器と前記蓄熱槽と
の間で熱媒体を循環する第1の熱媒体循環機器と、空調
機器と、前記蓄熱槽と前記空調機器との間で熱媒体を循
環する第2の熱媒体循環機器と、前記熱源機器の熱源稼
動情報を検出する第1の検出器と、前記空調機器の空調
稼動情報を検出する第2の検出器と、前記第1、第2の
検出器の検出情報及び前記蓄熱槽の温度分布情報を受け
て前記熱源機器及び前記空調機器の運転条件を制御する
制御装置とを備えた蓄熱空調設備の制御システムであっ
て、 前記制御装置に接続される制御計画立案装置を備え、該
制御計画立案装置は、 前記各機器の稼動情報と前記蓄熱槽の温度分布情報と前
記各機器の稼動設定パラメータとに基づいて前記各機器
の負荷特性を求め、該機器の負荷特性を設定する負荷特
性設定部と、 前記空調機器が設置された室内温度や室内湿度の目標を
設定する目標設定部と、 前記各機器の稼動情報、前記負荷特性及び前記目標設定
値に基づいて前記各機器の熱負荷を予測する熱負荷予測
部と、 前記熱負荷予測値と前記負荷特性とに基づいて前記各機
器の電力使用量を求める計算部と、 前記計算部の計算値と前記負荷特性設定部の負荷特性設
定値に基づいて前記各機器の制御信号を生成する制御信
号生成部と、 前記制御信号を、前記記制御装置を介して前記各機器に
供給する制御信号供給部とを備え、 前記制御計画立案装置において前記空調機器の稼動情報
を含む各稼動情報から生成した前記制御信号を上記各機
器の運転条件制御信号として利用し、蓄熱空調設備の電
力使用量を制御可能としたことを特徴とする蓄熱空調設
備の制御システム。
1. A heat source device for producing a heat medium, a heat storage tank for storing a heat medium of the heat source device, a first heat medium circulating device for circulating a heat medium between the heat source device and the heat storage tank, An air conditioner, a second heat medium circulating device that circulates a heat medium between the heat storage tank and the air conditioner, a first detector that detects heat source operation information of the heat source device, A second detector for detecting air-conditioning operation information, and control for controlling operating conditions of the heat source device and the air-conditioning device by receiving detection information of the first and second detectors and temperature distribution information of the heat storage tank. A control system for a thermal storage air-conditioning system comprising: a control plan drafting device connected to the control device, wherein the control plan drafting device comprises: operation information of each device and temperature distribution information of the thermal storage tank. And the operation setting parameters of the respective devices, A load characteristic setting unit that obtains load characteristics of each device and sets a load characteristic of the device; a target setting unit that sets a target of a room temperature and a room humidity where the air-conditioning device is installed; A heat load prediction unit that predicts a heat load of each device based on the information, the load characteristics, and the target set value; and obtains a power consumption amount of each device based on the heat load prediction value and the load characteristics. A calculating unit, a control signal generating unit that generates a control signal for each device based on the calculated value of the calculating unit and the load characteristic setting value of the load characteristic setting unit, and the control signal, via the control device. A control signal supply unit for supplying to each of the devices by using the control signal generated from each of the operation information including the operation information of the air conditioning device in the control plan drafting device, as an operation condition control signal of each of the devices. , Heat storage A control system for a heat storage air conditioner, wherein the power consumption of the air conditioner can be controlled.
【請求項2】前記熱源機器が冷却塔、冷凍機、前記冷却
塔と前記冷凍機との間で冷水又は温水の熱媒体を循環す
るポンプからなり、前記熱源機器の稼動情報が電力消費
量、熱源用水の水温、水量を含む稼動情報であり、前記
空調機器の稼動情報が周囲温度、湿度、空調用水の水
温、水量を含む稼動情報であり、前記第1の熱媒体循環
機器が前記蓄熱槽の冷水又は温水の熱媒体を前記冷凍機
に供給し、また該冷凍機から排出された熱媒体を該蓄熱
槽に戻すポンプからなり、前記第2の熱媒体循環機器が
前記蓄熱槽の冷水又は温水を前記空調機器に供給し、ま
た該空調機器から排出された熱媒体を該蓄熱槽に戻すポ
ンプからなり、前記制御計画立案装置がパーソナルコン
ピュータからなり、前記パーソナルコンピュータは上記
熱源機器の冷却塔、冷凍機の稼動パラメータ、前記空調
機器の稼動パラメータ、前記ポンプの稼動パラメータを
入力する入力部と、該入力部から入力された稼動パレメ
ータ及び前記各機器の稼動情報を記憶保管するメモリ部
と、前記熱負荷予測値と前記負荷特性設定値とに基づい
て前記各機器の電力使用量が最小になるように計算する
計算部と、前記計算部の計算結果と前記負荷特性設定値
に基づいて前記各機器の運転条件を制御する制御信号を
生成する信号生成部からなる請求項1記載の蓄熱空調設
備の制御システム。
2. The heat source device comprises a cooling tower, a refrigerator, and a pump for circulating a heat medium of cold water or hot water between the cooling tower and the refrigerator, and the operation information of the heat source device is power consumption, The operation information including the temperature of the heat source water and the amount of water, the operation information of the air conditioner is the operation information including the ambient temperature, the humidity, the temperature of the air conditioning water, and the amount of water. The first heat medium circulating device includes the heat storage tank. A cold water or hot water heat medium is supplied to the refrigerator, and a heat medium discharged from the refrigerator is returned to the heat storage tank. A pump for supplying hot water to the air conditioner and returning a heat medium discharged from the air conditioner to the heat storage tank; the control planning device comprising a personal computer; and the personal computer being a cooling tower of the heat source device. , An input unit for inputting an operation parameter of the freezer, an operation parameter of the air conditioner, and an operation parameter of the pump; a memory unit for storing operation parameters input from the input unit and operation information of each device; A calculating unit that calculates the power consumption of each device based on the thermal load predicted value and the load characteristic set value so as to minimize the electric power consumption, and the calculation unit and the load characteristic set value based on the calculation result of the calculation unit. The control system for a heat storage air conditioning system according to claim 1, further comprising a signal generation unit that generates a control signal for controlling an operation condition of the device.
【請求項3】熱媒体を生成する熱源機器と、前記熱源機
器の熱媒体を蓄える蓄熱槽と、前記熱源機器と前記蓄熱
槽との間で熱媒体を循環させる第1の熱媒体循環機器
と、空調機器と、前記蓄熱槽と前記空調機器との間で熱
媒体を循環させる第2の熱媒体循環機器と、前記熱源機
器の熱源稼動情報を検出する第1の検出器と、前記空調
機器の空調稼動情報を検出する第2の検出器と、前記第
1、第2の検出器の検出情報及び前記蓄熱槽の温度分布
情報を受けて前記熱源機器及び前記空調機器の運転条件
を制御する制御装置とを備えた蓄熱空調設備に使用され
る制御計画立案装置において、 前記各機器の稼動情報から、所定時間内における空調熱
負荷及び時系列的に変化する空調熱負荷を予測する予測
部と、その予測した空調熱負荷と前記各機器の稼動パラ
メータとから蓄熱空調設備全体の電力消費量が減じる方
向の制御条件を、算出する算出部と、その算出結果に基
づく制御条件を、前記蓄熱槽、前記熱源機器、前記空調
機器、前記熱媒体循環機器の運転制御条件として設定す
ることを特徴とする蓄熱空調設備の制御計画立案装置。
3. A heat source device for generating a heat medium, a heat storage tank for storing a heat medium of the heat source device, and a first heat medium circulating device for circulating a heat medium between the heat source device and the heat storage tank. An air conditioner, a second heat medium circulating device that circulates a heat medium between the heat storage tank and the air conditioner, a first detector that detects heat source operation information of the heat source device, and the air conditioner A second detector for detecting the air-conditioning operation information, and receiving the detection information of the first and second detectors and the temperature distribution information of the heat storage tank to control operating conditions of the heat source device and the air-conditioning device. In a control plan drafting device used for a thermal storage air conditioner equipped with a control device, a prediction unit that predicts an air conditioning heat load and a time-series changing air conditioning heat load within a predetermined time from operation information of each device. , Its predicted air conditioning heat load and each of the above equipment And a control unit that calculates a control condition in a direction in which the power consumption of the entire heat storage air conditioner is reduced from the operation parameters of the heat storage tank, the heat source device, the air conditioner, and the heat source based on the calculation result. A control plan drafting apparatus for a heat storage air conditioner, which is set as an operation control condition of a medium circulation device.
【請求項4】前記予測部が前記各機器の稼動情報を検出
し取り込む取込部と、取り込んだ情報を蓄積する蓄積フ
ァイル部と、該蓄積ファイル部の情報から前記空調機器
の熱負荷を予測する熱負荷予測処理部とからなり、前記
算出部が前記各機器の稼動情報と前記空調機器の室内温
度、室内湿度の目標値、熱負荷特性及び前記各機器の運
転条件パレメータとを受けて前記蓄熱空調設備全体の電
量消費量が下がる方向の運転条件を算出する演算部から
なる請求項3記載の蓄熱空調設備の制御計画立案装置。
4. A fetch unit for detecting and fetching operation information of each of the devices, a storage file unit for storing the fetched information, and predicting a heat load of the air conditioner from the information of the storage file unit. The heat load prediction processing unit, the calculation unit receives the operation information of each device and the indoor temperature of the air conditioner, the target value of the indoor humidity, the heat load characteristic, and the operating condition parameters of each device, The control plan drafting device for a heat storage air conditioner according to claim 3, further comprising a calculation unit that calculates an operation condition in a direction in which a power consumption of the entire heat storage air conditioner decreases.
【請求項5】熱媒体を生成する熱源機器と、前記熱源機
器の熱媒体を蓄える蓄熱槽と、前記熱源機器と前記蓄熱
槽との間で熱媒体を循環させる第1の熱媒体循環機器
と、空調機器と、前記蓄熱槽と前記空調機器との間で熱
媒体を循環させる第2の熱媒体循環機器と、前記熱源機
器の熱源稼動情報を検出する第1の検出器と、前記空調
機器の空調稼動情報を検出する第2の検出器と、前記第
1、第2の検出器の検出情報及び前記蓄熱槽の温度分布
情報を受けて前記熱源機器及び前記空調機器の稼動条件
を制御する制御装置とを備えた蓄熱空調設備の制御計画
立案方法であって、 前記熱源機器、前記空調機器、前記熱媒体循環機器の稼
動情報から、所定時間内における空調熱負荷及び時系列
的に変化する空調熱負荷を予測する手順と、その予測し
た空調熱負荷と上記各機器の稼動パラメータとから蓄熱
空調設備全体の電力消費量が減じる方向の制御条件を算
出する手順と、その算出結果に基づく制御条件を、前記
蓄熱槽、前記熱源機器、前記負荷側機器、前記送出機器
の運転制御条件として設定する手順とからなることを特
徴とする蓄熱空調設備の制御計画立案方法。
5. A heat source device for generating a heat medium, a heat storage tank for storing a heat medium of the heat source device, and a first heat medium circulating device for circulating a heat medium between the heat source device and the heat storage tank. An air conditioner, a second heat medium circulating device that circulates a heat medium between the heat storage tank and the air conditioner, a first detector that detects heat source operation information of the heat source device, and the air conditioner A second detector for detecting the air conditioner operation information, and receiving the detection information of the first and second detectors and the temperature distribution information of the heat storage tank to control the operation conditions of the heat source device and the air conditioner. A control planning method for a heat storage air conditioning system comprising a control device, wherein the heat source device, the air conditioning device, and operation information of the heat medium circulating device change in air conditioning heat load and time series within a predetermined time. Procedure for estimating air conditioning heat load A procedure for calculating a control condition in a direction in which the power consumption of the entire heat storage air conditioner is reduced from the air conditioning heat load and the operation parameters of the respective devices, and a control condition based on the calculation result, the heat storage tank, the heat source device, A step of setting as operation control conditions of the load-side device and the transmission device.
【請求項6】前記所定時間内における空調熱負荷とは、
少なくとも1日から2日における空調熱負荷であり、前
記時系列的に変化するとは空調熱負荷とは1時間以内の
一定周期単位時間における変化値である請求項5記載の
蓄熱空調設備の制御計画立案方法。
6. An air conditioning heat load within the predetermined time,
6. The control plan for a heat storage air conditioning system according to claim 5, wherein the air conditioning heat load is at least one day to two days, and the time-series change is the air conditioning heat load is a change value in a fixed cycle unit time within one hour. Planning method.
【請求項7】請求項5において、前記予測した空調熱負
荷に応じた熱量を、前記熱源機器で生産して前記蓄熱槽
に蓄熱する手順と、該蓄熱手順では、前記熱源機器の出
力温度の設定を変化させたときの前記蓄熱槽、前記熱源
機器、前記熱媒体循環機器の消費電力量を算出する手順
と、この算出結果から消費電力量が最小になる前記熱源
機器の出力温度ならびに前記蓄熱槽設定温度を決定する
手順を含むことを特徴とする蓄熱空調設備の制御計画立
案方法。
7. The method according to claim 5, wherein the step of producing the heat amount corresponding to the predicted air-conditioning heat load by the heat source device and storing the heat in the heat storage tank includes the step of: determining the output temperature of the heat source device. A procedure for calculating the power consumption of the heat storage tank, the heat source device, and the heat medium circulating device when the setting is changed, and the output temperature of the heat source device and the heat storage that minimize the power consumption from the calculation result. A method for drafting a control plan for a heat storage air conditioner, comprising a step of determining a tank set temperature.
【請求項8】請求項5又は請求項7において、前記蓄熱
槽に蓄えられた熱量を使った放熱運転をする場合、時々
刻々変化する内部負荷に応じて、前記蓄熱槽から前記空
調機器へ供給する循環水の温度が前記空調機器による室
内熱交換の前後で所定の差を保つように、前記熱媒体循
環機器による循環熱媒体の循環量を算出する手順を含む
ことを特徴とする蓄熱空調設備の制御計画立案方法。
8. The air conditioner according to claim 5 or 7, wherein when performing the heat radiation operation using the amount of heat stored in the heat storage tank, the heat storage tank supplies the air conditioning equipment according to the internal load that changes every moment. A heat storage air conditioner comprising calculating a circulation amount of a circulating heat medium by the heat medium circulating device such that a temperature of the circulating water to be maintained has a predetermined difference before and after indoor heat exchange by the air conditioner. Control planning method.
【請求項9】請求項5において、前記空調機器の変化す
る内部負荷及び給気温度に応じて、吐出温度が一定にな
るよう該空調機器の風量を、前記制御装置を介して制御
する手順を含むことを特徴とする蓄熱空調設備の制御計
画立案方法。。
9. A method according to claim 5, wherein the control unit controls the air volume of the air conditioner through the control device so that the discharge temperature is constant according to the changing internal load and supply air temperature of the air conditioner. A method for formulating a control plan for a heat storage air conditioner, comprising: .
【請求項10】請求項5において、各機器の特性値をデ
ータとして蓄積し、空調熱負荷等の予測値の修正ならび
に蓄熱槽設定温度や循環水温度差等の各設定値の変更を
行う手順を含むことを特徴とする蓄熱空調設備の制御計
画立案方法。
10. A procedure according to claim 5, wherein characteristic values of each device are stored as data, and a predicted value such as an air conditioning heat load is corrected and each set value such as a heat storage tank set temperature and a circulating water temperature difference is changed. A method for formulating a control plan for a thermal storage air conditioner, comprising:
【請求項11】コンピュータに、 メモリに記憶された熱源機器、空調機器、熱媒体吸入排
出機器の各稼動情報及び各稼動条件パラメータから、前
記熱源機器、前記空調機器、前記熱媒体吸入排出機器の
負荷特性を求めるステップと、 前記空調機器が設置される室内の温度、湿度の目標を設
定するステップと、 前記各機器の稼動情報と前記負荷特性と前記目標設定値
とに基づき前記空調機器の熱負荷を予測する熱負荷予測
ステップと、前記負荷特性と前記熱負荷予測値に基づ
き、前記各機器の電力量が小となる計算式を求めるステ
ップと、前記熱負荷予測値と前記各稼動パラメータとか
ら前記計算式に基づいて前記熱源機器と前記空調機器の
電力量が小さくなるように制御する制御信号を生成する
ステップと、を実行させるためのプログラムを記録した
コンピュータ読取り可能な記録媒体。
11. A computer stores the heat source device, the air conditioner, and the heat medium intake / discharge device based on each operation information and each operation condition parameter of the heat source device, the air conditioner, and the heat medium intake / discharge device stored in the memory. Determining a load characteristic; setting an indoor temperature and humidity target where the air conditioner is installed; heat of the air conditioner based on the operation information of each device, the load characteristic and the target set value. A heat load prediction step of predicting a load, a step of obtaining a calculation formula in which the electric energy of each device is small based on the load characteristics and the heat load prediction value, and the heat load prediction value and the respective operation parameters; Generating a control signal for controlling the heat source device and the air conditioner to reduce the electric energy based on the calculation formula. Recorded computer-readable recording medium.
【請求項12】コンピュータに、メモリに記憶された熱
源機器、空調機器、熱媒体吸入排出機器の各稼動情報及
び各稼動条件パラメータから、前記熱源機器、前記空調
機器、前記熱媒体吸入排出機器の負荷特性を求めるステ
ップ、前記空調機器が設置される室内の温度、湿度の目
標を設定するステップ、前記各機器の稼動情報と前記負
荷特性と前記目標設定値とに基づき前記空調機器の熱負
荷を予測する熱負荷予測ステップ、前記負荷特性と前記
熱負荷予測値に基づき、前記各機器の電力量が下がる方
向の計算式を求めるステップ、前記熱負荷予測値と前記
各稼動パラメータとから前記計算式に基づいて前記熱源
機器と前記空調機器の電力量が小さくなるように制御す
る制御信号を生成するステップとして機能させるための
プログラムを記録したコンピュータ読取り可能な記録媒
体。
12. A computer stores the heat source device, the air conditioner, and the heat medium suction / discharge device based on each operation information and each operation condition parameter of the heat source device, the air conditioner, and the heat medium suction / discharge device stored in the memory. Determining a load characteristic, setting a target of temperature and humidity in a room where the air conditioner is installed, and calculating a heat load of the air conditioner based on the operation information of each device, the load characteristic, and the target set value. A heat load prediction step of predicting, based on the load characteristics and the heat load prediction value, a step of obtaining a calculation formula in a direction in which the electric energy of each device decreases, and the calculation formula from the heat load prediction value and each of the operation parameters. Recording a program for functioning as a step of generating a control signal for controlling the amount of power of the heat source device and the air conditioning device to be small based on Computer-readable recording medium.
【請求項13】コンピュータに、メモリに格納された熱
源機器、空調機器、送水機器の各稼動情報及び各稼動条
件パラメータから、前記熱源機器、前記空調機器、前記
送水機器の負荷特性を求めるステップ、前記空調機器が
設置される室内の温度、湿度の目標を設定するステッ
プ、前記各機器の稼動情報と前記負荷特性と前記目標設
定値とに基づき前記空調機器の熱負荷を予測する熱負荷
予測ステップ、前記負荷特性と前記熱負荷予測値に基づ
き、前記各機器の電力量が小となる計算式を求めるステ
ップ、前記熱負荷予測値と前記各稼動パラメータとから
前記計算式に基づいて前記熱源機器と前記空調機器の電
力量が小さくなるように制御する制御信号を生成するス
テップを実行させるためのプログラム。
13. A computer which obtains load characteristics of the heat source device, the air conditioner, and the water supply device from each operation information and each operation condition parameter of the heat source device, the air conditioner, and the water supply device stored in the memory; Setting a target of temperature and humidity in a room in which the air conditioner is installed, and a heat load prediction step of predicting a heat load of the air conditioner based on operation information of each device, the load characteristic, and the target set value. Obtaining a calculation formula in which the electric energy of each device becomes small based on the load characteristics and the heat load prediction value, and calculating the heat source device based on the calculation formula from the heat load prediction value and each operation parameter. And a step of generating a control signal for controlling the amount of power of the air conditioner to decrease.
【請求項14】コンピュータに、熱源機器、空調機器、
熱媒体循環機器の各稼動条件パラメータをメモリに格納
するステップと、前記メモリに記憶された各稼動情報及
び各稼動条件パラメータから、前記熱源機器、前記空調
機器、前記熱媒体循環機器の負荷特性を求めるステップ
と、前記空調機器が設置される室内の温度、湿度の目標
を設定するステップと、前記各機器の稼動情報と前記負
荷特性と前記目標設定値とに基づき前記空調機器の熱負
荷を予測する熱負荷予測ステップと、前記負荷特性と前
記熱負荷予測値に基づき、前記各機器の電力量が小とな
る計算式を求めるステップと、前記熱負荷予測値と前記
各稼動パラメータとから前記計算式に基づいて前記熱源
機器と前記空調機器の電力量が小さくなるように制御す
る制御信号を生成するステップと、を実行させるための
プログラムを記録したコンピュータ読取り可能な記録媒
体。
14. A computer comprising a heat source device, an air conditioner,
Storing each operating condition parameter of the heat medium circulating device in a memory; and from the respective operating information and each operating condition parameter stored in the memory, the load characteristics of the heat source device, the air conditioning device, and the heat medium circulating device are determined. Determining, setting a target of temperature and humidity in a room where the air conditioner is installed, and predicting a heat load of the air conditioner based on operation information of each device, the load characteristic, and the target set value. A heat load predicting step, a step of obtaining a calculation formula that reduces the electric energy of each device based on the load characteristics and the heat load predicted value, and performing the calculation from the heat load predicted value and the operating parameters. Generating a control signal for controlling the amount of power of the heat source device and the air conditioner to be small based on a formula, and recording a program for executing the control signal. Computer-readable recording medium.
【請求項15】コンピュータに、熱源機器、空調機器、
熱媒体循環機器の各稼動条件パラメータをメモリに格納
するステップと、メモリに記憶された各稼動情報及び各
稼動条件パラメータから、前記熱源機器、前記空調機
器、前記送熱媒体循環機器の負荷特性を求めるステッ
プ、前記空調機器が設置される室内の温度、湿度の目標
を設定するステップ、前記各機器の稼動情報と前記負荷
特性と前記目標設定値とに基づき前記空調機器の熱負荷
を予測する熱負荷予測ステップ、前記負荷特性と前記熱
負荷予測値に基づき、前記各機器の電力量が下がる方向
の計算式を求めるステップ、前記熱負荷予測値と前記各
稼動パラメータとから前記計算式に基づいて前記熱源機
器と前記空調機器の電力量が小さくなるように制御する
制御信号を生成するステップとして機能させるためのプ
ログラムを記録したコンピュータ読取り可能な記録媒
体。
15. A computer comprising a heat source device, an air conditioner,
Storing each operating condition parameter of the heat medium circulating device in the memory, and from the respective operating information and each operating condition parameter stored in the memory, the load characteristics of the heat source device, the air conditioning device, and the heat transfer medium circulating device are determined. Determining the target of the temperature and humidity of the room in which the air conditioner is installed, and predicting the heat load of the air conditioner based on the operation information of each device, the load characteristic, and the target set value. A load prediction step, based on the load characteristics and the thermal load predicted value, a step of obtaining a calculation formula in a direction in which the electric energy of each device decreases, based on the thermal load predicted value and the respective operation parameters, based on the calculation formula. A program recording a program for functioning as a step of generating a control signal for controlling the electric energy of the heat source device and the air conditioner to be reduced. Computer-readable recording medium.
【請求項16】コンピュータに、熱源機器、空調機器、
熱媒体循環機器の各稼動条件パラメータをメモリに格納
するステップと、メモリに格納された各稼動情報及び各
稼動条件パラメータから、前記熱源機器、前記空調機
器、前記送水機器の負荷特性を求めるステップ、前記空
調機器が設置される室内の温度、湿度の目標を設定する
ステップ、前記各機器の稼動情報と前記負荷特性と前記
目標設定値とに基づき前記空調機器の熱負荷を予測する
熱負荷予測ステップ、前記負荷特性と前記熱負荷予測値
に基づき、前記各機器の電力量が小となる計算式を求め
るステップ、前記熱負荷予測値と前記各稼動パラメータ
とから前記計算式に基づいて前記熱源機器と前記空調機
器の電力量が小さくなるように制御する制御信号を生成
するステップを実行させるためのプログラム。
16. A computer comprising a heat source device, an air conditioning device,
Storing each operating condition parameter of the heat medium circulating device in a memory; and obtaining load characteristics of the heat source device, the air conditioner, and the water supply device from each operating information and each operating condition parameter stored in the memory. Setting a target of temperature and humidity in a room in which the air conditioner is installed, and a heat load prediction step of predicting a heat load of the air conditioner based on operation information of each device, the load characteristic, and the target set value. Obtaining a calculation formula in which the electric energy of each device becomes small based on the load characteristics and the heat load prediction value, and calculating the heat source device based on the calculation formula from the heat load prediction value and each operation parameter. And a step of generating a control signal for controlling the amount of power of the air conditioner to decrease.
JP2001171891A 2001-06-07 2001-06-07 Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning Pending JP2002364901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171891A JP2002364901A (en) 2001-06-07 2001-06-07 Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171891A JP2002364901A (en) 2001-06-07 2001-06-07 Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning

Publications (1)

Publication Number Publication Date
JP2002364901A true JP2002364901A (en) 2002-12-18

Family

ID=19013589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171891A Pending JP2002364901A (en) 2001-06-07 2001-06-07 Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning

Country Status (1)

Country Link
JP (1) JP2002364901A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286284A (en) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd Control system and control method of utility consumption facility
JP2004293844A (en) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd Air conditioning equipment
JP2005090780A (en) * 2003-09-12 2005-04-07 Shimizu Corp Air-conditioning energy evaluation system
JP2006207929A (en) * 2005-01-28 2006-08-10 Daikin Ind Ltd Optimum operation control system and optimum operation control method for air conditioning system
JP2007233914A (en) * 2006-03-03 2007-09-13 Univ Waseda Optimum arrangement diagnostic device for automatic vending machine and program for optimum arrangement diagnostic device
JP2008204073A (en) * 2007-02-19 2008-09-04 Mitsubishi Heavy Ind Ltd Power system
JP2008209023A (en) * 2007-02-23 2008-09-11 Taikisha Ltd Device and method for controlling heat source facility, and air conditioning system and its control method
JP2009204195A (en) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd Air conditioning system and power consumption estimating device for building air-conditioning equipment
JP2009204221A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Air conditioning system and power consumption estimating device for building air-conditioning equipment
JP2011169588A (en) * 2011-06-06 2011-09-01 Toshiba Corp Air conditioning optimal control system
JP2012500960A (en) * 2008-08-29 2012-01-12 ヴィト ナムローゼ フェンノートシャップ Controller for energy supply system
JP2013087991A (en) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd Heat source control device, air-conditioning system, heat source control program, and heat source control method
JP2013106367A (en) * 2011-11-10 2013-05-30 Shimizu Corp Operation management apparatus, operation management method and program
JP2015505030A (en) * 2012-01-23 2015-02-16 アース・ネットワークス・インコーポレイテッドEarth Networks,Inc. Optimization and control of building energy consumption
US9612591B2 (en) 2012-01-23 2017-04-04 Earth Networks, Inc. Optimizing and controlling the energy consumption of a building
US10354345B2 (en) 2012-01-23 2019-07-16 Whisker Labs, Inc. Optimizing and controlling the energy consumption of a building
US11441788B2 (en) * 2018-05-11 2022-09-13 Kyungdong Navien Co., Ltd. Method and system for determining hot water use by using temperature gap

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286284A (en) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd Control system and control method of utility consumption facility
JP2004293844A (en) * 2003-03-26 2004-10-21 Hitachi Plant Eng & Constr Co Ltd Air conditioning equipment
JP2005090780A (en) * 2003-09-12 2005-04-07 Shimizu Corp Air-conditioning energy evaluation system
JP2006207929A (en) * 2005-01-28 2006-08-10 Daikin Ind Ltd Optimum operation control system and optimum operation control method for air conditioning system
JP2007233914A (en) * 2006-03-03 2007-09-13 Univ Waseda Optimum arrangement diagnostic device for automatic vending machine and program for optimum arrangement diagnostic device
JP2008204073A (en) * 2007-02-19 2008-09-04 Mitsubishi Heavy Ind Ltd Power system
JP2008209023A (en) * 2007-02-23 2008-09-11 Taikisha Ltd Device and method for controlling heat source facility, and air conditioning system and its control method
JP2009204195A (en) * 2008-02-26 2009-09-10 Mitsubishi Heavy Ind Ltd Air conditioning system and power consumption estimating device for building air-conditioning equipment
JP2009204221A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Air conditioning system and power consumption estimating device for building air-conditioning equipment
JP2012500960A (en) * 2008-08-29 2012-01-12 ヴィト ナムローゼ フェンノートシャップ Controller for energy supply system
US9618215B2 (en) 2008-08-29 2017-04-11 Vito Nv Controller for energy supply systems
JP2011169588A (en) * 2011-06-06 2011-09-01 Toshiba Corp Air conditioning optimal control system
JP2013087991A (en) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd Heat source control device, air-conditioning system, heat source control program, and heat source control method
JP2013106367A (en) * 2011-11-10 2013-05-30 Shimizu Corp Operation management apparatus, operation management method and program
JP2015505030A (en) * 2012-01-23 2015-02-16 アース・ネットワークス・インコーポレイテッドEarth Networks,Inc. Optimization and control of building energy consumption
US9612591B2 (en) 2012-01-23 2017-04-04 Earth Networks, Inc. Optimizing and controlling the energy consumption of a building
US10354345B2 (en) 2012-01-23 2019-07-16 Whisker Labs, Inc. Optimizing and controlling the energy consumption of a building
US11441788B2 (en) * 2018-05-11 2022-09-13 Kyungdong Navien Co., Ltd. Method and system for determining hot water use by using temperature gap

Similar Documents

Publication Publication Date Title
JP2002364901A (en) Control system of regenerative air conditioning installation, controlled planning apparatus, controlled planning method, and recording medium and program for executing the controlled planning
CN105783199B (en) The clean method of air conditioner intelligent self-cleaning
CN101782258B (en) Energy-saving method for air conditioner
JP5931281B2 (en) Air conditioning system controller
CN105928139B (en) Air conditioner automatically cleaning control method
CN112682936B (en) Air conditioner cold station system control method, system and device and readable storage medium
US6591620B2 (en) Air conditioning equipment operation system and air conditioning equipment designing support system
JP6005304B2 (en) Ventilation control device and ventilation control method
CN103486693B (en) A kind of energy-saving control method of freezing water system of central air conditioner
US9752791B2 (en) Air-conditioning unit control device and air-conditioning unit control program for minimizing power consumption
JP2023505766A (en) Heat Exchanger System with Machine Learning Based Optimization
JP6328283B2 (en) Controller, schedule creation method, and program
CN110529980B (en) Method and system for determining actual demand cooling load of central air conditioner and electronic equipment
JP6739671B1 (en) Information processing equipment
JP2010249333A (en) Operation control information generation device, operation control information generating program, recording medium, and operation control information generating method
US11578889B2 (en) Information processing apparatus and air-conditioning system provided with the same
CN103375881A (en) Air conditioner control method and device thereof of clean room
CN111442480A (en) Operation control method and system for air conditioning equipment, air conditioning equipment and storage medium
CN108302732A (en) Air conditioning control method and air conditioner
US20200208863A1 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
CN114154677A (en) Air conditioner operation load model construction and prediction method, device, equipment and medium
TW201027014A (en) Method for managing air conditioning power consumption
JP6513257B2 (en) Controller, schedule creation method, and program
JP6596758B2 (en) Control device, air conditioning control system, control method and program
JP2018148790A (en) Controller, schedule preparation method, and program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510