JP2002362345A - Road surface condition determining device and method and determining program of road surface condition - Google Patents

Road surface condition determining device and method and determining program of road surface condition

Info

Publication number
JP2002362345A
JP2002362345A JP2001172272A JP2001172272A JP2002362345A JP 2002362345 A JP2002362345 A JP 2002362345A JP 2001172272 A JP2001172272 A JP 2001172272A JP 2001172272 A JP2001172272 A JP 2001172272A JP 2002362345 A JP2002362345 A JP 2002362345A
Authority
JP
Japan
Prior art keywords
vehicle
road surface
speed
determining
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001172272A
Other languages
Japanese (ja)
Inventor
Hiroaki Kawasaki
裕章 川崎
Yukio Nakao
幸夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001172272A priority Critical patent/JP2002362345A/en
Publication of JP2002362345A publication Critical patent/JP2002362345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a road surface condition determining device capable enhancing performance and safety of a vehicle by accurately determining a road surface condition between a road surface and tires. SOLUTION: The road surface condition determining device is provided with a speed detecting means of periodically detecting wheel speeds of four wheels of the vehicle, a body speed calculating means of determining a body speed of the vehicle, a slip ratio calculating means of determining a slip ratio from the body speed and an average wheel speed of driving wheels of the wheel speeds, a body acceleration calculating means of determining a body acceleration of the vehicle, a turning radius calculating means of determining a turning radius of the vehicle, a moving average processing means of subjecting the slip ratio and the body acceleration to a moving average process per predetermined time, and a road surface condition determining means of determining the road surface condition from a relationship between a slip ratio and a body acceleration when a turning radius is larger than a predetermined value from data of the slip ratio and the body acceleration subjected to the moving average process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は路面状態判定装置お
よび方法、ならびに路面状態の判定プログラムに関す
る。さらに詳しくは、路面とタイヤとのあいだの路面状
態を判定することにより、車両の性能および安全性を高
めることができる路面状態判定装置および方法、ならび
に路面状態の判定プログラムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for determining a road surface condition, and a program for determining a road surface condition. More specifically, the present invention relates to a road surface state determination device and method capable of improving the performance and safety of a vehicle by determining a road surface state between a road surface and a tire, and a road surface state determination program.

【0002】[0002]

【従来の技術】車両は、滑りやすい路面で急加速や急制
動を行なうと、タイヤがスリップを起こしスピンなどす
る危険性がある。また急な操舵を行なうと車両が横すべ
りやスピンを起こす惧れがある。
2. Description of the Related Art When a vehicle is suddenly accelerated or braked on a slippery road surface, there is a risk that tires may slip and spin. Also, sudden steering may cause the vehicle to skid or spin.

【0003】そこで、従来より、タイヤと路面とのあい
だの制動力が最大値をこえてタイヤがロック状態になる
前に、車輪に作用するブレーキトルクを低下させて車輪
のロック状態を防止し、最大制動力が得られる車輪の回
転数を制御するアンチロックブレーキ装置などが提案さ
れている(特開昭60−99757号公報、特開平1−
249559号公報など参照)。
[0003] Conventionally, before the braking force between the tire and the road surface exceeds the maximum value and the tire is locked, the brake torque acting on the wheel is reduced to prevent the wheel from being locked, An anti-lock brake device for controlling the number of rotations of a wheel at which a maximum braking force is obtained has been proposed (Japanese Patent Application Laid-Open No. 60-99757, Japanese Patent Application Laid-Open No. Hei 1-9957).
249559).

【0004】たとえば、アンチロックブレーキ装置の制
御では、車両の判定速度および検出した車輪速度からス
リップ率を演算したのち、該演算したスリップ率が予め
設定してある基準スリップ率に一致するようにブレーキ
力を制御することにより、最大制動力に追従するように
構成されている。
For example, in the control of an anti-lock brake device, a slip ratio is calculated from a determined speed of a vehicle and a detected wheel speed, and then the brake is adjusted so that the calculated slip ratio matches a preset reference slip ratio. It is configured to follow the maximum braking force by controlling the force.

【0005】このようなABS装置などの制御では、路
面の摩擦係数μが利用されている。すなわち路面状態の
摩擦係数μ(路面μ)に応じて、たとえば高μの場合と
低μの場合とで制御内容を変更して最適な制御を行なう
ようにしている。
In the control of such an ABS device or the like, the friction coefficient μ of the road surface is used. That is, according to the friction coefficient μ of the road surface state (road surface μ), for example, the control content is changed between the case of high μ and the case of low μ to perform optimal control.

【0006】路面μを推定する装置としては、たとえば
特開平7−112659号公報に記載される装置があ
る。ここで、路面μが、路面とタイヤとの摩擦結合の大
きさを示すものであり、路面μが大きいほど車両は大き
な加速度を発生させるとともに、この路面μは、車輪の
スリップ率が10〜20%程度までは、スリップ率の上
昇にともなって増加するという特性を有している。そこ
で、この公報では、同じ車体加速度が生じていても、そ
の際の車輪のスリップ率が大きいほど路面との摩擦係数
は小さいということから、路面μと車輪スリップ率の特
性曲線において、路面μを車体加速度に置き換えること
で車体加速度−車輪スリップ率Sの特性曲線について考
えている。
As a device for estimating the road surface μ, there is, for example, a device described in JP-A-7-112659. Here, the road surface μ indicates the magnitude of the frictional coupling between the road surface and the tire. The larger the road surface μ, the greater the vehicle generates acceleration, and the road surface μ has a wheel slip ratio of 10 to 20. %, It has the characteristic that it increases with an increase in the slip ratio. Therefore, in this publication, even if the same vehicle body acceleration occurs, the coefficient of friction with the road surface decreases as the wheel slip ratio increases, so that the road surface μ and the wheel slip ratio characteristic curve A characteristic curve of vehicle body acceleration-wheel slip ratio S is considered by replacing the vehicle body acceleration with the vehicle body acceleration.

【0007】また、この公報記載の装置では、ノイズな
どの誤差要因の影響を低下するために、複数の周期にわ
たって積算した各車輪のスリップ率の総和と複数の周期
にわたって積算した車体加速度の関係から路面μを推定
している。すなわち、このスリップ率と車体加速度の関
係とは、所定の時間積分した車体加速度ΣAbと所定の
時間積分した車輪スリップ率の和ΣStの比(傾き)M
(M=ΣAb/ΣSt)であり、このMの大きさによっ
て路面状態を推定している。
Further, in the device disclosed in this publication, in order to reduce the influence of error factors such as noise, the relationship between the sum of the slip rates of the respective wheels integrated over a plurality of cycles and the vehicle body acceleration integrated over a plurality of cycles. The road surface μ is estimated. That is, the relationship between the slip ratio and the vehicle acceleration is a ratio (slope) M of the vehicle acceleration ΣAb integrated for a predetermined time and the wheel slip ratio し た St integrated for a predetermined time.
(M = ΣAb / ΣSt), and the road surface condition is estimated based on the magnitude of M.

【0008】しかしながら、車両が走行する場合、走行
方向とは逆方向に走行抵抗が生じる。この走行抵抗は、
走行速度が速くなるほど大きくなるので、それに相当す
るだけの力(駆動力)が必要となる。したがって、スリ
ップ率は、同じ路面を同じ車体加速度(ΣAb)で走行
した場合でも、走行速度によって変わってしまう。すな
わち、同じ路面でありながら、走行速度によってMの値
が異なってしまう。
[0008] However, when the vehicle travels, traveling resistance is generated in a direction opposite to the traveling direction. This running resistance is
As the traveling speed increases, the driving speed increases, so that a corresponding force (driving force) is required. Therefore, even when the vehicle travels on the same road surface at the same vehicle acceleration (ΣAb), the slip ratio changes depending on the traveling speed. That is, the value of M differs depending on the traveling speed even on the same road surface.

【0009】そこで、前記特開平7−112659号公
報記載の第二実施例の中では、高速走行中用マップと低
速走行中用マップを設け、走行速度に応じて使い分けて
いる。そして、そのマップ上でMがどの領域に当てはま
っているかで判断すればよいとされている。なお、前記
領域とは、高摩擦係数をもつ路面、すなわち路面状況
が良好であるということを示す領域、比較的高摩擦係
数をもつ走行安定性上差し障りのない路面状況であるこ
とを示す領域および低摩擦係数をもつ路面、すなわち
路面状況がわるいことを示す領域のことである。
Therefore, in the second embodiment described in Japanese Patent Application Laid-Open No. 7-112669, a map for running at high speed and a map for running at low speed are provided and used properly according to the running speed. Then, it is said that the determination should be made based on which region M is applied on the map. Note that the region is a road surface having a high friction coefficient, that is, a region indicating that the road surface condition is good, a region indicating a road surface condition having a relatively high friction coefficient and no hindrance to running stability and It is a road surface with a low coefficient of friction, that is, a region where the road surface condition is bad.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図6〜
7に示されるように、車体加速度と車輪スリップ率の関
係は、実際は原点を通るような関係ではないために、同
一路面、同一速度であってもMの値は1つに決まらな
い。したがって、高速走行中用マップと低速走行中用マ
ップを用いても正確に路面状態を求めることは難しい。
[0006] However, FIGS.
As shown in FIG. 7, since the relationship between the vehicle body acceleration and the wheel slip ratio does not actually pass through the origin, the value of M is not determined to be one even for the same road surface and the same speed. Therefore, it is difficult to accurately determine the road surface state using the high-speed running map and the low-speed running map.

【0011】原点を通らない理由は、前述した走行抵抗
が存在するからである。走行抵抗とは、車両の走行を妨
げる方向に作用する力の総称であり、大きく分けてつぎ
の4つがある。
The reason for not passing through the origin is that the aforementioned running resistance exists. The running resistance is a general term for forces acting in a direction that hinders the running of the vehicle, and is roughly divided into the following four types.

【0012】(1)転がり抵抗 (2)空気抵抗 (3)勾配抵抗 (4)加速抵抗(1) Rolling resistance (2) Air resistance (3) Gradient resistance (4) Acceleration resistance

【0013】たとえば平坦な路面をほぼ一定速で走行し
ている場合を考えると、前記4つの抵抗のうち、勾配抵
抗と加速抵抗はほぼゼロとみなすことができる。しかし
ながら、転がり抵抗と空気抵抗は、路面を走行する以上
必ず存在する。したがって、これらの抵抗に相当するだ
けの力が必要になるため、加速度がゼロでもスリップ率
はゼロとはならない。すなわち原点を通るような直線に
はならない。
For example, when the vehicle is running on a flat road surface at a substantially constant speed, the gradient resistance and the acceleration resistance among the four resistances can be regarded as substantially zero. However, rolling resistance and air resistance always exist as long as the vehicle travels on the road surface. Therefore, since a force corresponding to these resistances is required, even if the acceleration is zero, the slip ratio does not become zero. That is, it does not become a straight line passing through the origin.

【0014】仮に高速用と低速用の2つのマップで路面
状態を求めたとしても、高速と低速の境界付近の走行中
は判定するマップが頻繁に入れ替わり、正確に路面状態
を求めるのは難しい。また、マップをさらに増やしたと
しても、車輪スリップ率の和というのは、路面の勾配に
よっても大きく左右されるため、正確に判定するのは難
しい。
Even if the road surface condition is determined by using two maps, one for high speed and one for low speed, the maps to be determined are frequently replaced during traveling near the boundary between high speed and low speed, and it is difficult to accurately determine the road surface condition. Even if the number of maps is further increased, the sum of the wheel slip ratios is greatly affected by the gradient of the road surface, and thus it is difficult to make an accurate determination.

【0015】本発明は、叙上の事情に鑑みて、路面とタ
イヤとのあいだの路面状態を正確に判定することによ
り、車両の性能および安全性を高めることができる路面
状態判定装置および方法、ならびに路面状態の判定プロ
グラムを提供することを目的とする。
The present invention has been made in view of the above circumstances and provides a road condition determining apparatus and method capable of improving the performance and safety of a vehicle by accurately determining a road condition between a road and a tire. It is another object of the present invention to provide a program for determining a road surface condition.

【0016】[0016]

【課題を解決するための手段】本発明の路面状態判定装
置は、車両の4輪の車輪速度を定期的に検出する速度検
出手段と、前記車両の車体速度を求める車体速度演算手
段と、前記車輪速度のうち、駆動輪の平均車輪速度と車
体速度からスリップ率を求めるスリップ率演算手段と、
前記車両の車体加速度を求める車体加速度演算手段と、
前記車両の旋回半径を求める旋回半径演算手段と、前記
スリップ率と車体加速度を所定の時間ごとに移動平均化
処理する移動平均化処理手段と、当該移動平均化したス
リップ率と車体加速度のデータのうち、旋回半径が所定
値よりも大きい場合のスリップ率と車体加速度の関係か
ら路面状態を判定する路面状態判定手段とを備えてなる
ことを特徴とする。
According to the present invention, there is provided a road surface condition judging device comprising: speed detecting means for periodically detecting wheel speeds of four wheels of a vehicle; vehicle speed calculating means for obtaining a vehicle speed of the vehicle; Slip ratio calculating means for calculating a slip ratio from the average wheel speed of the drive wheels and the vehicle speed among the wheel speeds;
Body acceleration calculation means for determining the body acceleration of the vehicle,
Turning radius calculating means for calculating a turning radius of the vehicle, moving average processing means for moving and averaging the slip ratio and the vehicle acceleration at predetermined time intervals, and data of the moving averaged slip ratio and the vehicle acceleration. Among them, a road surface condition determining means for determining a road surface condition from a relationship between a slip ratio and a vehicle body acceleration when the turning radius is larger than a predetermined value is provided.

【0017】また、本発明の路面状態判定方法は、車両
の4輪の車輪速度を定期的に検出する工程と、前記車両
の車体速度を求める工程と、前記車輪速度のうち、駆動
輪の平均車輪速度と車体速度からスリップ率を求める工
程と、前記車両の車体加速度を求める工程と、前記車両
の旋回半径を求める工程と、前記スリップ率と車体加速
度を所定の時間ごとに移動平均化処理する工程と、当該
移動平均化したスリップ率と車体加速度のデータのう
ち、旋回半径が所定値よりも大きい場合のスリップ率と
車体加速度の関係から路面状態を判定する工程とを含む
ことを特徴とする。
Further, the road surface condition determination method of the present invention includes a step of periodically detecting wheel speeds of four wheels of the vehicle, a step of obtaining a vehicle body speed of the vehicle, and an average of driving wheels among the wheel speeds. A step of calculating a slip rate from the wheel speed and the vehicle speed; a step of determining a vehicle acceleration of the vehicle; a step of determining a turning radius of the vehicle; and a moving averaging process of the slip rate and the vehicle acceleration at predetermined time intervals. And a step of determining a road surface state from a relationship between the slip ratio and the vehicle acceleration when the turning radius is larger than a predetermined value, out of the moving averaged slip ratio and vehicle acceleration data. .

【0018】さらに、本発明のための路面状態の判定プ
ログラムは、路面状態を判定するためにコンピュータ
を、車両の車体速度を求める車体速度演算手段、車輪速
度のうち、駆動輪の平均車輪速度と車体速度からスリッ
プ率を求めるスリップ率演算手段、前記車両の車体加速
度を求める車体加速度演算手段、車両の旋回半径を求め
る旋回半径演算手段、スリップ率と車体加速度を所定の
時間ごとに移動平均化処理する移動平均化処理手段、移
動平均化したスリップ率と車体加速度のデータのうち、
旋回半径が所定値よりも大きい場合のスリップ率と車体
加速度の関係から路面状態を判定する路面状態判定手段
として機能させることを特徴とする。
Further, the road surface condition determination program for the present invention comprises: a computer for determining the road surface condition; a vehicle speed calculating means for determining a vehicle body speed of the vehicle; Slip rate calculation means for obtaining a slip rate from the vehicle speed, vehicle acceleration calculation means for obtaining the vehicle acceleration of the vehicle, turning radius calculation means for obtaining the turning radius of the vehicle, and moving average processing of the slip rate and the body acceleration at predetermined time intervals Moving average processing means, the moving averaged slip rate and the vehicle acceleration data,
The present invention is characterized in that it functions as road surface state determining means for determining the road surface state from the relationship between the slip ratio and the vehicle body acceleration when the turning radius is larger than a predetermined value.

【0019】[0019]

【発明の実施の形態】以下、添付図面に基づいて、本発
明の路面状態判定装置および方法、ならびに路面状態の
判定プログラムを説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a road condition judging apparatus and method according to the present invention;

【0020】図1は本発明の路面状態判定装置の一実施
の形態を示すブロック図、図2は図1における路面状態
判定装置の電気的構成を示すブロック図、図3は1次の
回帰係数と車体速度との関係を示す図、図4はM値と車
体速度との関係を示す図、図5はM値と車体加速度との
関係を示す図である。
FIG. 1 is a block diagram showing an embodiment of a road condition judging device according to the present invention, FIG. 2 is a block diagram showing an electric configuration of the road condition judging device in FIG. 1, and FIG. FIG. 4 is a diagram showing the relationship between the M value and the vehicle speed, and FIG. 5 is a diagram showing the relationship between the M value and the vehicle acceleration.

【0021】図1に示すように、本発明の一実施の形態
にかかわる路面状態判定装置は、4つのタイヤFL、F
R、RLおよびRR(Wi、i=1〜4、1:前左タイ
ヤ、2:前右タイヤ、3:後左タイヤ、4:後右タイ
ヤ)にそれぞれ設けられた車輪タイヤの回転速度を定期
的に検出する速度検出手段1を備えており、この速度検
出手段1の出力は、ABSなどの制御ユニット2に伝達
される。またこの制御ユニット2には、図2に示される
ように、液晶表示素子、プラズマ表示素子またはCRT
などの構成された表示手段である警報表示器3が接続さ
れている。4は運転者によって、操作される初期化スイ
ッチである。
As shown in FIG. 1, a road condition determining apparatus according to one embodiment of the present invention comprises four tires FL, F
R, RL and RR (Wi, i = 1 to 4, 1: front left tire, 2: front right tire, 3: rear left tire, 4: rear right tire) The rotation speeds of the wheel tires respectively are periodically set. A speed detecting means 1 for detecting the speed is provided, and an output of the speed detecting means 1 is transmitted to a control unit 2 such as an ABS. As shown in FIG. 2, the control unit 2 includes a liquid crystal display element, a plasma display element, or a CRT.
The alarm display 3 which is a display means configured as described above is connected. Reference numeral 4 denotes an initialization switch operated by the driver.

【0022】前記速度検出手段1としては、電磁ピック
アップなどを用いて回転パルスを発生させてパルスの数
から車輪速度を測定する車輪速センサまたはダイナモの
ように回転を利用して発電を行ない、この電圧から車輪
速度を測定するものを含む角速度センサなどを用いるこ
とができる。
The speed detecting means 1 generates a rotation pulse by using an electromagnetic pickup or the like and generates a power by utilizing rotation like a wheel speed sensor or a dynamo which measures a wheel speed from the number of pulses. Angular velocity sensors including those that measure wheel speed from voltage can be used.

【0023】前記制御ユニット2は、図2に示されるよ
うに、外部装置との信号の受け渡しに必要なI/Oイン
ターフェイス2aと、演算処理の中枢として機能するC
PU2bと、該CPU2bの制御動作プログラムが格納
されたROM2cと、前記CPU2bが制御動作を行な
う際にデータなどが一時的に書き込まれたり、その書き
込まれたデータなどが読み出されるRAM2dとから構
成されている。
As shown in FIG. 2, the control unit 2 includes an I / O interface 2a necessary for exchanging signals with an external device and a C functioning as a center of arithmetic processing.
A PU 2b, a ROM 2c in which a control operation program of the CPU 2b is stored, and a RAM 2d into which data or the like is temporarily written when the CPU 2b performs a control operation, and from which the written data is read. I have.

【0024】本実施の形態では、前記制御ユニット2
に、車両の4輪の車輪速度を定期的に検出する速度検出
手段1と、前記車両の車体速度を求める車体速度演算手
段と、前記車輪速度のうち、駆動輪の平均車輪速度と車
体速度からスリップ率を求めるスリップ率演算手段と、
前記車両の車体加速度を求める車体加速度演算手段と、
前記車両の旋回半径を求める旋回半径演算手段と、前記
スリップ率と車体加速度を所定の時間ごとに移動平均化
処理する移動平均化処理手段と、当該移動平均化したス
リップ率と車体加速度のデータのうち、旋回半径が所定
値よりも大きい場合のスリップ率と車体加速度の関係か
ら路面状態を判定する路面状態判定手段とを備えてい
る。
In this embodiment, the control unit 2
Speed detecting means 1 for periodically detecting wheel speeds of four wheels of a vehicle, vehicle speed calculating means for calculating a vehicle speed of the vehicle, and among the wheel speeds, an average wheel speed of driving wheels and a vehicle speed. A slip ratio calculating means for determining a slip ratio;
Body acceleration calculation means for determining the body acceleration of the vehicle,
Turning radius calculating means for calculating a turning radius of the vehicle, moving average processing means for moving and averaging the slip ratio and the vehicle acceleration at predetermined time intervals, and data of the moving averaged slip ratio and the vehicle acceleration. Among them, a road surface condition determining means for determining a road surface condition from the relationship between the slip ratio and the vehicle body acceleration when the turning radius is larger than a predetermined value is provided.

【0025】前記4輪の車輪タイヤの車輪速度を0.1
秒以下、好ましくは0.05秒以下で検出する。
The wheel speed of the four wheels is 0.1
Detection is performed in seconds or less, preferably in 0.05 seconds or less.

【0026】また、前記車体速度は、対地センサ(光学
式の非接触速度計)などを用いて、当該検出信号から求
めることができるが、本発明においては、これに限定さ
れるものではなく、車両が前輪駆動車や後輪駆動車の場
合、従動輪の車輪速度を車体速度とみなすことができ
る。ただし、従動輪の車輪速度を車体速度とみなす場合
は、ブレーキング中のデータをリジェクトする必要があ
る。なぜならブレーキングすると従動輪にも制動力が働
くため、正確に車体速度を求めることができないからで
ある。
Further, the vehicle speed can be obtained from the detection signal using a ground sensor (optical non-contact speedometer) or the like, but the present invention is not limited to this. When the vehicle is a front wheel drive vehicle or a rear wheel drive vehicle, the wheel speed of the driven wheel can be regarded as the vehicle body speed. However, when the wheel speed of the driven wheel is regarded as the vehicle speed, it is necessary to reject data during braking. This is because the braking force acts on the driven wheels when braking, so that the vehicle speed cannot be accurately obtained.

【0027】また、前記車両の車体加速度は、加速度セ
ンサを用いて、当該検出信号から求めることができる
が、本発明においては、これに限定されるものではな
く、車両が前輪駆動車や後輪駆動車の場合、従動輪の車
輪速度を微分した値から求めることができる。
Further, the vehicle body acceleration of the vehicle can be obtained from the detection signal using an acceleration sensor. However, the present invention is not limited to this. In the case of a driven vehicle, it can be obtained from a value obtained by differentiating the wheel speed of the driven wheel.

【0028】本実施の形態では、前記スリップ率および
車両の車体加速度を所定時間分のデータ、たとえば少な
くとも0.1秒分以上のデータの平均値として、サンプ
リング時間ごとに移動平均化して求め、この移動平均さ
れた値(一定個数のスリップ率と車両の車体加速度)を
元に、該スリップ率と該車両の車体加速度との関係式を
求める。
In the present embodiment, the slip rate and the vehicle body acceleration of the vehicle are obtained by moving-averaging every sampling time as an average value of data for a predetermined time, for example, data of at least 0.1 second or more. A relational expression between the slip rate and the vehicle body acceleration of the vehicle is obtained based on the moving average value (a fixed number of slip rates and the vehicle body acceleration of the vehicle).

【0029】さらに前記移動平均されたスリップ率およ
び車両の車体加速度のデータ、たとえば少なくとも5個
以上のデータを用いて、スリップ率と車両の車体加速度
との互いの1次の回帰係数と相関係数を求める。ここ
で、移動平均して求められたスリップ率がある一定値以
上の場合または一定値以下の場合(たとえば0.07以
上または−0.07以下の場合)は、回帰係数の演算に
は使用せず、スリップ警報として警報を発してもよい。
Further, using the data of the moving averaged slip ratio and the vehicle body acceleration of the vehicle, for example, at least five or more pieces of data, mutual linear regression coefficients and correlation coefficients of the slip ratio and the vehicle body acceleration are used. Ask for. Here, if the slip ratio obtained by the moving average is equal to or greater than a certain value or equal to or less than a certain value (for example, equal to or greater than 0.07 or equal to or less than -0.07), the slip ratio is not used for calculating the regression coefficient. Instead, an alarm may be issued as a slip alarm.

【0030】また、前記旋回半径は、舵角センサSを用
いて、当該検出信号から求めることができるが、本発明
においては、これに限定されるものではなく、たとえば
旋回半径R(m)は、つぎの式を用いて、従動輪の車輪
速度(右側車輪の速度RV、左側車輪の速度LV)と従
動輪のトレッド幅Trから算出することができる。
The turning radius can be obtained from the detection signal using the steering angle sensor S. However, the present invention is not limited to this. For example, the turning radius R (m) is It can be calculated from the wheel speed of the driven wheel (the right wheel speed RV, the left wheel speed LV) and the tread width Tr of the driven wheel using the following equation.

【0031】[0031]

【数1】 (Equation 1)

【0032】なお、前記旋回半径Rが所定置よりも小さ
い場合には、前記1次の回帰係数の算出には使用しな
い。なぜなら、たとえばR=50m以下の小さな旋回の
場合、正確にスリップ率を求めるのが難しいからであ
る。
When the turning radius R is smaller than a predetermined value, the turning radius R is not used for calculating the first-order regression coefficient. This is because, for example, in the case of a small turn of R = 50 m or less, it is difficult to accurately determine the slip ratio.

【0033】そこで、本実施の形態では、所定の旋回半
径以上のスリップ率と車体加速度のデータを所定の時間
蓄積し、そのデータについて1次の回帰係数と相関係数
を求め、1次の回帰係数と相関係数の値から路面状態を
判定する。
Therefore, in the present embodiment, data of the slip rate and the vehicle body acceleration exceeding a predetermined turning radius is accumulated for a predetermined time, and a first-order regression coefficient and a correlation coefficient are obtained for the data to obtain a first-order regression coefficient. The road surface condition is determined from the value of the coefficient and the correlation coefficient.

【0034】以下、本実施の形態の路面状態判定装置の
動作を手順〜に沿って説明する。
Hereinafter, the operation of the road surface condition judging device according to the present embodiment will be described in accordance with the following procedures.

【0035】車両の4輪タイヤWiのそれぞれの回転
速度から車輪速度(V1n、V2n、V3n、V4n)を算
出する。
The wheel speeds from each of the rotational speeds of 4 wheel tires Wi of the vehicle (V1 n, V2 n, V3 n, V4 n) are calculated.

【0036】たとえば、ABSセンサなどのセンサから
得られた車両の各車輪タイヤWiのある時点の車輪速デ
ータを車輪速度V1n、V2n、V3n、V4nとする。
For example, let the wheel speed data of each wheel tire Wi of the vehicle at a certain point in time obtained from a sensor such as an ABS sensor be wheel speeds V1 n , V2 n , V3 n and V4 n .

【0037】ついで従動輪および駆動輪の平均車輪速
度(Vfn、Vdn)を演算する。
[0037] then calculates the average wheel speeds of the driven wheels and the drive wheels (Vf n, Vd n).

【0038】前輪駆動の場合、ある時点の従動輪および
駆動輪の平均車輪速度Vfn、Vdnをつぎの式(1)、
(2)により求める。 Vfn=(V3n+V4n)/2 ・・・(1) Vdn=(V1n+V2n)/2 ・・・(2)
In the case of front-wheel drive, the average wheel speed Vf n of the following wheels and the driving wheels at a certain time, the Vd n of the following formula (1),
Determined by (2). Vf n = (V3 n + V4 n) / 2 ··· (1) Vd n = (V1 n + V2 n) / 2 ··· (2)

【0039】ついで前記車両の車体加速度(すなわち
従動輪の平均車輪加速度)Afnを演算する。
Then, the vehicle body acceleration of the vehicle (that is, the average wheel acceleration of the driven wheels) Af n is calculated.

【0040】前記従動輪の平均車輪速度Vfnより1つ
前の車輪速データから、平均車輪速度Afn-1とする
と、車両の車体加速度Afnはそれぞれつぎの式(3)
で求められる。 Afn=(Vfn−Vfn-1)/Δt/g ・・・(3)
Assuming that the average wheel speed Af n−1 is obtained from the wheel speed data immediately before the average wheel speed Vf n of the driven wheels, the vehicle body acceleration Af n of the vehicle is expressed by the following equation (3).
Is required. Af n = (Vf n -Vf n-1 ) / Δt / g (3)

【0041】ここで、Δtは車輪速データから算出され
る車輪速度VfnとVfn-1の時間間隔(サンプリング時
間)であり、gは重力加速度である。前記サンプルング
時間としては、データのばらつきを小さくし、かつ短時
間で判別するためには、0.1秒以下である必要があ
る。より好ましくは、0.05秒以下である。
Here, Δt is a time interval (sampling time) between the wheel speeds Vf n and Vf n−1 calculated from the wheel speed data, and g is a gravitational acceleration. The sampling time needs to be 0.1 second or less in order to reduce the variation in data and make a determination in a short time. More preferably, the time is 0.05 seconds or less.

【0042】ついで前記車両の車体加速度Afnの値
に応じて、スリップ率を演算する。まず、加速状態で、
駆動輪がロック状態で車両が滑っているとき(Vdn
0、Vfn≠0)や、減速状態で、車両が停止状態で駆
動輪がホイールスピンを起こしているとき(Vfn
0、Vdn≠0)は、起こり得ないものとして、スリッ
プ率Snをつぎの式(4)、(5)から演算する。 Afn≧0およびVdn≠0である場合、Sn=(Vfn−Vdn)/Vdn ・・・(4) Afn<0およびVfn≠0である場合、Sn=(Vfn−Vdn)/Vfn ・・・(5) 前記以外の場合は、Sn=1とする。
[0042] followed the in accordance with the value of the vehicle acceleration Af n of the vehicle, calculates the slip ratio. First, in an accelerated state,
When the vehicle is slipping with the driving wheels locked (Vd n =
0, Vf n ≠ 0), or when the vehicle is in a deceleration state, the vehicle is at a stop, and the drive wheels are spinning (Vf n =
0, Vd n ≠ 0), the slip ratio Sn is calculated from the following equations (4) and (5), assuming that it cannot occur. If it is af n ≧ 0 and Vd n ≠ 0, S n = (Vf n -Vd n) / Vd n ··· (4) If it is af n <0 and Vf n ≠ 0, S n = (Vf n -Vd n) / Vf n ··· (5) otherwise said, the S n = 1.

【0043】ついでスリップ率および車両の車体加速
度のデータをサンプリング時間ごとに移動平均化処理す
る。
Next, the data of the slip ratio and the acceleration of the vehicle body are subjected to a moving average process for each sampling time.

【0044】実際の走行中の路面μは一定ではなく、刻
々と変化するため、短時間で路面μを推定する必要があ
る。また直線回帰をする場合、一定以上のデータ数がな
ければ、得られた回帰係数の信頼性が劣る。そこで、単
時間のサンプリング時間、たとえば数十msごとにデー
タをサンプリングし、このサンプリング時間で得られた
ばらつきの大きいデータを移動平均することにより、デ
ータの数を減らさずに、データのばらつきを小さくする
ことができる。
Since the road surface μ during actual running is not constant but changes every moment, it is necessary to estimate the road surface μ in a short time. In the case of performing linear regression, the reliability of the obtained regression coefficient is poor unless the number of data exceeds a certain value. Therefore, data is sampled at a single sampling time, for example, every several tens of ms, and moving average of the data having a large variation obtained at the sampling time is used to reduce the data variation without reducing the number of data. can do.

【0045】スリップ率については、 MSn=(S1+S2+・・・+Sn)/N ・・・(6) MSn+1=(S2+S3+・・・+Sn+1)/N ・・・(7) MSn+2=(S3+S4+・・・+Sn+2)/N ・・・(8)Regarding the slip ratio, MS n = (S 1 + S 2 +... + S n ) / N (6) MS n + 1 = (S 2 + S 3 +... + S n + 1 ) / N (7) MS n + 2 = (S 3 + S 4 +... + S n + 2 ) / N (8)

【0046】車両の車体加速度については、 MAfn=(Af1+Af2+・・・+Afn)/N ・・・(9) MAfn+1=(Af2+Af3+・・・+Afn+1)/N ・・・(10) MAfn+2=(Af3+Af4+・・・+Afn+2)/N ・・・(11)With respect to the vehicle body acceleration, MAf n = (Af 1 + Af 2 +... + Af n ) / N (9) MAf n + 1 = (Af 2 + Af 3 +... + Af n + 1 ) / N (10) MAf n + 2 = (Af 3 + Af 4 +... + Af n + 2 ) / N (11)

【0047】車両の旋回半径を、つぎの式(12)を
用いて、前記従動輪の車輪速度と従動輪のトレッド幅T
rから算出する。
The turning radius of the vehicle and the tread width T of the driven wheel are calculated by using the following equation (12).
Calculated from r.

【0048】[0048]

【数2】 (Equation 2)

【0049】ついでスリップ率と車両の車体加速度と
の互いの1次の回帰係数、すなわちスリップ率の車両の
車体加速度に対する回帰係数K1と車両の車体加速度の
スリップ率に対する回帰係数K2をそれぞれつぎの式
(13)、(14)から求める。
Next, the linear regression coefficient of the slip rate and the vehicle body acceleration of the vehicle, that is, the regression coefficient K1 of the slip rate for the vehicle body acceleration and the regression coefficient K2 of the vehicle body acceleration for the slip rate are expressed by the following equations, respectively. Determined from (13) and (14).

【0050】[0050]

【数3】 (Equation 3)

【0051】[0051]

【表1】 [Table 1]

【0052】また相関係数Rは、 R=K1×K2 ・・・(15) となる。The correlation coefficient R is as follows: R = K1 × K2 (15)

【0053】この相関係数が所定値、たとえば0.7以
上であれば、1次の回帰係数K1の値を更新する。
If the correlation coefficient is equal to or larger than a predetermined value, for example, 0.7, the value of the primary regression coefficient K1 is updated.

【0054】ここで、スリップ率と車両の車体加速度と
の関係というのは、一般的なタイヤと路面のμ−s曲線
と同じことである。そして、前記回帰係数K1、K2と
は、μ−s曲線の勾配を求めたものである。このμ−s
曲線は、本来曲線であるが、実際の走行時に発生するス
リップ率の範囲では、ほぼ直線となっている。すなわ
ち、μ−s曲線は、y=aX+bという方程式で表わす
ことができる。このときの係数aが回帰係数(K1、K
2)で、直線の勾配を意味している。ここで、yをスリ
ップ率とするか、加速度とするかで、a=K1であった
りa=K2であったりする。本実施の形態では、yをス
リップ率としてK1の値で路面状態を判定している。も
ちろん回帰係数K2からも路面状態を判定することもで
きる。
Here, the relationship between the slip ratio and the vehicle body acceleration is the same as the μ-s curve of a general tire and road surface. The regression coefficients K1 and K2 are obtained by calculating the gradient of the μ-s curve. This μ-s
Although the curve is originally a curve, it is substantially a straight line in the range of the slip ratio generated during actual running. That is, the μ-s curve can be represented by the equation y = aX + b. The coefficient a at this time is the regression coefficient (K1, K
2) means the gradient of the straight line. Here, depending on whether y is a slip ratio or an acceleration, a = K1 or a = K2. In the present embodiment, the road surface state is determined by the value of K1 with y as the slip ratio. Of course, the road surface condition can also be determined from the regression coefficient K2.

【0055】また、相関係数Rを求めている理由は、得
られた回帰係数の値が適切であるか否かを判断するため
である。すなわち、相関係数Rの値が大きい場合は、ス
リップ率と加速度のあいだに相関があり、得られた回帰
係数は適切であるが、相関係数Rの値が小さい場合は、
両者のあいだに相関がなく得られた回帰係数は不適切で
あるために、その値で路面状態を判定しないようにす
る。
The reason why the correlation coefficient R is obtained is to determine whether or not the obtained value of the regression coefficient is appropriate. That is, when the value of the correlation coefficient R is large, there is a correlation between the slip ratio and the acceleration, and the obtained regression coefficient is appropriate, but when the value of the correlation coefficient R is small,
Since there is no correlation between the two and the obtained regression coefficient is inappropriate, the value of the regression coefficient is not used to determine the road surface condition.

【0056】つぎに路面状態の情報(滑りやすいな
ど)を運転手に警報する。さらには、路面の状態をAB
S装置やTRC装置などの制御に使用する。
Next, the driver is warned of road surface condition information (such as slipperiness). Furthermore, the condition of the road surface
Used for control of the S device and TRC device.

【0057】つぎに本発明を実施例に基づいて説明する
が、本発明はかかる実施例のみに限定されるものではな
い。
Next, the present invention will be described based on examples, but the present invention is not limited to only these examples.

【0058】実施例 まず後輪駆動車の4輪タイヤとして、スタッドレスタイ
ヤ(住友ゴム工業(株)製 グラスピックDS−1)を
使用し、車両を路面μがほぼ一定で安定しているドライ
アスファルト路を直進走行させた。このときの走行試験
は、30〜100km/hまでの各速度で行なった。車
輪の車輪速度のサンプリング時間に関し、データ数を多
く、かつばらつきや測定誤差を排除するために、たとえ
ば1秒ではサンプリング時間が長すぎるため、40ms
とした。
EXAMPLE First, a studless tire (Glass Pick DS-1 manufactured by Sumitomo Rubber Industries, Ltd.) was used as a four-wheel tire for a rear-wheel drive vehicle. I ran straight on the road. The running test at this time was performed at each speed from 30 to 100 km / h. Regarding the sampling time of the wheel speed of the wheel, to increase the number of data and to eliminate variations and measurement errors, for example, one second is too long for the sampling time.
And

【0059】そして速度検出手段から出力される車輪速
パルスに基づいて、車輪速度を取り込み、40msごと
の車両の車体加速度および前後輪のスリップ率を計算し
た。
Then, based on the wheel speed pulse output from the speed detecting means, the wheel speed was captured, and the vehicle body acceleration of the vehicle and the slip ratio of the front and rear wheels every 40 ms were calculated.

【0060】ついで、車両の車体加速度およびスリップ
率について、1秒分の25個のデータを平均化し、サン
プリング時間(40ms)ごとに移動平均値として求め
た。ここで、スリップ率が0.05以上または−0.0
5以下となった場合は、その時点でスリップ警報を発す
ることとした。それ以外の場合は、移動平均された車両
の車体加速度とスリップ率の50個分のデータでスリッ
プ率に対する車両の車体加速度の1次の回帰係数K1を
求めた。なお、旋回半径が50m以下の場合はデータを
リジェクトした。
Next, with respect to the vehicle body acceleration and the slip ratio of the vehicle, 25 pieces of data for one second were averaged and determined as a moving average value every sampling time (40 ms). Here, the slip ratio is 0.05 or more or -0.0
If it becomes 5 or less, a slip warning is issued at that time. In other cases, a first-order regression coefficient K1 of the vehicle body acceleration with respect to the slip rate was obtained from the data of the moving average of the vehicle body acceleration and the slip rate of 50 pieces. When the turning radius was 50 m or less, the data was rejected.

【0061】さらに、このときの相関係数Rを求め、こ
の相関係数Rが0.7以上であれば回帰係数K1の値を
更新し、保持した。
Further, the correlation coefficient R at this time was obtained. If the correlation coefficient R was 0.7 or more, the value of the regression coefficient K1 was updated and held.

【0062】その結果を各車体速度でのスリップ率の車
体加速度に対する1次の回帰係数の値として図3に示
す。
The results are shown in FIG. 3 as the values of the first-order regression coefficients of the slip ratio at each vehicle speed with respect to the vehicle acceleration.

【0063】比較例 前記実施例と同じ走行試験で、所定の時間積分した車体
加速度ΣAbと所定の時間積分した車輪スリップ率の和
ΣStの比(傾き)M(M=ΣAb/ΣSt)を求め
た。その結果を各車輪速度でのM値として図4に示す。
ただし、図5に示されるように、同じ速度、たとえば車
体速度100km/hでも車両の車体加速度が異なると
M値が大きく異なるため、車両の車体加速度は0.04
±0.005Gのデータのみサンプリングした。
Comparative Example In the same running test as in the above embodiment, the ratio (gradient) M (M = ΣAb / ΣSt) of the sum ΣSt of the vehicle body acceleration ΣAb integrated for a predetermined time and the wheel slip rate integrated for a predetermined time was obtained. . The results are shown in FIG. 4 as M values at each wheel speed.
However, as shown in FIG. 5, even at the same speed, for example, the vehicle speed of 100 km / h, if the vehicle acceleration of the vehicle is different, the M value is greatly different.
Only data of ± 0.005 G was sampled.

【0064】本実施例と比較例では、走行速度の影響を
比較するために、車両を直進走行させた。その結果、実
施例から、車両の車体速度が変化しても路面状態を判定
する1次の回帰係数はほとんど変化しないことがわか
る。
In this example and the comparative example, the vehicle was driven straight ahead to compare the influence of the traveling speed. As a result, it can be seen from the example that even if the vehicle body speed of the vehicle changes, the primary regression coefficient for determining the road surface state hardly changes.

【0065】これに対し、比較例では、図4に示される
ように、アスファルトのよう路面μが安定している路面
でも速度に応じて路面状態を判定するM値が大きく異な
っているので、路面状態を判定するのは難しい。また、
車体速度ごとのマップを設けても加速度の大きさによっ
てM値が異なるので、正確に路面状態を求めるのは難し
い。
On the other hand, in the comparative example, as shown in FIG. 4, even on a road surface such as asphalt where the road surface μ is stable, the M value for judging the road surface state in accordance with the speed greatly differs. It is difficult to determine the state. Also,
Even if a map is provided for each vehicle speed, the M value differs depending on the magnitude of the acceleration, so that it is difficult to accurately determine the road surface condition.

【0066】なお、本実施例では、回帰直線を求めるデ
ータ数を50個としたが、本発明においては、これに限
られるものではない。ただ、データ数が少なすぎると信
頼性の高い結果が得られなくなるために、最低5個以上
は必要であるが、逆にデータ数を多くしすぎると、それ
だけサンプリング時間がかかり、路面の状態が次々に変
化する場合は、データがばらついてしまい相関係数が逆
に低くなって路面μを判別できない場合が増える結果と
なるので、サンプリング時間とのかねあいで決定するの
が望ましい。
In the present embodiment, the number of data for obtaining the regression line is set to 50, but the present invention is not limited to this. However, if the number of data is too small, reliable results will not be obtained. Therefore, at least five or more are necessary. Conversely, if the number of data is too large, sampling time will be longer and the condition of the road surface will be reduced. If it changes one after another, the data will vary and the correlation coefficient will be low, which will increase the number of cases where the road surface μ cannot be determined. Therefore, it is desirable to determine this in consideration of the sampling time.

【0067】以上のように、本システムを用いることに
より、路面状態を精度よく、かつ短時間で判別すること
が可能となり、運転手に滑りやすい危険な状態であるこ
とを伝えることができた。
As described above, by using the present system, it is possible to determine the road surface condition with high accuracy and in a short time, and it is possible to inform the driver that the vehicle is in a slippery and dangerous state.

【0068】[0068]

【発明の効果】以上説明したとおり、本発明によれば、
車両の車体速度(高速時や低速時などの速度)による影
響を受けずに路面状態を正確に判定することができる。
また、従来のように高速用マップおよび低速用マップを
必要としないので、高速用マップから低速用マップに切
り替わるような速度で走行しているときも、安定して路
面状態を判定することができる。
As described above, according to the present invention,
The road surface condition can be accurately determined without being affected by the vehicle body speed of the vehicle (speed at high speed, low speed, etc.).
Further, since the high-speed map and the low-speed map are not required unlike the related art, even when the vehicle is running at a speed at which the high-speed map is switched to the low-speed map, the road surface state can be determined stably. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の路面状態判定装置の一実施の形態を示
すブロック図である。
FIG. 1 is a block diagram illustrating an embodiment of a road surface condition determination device according to the present invention.

【図2】図1における路面状態判定装置の電気的構成を
示すブロック図である。
FIG. 2 is a block diagram showing an electrical configuration of the road surface condition determination device in FIG.

【図3】1次の回帰係数と車体速度との関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a first-order regression coefficient and a vehicle speed.

【図4】M値と車体速度との関係を示す図である。FIG. 4 is a diagram showing a relationship between an M value and a vehicle speed.

【図5】M値と車体加速度との関係を示す図である。FIG. 5 is a diagram showing a relationship between an M value and a vehicle acceleration.

【図6】車両の車体加速度とスリップ率との関係を示す
模式図である。
FIG. 6 is a schematic diagram showing a relationship between a vehicle body acceleration and a slip ratio of a vehicle.

【図7】図6における範囲Rの拡大図である。FIG. 7 is an enlarged view of a range R in FIG. 6;

【符号の説明】[Explanation of symbols]

1 速度検出手段 2 制御ユニット 3 警報表示器 4 初期化スイッチ S 舵角センサ DESCRIPTION OF SYMBOLS 1 Speed detection means 2 Control unit 3 Alarm display 4 Initialization switch S Steering angle sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 車両の4輪の車輪速度を定期的に検出す
る速度検出手段と、前記車両の車体速度を求める車体速
度演算手段と、前記車輪速度のうち、駆動輪の平均車輪
速度と車体速度からスリップ率を求めるスリップ率演算
手段と、前記車両の車体加速度を求める車体加速度演算
手段と、前記車両の旋回半径を求める旋回半径演算手段
と、前記スリップ率と車体加速度を所定の時間ごとに移
動平均化処理する移動平均化処理手段と、当該移動平均
化したスリップ率と車体加速度のデータのうち、旋回半
径が所定値よりも大きい場合のスリップ率と車体加速度
の関係から路面状態を判定する路面状態判定手段とを備
えてなる路面状態判定装置。
A speed detecting means for periodically detecting wheel speeds of four wheels of a vehicle; a vehicle speed calculating means for calculating a vehicle speed of the vehicle; and an average wheel speed of driving wheels and a vehicle speed among the wheel speeds. A slip rate calculating means for obtaining a slip rate from a speed; a vehicle body acceleration calculating means for obtaining a vehicle body acceleration of the vehicle; a turning radius calculating means for obtaining a turning radius of the vehicle; Moving averaging processing means for performing moving averaging processing, and among the data of the moving averaged slip ratio and vehicle body acceleration, a road surface state is determined from a relationship between the slip ratio and the vehicle body acceleration when the turning radius is larger than a predetermined value. A road surface condition determination device comprising: a road surface condition determination unit.
【請求項2】 前記路面状態判定手段が、所定の旋回半
径以上のスリップ率と車体加速度のデータを所定の時間
蓄積し、そのデータについて1次の回帰係数と相関係数
を求め、1次の回帰係数と相関係数の値から路面状態を
判定する請求項1記載の路面状態判定装置。
2. The road surface condition determining means accumulates data of a slip ratio and a vehicle acceleration equal to or larger than a predetermined turning radius for a predetermined time, and obtains a first-order regression coefficient and a correlation coefficient for the data. The road surface state determination device according to claim 1, wherein the road surface state is determined from the values of the regression coefficient and the correlation coefficient.
【請求項3】 車両の4輪の車輪速度を定期的に検出す
る工程と、前記車両の車体速度を求める工程と、前記車
輪速度のうち、駆動輪の平均車輪速度と車体速度からス
リップ率を求める工程と、前記車両の車体加速度を求め
る工程と、前記車両の旋回半径を求める工程と、前記ス
リップ率と車体加速度を所定の時間ごとに移動平均化処
理する工程と、当該移動平均化したスリップ率と車体加
速度のデータのうち、旋回半径が所定値よりも大きい場
合のスリップ率と車体加速度の関係から路面状態を判定
する工程とを含む路面状態判定方法。
3. A step of periodically detecting wheel speeds of four wheels of the vehicle, a step of determining a vehicle body speed of the vehicle, and determining a slip ratio from an average wheel speed of drive wheels and a vehicle body speed among the wheel speeds. Determining the vehicle body acceleration of the vehicle, determining the turning radius of the vehicle, performing a moving average process on the slip ratio and the vehicle acceleration at predetermined time intervals, and performing the moving averaged slip. Determining a road surface condition from the relationship between the slip ratio and the vehicle acceleration when the turning radius is larger than a predetermined value, out of the data of the ratio and the vehicle acceleration.
【請求項4】 前記路面状態を判定する工程が、所定の
旋回半径以上のスリップ率と車体加速度のデータを所定
の時間蓄積し、そのデータについて1次の回帰係数と相
関係数を求め、1次の回帰係数と相関係数の値から路面
状態を判定する請求項3記載の路面状態判定方法。
4. The step of judging the road surface condition includes accumulating data of a slip rate equal to or more than a predetermined turning radius and a vehicle acceleration for a predetermined time, obtaining a first-order regression coefficient and a correlation coefficient for the data. 4. The road surface state determination method according to claim 3, wherein the road surface state is determined from the following regression coefficient and correlation coefficient value.
【請求項5】 路面状態を判定するためにコンピュータ
を、車両の車体速度を求める車体速度演算手段、車輪速
度のうち、駆動輪の平均車輪速度と車体速度からスリッ
プ率を求めるスリップ率演算手段、前記車両の車体加速
度を求める車体加速度演算手段、車両の旋回半径を求め
る旋回半径演算手段、スリップ率と車体加速度を所定の
時間ごとに移動平均化処理する移動平均化処理手段、移
動平均化したスリップ率と車体加速度のデータのうち、
旋回半径が所定値よりも大きい場合のスリップ率と車体
加速度の関係から路面状態を判定する路面状態判定手段
として機能させるための路面状態の判定プログラム。
5. A vehicle speed calculating means for determining a vehicle body speed of a vehicle, a slip rate calculating means for determining a slip rate from an average wheel speed of driving wheels and a vehicle body speed among wheel speeds. Means for calculating vehicle body acceleration of the vehicle, turning radius calculating means for calculating turning radius of the vehicle, moving averaging processing means for moving and averaging the slip rate and the body acceleration at predetermined time intervals, and moving averaged slip Of the data of rate and body acceleration,
A road surface state determination program for functioning as road surface state determination means for determining a road surface state from a relationship between a slip ratio and a vehicle acceleration when a turning radius is larger than a predetermined value.
JP2001172272A 2001-06-07 2001-06-07 Road surface condition determining device and method and determining program of road surface condition Pending JP2002362345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172272A JP2002362345A (en) 2001-06-07 2001-06-07 Road surface condition determining device and method and determining program of road surface condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172272A JP2002362345A (en) 2001-06-07 2001-06-07 Road surface condition determining device and method and determining program of road surface condition

Publications (1)

Publication Number Publication Date
JP2002362345A true JP2002362345A (en) 2002-12-18

Family

ID=19013918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172272A Pending JP2002362345A (en) 2001-06-07 2001-06-07 Road surface condition determining device and method and determining program of road surface condition

Country Status (1)

Country Link
JP (1) JP2002362345A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284403A (en) * 2003-03-19 2004-10-14 Sumitomo Rubber Ind Ltd Road surface state determination device and method and road surface state determination program
JP2005313863A (en) * 2004-03-24 2005-11-10 Sumitomo Rubber Ind Ltd Road surface condition judging method and device, and road surface condition judging program
JP2006035928A (en) * 2004-07-23 2006-02-09 Sumitomo Rubber Ind Ltd Road surface state determining method and device, and road surface state determining program
CN107152017A (en) * 2017-06-16 2017-09-12 张荟芬 A kind of road roadbed testing device
EP3848259A1 (en) 2020-01-10 2021-07-14 Sumitomo Rubber Industries, Ltd. Apparatus for determining state of road surface
EP4098503A1 (en) 2021-05-31 2022-12-07 Sumitomo Rubber Industries, Ltd. Method for determining state of road surface
EP4378786A1 (en) 2022-11-29 2024-06-05 Sumitomo Rubber Industries, Ltd. Estimation apparatus for water film thickness on road surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208669A (en) * 1992-01-30 1993-08-20 Honda Motor Co Ltd Car body speed detecting device for vehicle
JPH07112659A (en) * 1993-10-18 1995-05-02 Nippondenso Co Ltd Road surface friction coefficient estimating device
JP2001080325A (en) * 1999-09-17 2001-03-27 Unisia Jecs Corp Tire air pressure reduction detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208669A (en) * 1992-01-30 1993-08-20 Honda Motor Co Ltd Car body speed detecting device for vehicle
JPH07112659A (en) * 1993-10-18 1995-05-02 Nippondenso Co Ltd Road surface friction coefficient estimating device
JP2001080325A (en) * 1999-09-17 2001-03-27 Unisia Jecs Corp Tire air pressure reduction detecting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284403A (en) * 2003-03-19 2004-10-14 Sumitomo Rubber Ind Ltd Road surface state determination device and method and road surface state determination program
JP2005313863A (en) * 2004-03-24 2005-11-10 Sumitomo Rubber Ind Ltd Road surface condition judging method and device, and road surface condition judging program
JP4668571B2 (en) * 2004-03-24 2011-04-13 住友ゴム工業株式会社 Road surface state determination method and apparatus, and road surface state determination program
JP2006035928A (en) * 2004-07-23 2006-02-09 Sumitomo Rubber Ind Ltd Road surface state determining method and device, and road surface state determining program
CN107152017A (en) * 2017-06-16 2017-09-12 张荟芬 A kind of road roadbed testing device
CN109594546A (en) * 2017-06-16 2019-04-09 山东博禧堂贸易有限公司 Full-automatic road roadbed testing device
EP3848259A1 (en) 2020-01-10 2021-07-14 Sumitomo Rubber Industries, Ltd. Apparatus for determining state of road surface
EP4098503A1 (en) 2021-05-31 2022-12-07 Sumitomo Rubber Industries, Ltd. Method for determining state of road surface
EP4378786A1 (en) 2022-11-29 2024-06-05 Sumitomo Rubber Industries, Ltd. Estimation apparatus for water film thickness on road surface

Similar Documents

Publication Publication Date Title
US6577941B2 (en) Apparatus and method for determining condition of road surface
JP3150893B2 (en) Tire identification method and device
JP4076740B2 (en) Road surface gradient determination apparatus and method, and gradient determination program
JP3418121B2 (en) Apparatus and method for detecting tire wear state
JP4153688B2 (en) Road surface condition determination method and apparatus, and road surface condition determination threshold setting program
JP3515040B2 (en) Road surface friction coefficient determination method
JP4256797B2 (en) Tire pressure drop warning method and apparatus, and tire decompression determination program
US6788191B2 (en) Method and apparatus for alarming decrease in tire air-pressure, and program for judging decompression of tire
JP3535076B2 (en) Road surface friction coefficient determining apparatus and method
JP2002362345A (en) Road surface condition determining device and method and determining program of road surface condition
JP3544149B2 (en) Tire identification device and method
JP4138283B2 (en) Road surface state determination device and method, and road surface state determination program
JP4414547B2 (en) Road surface friction coefficient judging apparatus and method
EP1371507B1 (en) Method and apparatus for detecting decrease in tire air-pressure and for judging decompression of tire
US6917864B2 (en) Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire
JP4582920B2 (en) Tire wear state detecting device and method, and tire wear judging program
JP4107988B2 (en) Road surface state determination device and method, and road surface state determination program
JP4171174B2 (en) Tire identification apparatus and method
JP4425478B2 (en) Road surface state estimation method and apparatus
JP2004161116A (en) Road surface condition determination method and device thereof, and road surface condition determination program
JP4057285B2 (en) Road surface state determination method and apparatus, and road surface state determination program
KR100681960B1 (en) Method and device for detecting the cornering of a vehicle
JP2004142555A (en) Method, device and program for determining road surface friction coefficient
JP2001163211A (en) Road surface friction coefficient judging device and method
JP4250013B2 (en) Road surface state determination device and method, and road surface state determination program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111