JP2002361319A - Method for manufacturing seamless steel tube excellent in internal smoothness and seamless steel tube - Google Patents

Method for manufacturing seamless steel tube excellent in internal smoothness and seamless steel tube

Info

Publication number
JP2002361319A
JP2002361319A JP2001169050A JP2001169050A JP2002361319A JP 2002361319 A JP2002361319 A JP 2002361319A JP 2001169050 A JP2001169050 A JP 2001169050A JP 2001169050 A JP2001169050 A JP 2001169050A JP 2002361319 A JP2002361319 A JP 2002361319A
Authority
JP
Japan
Prior art keywords
seamless steel
pipe
steel pipe
cold
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001169050A
Other languages
Japanese (ja)
Other versions
JP4682450B2 (en
Inventor
Toru Shimizu
徹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001169050A priority Critical patent/JP4682450B2/en
Publication of JP2002361319A publication Critical patent/JP2002361319A/en
Application granted granted Critical
Publication of JP4682450B2 publication Critical patent/JP4682450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a cold finished seamless steel tube excellent in tube internal smoothness at single cold drawing work. SOLUTION: A method for manufacturing a seamless steel tube excellent in internal smoothness is characterized in that the ratio between wall thickness and outside diameter (T/D) of the cold-finished steel tube is 20% or more and a lubricated tube stock is drawn subject to the following formula to be satisfied: Y>=A+5.5.exp(0.036.X) Here, Y shows wall thickness degree of processing (%), X die angle( deg.) and A constant number.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間製管された素
管に引抜加工を施して冷間仕上する継目無鋼管の製造方
法に係り、より詳しくは、化学プラント、発電プラント
配管用、または機械構造用、自動車用部品などの多種多
様の用途に好適な内面平滑性に優れた冷間仕上継目無鋼
管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless steel pipe which is subjected to a drawing process to a hot-formed raw pipe and cold-finished, and more particularly to a pipe for a chemical plant and a power plant. Also, the present invention relates to a method for producing a cold-finished seamless steel pipe having excellent inner surface smoothness suitable for a wide variety of uses such as mechanical structures and automobile parts.

【0002】[0002]

【従来の技術】冷間仕上される継目無鋼管は、主に特殊
用途のために用いられ、例えば、化学・発電プラント配
管用鋼管、機械構造用鋼管などとして使用される。これ
らの用途に用いられる継目無鋼管の素管は、マンネスマ
ン製管法やユジーン製管法による熱間製管によって得ら
れるが、一般的には、マンネスマン製管法によって鋼片
をマンネスマン穿孔し、サイザーまたはレヂューサーで
定径または縮径圧延されて製造される。次いで、製造さ
れた素管は、外径・内径・肉厚の寸法精度の向上、表面
の平滑性の向上、機械的強度の確保などを目的として、
冷間で引抜加工を施して仕上られる。
2. Description of the Related Art Cold-finished seamless steel pipes are mainly used for special applications, and are used, for example, as pipes for piping in chemical and power plants and as steel pipes for machine structures. Seamless steel pipe blanks used in these applications can be obtained by hot pipe making by Mannesmann pipe method or Eugene pipe method.In general, steel pieces are perforated by Mannesmann pipe method by Mannesmann pipe method. Manufactured by constant or reduced diameter rolling with a sizer or reducer. Next, the manufactured raw pipe is used for the purpose of improving the dimensional accuracy of the outer diameter, inner diameter, and thickness, improving the smoothness of the surface, securing mechanical strength, etc.
Finished by cold drawing.

【0003】近年では、環境保護の意識の高まりから、
自動車用の部品として継目無鋼管の採用が注目されてい
る。すなわち、現在、自動車業界では、車体重量を軽量
化により燃費を向上させる技術の開発が進められてお
り、従来、棒鋼により製造されていた自動車のパワース
テアリング用部品、ドライブシャフト等の駆動部品に継
目無鋼管を用い、部品の中空化によって軽量化を図る試
みがなされている。
[0003] In recent years, due to growing awareness of environmental protection,
Attention has been paid to the use of seamless steel pipes as automotive parts. In other words, the automotive industry is currently developing technologies to improve fuel efficiency by reducing the weight of the vehicle body, and it has been used to connect parts for power steering and drive shafts of automobiles, which were conventionally manufactured from steel bars. Attempts have been made to reduce weight by hollowing out components using steelless pipes.

【0004】しかし、棒鋼に代わる継目無鋼管の採用に
は、技術的な問題がある。これらの部品は厳しい環境下
で使用されるため、管内面の表面性状が問題となる。管
内面にシワ疵などの表面疵があると、そこを起点とし、
成形加工中または車体に実装した後の使用環境下で応力
集中による亀裂が発生するおそれがある。
However, there is a technical problem in using seamless steel pipes instead of steel bars. Since these parts are used in a severe environment, the surface properties of the inner surface of the tube pose a problem. If there are surface flaws such as wrinkles on the inner surface of the pipe, use that as the starting point,
There is a possibility that cracks may occur due to stress concentration during the forming process or under the use environment after mounting on the vehicle body.

【0005】上述の自動車のパワーステアリング用部
品、ドライブシャフト等の駆動部品に継目無鋼管を使用
する場合には、鋼管寸法はT/D(肉厚/外径の比)が
20%以上の厚肉管が多用されている。さらに、鋼管から
部品にするための加工上の制約またはは使用上の制約か
ら、許容される鋼管内面のシワ疵は浅いほど好ましく、
上述の自動車用駆動部品では、管内面に発生するシワ疵
の深さを0.05mm以下にする必要がある。
In the case where a seamless steel pipe is used for a drive part such as a power steering part or a drive shaft of the above-described automobile, the dimension of the steel pipe is T / D (ratio of wall thickness / outer diameter).
20% or more thick-walled pipes are frequently used. Furthermore, from the constraints on processing or the use in order to make parts from steel pipes, the shallower wrinkles on the inner surface of the steel pipe are preferable,
In the above-described automotive drive parts, the depth of wrinkle flaws generated on the inner surface of the pipe needs to be 0.05 mm or less.

【0006】管内面の発生するシワ疵を小さくするに
は、熱間製管時に素管に発生する角張を矯正し、シワ疵
として残留するのを防止すればよい。ここで、角張と
は、マンネスマン製管法のようなロール圧延により製造
される継目無鋼管において、レデューサまたはサイザー
のような縮径・定径過程で生成される管内外面の凹凸状
の不揃いに起因する管内面の非真円性のことをいう。ま
た、シワ疵とは、継目無鋼管の内外表面に存在する深さ
0.005〜0.5mmの筋状欠陥をいい、角張が残ってシワ疵が
発生する場合には、冷間加工後であっても角張頂点部分
の薄肉部位に残存することがある。
In order to reduce the wrinkles generated on the inner surface of the pipe, it is necessary to correct the angularity generated in the raw pipe during hot pipe making to prevent the pipes from remaining as wrinkles. Here, the angular tension is caused by irregularities in the unevenness of the inner and outer surfaces of the pipe generated in the diameter reduction / diameter process such as a reducer or a sizer in a seamless steel pipe manufactured by roll rolling such as the Mannesmann pipe manufacturing method. Refers to the non-roundness of the inner surface of the pipe. In addition, wrinkle flaw is the depth existing on the inner and outer surfaces of the seamless steel pipe.
It refers to a streak defect of 0.005 to 0.5 mm, and when wrinkles are generated due to remaining angularity, it may remain at a thin portion at the apex of the angularity even after cold working.

【0007】従来から、管内面のシワ疵等の表面疵を削
減するため、冷間加工において多数回の引抜加工を行
い、さらに研削等の機械加工によって改善する方法が採
用されている。また、特許第3085980号公報に
は、管内面の表面性状を向上させるため、管内面の粗さ
がRmaxで1.0μm以下とするステンレス鋼管の製造
方法が記載されている。この製造方法によれば、引抜加
工に用いるプラグにリング状の突起部あるいは凹部を有
するプラグを用い、管内面にしごき加工を与え、剪断塑
性変形を集中させることにより、管内面の粗さを小さく
することができるとしている。しかし、これらの方法で
は、冷間仕上鋼管の製造工数を増加させ、製造コストが
大幅に上昇するという問題がある。
Hitherto, in order to reduce surface flaws such as wrinkles on the inner surface of a pipe, a method has been adopted in which a large number of drawing processes are carried out in cold working and further improved by machining such as grinding. Further, Japanese Patent No. 3085980 discloses, in order to improve the surface quality of the inner surface, the production method of the stainless steel tube roughness of the pipe inner surface is to 1.0μm or less in R max is described. According to this manufacturing method, by using a plug having a ring-shaped protrusion or concave portion for the plug used for drawing, ironing is performed on the inner surface of the tube, and shear plastic deformation is concentrated, thereby reducing the roughness of the inner surface of the tube. I can do that. However, these methods have a problem in that the number of manufacturing steps for the cold-finished steel pipe is increased, and the manufacturing cost is significantly increased.

【0008】[0008]

【発明が解決しようとする課題】前述の通り、冷間加工
用の素管の多くは、熱間押出であるユジーン製管法に比
べ、生産効率の良いマンネスマン製管法で穿孔、圧延さ
れる。しかし、マンネスマン製管法におけるサイザーや
レデューサでは、素管の内側を拘束せずに外径の定径や
縮径を行うため、外径に比べて内径の真円性が良くない
ので、素管肉厚が不揃いになりなり易く、内面六角張の
ような偏肉も大きくなる傾向を示す。
As described above, most of the raw tubes for cold working are perforated and rolled by the Mannesmann tube method, which has a higher production efficiency than the Eugene tube method which is hot extrusion. . However, in the sizer and reducer in the Mannesmann pipe manufacturing method, since the outer diameter is fixed or reduced without restraining the inside of the raw pipe, the roundness of the inner diameter is not better than the outer diameter. The thickness tends to be uneven and the thickness deviation such as hexagonal tension on the inner surface tends to increase.

【0009】そこで、素管の管内面の表面性状を改善す
るため、引抜加工が行われるが、素管内面の角張等が大
きく、1回の引抜加工では、良好な真円性の確保および
シワの低減を図ることが困難になる。そのため、通常、
2回以上の引抜加工を行い、さらに切削あるいは電気化
学研磨等が施されて、管内面の性状改善が行われる。特
に、T/Dが20%以上の厚肉の鋼管を加工する場合に
は、管内面の表面性状はよくなく、角張が発生し易いこ
とから、多数回にわたる引抜加工を施さざるを得ない。
このため、T/Dが20%以上の厚肉鋼管の内面性状の改
善には、製造工数の増加がともない、製造コストの上昇
を招くことになる。
Therefore, in order to improve the surface properties of the inner surface of the raw tube, a drawing process is performed, but the inner surface of the raw tube has a large angularity and the like. It is difficult to reduce the noise. Therefore,
The drawing process is performed twice or more, and further, cutting or electrochemical polishing is performed to improve the properties of the inner surface of the pipe. In particular, when processing a thick-walled steel pipe having a T / D of 20% or more, the inner surface of the pipe does not have good surface properties and is likely to be squared, so that a large number of drawing operations must be performed.
For this reason, the improvement of the inner surface properties of a thick steel pipe having a T / D of 20% or more involves an increase in the number of manufacturing steps and an increase in manufacturing cost.

【0010】本発明は、上記の問題点に鑑みてなされた
ものであり、ストレート型ダイスまたは円筒プラグを用
いて引抜加工を施して冷間仕上を行うに際し、前記ダイ
スのダイス角度(°)と素管の肉厚加工度(%)によっ
て規定される加工条件を適切に選択することによって、
1回の引抜加工で内面疵の削減、特に管内面のシワ疵の
深さが0.05mm以下であることを保証できる、内面平滑性
に優れた継目無鋼管の製造方法を提供することを目的と
している。
[0010] The present invention has been made in view of the above problems, and when performing a cold finish by performing drawing using a straight die or a cylindrical plug, the die angle (°) of the die is determined. By appropriately selecting the processing conditions defined by the wall thickness reduction (%) of the raw pipe,
An object of the present invention is to provide a method for manufacturing a seamless steel pipe having excellent inner surface smoothness, which can reduce inner surface flaws by a single drawing process, and can particularly guarantee that the depth of wrinkle flaws on the inner surface of the pipe is 0.05 mm or less. I have.

【0011】[0011]

【課題を解決するための手段】本発明者は、冷間引抜加
工された鋼管を自動車のパワーステアリング用部品やド
ライブシャフト等の駆動部品に適用するための加工条件
を見出すため、具体的には、冷間引抜加工によって管内
面のシワ疵の深さが0.05mm以下となる加工条件を検討す
るため、下記の(試験1)〜(試験3)の試行錯誤を重
ねた。
SUMMARY OF THE INVENTION The present inventor specifically seeks to find processing conditions for applying cold drawn steel pipes to driving parts such as power steering parts and drive shafts of automobiles. The following (test 1) to (test 3) were repeated through trial and error in order to examine the processing conditions under which the depth of wrinkles on the inner surface of the tube was reduced to 0.05 mm or less by cold drawing.

【0012】(試験1)試験1では、素管内面に発生し
た角張の矯正と肉厚加工度およびダイス角度との関係を
定性的に確認することとした。使用したダイスは全てス
トレート型ダイスであり、図1にその断面形状を示す
が、ストレート型ダイスのダイス角度は、同図に示すよ
うに、ダイスの入側円錐部の側面がなす角度Xをいう。
また、肉厚加工度(Y)は、引抜加工前の肉厚をT、引
抜加工後の肉厚をT’としたとき、(T−T’)/T×
100(%)で表される。
(Test 1) In Test 1, it was qualitatively confirmed that the relationship between the correction of the angular tension generated on the inner surface of the raw tube and the wall thickness reduction degree and the die angle. All the dies used are straight dies, and the cross-sectional shape is shown in FIG. 1. The dice angle of the straight dies means an angle X formed by the side surface of the conical portion on the entry side of the dies as shown in FIG. .
The thickness reduction (Y) is represented by (T−T ′) / T ×, where T is the thickness before drawing and T ′ is the thickness after drawing.
It is expressed as 100 (%).

【0013】図2は、試験1で用いた試験用鋼管の引抜
加工の前後の形状を模式的に示した図である。引抜加工
による角張の矯正を確認するため、まず、内面に大きな
角張を有するテスト用鋼管を作製した。テスト用鋼管
は、外径30.5〜33.1mmの棒鋼(S45C)に対角長さが
17.5mmの六角形の穴を開けて作製し、このテスト用鋼管
にダイスおよびプラグを用いて引抜加工を施した。引抜
加工に際しては、ストレート型ダイスのダイス角度Xを
15°、20°および25°とし、角張が残り易い六角
形穴の頂角の位置での肉厚加工度が5〜20%となるよう
に引抜加工を行い、外径22.49mm、肉厚6.22mmの冷間加
工の鋼管を得た。
FIG. 2 is a diagram schematically showing the shape of the test steel pipe used in Test 1 before and after drawing. In order to confirm the correction of the angularity by the drawing process, first, a test steel pipe having a large angularity on the inner surface was manufactured. The test steel pipe has a diagonal length of steel bar (S45C) with an outer diameter of 30.5-33.1 mm.
A 17.5 mm hexagonal hole was formed, and the test steel pipe was subjected to drawing using a die and a plug. At the time of drawing, the die angle X of the straight die is set to 15 °, 20 °, and 25 ° so that the thickness reduction at the apex of the hexagonal hole where the angular tension is likely to remain is 5 to 20%. Drawing was performed to obtain a cold-worked steel pipe having an outer diameter of 22.49 mm and a wall thickness of 6.22 mm.

【0014】冷間加工された鋼管には、六角形穴の頂角
に当たる部分に角張が残留したため、角張り底深さを、
引抜加工後に接触型の真円度測定器で内面円周度曲線を
描くことによって測定した。角張り底深さとは、本来、
内径からの角張の深さをいい、ここでは、複数角張が残
留した場合、最も深い角張の角張り底深さを角張り底深
さとして整理した。
[0014] In the cold-worked steel pipe, since the horn remains in the portion corresponding to the apex angle of the hexagonal hole, the horn bottom depth is reduced.
After drawing, it was measured by drawing an inner circumference curve with a contact-type roundness measuring device. The square bottom depth is originally
This refers to the depth of the angular tension from the inner diameter. In the case where a plurality of angular tensions remain, the depth of the deepest angular angular bottom is arranged as the angular depth.

【0015】図3は、ダイス角度が15°〜25°で引
抜加工した場合の六角形穴の頂角位置における肉厚加工
度と角張り底深さとの関係を示す図である。角張り底深
さは、肉厚加工度が大きくなるほど浅く、また、ダイス
角度が小さいほど浅くなる。このことから、引抜加工し
た際の管内面に発生する角張り底深さは、肉厚加工度と
ダイス角度に関係することが分かる。
FIG. 3 is a diagram showing the relationship between the degree of wall thickness at the apex position of the hexagonal hole and the depth of the squared bottom when the die is drawn at a die angle of 15 ° to 25 °. The squared bottom depth becomes shallower as the thickness reduction becomes larger, and becomes shallower as the die angle becomes smaller. From this, it can be seen that the depth of the squared bottom generated on the inner surface of the pipe at the time of drawing is related to the thickness reduction and the die angle.

【0016】さらに、ストレート型ダイスのダイス角度
が実際の肉厚加工に及ぼす影響を確認するため、プラグ
無しの空引き加工で引抜加工された鋼管の肉厚挙動を調
査した。
Further, in order to confirm the effect of the die angle of the straight die on the actual wall thickness processing, the wall thickness behavior of the steel pipe drawn by the emptying processing without a plug was investigated.

【0017】図4は、空引き加工したときの、外径加工
度と増肉率の関係を示した図であり、図4(a)は、ダイ
ス角度25°のときの外径加工度と増肉率の関係を、図
4(b)は、肉厚/外径の比(T/D)が30%のときの外
径加工度と増肉率の関係を示したものである。ここで、
外径加工度(%)とは、引抜加工前の外径をd、引抜加
工後の外径をd’としたとき、(d−d’)/d×100
(%)で表される値のことをいう。また、増肉率(%)
とは、空引き加工前の肉厚をt、空引き加工後の肉厚を
t’としたとき、(t’−t)/t×100(%)で表さ
れる値のことをいう。
FIG. 4 is a diagram showing the relationship between the degree of outer diameter processing and the rate of wall thickness increase at the time of emptying. FIG. 4 (a) shows the relation between the degree of outer diameter processing at a die angle of 25 °. FIG. 4 (b) shows the relationship between the wall thickness increase ratio and the wall thickness reduction ratio when the thickness / outer diameter ratio (T / D) is 30%. here,
The outer diameter working ratio (%) is defined as (dd−d ′) / d × 100, where d is the outer diameter before drawing and d ′ is the outer diameter after drawing.
It means the value represented by (%). Also, the rate of meat increase (%)
The term “t” refers to a value represented by (t′−t) / t × 100 (%), where t is the thickness before the drawing and t ′ is the thickness after the drawing.

【0018】図4(a)より、空引き加工においてT/D
が20%以上の厚肉鋼管を加工する場合には、一般的に、
鋼管の肉厚は加工後は減肉する傾向を示すことがわか
る。これは、プラグ引きにおいては、実質的な肉厚加工
度が減少することを意味する。また、図4(b)からは、
ダイス角度を小さくすることによって、この減肉傾向を
減少させることができることがわかる。これは、ダイス
角度を小さくすることにより、肉厚加工度の減少を最小
限に抑えることができることを意味する。
FIG. 4 (a) shows that T / D
When processing thick-walled steel pipes of 20% or more,
It can be seen that the thickness of the steel pipe tends to decrease after processing. This means that the substantial thickness reduction is reduced in plug drawing. Also, from FIG. 4 (b),
It is understood that this tendency to decrease in wall thickness can be reduced by reducing the die angle. This means that by reducing the die angle, it is possible to minimize the reduction in the degree of wall thickness processing.

【0019】以上をまとめると、ストレート型ダイスに
よりT/Dが20%以上の厚肉鋼管を引抜加工する場合、
ダイス角度を小さくすることによって、加工過程での減
肉傾向を抑制でき、実際の肉厚加工を確保できるので、
ダイス角度を小さくすることは、管内面の角張矯正、シ
ワ疵の改善に有効である。このことは以下のように説明
できる。
To summarize the above, when drawing a thick steel pipe having a T / D of 20% or more by a straight die,
By reducing the die angle, it is possible to suppress the tendency of thinning in the processing process, and to secure the actual thickness processing,
Reducing the die angle is effective in correcting the angular tension of the inner surface of the pipe and improving wrinkles. This can be explained as follows.

【0020】図5は、ストレート型ダイスおよび円筒プ
ラグを用いた引抜加工の状況を模式的に示した図であ
り、(a)はダイス角度が大きい場合を、(b)はダイス角度
が小さい場合を示している。引抜加工の際に、ダイス角
度が小さくなるほど、ダイス1とプラグ2に挟まれた素
管3の加工面積、すなわち、工具との接触面積が増加
し、いわゆる「しごき効果」が増大して、角張矯正およ
びシワ疵改善の効果が増大することになる。
FIGS. 5A and 5B are diagrams schematically showing a drawing process using a straight die and a cylindrical plug. FIG. 5A shows a case where the die angle is large, and FIG. 5B shows a case where the die angle is small. Is shown. At the time of drawing, as the die angle becomes smaller, the processing area of the raw tube 3 sandwiched between the die 1 and the plug 2, that is, the contact area with the tool increases, so-called "ironing effect" increases, and The effect of straightening and wrinkle defect improvement will increase.

【0021】以上(試験1)より、ダイス角度は角張矯
正およびシワ疵改善に大きく寄与することから、(試験
2)以降ではダイス角度に注目し、加工条件の検討を行
った。
From the above (Test 1), since the die angle greatly contributes to the correction of the keratinization and the improvement of wrinkle defects, the processing conditions were examined by paying attention to the die angle after (Test 2).

【0022】(試験2)実機による肉厚加工度、ダイス
角度およびシワ疵の深さの関係を明らかにするために、
実際の鋼管製造と同じ条件で製管し、一連のテストを行
った。素管は、材質がS45Cの素材をマンネスマン製
管のマンドレルミルによって熱間製管し、未焼鈍のまま
硫酸にてデスケーリングし、防錆処理を施したものを用
意した。このとき、素管は外径が31.8mm、平均肉厚が6.
7〜7.5mmであり、角張による偏肉量は約0.5mmであっ
た。
(Test 2) In order to clarify the relationship among the wall thickness reduction degree, die angle and wrinkle flaw depth by an actual machine,
Pipes were manufactured under the same conditions as actual steel pipe production, and a series of tests were performed. The raw pipe was prepared by subjecting a raw material of S45C to hot pipe making using a Mannesmann pipe mandrel mill, descaling with sulfuric acid without annealing, and performing a rust-proof treatment. At this time, the raw tube has an outer diameter of 31.8 mm and an average thickness of 6.
The thickness was 7 to 7.5 mm, and the thickness deviation due to the angular tension was about 0.5 mm.

【0023】引抜加工はダイス角度が10°、15°、
20°、25°および30°の5種のストレート型ダイ
スと1種の円筒プラグを用い、潤滑はオイル(油脂)潤
滑とし、20℃での粘度が590CSTの硫化油脂に油性向上剤
および増粘剤を添加したものを使用した。1回の引抜加
工で、外径22.49mm、肉厚6.22mmの鋼管に加工した。こ
のとき、肉厚加工度は平均肉厚で計算して7〜17%とな
る。引抜加工後の内面シワ疵の深さは、断面ミクロ写真
撮影による内面観察により計測した。
In the drawing process, the die angle is 10 °, 15 °,
Using 5 types of straight dies of 20 °, 25 ° and 30 ° and one type of cylindrical plug, lubricating with oil (oil and fat), oily improver and thickener for sulfided oil with viscosity of 590CST at 20 ° C What added the agent was used. By a single drawing process, it was processed into a steel pipe having an outer diameter of 22.49 mm and a wall thickness of 6.22 mm. At this time, the thickness reduction is calculated to be 7 to 17% based on the average thickness. The depth of the inner surface wrinkle flaw after the drawing was measured by observing the inner surface by cross-sectional microphotographing.

【0024】図6は、ダイス角度が10°〜30°で引
抜加工した場合の肉厚加工度とシワ疵の深さとの関係を
示す図である。同図中の横線は、本発明で内面平滑性の
優劣の基準としたシワ疵の深さ(0.05mm)を、同図中の
縦線は、シワ疵の深さが0.05mm以下となる肉厚加工度を
示す。同図中の縦線は、ダイス角度が大きくなるほど右
に寄っていくことから、ダイス角度が大きいほど、肉厚
加工度を大きくしなければ、シワの深さを浅くすること
ができないことが分かった。
FIG. 6 is a view showing the relationship between the degree of wall thickness reduction and the depth of wrinkles when drawing is performed at a die angle of 10 ° to 30 °. The horizontal line in the figure indicates the depth of the wrinkle flaw (0.05 mm) based on the criteria of the inner surface smoothness in the present invention, and the vertical line in the figure indicates the depth of the wrinkle flaw is 0.05 mm or less. Shows the thickness reduction. The vertical line in the figure shifts to the right as the die angle increases, indicating that the larger the die angle, the lower the wrinkle depth can be made unless the wall thickness is increased. Was.

【0025】図7は、上記図6の結果から、ダイス角度
(°)と引抜加工後の管内面のシワ疵の深さが0.05mm以
下となる肉厚加工度(%)との関係を示した図である。
図7より、ダイス角度X(°)と肉厚加工度Y(%)の
関係は指数関数で表せ、近似的に下記(a)式で表すこと
ができる。
FIG. 7 shows the relationship between the die angle (°) and the thickness reduction (%) at which the depth of wrinkles on the inner surface of the pipe after drawing becomes 0.05 mm or less from the results of FIG. FIG.
7, the relationship between the die angle X (°) and the thickness reduction Y (%) can be expressed by an exponential function, and can be approximately expressed by the following equation (a).

【0026】 Y≧5.5・exp(0.036・X) … (a) (試験3)鋼管の冷間引抜加工で用いられる潤滑処理で
は、上記試験2で使用されたオイル潤滑の他に、下地処
理として燐酸亜鉛皮膜を施した後、石鹸処理としてステ
アリン酸ソーダ等を反応させ、下地との境界面に金属石
鹸潤滑層を形成させる、いわゆる、化成皮膜潤滑が多用
されている。したがって、試験3では、化成皮膜潤滑に
よる場合について、同様にダイス角度と肉厚加工度の関
係について調べた。
Y ≧ 5.5 · exp (0.036 · X) (a) (Test 3) In the lubrication treatment used in the cold drawing of a steel pipe, in addition to the oil lubrication used in the above Test 2, the lubrication treatment is used as a base treatment. After the zinc phosphate coating is applied, so-called conversion coating lubrication, in which sodium stearate or the like is reacted as a soap treatment to form a metal soap lubricating layer on the boundary surface with the base, is often used. Therefore, in Test 3, the relationship between the die angle and the thickness reduction was also examined for the case of chemical conversion film lubrication.

【0027】上記試験2の場合と同様に、素管は、材質
がS45Cの素材をマンネスマン製管のマンドレルミル
によって熱間製管し、未焼鈍のまま硫酸にてデスケーリ
ングし、防錆処理を施したものを用意した。このとき、
素管は外径が31.8mm、平均肉厚が6.8〜7.2mmであった。
In the same manner as in the above Test 2, the raw tube was made of a material of S45C by a mandrel mill of a Mannesmann tube, hot-deformed, descaled with sulfuric acid without annealing, and subjected to a rust-proof treatment. We prepared what we gave. At this time,
The raw tube had an outer diameter of 31.8 mm and an average wall thickness of 6.8 to 7.2 mm.

【0028】引抜加工はダイス角度が20°のストレー
ト型ダイスと円筒プラグを用い、潤滑は化成皮膜処理と
し、下地処理に燐酸亜鉛、燐酸および亜硝酸ソーダで鋼
管表面に燐酸亜鉛被膜を形成した後、ステアリン酸ソー
ダにより石鹸処理を行い、金属石鹸潤滑層を形成して、
1回の引抜加工で、外径22.49mm、肉厚6.22mmの鋼管に
加工した。比較のため、同じダイスとプラグを用いて、
20℃での粘度が590CSTの硫化油脂によるオイル潤滑によ
る引抜加工を行った。
The drawing process uses a straight die with a die angle of 20 ° and a cylindrical plug. The lubrication is a chemical conversion coating process. The zinc phosphate, phosphoric acid and sodium nitrite are used for the undercoating process to form a zinc phosphate coating on the steel pipe surface. Perform a soap treatment with sodium stearate to form a metal soap lubrication layer,
By a single drawing process, it was processed into a steel pipe having an outer diameter of 22.49 mm and a wall thickness of 6.22 mm. For comparison, using the same dice and plug,
The drawing process was carried out by oil lubrication with sulfide oil having a viscosity of 590 CST at 20 ° C.

【0029】図8は、引抜加工を化成皮膜潤滑(a)ま
たはオイル潤滑油(b)で行った場合の肉厚加工度とシ
ワ疵の深さとの関係を示したものである。いずれも同一
素管を同じ加工条件で引抜加工したものであるが、化成
皮膜で潤滑した場合に比べ、オイル潤滑した場合は、シ
ワ疵の深さが全体的に0.02mmほど浅く、平滑性の高い管
内面となる。すなわち、化成皮膜で潤滑した場合は、オ
イル(油脂)潤滑した場合に比べシワ疵の深さを0.05mm
以下にすることは難しく、化成皮膜潤滑、オイル潤滑油
の場合、シワ疵の深さが0.05mm以下となるのは、それぞ
れ11.5%、13%であることから、化成皮膜で潤滑した場
合には、オイル(油脂)潤滑した場合に比べて1.5%以
上の肉厚加工度が必要となる。なお、ともにシワ疵の深
さが0.05mm以下となるのは、肉厚加工度が10%以上のと
きであるが、確実にシワ疵を0.05mm以下とするために、
シワ疵の深さが0.05mmとなる最大の肉厚加工度を基準と
して、シワ疵の深さが0.05mm以下となる肉厚加工度を判
断した。
FIG. 8 shows the relationship between the degree of thickness reduction and the depth of wrinkles when the drawing process is performed using chemical film lubrication (a) or oil lubrication oil (b). In both cases, the same raw tube was drawn under the same processing conditions.However, compared to lubrication with a chemical conversion film, oil lubrication has a wrinkle flaw depth as small as 0.02 mm overall and smoothness. It becomes a high pipe inner surface. That is, when lubricated with a chemical conversion film, the depth of wrinkle defects is 0.05 mm
In the case of chemical conversion film lubrication and oil lubricating oil, the wrinkle flaw depth of 0.05 mm or less is 11.5% and 13%, respectively. In addition, a thickness reduction of 1.5% or more is required as compared with the case of lubricating with oil (fats). In addition, the depth of the wrinkles is 0.05 mm or less in both cases when the thickness reduction is 10% or more, but in order to reliably reduce the wrinkles to 0.05 mm or less,
Based on the maximum wall thickness at which the depth of the wrinkle was 0.05 mm, the wall thickness at which the depth of the wrinkle was 0.05 mm or less was determined.

【0030】したがって、図8の結果および上記(a)式
の関係から、化成皮膜で潤滑した場合、ダイス角度X
(°)と肉厚加工度Y(%)との関係は、近似的に下記
(b)式で表される。
Therefore, based on the results of FIG. 8 and the relationship of the above equation (a), when lubricating with a chemical conversion film, the die angle X
(°) and the thickness reduction Y (%) are approximately as follows:
It is expressed by equation (b).

【0031】 Y≧1.5+5.5・exp(0.036・X) … (b) 本発明は、上述した試験1〜試験3の検討結果に基づい
て完成されたものであり、下記(1)、(2)の内面平
滑性に優れた継目無鋼管の製造方法および(3)の継目
無鋼管を要旨としている。
Y ≧ 1.5 + 5.5 × exp (0.036 × X) (b) The present invention has been completed based on the examination results of Tests 1 to 3 described above. The subject matter is a method for producing a seamless steel pipe having excellent inner surface smoothness in 2) and a seamless steel pipe in (3).

【0032】(1)冷間仕上された鋼管の肉厚/外径
(T/D)の比が20%以上である継目無鋼管の製造方法
であって、オイル(油脂)潤滑が施された素管を下記
(a)式を満足する条件で冷間引抜加工することを特徴
とする内面平滑性に優れた継目無鋼管の製造方法。
(1) A method for producing a seamless steel pipe in which the ratio of thickness / outer diameter (T / D) of the cold-finished steel pipe is 20% or more, wherein oil (oil) lubrication is applied. A method for producing a seamless steel pipe having excellent inner surface smoothness, comprising cold drawing a raw pipe under a condition satisfying the following expression (a).

【0033】 Y≧5.5・exp(0.036・X) … (a) 但し、Yは肉厚加工度(%)、Xはダイス角度(°)を
示す (2)冷間仕上された鋼管の肉厚/外径(T/D)の比
が20%以上である継目無鋼管の製造方法であって、化成
皮膜潤滑が施された素管を下記(b)式を満足する条件
で冷間引抜加工することを特徴とする内面平滑性に優れ
た継目無鋼管の製造方法。
Y ≧ 5.5 · exp (0.036 · X) (a) where, Y represents the thickness reduction (%) and X represents the die angle (°). (2) The thickness of the cold-finished steel pipe A method for producing a seamless steel pipe having a ratio of (T / D) / outer diameter (T / D) of 20% or more, comprising cold drawing a conversion pipe lubricated raw pipe under conditions satisfying the following equation (b): A method for producing a seamless steel pipe having excellent inner surface smoothness.

【0034】 Y≧1.5+5.5・exp(0.036・X) … (b) 但し、Yは肉厚加工度(%)、Xはダイス角度(°)を
示す (3)上記(1)1または(2)の継目無鋼管の製造方
法で製造され、管内面のシワ疵の深さが0.05mm以下であ
る継目無鋼管。
Y ≧ 1.5 + 5.5 × exp (0.036 × X) (b) where Y represents the thickness reduction (%) and X represents the die angle (°). (3) The above (1) 1 or A seamless steel pipe manufactured by the method for manufacturing a seamless steel pipe according to (2), wherein wrinkles on the inner surface of the pipe have a depth of 0.05 mm or less.

【0035】[0035]

【発明の実施の形態】本発明は、内面平滑性に優れた継
目無鋼管の製造方法に関する発明である。本発明方法が
対象とする素管は、マンネスマン製管法で熱間ロール圧
延によって製管されても、また、ユージン製管法で熱間
押出によって製管されてもよく、いずれの製管方法であ
ってもよい。通常、マンネスマン製管法により製管した
素管は、ユージン製管法に比べて、内径の真円度が悪
く、肉厚に偏肉が発生し易くなるが、本発明方法を用い
れば、1回の冷間引抜加工であっても内面平滑性に優れ
た継目無鋼管を製造することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method for manufacturing a seamless steel pipe having excellent inner surface smoothness. The raw material tube targeted by the method of the present invention may be manufactured by hot roll rolling in the Mannesmann manufacturing method, or may be manufactured by hot extrusion in the Eugene manufacturing method. It may be. Normally, a raw pipe manufactured by the Mannesmann pipe manufacturing method has a lower inner diameter roundness and is more likely to have uneven wall thickness than the Eugene pipe manufacturing method. A seamless steel pipe excellent in inner surface smoothness can be manufactured even by cold drawing.

【0036】ここで、内面平滑性に優れたとは、前述し
たように、パワーステアリング用部品やドライブシャフ
ト等の駆動部品に適用することを考慮に入れ、管内面に
発生する表面疵が少なく、シワ疵の深さが0.05mm以下で
あることをいう。そして、本発明の方法ではT/Dが20
%以上の継目無鋼管の冷間引抜を前提としているが、自
動車の駆動部品に継目無鋼管を使用する場合には、同じ
T/D寸法の厚肉鋼管が多用されているからである。
Here, "excellent inner surface smoothness" means that, as described above, taking into consideration application to driving parts such as power steering parts and drive shafts, there are few surface flaws generated on the inner surface of the pipe and wrinkles are generated. It means that the depth of the flaw is 0.05 mm or less. In the method of the present invention, T / D is 20
% Of the steel pipe is premised on the cold drawing of the seamless steel pipe, but when a seamless steel pipe is used as a driving part of an automobile, a thick steel pipe having the same T / D dimension is frequently used.

【0037】本発明の製造方法では、使用するダイスは
ストレート型が好ましい。ストレート型ダイスは、他の
ダイス、例えばR型ダイスに比べ、オイル潤滑油が加工
界面へ安定して供給されるためである。
In the manufacturing method of the present invention, the die used is preferably a straight type. This is because, in the straight die, the oil lubricating oil is more stably supplied to the processing interface than other dies, for example, the R die.

【0038】一方、引抜加工に使用するプラグは限定さ
れず、円筒プラグ、フロートプラグ、またはセミフロー
トプラグのいずれを使用してもよい。
On the other hand, the plug used for the drawing process is not limited, and any of a cylindrical plug, a float plug, and a semi-float plug may be used.

【0039】本発明の方法では、冷間引抜加工の際に素
管の内外表面に施される潤滑処理によって、その加工条
件が異なる。すなわち、オイル(油脂)潤滑を施す場合
には、Yを肉厚加工度(%)、Xをダイス角度(°)と
して、下記(a)式を満たすことが必要である。
In the method of the present invention, the processing conditions are different depending on the lubrication treatment applied to the inner and outer surfaces of the raw tube during the cold drawing. That is, in the case of applying oil (fats) lubrication, it is necessary to satisfy the following equation (a), where Y is the thickness reduction (%) and X is the die angle (°).

【0040】 Y≧5.5・exp(0.036・X) … (a) ここで、オイル潤滑は、通常用いられるものでよく、例
えば、天然油脂、合成油または鉱油などをベースに調合
され、20℃における粘度が20〜3000CSTのオイル(油
脂)潤滑油を用いればよい。このとき、S、P、Cl等の
極圧添加剤を含有してもよい。
Y ≧ 5.5 · exp (0.036 · X) (a) Here, the oil lubrication may be a commonly used oil lubrication. For example, the oil lubrication is prepared based on natural fats and oils, synthetic oil or mineral oil, etc. An oil (oil) lubricating oil having a viscosity of 20 to 3000 CST may be used. At this time, extreme pressure additives such as S, P and Cl may be contained.

【0041】一方、化成皮膜潤滑を施す場合には、Yを
肉厚加工度(%)、Xをダイス角度(°)として、下記
(b)式を満たすことが必要である。
On the other hand, when chemical conversion coating lubrication is performed, it is necessary to satisfy the following equation (b), where Y is the thickness reduction (%) and X is the die angle (°).

【0042】 Y≧1.5+5.5・exp(0.036・X) … (b) 化成皮膜潤滑では、例示した燐酸亜鉛皮膜による下地処
理の他に、シュウ酸塩の結晶皮膜を素管表面に生成させ
る下地処理でもよい。下地処理後は、石鹸処理としてス
テアリン酸ソーダなどを反応させて、下地との境界面に
金属石鹸潤滑層を形成させる。
Y ≧ 1.5 + 5.5 · exp (0.036 · X) (b) In chemical conversion lubrication, an oxalate crystal film is formed on the surface of the tube in addition to the undercoat treatment with the exemplified zinc phosphate film. Base treatment may be performed. After the base treatment, sodium stearate or the like is reacted as a soap treatment to form a metal soap lubricating layer on the interface with the base.

【0043】以上の加工条件にしたがって冷間引抜加工
を行えば、素管の製管種別にかかわらず、1回の引抜加
工によっても、内面平滑性に優れた冷間仕上の継目無鋼
管を製造できる。
If cold drawing is performed in accordance with the above-described processing conditions, a seamless finished steel pipe having excellent inner surface smoothness can be produced by one drawing regardless of the type of raw tube. it can.

【0044】[0044]

【実施例】本発明の効果を確かめるために、マンネスマ
ン・マンドレルミルによって製管した各種の素管(材質
および寸法)を用いて、それぞれ、1回の冷間引抜加工
を施した。引抜加工を行う際には、ストレート型ダイス
と円筒プラグを使用し、潤滑はオイル潤滑と化成皮膜潤
滑に区分した。オイル潤滑は、20℃での粘度が590CSTの
硫化油脂に油性向上剤および増粘剤を添加したものを使
用した。また、化成皮膜潤滑は、下地処理に燐酸亜鉛、
燐酸および亜硝酸ソーダで鋼管表面に燐酸亜鉛被膜を形
成した後、ステアリン酸ソーダにより石鹸処理を行い、
金属石鹸潤滑層を形成した。
EXAMPLES In order to confirm the effects of the present invention, one cold drawing was performed using various raw tubes (materials and dimensions) manufactured by a Mannesmann mandrel mill. When performing the drawing process, a straight die and a cylindrical plug were used, and the lubrication was classified into oil lubrication and conversion coating lubrication. The oil lubrication used was a sulfurized oil having a viscosity of 590 CST at 20 ° C. to which an oiliness improver and a thickener were added. For chemical conversion lubrication, zinc phosphate,
After forming a zinc phosphate coating on the steel pipe surface with phosphoric acid and sodium nitrite, perform a soap treatment with sodium stearate,
A metal soap lubrication layer was formed.

【0045】これらの加工条件によって、同条件で50〜
80回の引抜加工した後、管内面のシワ疵の深さを測定し
た。表1に素管の材質および寸法、加工鋼管の仕上寸
法、加工条件ならびにシワ疵深さの測定結果を示した。
Depending on these processing conditions, 50-
After 80 times of drawing, the depth of wrinkles on the inner surface of the tube was measured. Table 1 shows the measurement results of the material and dimensions of the raw pipe, the finished dimensions of the processed steel pipe, the processing conditions, and the wrinkle flaw depth.

【0046】[0046]

【表1】 表1の結果から明らかなように、本発明に規定した条件
に適合する場合(No.1〜9)には、全て引抜加工した後
のシワ疵の深さが0.05mm以下となり、優れた内面平滑性
を有する継目無鋼管が得られた。これに対し、本発明の
規定を満たさない条件の場合(No.10)には、シワ疵の
深さが0.06mmを超え、自動車の駆動部品に適用すること
ができない継目無鋼管もあった。
[Table 1] As is clear from the results in Table 1, when the conditions specified in the present invention are satisfied (Nos. 1 to 9), the depth of the wrinkle flaws after all the drawing processing becomes 0.05 mm or less, and the excellent inner surface A seamless steel pipe having smoothness was obtained. On the other hand, in the case where the conditions of the present invention were not satisfied (No. 10), there were some seamless steel pipes whose wrinkle depth exceeded 0.06 mm and could not be applied to driving parts of automobiles.

【0047】[0047]

【発明の効果】本発明の製造方法によれば、素管の製管
種別にかかわらず、1回の引抜加工によっても、内面平
滑性に優れた冷間仕上の継目無鋼管を製造できるので、
製造上、必要な工程数を増やすことがなく、製造コスト
が上昇することもない。これにより、自動車用のパワー
ステアリングやドライブシャフト等の駆動部品に最適な
継目無鋼管を提供することができる。
According to the manufacturing method of the present invention, a cold-finished seamless steel pipe excellent in inner surface smoothness can be manufactured by a single drawing process, regardless of the type of raw pipe.
There is no increase in the number of steps required for manufacturing and no increase in manufacturing cost. This makes it possible to provide a seamless steel pipe that is optimal for driving components such as power steering and drive shafts for automobiles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ストレート型ダイスの断面形状を示す図であ
る。
FIG. 1 is a view showing a cross-sectional shape of a straight die.

【図2】試験1で用いた試験用鋼管の引抜加工の前後の
形状を模式的に示した図である。
FIG. 2 is a view schematically showing shapes of a test steel pipe used in Test 1 before and after drawing.

【図3】ダイス角度が15°〜25°で引抜加工した場
合の六角形穴の頂角位置における肉厚加工度と角張り底
深さとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the thickness reduction degree at the apex position of a hexagonal hole and the squared bottom depth when drawing is performed at a die angle of 15 ° to 25 °.

【図4】空引き加工したときの、外径加工度と増肉率
関係を示した図であり、(a)は、ダイス角度25°のと
きの外径加工度と増肉率の関係を、(b)は、肉厚/外径
の比(T/D)が30%のときの外径加工度と増肉率の関
係を示している。
FIG. 4 is a diagram showing the relationship between the degree of outside diameter processing and the rate of increase in wall thickness at the time of emptying, and FIG. 4A shows the relationship between the degree of outside diameter processing and the rate of wall thickness when the die angle is 25 °. (B) shows the relationship between the outer diameter working ratio and the wall thickness increase ratio when the thickness / outer diameter ratio (T / D) is 30%.

【図5】ストレート型ダイスおよび円筒プラグを用いた
引抜加工の状況を模式的に示した図であり、(a)はダイ
ス角度が大きい場合を、(b)はダイス角度が小さい場合
を示している。
FIGS. 5A and 5B are diagrams schematically showing a state of drawing using a straight die and a cylindrical plug, wherein FIG. 5A shows a case where the die angle is large, and FIG. 5B shows a case where the die angle is small. I have.

【図6】ダイス角度が10°〜30°で引抜加工した場
合の肉厚加工度とシワ疵の深さとの関係を示す図であ
る。
FIG. 6 is a diagram showing the relationship between the degree of thickness reduction and the depth of wrinkle defects when drawing is performed at a die angle of 10 ° to 30 °.

【図7】上記図5の結果から、ダイス角度(°)と引抜
加工後の管内面のシワ疵の深さが0.05mm以下となる肉厚
加工度(%)との関係を示した図である。
FIG. 7 is a diagram showing the relationship between the die angle (°) and the thickness reduction (%) at which the depth of wrinkle flaws on the inner surface of the pipe after drawing becomes 0.05 mm or less from the results of FIG. 5 described above. is there.

【図8】引抜加工を化成皮膜潤滑またはオイル潤滑油で
行った場合の肉厚加工度とシワ疵の深さとの関係を示し
たものである。
FIG. 8 is a graph showing the relationship between the degree of wall thickness and the depth of wrinkles when drawing is performed using chemical film lubrication or oil lubricating oil.

【符号の説明】[Explanation of symbols]

1 ダイス 2 プラグ 3 素管 1 dice 2 plug 3 raw tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷間仕上された鋼管の肉厚/外径(T/
D)の比が20%以上である継目無鋼管の製造方法であっ
て、オイル(油脂)潤滑が施された素管を下記(a)式
を満足する条件で冷間引抜加工することを特徴とする内
面平滑性に優れた継目無鋼管の製造方法。 Y≧5.5・exp(0.036・X) … (a) 但し、Yは肉厚加工度(%)、Xはダイス角度(°)を
示す
[Claim 1] The thickness / outer diameter (T /
A method for producing a seamless steel pipe having a ratio of D) of 20% or more, characterized in that a cold-worked pipe subjected to oil (oil) lubrication is subjected to cold drawing under a condition satisfying the following equation (a). A method for manufacturing a seamless steel pipe having excellent inner surface smoothness. Y ≧ 5.5 · exp (0.036 · X) (a) where Y indicates the thickness reduction (%) and X indicates the die angle (°).
【請求項2】冷間仕上された鋼管の肉厚/外径(T/
D)の比が20%以上である継目無鋼管の製造方法であっ
て、化成皮膜潤滑が施された素管を下記(b)式を満足
する条件で冷間引抜加工することを特徴とする内面平滑
性に優れた継目無鋼管の製造方法。 Y≧1.5+5.5・exp(0.036・X) … (b) 但し、Yは肉厚加工度(%)、Xはダイス角度(°)を
示す
2. The thickness / outer diameter of a cold-finished steel pipe (T /
A method for producing a seamless steel pipe having a ratio of D) of 20% or more, characterized in that a pipe subjected to chemical conversion lubrication is subjected to cold drawing under a condition satisfying the following equation (b). A method for manufacturing a seamless steel pipe with excellent inner surface smoothness. Y ≧ 1.5 + 5.5 · exp (0.036 · X) (b) where Y indicates the thickness reduction (%) and X indicates the die angle (°).
【請求項3】請求項1または2に記載された継目無鋼管
の製造方法で製造され、管内面のシワ疵の深さが0.05mm
以下であることを特徴とする継目無鋼管。
3. The pipe is manufactured by the method for manufacturing a seamless steel pipe according to claim 1 or 2, wherein wrinkles on the inner surface of the pipe have a depth of 0.05 mm.
A seamless steel pipe characterized by the following.
JP2001169050A 2001-06-05 2001-06-05 Seamless steel pipe manufacturing method and seamless steel pipe excellent in internal smoothness Expired - Fee Related JP4682450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169050A JP4682450B2 (en) 2001-06-05 2001-06-05 Seamless steel pipe manufacturing method and seamless steel pipe excellent in internal smoothness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169050A JP4682450B2 (en) 2001-06-05 2001-06-05 Seamless steel pipe manufacturing method and seamless steel pipe excellent in internal smoothness

Publications (2)

Publication Number Publication Date
JP2002361319A true JP2002361319A (en) 2002-12-17
JP4682450B2 JP4682450B2 (en) 2011-05-11

Family

ID=19011172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169050A Expired - Fee Related JP4682450B2 (en) 2001-06-05 2001-06-05 Seamless steel pipe manufacturing method and seamless steel pipe excellent in internal smoothness

Country Status (1)

Country Link
JP (1) JP4682450B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071686A1 (en) * 2003-01-31 2004-08-26 Sumitomo Metal Industries, Ltd. Seamless steel tube for drive shaft and method of manufacturing the same
WO2007111258A1 (en) * 2006-03-29 2007-10-04 Sumitomo Metal Industries, Ltd. Cold finish seamless steel pipe for drive shaft and method for producing the same
JP2008290165A (en) * 2007-05-23 2008-12-04 Fuji Bolt Seisakusho:Kk Forming method of female screw
WO2009081655A1 (en) * 2007-12-26 2009-07-02 Sumitomo Metal Industries, Ltd. Production method of internally-ribbed steel pipe and drawing plug for use therein
WO2012070237A1 (en) * 2010-11-26 2012-05-31 住友金属工業株式会社 Method for cold drawing of steel pipe
CN103920731A (en) * 2014-04-01 2014-07-16 太仓东青金属制品有限公司 Precision horizontal type tube drawing machine and full-automatic high-efficiency precise drawing method
CN103921066A (en) * 2014-03-18 2014-07-16 泰州双羊精密无缝钢管有限公司 Method for manufacturing seamless steel pipes for shock absorbers
CN105834234A (en) * 2016-03-29 2016-08-10 重庆钢铁(集团)有限责任公司 Two-pass continuous drawing method for producing cold-drawn steel pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226113A (en) * 1985-03-29 1986-10-08 Sumitomo Metal Ind Ltd Production of drawn tube with high dimensional accuracy
JPH02121715A (en) * 1988-10-31 1990-05-09 Kawasaki Steel Corp Manufacture of cold drawn tube
JPH0381008A (en) * 1989-08-22 1991-04-05 Sumitomo Metal Ind Ltd Manufacture of steel pipe to be cut
JPH04197513A (en) * 1990-11-27 1992-07-17 Nippon Steel Corp Method for drawing core of coil like steel tube
JPH05154708A (en) * 1991-12-04 1993-06-22 Usui Internatl Ind Co Ltd Inner periphery cutting device for thick-wall smalldiameter pipe
JPH0957329A (en) * 1995-08-28 1997-03-04 Nkk Corp Manufacture of steel pipe for diesel engine fuel injection pipe
JPH10103188A (en) * 1996-10-01 1998-04-21 Usui Internatl Ind Co Ltd High pressure fuel injection pipe material and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226113A (en) * 1985-03-29 1986-10-08 Sumitomo Metal Ind Ltd Production of drawn tube with high dimensional accuracy
JPH02121715A (en) * 1988-10-31 1990-05-09 Kawasaki Steel Corp Manufacture of cold drawn tube
JPH0381008A (en) * 1989-08-22 1991-04-05 Sumitomo Metal Ind Ltd Manufacture of steel pipe to be cut
JPH04197513A (en) * 1990-11-27 1992-07-17 Nippon Steel Corp Method for drawing core of coil like steel tube
JPH05154708A (en) * 1991-12-04 1993-06-22 Usui Internatl Ind Co Ltd Inner periphery cutting device for thick-wall smalldiameter pipe
JPH0957329A (en) * 1995-08-28 1997-03-04 Nkk Corp Manufacture of steel pipe for diesel engine fuel injection pipe
JPH10103188A (en) * 1996-10-01 1998-04-21 Usui Internatl Ind Co Ltd High pressure fuel injection pipe material and manufacture thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384553C (en) * 2003-01-31 2008-04-30 住友金属工业株式会社 Seamless steel tube for drive shaft and method for manufacturing the same
EP1595609A1 (en) * 2003-01-31 2005-11-16 Sumitomo Metal Industries, Ltd. Seamless steel tube for drive shaft and method of manufacturing the same
EP1595609A4 (en) * 2003-01-31 2006-03-22 Sumitomo Metal Ind Seamless steel tube for drive shaft and method of manufacturing the same
JPWO2004071686A1 (en) * 2003-01-31 2006-06-01 住友金属工業株式会社 Seamless steel pipe for drive shaft and manufacturing method thereof
WO2004071686A1 (en) * 2003-01-31 2004-08-26 Sumitomo Metal Industries, Ltd. Seamless steel tube for drive shaft and method of manufacturing the same
JP4853514B2 (en) * 2006-03-29 2012-01-11 住友金属工業株式会社 Manufacturing method of cold-finished seamless steel pipe for drive shaft
WO2007111258A1 (en) * 2006-03-29 2007-10-04 Sumitomo Metal Industries, Ltd. Cold finish seamless steel pipe for drive shaft and method for producing the same
CN101410194B (en) * 2006-03-29 2012-07-04 住友金属工业株式会社 Cold finish seamless steel pipe for drive shaft and method for producing the same
JP2008290165A (en) * 2007-05-23 2008-12-04 Fuji Bolt Seisakusho:Kk Forming method of female screw
WO2009081655A1 (en) * 2007-12-26 2009-07-02 Sumitomo Metal Industries, Ltd. Production method of internally-ribbed steel pipe and drawing plug for use therein
US8281635B2 (en) 2007-12-26 2012-10-09 Sumitomo Metal Industries, Ltd. Production method of internally ribbed steel tube and drawing plug for use therein
CN101909774B (en) * 2007-12-26 2012-10-24 住友金属工业株式会社 Production method of internally-ribbed steel pipe
WO2012070237A1 (en) * 2010-11-26 2012-05-31 住友金属工業株式会社 Method for cold drawing of steel pipe
JP2012110949A (en) * 2010-11-26 2012-06-14 Sumitomo Metal Ind Ltd Method for cold drawing of steel pipe
CN103921066A (en) * 2014-03-18 2014-07-16 泰州双羊精密无缝钢管有限公司 Method for manufacturing seamless steel pipes for shock absorbers
CN103920731A (en) * 2014-04-01 2014-07-16 太仓东青金属制品有限公司 Precision horizontal type tube drawing machine and full-automatic high-efficiency precise drawing method
CN105834234A (en) * 2016-03-29 2016-08-10 重庆钢铁(集团)有限责任公司 Two-pass continuous drawing method for producing cold-drawn steel pipe

Also Published As

Publication number Publication date
JP4682450B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN102527767B (en) Cold drawing welded tube manufacture process for high-accuracy hydraulic oil cylinder
CN107931331B (en) A kind of production method of two roller cold rolling seamless steel of high-precision
WO2005068098A9 (en) Method for producing seamless pipe
JP2003311317A (en) Method for manufacturing seamless tube
CN104646449A (en) Manufacturing method for cold drawn welded pipe used for hydraulic oil cylinders
CN100406144C (en) Cold rolling process for metal tubes
JP2002361319A (en) Method for manufacturing seamless steel tube excellent in internal smoothness and seamless steel tube
CN104647037A (en) Method for manufacturing cold-drawn welded pipe for precision inner hole honing pipe
CN101786112B (en) Manufacturing method of gas cylinder steel tube for long-tube trailer
CN112170520A (en) Production method and production system of 110-steel-grade super dual-phase steel seamless steel pipe
CN113522997A (en) High-strength high-precision rust-resistant sulfur-containing free-cutting steel bar cold drawing production process
RU2426617C1 (en) Method of producing thin-wall shells
JP4192970B2 (en) Cold rolling method for metal tubes
JP2522397B2 (en) Small diameter long pipe material manufacturing method
WO2011093055A1 (en) Manufacturing method for small diameter thin-walled pipe
CN100393433C (en) Cold rolling process for metal tubes
JP3085762B2 (en) Method of manufacturing thick small-diameter tube
CN104438429A (en) Forming method of unequal-wall-thickness reducing special-shaped stainless steel pipe
RU2811511C1 (en) Method for manufacturing cardan automotive cold-deformed pipe
JP4428225B2 (en) Plug and cold drawing method
JP4192971B2 (en) Cold rolling method for metal tubes
RU2710311C1 (en) Method of making thin-wall shells from alloyed steels
TWI253963B (en) Pipe having excellent dimensional accuracy, manufacturing method and apparatus thereof
JPH0734926B2 (en) Method for manufacturing austenitic stainless steel seamless steel pipe
JP2007296570A (en) Heat-resistant steel sheet excellent in tube-making property and stainless steel sheet excellent in the same property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4682450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees