JP2002359256A - Field effect compound semiconductor device - Google Patents

Field effect compound semiconductor device

Info

Publication number
JP2002359256A
JP2002359256A JP2001164908A JP2001164908A JP2002359256A JP 2002359256 A JP2002359256 A JP 2002359256A JP 2001164908 A JP2001164908 A JP 2001164908A JP 2001164908 A JP2001164908 A JP 2001164908A JP 2002359256 A JP2002359256 A JP 2002359256A
Authority
JP
Japan
Prior art keywords
layer
gan
carrier
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001164908A
Other languages
Japanese (ja)
Other versions
JP4663156B2 (en
Inventor
Shunei Yoshikawa
俊英 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2001164908A priority Critical patent/JP4663156B2/en
Publication of JP2002359256A publication Critical patent/JP2002359256A/en
Application granted granted Critical
Publication of JP4663156B2 publication Critical patent/JP4663156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance on-breakdown voltage of a GaN compound semiconductor device, and to improve the I-V characteristics. SOLUTION: A field effect compound semiconductor device comprises a GaN protective layer 4, made of an Aly Ga1-y N (0<=y<=1) and y<x) which is of the same conductivity type as that of a running carrier and provided on an upper part of a carrier supply layer 3 made of an Alx Ga1-x N (0<x<=1), and a gate electrode 6 and source/drain electrode 7 formed on the layer 4, in such a manner that electrodes are covered with an SiN film 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電界効果型化合物半
導体装置に関するものであり、特に、キャリア走行層と
してナイトライド系III-V族化合物半導体を用いたHE
MT(高電子移動度トランジスタ)タイプの化合物半導
体装置における特性安定化のための保護膜構造に特徴の
ある電界効果型化合物半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field-effect compound semiconductor device, and more particularly to an HE using a nitride III-V compound semiconductor as a carrier transit layer.
The present invention relates to a field effect compound semiconductor device characterized by a protective film structure for stabilizing characteristics in an MT (high electron mobility transistor) type compound semiconductor device.

【0002】[0002]

【従来の技術】近年、サファイア、SiC、GaN、も
しくは、Si等を基板に使用して、AlGaN/GaN
を結晶成長しGaNを電子走行層とする電子デバイスの
開発が活発である。
2. Description of the Related Art In recent years, sapphire, SiC, GaN, or Si has been used as a substrate for AlGaN / GaN.
There is an active development of electronic devices in which GaN is crystal-grown and GaN is used as an electron transit layer.

【0003】この様な電子デバイスの電子走行層として
用いられるGaNは、電子移動度がGaAsに比べて小
さいものの、バンドギャップが3.4eVとGaAsの
1.4eVに比べて大きいため、GaAs系電子デバイ
スでは不可能な高耐圧での動作が期待されている。
[0003] Although GaN used as an electron transit layer of such an electronic device has a smaller electron mobility than GaAs, it has a band gap of 3.4 eV and is larger than 1.4 eV of GaAs. The device is expected to operate at a high withstand voltage that cannot be achieved by devices.

【0004】例えば、現在携帯電話の基地局用アンプで
は50Vの高電圧動作が求められており、高耐圧性能が
必須となっているが、現状のGaAs系電子デバイスで
は12Vでの駆動が限界であるため、50Vの電圧を降
下して使用しているのが現状であり、そのために効率が
低下したり、或いは、歪みが発生するという問題があ
る。
For example, a high-voltage operation of 50 V is currently required for an amplifier for a base station of a cellular phone, and a high withstand voltage performance is indispensable. However, the current GaAs-based electronic device has a limit of driving at 12 V. For this reason, the current situation is that the voltage of 50 V is used after being dropped, which causes a problem that the efficiency is reduced or distortion occurs.

【0005】ここで、図7を参照して、従来のGaN系
HEMTを説明する。 図7(a)参照 まず、C面を主面とするサファイア基板41上に、通常
のMOCVD法(有機金属気相成長法)を用いて、厚さ
が3μmのi型GaN電子走行層42、厚さが3nmの
i型Al0.25Ga0.75N層43、厚さが25nmで、S
iドーピング濃度が2×1018cm-3のn型Al0.25
0.75N電子供給層44、及び、厚さが5nmのi型A
0.25Ga0.75N保護層45を順次堆積させる。
Here, a conventional GaN-based HEMT will be described with reference to FIG. Referring to FIG. 7A, a 3 μm-thick i-type GaN electron transit layer 42 having a thickness of 3 μm is formed on a sapphire substrate 41 having a C-plane as a main surface by using a normal MOCVD method (metal organic chemical vapor deposition). I-type Al 0.25 Ga 0.75 N layer 43 having a thickness of 3 nm;
n-type Al 0.25 G with i-doping concentration of 2 × 10 18 cm -3
a 0.75 N electron supply layer 44 and 5 nm thick i-type A
The l 0.25 Ga 0.75 N protective layer 45 is sequentially deposited.

【0006】次いで、全面に、CVD法を用いて厚さが
20nmのSiN膜46を堆積したのち、ゲート形成領
域に開口部を設けてNi/Auからなるゲート電極47
を形成するとともに、ソース・ドレインコンタクト領域
に開口部を設けてTi/Auからなるソース電極48及
びドレイン電極49を形成することによって、GaN系
HEMTの基本構造が完成する。
Then, a 20-nm-thick SiN film 46 is deposited on the entire surface by CVD, and an opening is formed in the gate formation region to form a gate electrode 47 made of Ni / Au.
And an opening is provided in the source / drain contact region to form a source electrode 48 and a drain electrode 49 made of Ti / Au, thereby completing the basic structure of the GaN-based HEMT.

【0007】図7(b)参照 図7(a)は、上述のGaN系のバンドダイヤグラムで
あり、GaNやAlGaN等のGaN系半導体において
はc軸方向に分極しており、i型GaN電子走行層42
/i型Al0.25Ga0.75N層43の界面のi型Al0.25
Ga0.75N層43側に格子不整合に起因するピエゾ効果
によって、例えば、1×1013cm-2の正の分極電荷が
現れるため、i型GaN電子走行層42のi型GaN電
子走行層42/i型Al0.25Ga0.75N層43の界面の
近傍に約1×1013cm-2の電子が誘起され、二次元電
子ガス層50を構成する。
FIG. 7A is a GaN-based band diagram described above. In a GaN-based semiconductor such as GaN or AlGaN, the GaN-based semiconductor is polarized in the c-axis direction, and the i-type GaN electron transport is performed. Layer 42
/ I-type Al 0.25 Ga 0.75 i-type interface of the N layer 43 Al 0.25
For example, a positive polarization charge of 1 × 10 13 cm −2 appears on the Ga 0.75 N layer 43 side due to a piezo effect due to lattice mismatch, so that the i-type GaN electron transit layer 42 of the i-type GaN electron transit layer 42 Electrons of about 1 × 10 13 cm −2 are induced near the interface of the / i-type Al 0.25 Ga 0.75 N layer 43 to form the two-dimensional electron gas layer 50.

【0008】この様なi型GaN電子走行層42におけ
る二次元電子ガス層50の電子移動度は1000〜15
00程度であるが、二次元電子ガスの濃度が約1×10
13cm-2とGaAs系の二次元電子ガスの濃度に比べて
1桁以上大きいので、GaAs系HEMTと同程度の電
流駆動特性を得ることができるとともに、禁制帯幅が広
いので高耐圧特性が得られる。因に、現在、電流オフ時
の耐圧として200Vを越える値が報告されている。
The electron mobility of the two-dimensional electron gas layer 50 in such an i-type GaN electron transit layer 42 is 1000 to 15
00, but the concentration of the two-dimensional electron gas is about 1 × 10
13 cm -2, which is at least one order of magnitude higher than the concentration of the GaAs-based two-dimensional electron gas, can provide current drive characteristics comparable to those of GaAs-based HEMTs. can get. Incidentally, a value exceeding 200 V has been reported as the withstand voltage when the current is turned off.

【0009】また、i型Al0.25Ga0.75N保護層45
を設けることによって、ゲート電極へのトンネル電流を
低減し、少しでも耐圧を向上させることができる。
The i-type Al 0.25 Ga 0.75 N protective layer 45
, The tunnel current to the gate electrode can be reduced, and the withstand voltage can be slightly improved.

【0010】[0010]

【発明が解決しようとする課題】しかし、従来のGaN
系HEMTにおいては、電流オンの時の耐圧が20Vそ
こそこであり、高電圧動作ができないという課題が浮上
しているが、これはGaN系デバイスの基本的特性から
見て、従来のGaAs系のFETとは異なり、イオン化
衝突ではなく表面の問題で起きていると考えられる。
However, the conventional GaN
In the system HEMT, the withstand voltage when the current is turned on is about 20 V, and the problem that high-voltage operation cannot be performed has been raised. However, in view of the basic characteristics of the GaN-based device, this problem is caused by the conventional GaAs-based FET. Unlike this, it is thought to be caused by surface problems rather than ionization collisions.

【0011】即ち、GaN系半導体は禁制帯幅が広いの
で、イオン化衝突によるオン時のブレークダウンが本質
的に発生しにくいものであり、且つ、実際に測定したI
−V特性の振る舞いからみてもイオン化衝突ではないと
考えられる。
That is, since the GaN-based semiconductor has a wide band gap, breakdown at the time of ON due to ionization collision is essentially unlikely to occur, and the actually measured I
Judging from the behavior of the -V characteristic, it is considered that this is not ionization collision.

【0012】また、この様なGaN系HEMTにおいて
は、高ゲート電圧動作下においてI−V特性に大きなヒ
ステリシスが見られ、高周波領域における相互コンダク
タンスgm が低下し電流駆動ができなくなるという課題
があるので、この様子を図8を参照して説明する。
[0012] In such a GaN-based HEMT, the high gate voltage operating under observed large hysteresis in the I-V characteristic, there is a problem that the mutual conductance g m becomes impossible to current drive decreases in a high frequency region Therefore, this situation will be described with reference to FIG.

【0013】図8(a)参照 図8(a)は、上述の構造のGaN系HEMTにおい
て、ゲート幅Wg をWg=40μmにするとともにSi
N膜を除去した場合のI−V特性図であり、高ゲート電
圧動作下においてI−V特性に大きなヒステリシスが見
られる。
FIG. 8A shows a GaN-based HEMT having the above-described structure, in which the gate width W g is set to W g = 40 μm and the Si width is set to 40 μm.
FIG. 11 is an IV characteristic diagram when the N film is removed, and a large hysteresis is seen in the IV characteristic under a high gate voltage operation.

【0014】図8(b)参照 図8(b)は、図7(a)に示したGaN系HEMTに
おいて、ゲート幅WgをWg =40μmにした場合のI
−V特性図であり、高ゲート電圧動作下においてI−V
特性に大きなヒステリシスが見られ、ヒステリシスに関
してはSiN膜を設けても格別の改善は得られないこと
が理解される。
FIG. 8 (b) FIG. 8 (b) shows the GaN HEMT shown in FIG. 7 (a) when the gate width W g is W g = 40 μm.
FIG. 9 is a graph showing a −V characteristic under an operation of a high gate voltage.
It is understood that a large hysteresis is observed in the characteristics, and no particular improvement in hysteresis can be obtained even if the SiN film is provided.

【0015】これは、i型Al0.25Ga0.75N保護層4
5の表面側に現れる負のピエゾ電荷がI−V特性に影響
を与えるためと考えられ、SiN膜を設けることによっ
て、負のピエゾ電荷が表面側から内部に追いやられるこ
とによって多少特性は改善されるが、依然として問題に
なる。なお、表面保護膜として、SiN膜の代わりにS
iO2 膜を設けても事情は同じである。
This is because the i-type Al 0.25 Ga 0.75 N protective layer 4
It is considered that the negative piezo charge appearing on the surface side of No. 5 affects the IV characteristics, and the characteristics are somewhat improved by disposing the negative piezo charge from the surface side to the inside by providing the SiN film. But still a problem. In addition, instead of the SiN film, S
The situation is the same even if the iO 2 film is provided.

【0016】したがって、本発明は、GaN系化合物半
導体装置のオン耐圧を高めるとともに、I−V特性を改
善することを目的とする。
Accordingly, an object of the present invention is to increase the on-breakdown voltage of a GaN-based compound semiconductor device and improve the IV characteristics.

【0017】[0017]

【課題を解決するための手段】図1は本発明の原理的構
成の説明図であり、この図1を参照して本発明における
課題を解決するための手段を説明する。 図1参照 上述の目的を達成するために、本発明においては、Al
x Ga1-x N(0<x≦1)をキャリア供給層3とし、
GaNをキャリア走行層2とした電界効果型化合物半導
体装置において、キャリア供給層3の上部に走行キャリ
アと同導電のAly Ga1-y N(0≦y≦1、且つ、y
<x)からなるGaN系保護層4を設け、前記GaN系
保護層4上にゲート電極6及びソース・ドレイン電極7
を形成するとともに、前記各電極間をSiN膜5で被覆
したことを特徴とする。
FIG. 1 is an explanatory view of the principle configuration of the present invention. Referring to FIG. 1, means for solving the problems in the present invention will be described. See FIG. 1. In order to achieve the above-mentioned object, in the present invention, Al
x Ga 1-x N (0 <x ≦ 1) is used as the carrier supply layer 3;
In the field effect type compound semiconductor device using GaN as the carrier traveling layer 2, Al y Ga 1-y N (0 ≦ y ≦ 1, y
A GaN-based protective layer 4 of <x), and a gate electrode 6 and a source / drain electrode 7 on the GaN-based protective layer 4.
And the space between the electrodes is covered with a SiN film 5.

【0018】この様に、キャリア供給層3上にGaN系
保護層4を配置することによって、ピエゾ電荷によって
バンドを持ち上げてトンネル電流を低減しショットキー
特性を向上することができ、且つ、GaN系保護層4を
走行キャリアと同導電にすることによって、ピエゾ電荷
によって持ち上げられすぎた界面ポテンシャルを持ち下
げて導通性能を改善するともに、界面近傍に誘起される
ホールを相殺してスクリーニングすることができ、さら
に、Alに起因する表面トラップの影響を排除すること
ができ、それによって、安定なI−V特性を得ることが
できる。なお、この場合のスクリーニングの定義とはG
aN系保護層4を使わない場合のAlGaN/ GaN−
FET構造の場合の最大電流密度を100とした場合
に、GaN系保護層4を使用しても80以上の最大電流
密度を出せるようにする意味である。
As described above, by disposing the GaN-based protective layer 4 on the carrier supply layer 3, it is possible to raise the band by the piezo charge, reduce the tunnel current, improve the Schottky characteristic, and improve the GaN-based property. By making the protective layer 4 the same conductivity as the traveling carrier, it is possible to improve the conduction performance by lowering the interfacial potential that has been excessively lifted by the piezo charge, and to perform screening by canceling holes induced near the interface. Further, it is possible to eliminate the influence of surface traps caused by Al, thereby obtaining a stable IV characteristic. The definition of screening in this case is G
AlGaN / GaN- without using aN-based protective layer 4
This means that when the maximum current density in the case of the FET structure is set to 100, a maximum current density of 80 or more can be obtained even when the GaN-based protective layer 4 is used.

【0019】特に、SiN膜5を設けることによって、
界面近傍に誘起されるホールをさらに内部に追いやるこ
とができ、それによって、ヒステリシス特性が発生する
ことを防止することができるとともに、ピエゾ電荷によ
って持ち上げられた界面ポテンシャルを持ち下げること
ができ、それによって、フェルミ準位を相対的に挙げる
ので、電流密度を大きくすることができる。また、Ga
N系保護層4を走行キャリアと同導電型とすることによ
って、ソース・ドレイン電極7のオーミック性を高める
ことができる。
In particular, by providing the SiN film 5,
Holes induced near the interface can be further driven to the inside, thereby preventing the occurrence of hysteresis characteristics and lowering the interface potential lifted by the piezo charge. Since the Fermi level is relatively high, the current density can be increased. Also, Ga
By making the N-type protection layer 4 the same conductivity type as the traveling carrier, the ohmic properties of the source / drain electrodes 7 can be improved.

【0020】なお、この場合のGaN系保護層4は、A
y Ga1-y N(0≦y≦1、且つ、y<x)である
が、より好適には、y≦0.1が望ましい。また、この
場合の基板1としては、サファイア基板、GaN基板、
或いは、SiC基板のいずれでも良い。
In this case, the GaN protective layer 4 is made of A
l y Ga 1-y N (0 ≦ y ≦ 1 and y <x), and more preferably, y ≦ 0.1. In this case, the substrate 1 is a sapphire substrate, a GaN substrate,
Alternatively, any of SiC substrates may be used.

【0021】この場合、キャリア供給層3、キャリア走
行層2、或いは、GaN系保護層4の少なくとも一つ
に、Inを添加しても良いものであり、Inの添加によ
って禁制帯幅が小さくなるがキャリアの移動度が高ま
る。
In this case, In may be added to at least one of the carrier supply layer 3, the carrier transit layer 2, or the GaN-based protective layer 4, and the addition of In reduces the forbidden band width. However, the mobility of the carrier is increased.

【0022】また、GaN系保護層4の層厚は、10n
m以下にすることが望ましく、それによってGaN系保
護層4を流れるリーク電流の発生やショットキー電極の
耐圧を高めることができる。
The thickness of the GaN-based protective layer 4 is 10 n
m or less, whereby the generation of leakage current flowing through the GaN-based protective layer 4 and the withstand voltage of the Schottky electrode can be increased.

【0023】また、GaN系保護層4のドーピング濃度
が、1×1017cm-2以上であることが望ましく、それ
によって、界面近傍に誘起されるホールを相殺してスク
リーニングすることができる。
Further, the doping concentration of the GaN-based protective layer 4 is desirably 1 × 10 17 cm −2 or more, whereby screening induced by canceling holes induced near the interface can be performed.

【0024】この場合、シート濃度としてスクリーニン
するためには、キャリア供給層3との界面に発生するピ
エゾ電荷の20〜80%のシート濃度であれば良く、シ
ート濃度が低すぎればスクリーニング効果が得られず、
一方、シート濃度が高すぎると、逆方向耐圧BVgdが低
下して、所期の高耐圧特性が得られなくなる。
In this case, in order to screen as the sheet concentration, the sheet concentration needs to be 20 to 80% of the piezo charge generated at the interface with the carrier supply layer 3, and if the sheet concentration is too low, the screening effect is not obtained. I ca n’t get it,
On the other hand, if the sheet concentration is too high, the reverse breakdown voltage BV gd decreases, and the desired high breakdown voltage characteristics cannot be obtained.

【0025】この様なシート濃度を得るためには、キャ
リア供給層3との界面側に、導電型決定不純物を原子層
ドーピングすれば良く、n型の場合にはSi,S,Se
のいずれか1つを用いれば良い。
In order to obtain such a sheet concentration, it suffices that the conductivity type determining impurity is doped on the interface side with the carrier supply layer 3 by atomic layer doping. In the case of n type, Si, S, Se is used.
Any one of the above may be used.

【0026】また、GaN系保護層4を走行キャリアと
同導電型の層とアンドープ層との二層構造で構成しても
良く、それによって、最表面をアンドープ層にすること
ができるので、I−V特性をより安定化することができ
る。
Further, the GaN-based protective layer 4 may have a two-layer structure of a layer of the same conductivity type as the traveling carrier and an undoped layer, whereby the outermost surface can be an undoped layer. -V characteristics can be further stabilized.

【0027】また、GaN系保護層4とAlx Ga1-x
N(0<x≦1)からなるキャリア供給層3との間にA
z Ga1-z N(z>x)を挿入しても良く、Alz
1- z N(z>x)をエッチングストッパ層とすること
によって、加工特性が高まる。
Further, the GaN-based protective layer 4 and Al x Ga 1 -x
A between the carrier supply layer 3 made of N (0 <x ≦ 1)
l z Ga 1-z N (z> x) may be inserted, and Al z G
By using a 1 -zN (z> x) as the etching stopper layer, processing characteristics are improved.

【0028】[0028]

【発明の実施の形態】ここで、図2及び図3を参照し
て、本発明の第1の実施の形態のGaN系HEMTを説
明する。 図2(a)参照 まず、C面を主面とするサファイア基板11上に、通常
のMOCVD法を用いて、厚さが、例えば、3μmのi
型GaN電子走行層12、厚さが、例えば、2nmのi
型Al0.25Ga0.75N層13、厚さが、例えば、25n
mで、Siドーピング濃度が、例えば、2×1018cm
-3のn型Al0.25Ga0.75N電子供給層14、及び、厚
さが10nm以下、例えば、5nmで、Siドーピング
濃度が、例えば、2×1018cm-3のn型GaN保護層
15を順次堆積させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A GaN-based HEMT according to a first embodiment of the present invention will now be described with reference to FIGS. First, as shown in FIG. 2A, an i-layer having a thickness of, for example, 3 μm
Type GaN electron transit layer 12 having a thickness of, for example, 2 nm
Type Al 0.25 Ga 0.75 N layer 13 having a thickness of, for example, 25 n
m, the Si doping concentration is, for example, 2 × 10 18 cm
-3 n-type Al 0.25 Ga 0.75 N electron supply layer 14 and an n-type GaN protective layer 15 having a thickness of 10 nm or less, for example, 5 nm, and a Si doping concentration of, for example, 2 × 10 18 cm −3. Deposit sequentially.

【0029】次いで、全面に、CVD法を用いて厚さが
20nmのSiN膜16を堆積したのち、ゲート形成領
域に開口部を設けてNi/Auからなるゲート電極17
を形成するとともに、ソース・ドレインコンタクト領域
に開口部を設けてTi/Auからなるソース電極18及
びドレイン電極19を形成することによって、GaN系
HEMTの基本構造が完成する。なお、この場合、n型
GaN保護層15の膜厚が10nmを越えるとリーク電
流が発生し、ショットキー電極であるゲート電極17に
耐圧がなくなる。また、図においては、単体のHEMT
として説明しているが、集積化する場合には、イオン注
入或いはメサエッチングによって素子分離を行えば良
い。
Next, after depositing a 20 nm-thick SiN film 16 on the entire surface by the CVD method, an opening is provided in the gate formation region to form a gate electrode 17 made of Ni / Au.
Is formed, and an opening is provided in the source / drain contact region to form the source electrode 18 and the drain electrode 19 made of Ti / Au, thereby completing the basic structure of the GaN-based HEMT. In this case, if the thickness of the n-type GaN protective layer 15 exceeds 10 nm, a leak current occurs, and the breakdown voltage of the gate electrode 17 serving as a Schottky electrode is lost. In the figure, a single HEMT
However, in the case of integration, element isolation may be performed by ion implantation or mesa etching.

【0030】図2(b)参照 図2(b)は、上述のGaN系HEMTのバンドダイヤ
グラムであり、GaNやAlGaN等のGaN系半導体
においてはc軸方向に分極しており、i型GaN電子走
行層12/i型Al0.25Ga0.75N層13の界面のi型
Al0.25Ga0. 75N層13側に格子不整合に起因するピ
エゾ効果によって、例えば、1×1013cm-2の正の分
極電荷が現れるため、i型GaN電子走行層12のi型
Al0.25Ga0.75N層13との界面の近傍に約1×10
13cm-2の電子が誘起され、二次元電子ガス層20を構
成する。
FIG. 2B is a band diagram of the GaN-based HEMT described above. In a GaN-based semiconductor such as GaN or AlGaN, the GaN-based semiconductor is polarized in the c-axis direction, and is an i-type GaN electron. by piezoelectric effect due to lattice mismatch in the i-type Al 0.25 Ga 0. 75 N layer 13 side of the interface of the running layer 12 / i-type Al 0.25 Ga 0.75 N layer 13, for example, a positive 1 × 10 13 cm -2 About 1 × 10 5 near the interface between the i-type GaN electron transit layer 12 and the i-type Al 0.25 Ga 0.75 N layer 13.
Electrons of 13 cm -2 are induced to form the two-dimensional electron gas layer 20.

【0031】図3(a)参照 図3(a)は、ゲート幅Wg をWg =40μmにした場
合のI−V特性図であり、従来のGaN系HEMTにお
けるi型Al0.25Ga0.75N保護層をn型GaN保護層
に置き換えた結果、良好な特性が得られたことが確認さ
れた。
FIG. 3A is an IV characteristic diagram in the case where the gate width W g is set to W g = 40 μm, and shows i-type Al 0.25 Ga 0.75 N in a conventional GaN-based HEMT. As a result of replacing the protective layer with an n-type GaN protective layer, it was confirmed that good characteristics were obtained.

【0032】これは、図2(b)に示すように、保護層
としてn型GaN層を用いた結果、 n型層の電子により、n型GaN保護層15とn型A
0.25Ga0.75N電子供給層14との界面に誘起される
ホール21をスクリーニングして、このホール21がデ
バイス特性に影響を与えないようにしたため、 ソース電極18及びドレイン電極19のオーミック性
が向上するため、 表面がGaN層になるので、Alに起因する表面トラ
ップの影響が解消されるため、 表面がGaN層になるので、AlGaNに比べてエッ
チング耐性が高まるので、加工ダメージが表面に導入さ
れにくくなるため、 と考えられる。
This is because the n-type GaN layer is used as the protective layer as shown in FIG.
Since the holes 21 induced at the interface with the l 0.25 Ga 0.75 N electron supply layer 14 were screened to prevent the holes 21 from affecting the device characteristics, the ohmic properties of the source electrode 18 and the drain electrode 19 were improved. Therefore, since the surface becomes a GaN layer, the influence of surface traps caused by Al is eliminated, and the surface becomes a GaN layer. Thus, the etching resistance is higher than that of AlGaN, so that processing damage is introduced to the surface. It is considered to be difficult.

【0033】また、n型Al0.25Ga0.75N電子供給層
14の伝導帯のバンド端が持ち上がることによって、フ
ェルミ準位が相対的に下がることになり、それによって
二次元電子ガスの濃度が低下して通電が低下するが、そ
の代わり、相互コンダクタンスgm の高周波領域におけ
る低下を防止するという効果も得られる。
In addition, when the band edge of the conduction band of the n-type Al 0.25 Ga 0.75 N electron supply layer 14 is raised, the Fermi level is relatively lowered, thereby lowering the concentration of the two-dimensional electron gas. energization Te is decreased, but instead, there is also an effect of preventing a decrease in the high frequency region of the transconductance g m.

【0034】図3(b)参照 図3(b)は、本発明の第1の実施の形態において、S
iN膜16を設けない場合のI−V特性図を参考として
示したものであり、Vgdを4段階に分けて印加した場合
の特性曲線を合わせて表示している。図から明らかなよ
うに、本来重なるはずの同じゲート電圧における特性曲
線が、ゲート電圧が大きくなるほどずれており、安定し
たI−V特性が得られていないことが理解される。
Referring to FIG. 3B, FIG. 3B shows the first embodiment of the present invention.
This is shown with reference to an IV characteristic diagram when the iN film 16 is not provided, and also shows a characteristic curve when V gd is applied in four stages. As is apparent from the figure, the characteristic curves at the same gate voltage that should originally overlap are shifted as the gate voltage increases, and it is understood that stable IV characteristics are not obtained.

【0035】図4(a)参照 図4(a)は、本発明の第1の実施の形態におけるn型
GaN保護層15のドーピング濃度を1019cm-3に高
めた場合の逆方向耐圧BVgdの特性図であり、逆方向耐
圧BVgdが1V以下に低下していることが確認された。
なお、この場合は、ゲート−ドレイン間のショットキー
バリアダイオード特性として見ている。
FIG. 4A shows a reverse breakdown voltage BV when the doping concentration of the n-type GaN protective layer 15 in the first embodiment of the present invention is increased to 10 19 cm −3. It is a characteristic diagram of gd , and it was confirmed that the reverse breakdown voltage BV gd was reduced to 1 V or less.
In this case, the characteristics are regarded as Schottky barrier diode characteristics between the gate and the drain.

【0036】図4(b)参照 図4(b)は、n型GaN保護層のドーピング濃度を1
19cm-3にした場合のバンドダイヤグラムであり、5
×1018cm-3の場合に比べて、n型GaN保護層15
とn型Al0.25Ga0.75N電子供給層14との界面ポテ
ンシャルが持ち下げられ、ショットキー特性が低下した
ためと考えられる。
FIG. 4 (b) shows the case where the doping concentration of the n-type GaN protective layer is 1
0 19 cm -3 band diagram, 5
As compared with the case of × 10 18 cm −3 , the n-type GaN protection layer 15
It is considered that the interface potential between the n-type Al 0.25 Ga 0.75 N electron supply layer 14 was lowered and the Schottky characteristics were lowered.

【0037】したがって、高耐圧を得るためには、ピエ
ゾ電界に起因して界面に発生するホールを完全にスクリ
ーニングしただけではだめであり、ピエゾ電荷の20〜
80%を補償するようにn型GaN保護層15のドーピ
ング量を設定する必要があり、それによって、50Vの
順方向耐圧と200Vの逆方向耐圧を実現することがで
きる。
Therefore, in order to obtain a high breakdown voltage, it is not sufficient to completely screen holes generated at the interface due to the piezo electric field.
It is necessary to set the doping amount of the n-type GaN protective layer 15 so as to compensate for 80%, whereby a forward withstand voltage of 50 V and a reverse withstand voltage of 200 V can be realized.

【0038】次に、図5を参照して、本発明の第2の実
施の形態のGaN系HEMTを説明する。 図5参照 図5は、本発明の第2の実施の形態のGaN系HEMT
の概略的断面図であり、n型GaN保護層15の上に厚
さが、例えば、5nmのi型GaN保護層31を設けた
以外は、上記の第1の実施の形態と全く同様である。
Next, a GaN-based HEMT according to a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a GaN-based HEMT according to a second embodiment of the present invention.
Is a schematic cross-sectional view of the first embodiment, except that an i-type GaN protective layer 31 having a thickness of, for example, 5 nm is provided on the n-type GaN protective layer 15. .

【0039】この様に、本発明の第2の実施の形態にお
いては、デバイスの動作特性に影響を与える導電領域を
最表面から遠ざけているので、表面状態に起因する悪影
響をより低減することができ、それによって、耐圧をよ
り高めることが可能になる。
As described above, in the second embodiment of the present invention, since the conductive region affecting the operation characteristics of the device is located farther from the outermost surface, it is possible to further reduce the adverse effects caused by the surface state. It is possible to further increase the breakdown voltage.

【0040】次に、図6を参照して、本発明の第3の実
施の形態のGaN系HEMTを説明する。 図6参照 図6は、本発明の第3の実施の形態のGaN系HEMT
の概略的断面図であり、まず、C面を主面とするサファ
イア基板11上に、通常のMOCVD法を用いて、厚さ
が、例えば、3μmのi型GaN電子走行層12、厚さ
が、例えば、2nmのi型Al0.25Ga0.75N層13、
厚さが、例えば、25nmで、Siドーピング濃度が、
例えば、2×1018cm-3のn型Al0.25Ga0.75N電
子供給層14、厚さが、例えば、2nmで、Siドーピ
ング濃度が、例えば、1×1019cm-3のn型AlN層
32、及び、厚さが10nm以下、例えば、5nmで、
Siドーピング濃度が、例えば、2×1018cm-3のn
型GaN保護層15を順次堆積させる。
Next, a GaN-based HEMT according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a GaN-based HEMT according to a third embodiment of the present invention.
First, an i-type GaN electron transit layer 12 having a thickness of, for example, 3 μm is formed on a sapphire substrate 11 having a C-plane as a main surface by a normal MOCVD method. For example, a 2 nm i-type Al 0.25 Ga 0.75 N layer 13,
The thickness is, for example, 25 nm, and the Si doping concentration is
For example, an n-type Al 0.25 Ga 0.75 N electron supply layer 14 of 2 × 10 18 cm −3 , an n-type AlN layer having a thickness of, for example, 2 nm and a Si doping concentration of, for example, 1 × 10 19 cm −3 32 and a thickness of 10 nm or less, for example 5 nm,
The Si doping concentration is, for example, 2 × 10 18 cm −3 n
Type GaN protective layers 15 are sequentially deposited.

【0041】次いで、ゲート形成領域のn型GaN保護
層15を等方性エッチングしたのち、n型AlN層32
を選択的にエッチングして、ゲートリセス部を形成し、
次いで、全面に、CVD法を用いて厚さが20nmのS
iN膜16を堆積したのち、ゲート形成領域に開口部を
設けてNi/Auからなるゲート電極17を形成すると
ともに、ソース・ドレインコンタクト領域に開口部を設
けてTi/Auからなるソース電極18及びドレイン電
極19を形成することによって、GaN系HEMTの基
本構造が完成する。この場合、n型AlN層32はゲー
トリセス部を形成する際の選択エッチング除去層として
機能する。
Next, after the n-type GaN protective layer 15 in the gate formation region is isotropically etched, the n-type AlN layer 32 is formed.
Is selectively etched to form a gate recess,
Next, a 20 nm-thick S
After depositing the iN film 16, an opening is formed in the gate forming region to form a gate electrode 17 made of Ni / Au, and an opening is formed in the source / drain contact region to form a source electrode 18 made of Ti / Au. By forming the drain electrode 19, the basic structure of the GaN-based HEMT is completed. In this case, the n-type AlN layer 32 functions as a selective etching removal layer when forming a gate recess.

【0042】この本発明の第3の実施の形態において
は、ゲートリセス構造を採用しているので、n型GaN
保護層15を介したリーク電流が発生することがなく、
それによって、耐圧をさらに高めることが可能になる。
In the third embodiment of the present invention, since the gate recess structure is employed, the n-type GaN
No leakage current occurs through the protective layer 15,
This makes it possible to further increase the breakdown voltage.

【0043】以上、本発明の各実施の形態を説明してき
たが、本発明は各実施の形態に記載された構成・条件に
限られるものではなく、各種の変更が可能である。例え
ば、上記の実施の形態においては、保護層として均一に
ドープしたn型GaN層を用いているが、Si,Se,
S等のn型不純物をプレーナードープ(原子層ドーピン
グ)しても良いものであり、例えば、界面前後5nmの
シートドーピング濃度を3.5×1012cm-2程度とす
れば良い。
The embodiments of the present invention have been described above. However, the present invention is not limited to the configurations and conditions described in each embodiment, and various modifications are possible. For example, in the above embodiment, a uniformly doped n-type GaN layer is used as the protective layer, but Si, Se,
An n-type impurity such as S may be planar-doped (atomic layer doping). For example, the sheet doping concentration at 5 nm before and after the interface may be about 3.5 × 10 12 cm −2 .

【0044】また、保護層はn型GaN層に限られるも
のではなく、Al組成比yがy≦0.1であるならば、
n型Aly Ga1-y N層を用いても良いものである。
The protective layer is not limited to the n-type GaN layer. If the Al composition ratio y satisfies y ≦ 0.1,
An n-type Al y Ga 1-y N layer may be used.

【0045】また、上記の第3の実施の形態において
は、エッチングストッパ層としてAlN層を用いている
が、AlN層に限られるものではなく、電子供給層とな
るAl x Ga1-x N層よりAl組成比zが大きな、z>
xのAlz Ga1-z N層を用いても良いものである。
In the third embodiment,
Uses an AlN layer as an etching stopper layer
Is not limited to the AlN layer, but serves as an electron supply layer.
Al xGa1-xAl composition ratio z is larger than N layer, z>
x of AlzGa1-zAn N layer may be used.

【0046】また、上記の各実施の形態においては、電
子供給層をAl0.25Ga0.75N層で構成しているが、こ
の場合のAl組成比xはx=0.25に限られるもので
はなく、x=0.10〜0.40の範囲を用いることが
望ましい。
In each of the above embodiments, the electron supply layer is formed of an Al 0.25 Ga 0.75 N layer, but the Al composition ratio x in this case is not limited to x = 0.25. , X = 0.10 to 0.40.

【0047】また、上記の各実施の形態においては、電
子供給層をn型AlGaN層で構成しているが、必ずし
もドーピング層である必要はなく、GaN系HEMTに
おいては結晶構造に起因する分極によって発生するピエ
ゾ電荷によって二次元電子ガスを誘起しているのでアン
ドープ層を用いても良いものである。
In each of the above embodiments, the electron supply layer is formed of an n-type AlGaN layer. However, the electron supply layer does not necessarily have to be a doping layer. In a GaN-based HEMT, polarization is caused by a crystal structure. Since the two-dimensional electron gas is induced by the generated piezo charges, an undoped layer may be used.

【0048】また、上記の各実施の形態においては、電
子走行層をGaN層で、電子供給層をAlGaN層で、
保護層をGaN層で構成しているが、この様な構成に限
られるものではなく、電子走行層、電子供給層、或い
は、保護層の少なくとも一層にInを添加しても良いも
のである。
In each of the above embodiments, the electron transit layer is a GaN layer, the electron supply layer is an AlGaN layer,
Although the protective layer is formed of the GaN layer, the present invention is not limited to such a structure, and In may be added to at least one of the electron transit layer, the electron supply layer, and the protective layer.

【0049】例えば、電子走行層にInを添加してIn
GaNにした場合には、電子の移動度が高くなり、ま
た、保護層にInを添加してInGaNにした場合に
は、禁制帯幅は小さくなるので、保護層/電子供給層の
界面ポテンシャルをGaN層の場合に比べて持ち下げる
ことができる。
For example, adding In to the electron transit layer
In the case of GaN, the mobility of electrons increases, and when In is added to the protective layer to form InGaN, the forbidden band width decreases. Therefore, the interface potential of the protective layer / electron supply layer is reduced. It can be lowered as compared with the case of the GaN layer.

【0050】また、上記の各実施の形態においては、基
板としてサファイアを用いているが、サファイアに限ら
れるものではなく、SiC基板或いはGaN基板を用い
ても良いものであり、特に、SiCはサファイアに比べ
て熱伝導性に優れるので、高電圧動作を伴う携帯電話の
基地局用アンプに適するものである。
In each of the above embodiments, sapphire is used as a substrate. However, the present invention is not limited to sapphire, and a SiC substrate or a GaN substrate may be used. It is more suitable for a base station amplifier of a mobile phone with a high voltage operation because of its superior thermal conductivity as compared with that of the above.

【0051】また、上記の各実施の形態においては、n
チャネル型HEMTとして説明しているが、pチャネル
型HEMTにも適用されることはいうまでもないことで
あり、その場合には各層における導電型を反転させれば
良い。
In each of the above embodiments, n
Although described as a channel type HEMT, it is needless to say that the present invention is also applied to a p-channel type HEMT, in which case the conductivity type in each layer may be inverted.

【0052】ここで、再び、図1を参照して、本発明の
詳細な構成の特徴点を説明する。 図1参照 (付記1) Alx Ga1-x N(0<x≦1)をキャリ
ア供給層3とし、GaNをキャリア走行層2とした電界
効果型化合物半導体装置において、キャリア供給層3の
上部に走行キャリアと同導電のAly Ga1-y N(0≦
y≦1、且つ、y<x)からなるGaN系保護層4を設
け、前記GaN系保護層4上にゲート電極6及びソース
・ドレイン電極7を形成するとともに、前記各電極間を
SiN膜5で被覆したことを特徴とする電界効果型化合
物半導体装置。(1) (付記2) 上記キャリア供給層、キャリア走行層2、
或いは、GaN系保護層4の少なくとも一つに、Inを
添加したことを特徴とする付記1記載の電界効果型化合
物半導体装置。(2) (付記3) 上記GaN系保護層4の層厚が、10nm
以下であることを特徴とする付記1または2に記載の電
界効果型化合物半導体装置。 (付記4) 上記GaN系保護層4のドーピング濃度
が、1×1017cm-2以上であることを特徴とする付記
1乃至3のいずれか1に記載の電界効果型化合物半導体
装置。 (付記5) 上記GaN系保護層4のドーピング濃度
が、上記キャリア供給層3との界面に発生するピエゾ電
荷の20〜80%のシート濃度であることを特徴とする
付記1乃至3のいずれか1に記載の電界効果型化合物半
導体装置。(3) (付記6) 上記GaN系保護層4の導電型がn型であ
り、キャリア供給層3との界面側に、Si,S,Seの
いずれか1つからなる原子層ドーピングを行ったことを
特徴とする付記5記載の電界効果型化合物半導体装置。 (付記7) 上記GaN系保護層4が、走行キャリアと
同導電型の層とアンドープ層との二層構造からなり、前
記走行キャリアと同導電型の層が上記キャリア供給層3
に接するとともに、前記アンドープ層がSiN膜5に接
することを特徴とする付記1乃至6のいずれか1に記載
の電界効果型化合物半導体装置。(4) (付記8) 上記GaN系保護層4とAlx Ga1-x
(0<x≦1)からなるキャリア供給層3との間に、A
z Ga1-z N(z>x)を挿入したことを特徴とする
付記1乃至7のいずれか1に記載の電界効果型化合物半
導体装置。(5)
Here, the features of the detailed configuration of the present invention will be described with reference to FIG. 1 again. See FIG. 1 (Supplementary Note 1) In the field-effect compound semiconductor device in which Al x Ga 1 -xN (0 <x ≦ 1) is used as the carrier supply layer 3 and GaN is used as the carrier transit layer 2, the upper part of the carrier supply layer 3 is used. the traveling carrier and Doshirubeden Al y Ga 1-y N ( 0 ≦
a GaN-based protective layer 4 made of y ≦ 1 and y <x) is provided, a gate electrode 6 and a source / drain electrode 7 are formed on the GaN-based protective layer 4, and a SiN film 5 is formed between the electrodes. A field-effect compound semiconductor device, characterized by being coated with: (1) (Appendix 2) The carrier supply layer, carrier traveling layer 2,
Alternatively, the field-effect compound semiconductor device according to Appendix 1, wherein In is added to at least one of the GaN-based protective layers 4. (2) (Appendix 3) The thickness of the GaN-based protective layer 4 is 10 nm.
3. The field-effect compound semiconductor device according to Supplementary Note 1 or 2, wherein: (Supplementary Note 4) The field-effect compound semiconductor device according to any one of Supplementary notes 1 to 3, wherein a doping concentration of the GaN-based protective layer 4 is 1 × 10 17 cm −2 or more. (Supplementary note 5) Any one of Supplementary notes 1 to 3, wherein the doping concentration of the GaN-based protective layer 4 is a sheet concentration of 20 to 80% of a piezo charge generated at an interface with the carrier supply layer 3. 2. The field-effect compound semiconductor device according to 1. (3) (Supplementary Note 6) The conductivity type of the GaN-based protective layer 4 is n-type, and an atomic layer doping made of any one of Si, S, and Se is performed on the interface side with the carrier supply layer 3. 6. The field-effect compound semiconductor device according to claim 5, wherein (Supplementary Note 7) The GaN-based protective layer 4 has a two-layer structure of a layer of the same conductivity type as the traveling carrier and an undoped layer, and the layer of the same conductivity type as the traveling carrier is the carrier supply layer 3.
And the undoped layer is in contact with the SiN film 5. 7. The field-effect compound semiconductor device according to claim 1, wherein (4) (Supplementary Note 8) The GaN-based protective layer 4 and Al x Ga 1 -xN
(0 <x ≦ 1) between the carrier supply layer 3 and A
8. The field-effect compound semiconductor device according to any one of supplementary notes 1 to 7, wherein l z Ga 1 -zN (z> x) is inserted. (5)

【0053】[0053]

【発明の効果】本発明によれば、Alx Ga1-x Nキャ
リア供給層上に設ける保護層としてドープトAly Ga
1-y N層(y<x)を用いるともに、表面をSiN膜で
覆っているので、I−V特性を安定にすることができる
とともに、順方向耐圧及び逆方向耐圧を高めることがで
き、それによって、高電圧動作が可能になるので、携帯
電話システムの高機能化・高出力化に寄与するところが
大きい。
According to the present invention, a doped Al y Ga is used as a protective layer provided on an Al x Ga 1 -xN carrier supply layer.
Since the 1-y N layer (y <x) is used and the surface is covered with the SiN film, the IV characteristics can be stabilized, and the forward breakdown voltage and the reverse breakdown voltage can be increased. This enables high-voltage operation, which greatly contributes to higher functionality and higher output of the mobile phone system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理的構成の説明図である。FIG. 1 is an explanatory diagram of a basic configuration of the present invention.

【図2】本発明の第1の実施の形態のGaN系HEMT
の説明図である。
FIG. 2 is a GaN-based HEMT according to the first embodiment of the present invention;
FIG.

【図3】本発明の第1の実施の形態のGaN系HEMT
のI−V特性図である。
FIG. 3 is a GaN-based HEMT according to the first embodiment of the present invention;
5 is an IV characteristic diagram of FIG.

【図4】本発明の第1の実施の形態のGaN系HEMT
の逆方向耐圧BVgdの説明図である。
FIG. 4 is a GaN-based HEMT according to the first embodiment of the present invention;
FIG. 4 is an explanatory diagram of a reverse breakdown voltage BV gd of FIG.

【図5】本発明の第2の実施の形態のGaN系HEMT
の概略的断面図である。
FIG. 5 is a GaN-based HEMT according to a second embodiment of the present invention.
It is a schematic sectional drawing of.

【図6】本発明の第3の実施の形態のGaN系HEMT
の概略的断面図である。
FIG. 6 shows a GaN-based HEMT according to a third embodiment of the present invention.
It is a schematic sectional drawing of.

【図7】従来のGaN系HEMTの説明図である。FIG. 7 is an explanatory diagram of a conventional GaN-based HEMT.

【図8】従来のGaN系HEMTのI−V特性図であ
る。
FIG. 8 is an IV characteristic diagram of a conventional GaN-based HEMT.

【符号の説明】[Explanation of symbols]

1 基板 2 キャリア走行層 3 キャリア供給層 4 GaN系保護層 5 SiN膜 6 ゲート電極 7 ソース・ドレイン電極 11 サファイア基板 12 i型GaN電子走行層 13 i型Al0.25Ga0.75N層 14 n型Al0.25Ga0.75N電子供給層 15 n型GaN保護層 16 SiN膜 17 ゲート電極 18 ソース電極 19 ドレイン電極 20 二次元電子層 21 ホール 31 i型GaN保護層 32 n型AlN層 41 サファイア基板 42 i型GaN電子走行層 43 i型Al0.25Ga0.75N層 44 n型Al0.25Ga0.75N電子供給層 45 i型Al0.25Ga0.75N保護層 46 SiN膜 47 ゲート電極 48 ソース電極 49 ドレイン電極 50 二次元電子層Reference Signs List 1 substrate 2 carrier traveling layer 3 carrier supply layer 4 GaN-based protective layer 5 SiN film 6 gate electrode 7 source / drain electrode 11 sapphire substrate 12 i-type GaN electron traveling layer 13 i-type Al 0.25 Ga 0.75 N layer 14 n-type Al 0.25 Ga 0.75 N electron supply layer 15 n-type GaN protective layer 16 SiN film 17 gate electrode 18 source electrode 19 drain electrode 20 two-dimensional electron layer 21 hole 31 i-type GaN protective layer 32 n-type AlN layer 41 sapphire substrate 42 i-type GaN electron Run layer 43 i-type Al 0.25 Ga 0.75 N layer 44 n-type Al 0.25 Ga 0.75 N electron supply layer 45 i-type Al 0.25 Ga 0.75 N protective layer 46 SiN film 47 gate electrode 48 source electrode 49 drain electrode 50 two-dimensional electron layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Alx Ga1-x N(0<x≦1)をキャ
リア供給層とし、GaNをキャリア走行層とした電界効
果型化合物半導体装置において、前記キャリア供給層の
上部に走行キャリアと同導電の第一導電型のAly Ga
1-y N(0≦y≦1、且つ、y<x)からなるGaN系
保護層を設け、前記GaN系保護層上にゲート電極及び
ソース・ドレイン電極を形成するとともに、前記各電極
間をSiN膜で被覆したことを特徴とする電界効果型化
合物半導体装置。
1. A field effect compound semiconductor device using Al x Ga 1 -xN (0 <x ≦ 1) as a carrier supply layer and GaN as a carrier traveling layer, wherein a traveling carrier is formed on the carrier supplying layer. Al y Ga of the first conductivity type of the same conductivity
A GaN-based protective layer made of 1-yN (0 ≦ y ≦ 1, y <x) is provided, and a gate electrode and a source / drain electrode are formed on the GaN-based protective layer. A field-effect compound semiconductor device characterized by being coated with a SiN film.
【請求項2】 上記キャリア供給層、キャリア走行層、
或いは、GaN系保護層の少なくとも一つに、Inを添
加したことを特徴とする請求項1記載の電界効果型化合
物半導体装置。
2. The carrier supply layer, the carrier traveling layer,
2. The field effect compound semiconductor device according to claim 1, wherein In is added to at least one of the GaN-based protective layers.
【請求項3】 上記GaN系保護層のドーピング濃度
が、上記キャリア供給層との界面に発生するピエゾ電荷
の20〜80%のシート濃度であることを特徴とする請
求項1または2に記載の電界効果型化合物半導体装置。
3. The GaN-based protective layer according to claim 1, wherein a doping concentration of the GaN-based protective layer is a sheet concentration of 20 to 80% of a piezo charge generated at an interface with the carrier supply layer. Field-effect compound semiconductor device.
【請求項4】 上記GaN系保護層が、走行キャリアと
同導電型の層とアンドープ層との二層構造からなり、前
記走行キャリアと同導電型の層が上記キャリア供給層に
接するとともに、前記アンドープ層がSiN膜に接する
ことを特徴とする請求項1乃至3のいずれか1項に記載
の電界効果型化合物半導体装置。
4. The GaN-based protective layer has a two-layer structure of a layer of the same conductivity type as a traveling carrier and an undoped layer, and the layer of the same conductivity type as the traveling carrier contacts the carrier supply layer. 4. The field-effect compound semiconductor device according to claim 1, wherein the undoped layer is in contact with the SiN film.
【請求項5】 上記GaN系保護層とAlx Ga1-x
(0<x≦1)からなるキャリア供給層との間にAlz
Ga1-z N(z>x)を挿入したことを特徴とする請求
項1乃至3のいずれか1項に記載の電界効果型化合物半
導体装置。
5. The GaN-based protective layer and Al x Ga 1 -xN
(0 <x ≦ 1) between the carrier supply layer and Al z
4. The field-effect compound semiconductor device according to claim 1, wherein Ga 1 -zN (z> x) is inserted.
JP2001164908A 2001-05-31 2001-05-31 Compound semiconductor device Expired - Lifetime JP4663156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164908A JP4663156B2 (en) 2001-05-31 2001-05-31 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164908A JP4663156B2 (en) 2001-05-31 2001-05-31 Compound semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010142704A Division JP5730505B2 (en) 2010-06-23 2010-06-23 Compound semiconductor device
JP2010273154A Division JP5418482B2 (en) 2010-12-08 2010-12-08 Compound semiconductor multilayer structure

Publications (2)

Publication Number Publication Date
JP2002359256A true JP2002359256A (en) 2002-12-13
JP4663156B2 JP4663156B2 (en) 2011-03-30

Family

ID=19007652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164908A Expired - Lifetime JP4663156B2 (en) 2001-05-31 2001-05-31 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JP4663156B2 (en)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055905A1 (en) * 2002-12-16 2004-07-01 Nec Corporation Field effect transistor
WO2004061978A1 (en) * 2003-01-07 2004-07-22 Nec Corporation Field-effect transistor
JP2005136001A (en) * 2003-10-28 2005-05-26 Fujitsu Ltd Compound semiconductor device and its manufacturing method
JP2005183551A (en) * 2003-12-17 2005-07-07 Nec Corp Semiconductor device, field effect transistor, and method for manufacturing same
JP2005277047A (en) * 2004-03-24 2005-10-06 Ngk Insulators Ltd Semiconductor lamination structure and transistor element
JP2005286135A (en) * 2004-03-30 2005-10-13 Eudyna Devices Inc Semiconductor device and manufacturing method thereof
JP2006024927A (en) * 2004-06-30 2006-01-26 Interuniv Micro Electronica Centrum Vzw Semiconductor device and method for manufacturing the semiconductor device
US7002189B2 (en) 2003-01-15 2006-02-21 Fujitsu Limited Compound semiconductor device
KR100582624B1 (en) 2003-02-06 2006-05-23 산요덴키가부시키가이샤 Semiconductor device
JP2006222191A (en) * 2005-02-09 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
EP1699085A2 (en) 2005-03-03 2006-09-06 Fujitsu Limited III-V nitride semiconductor device and production method thereof
US7132699B2 (en) 2003-01-27 2006-11-07 Fujitsu Limited Compound semiconductor device and its manufacture
WO2007007589A1 (en) * 2005-07-08 2007-01-18 Nec Corporation Field effect transistor and method for manufacturing same
WO2007018918A2 (en) 2005-07-20 2007-02-15 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
JP2007134608A (en) * 2005-11-14 2007-05-31 National Institute Of Advanced Industrial & Technology Nitride semiconductor hetero-junction transistor using resurf structure
JP2007158143A (en) * 2005-12-07 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Heterojunction field effect transistor
JP2007519231A (en) * 2003-12-05 2007-07-12 インターナショナル・レクティファイヤ・コーポレーション Passivation of group III nitride devices and method thereof
JP2007200975A (en) * 2006-01-24 2007-08-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and method for manufacturing the same
WO2007108055A1 (en) 2006-03-16 2007-09-27 Fujitsu Limited Compound semiconductor device and process for producing the same
JP2007250950A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field effect transistor using nitride semiconductor
WO2007139231A1 (en) * 2006-05-31 2007-12-06 Toyoda Gosei Co., Ltd. Semiconductor device
JP2007329483A (en) * 2006-06-07 2007-12-20 Interuniv Micro Electronica Centrum Vzw Enhancement mode field effect device, and manufacturing method thereof
JP2008500732A (en) * 2004-05-22 2008-01-10 クリー インコーポレイテッド Improved dielectric passivation for semiconductor devices.
JP2008010526A (en) * 2006-06-28 2008-01-17 New Japan Radio Co Ltd Nitride semiconductor device, and its manufacturing method
JP2008091394A (en) * 2006-09-29 2008-04-17 National Institute Of Advanced Industrial & Technology Field effect transistor, and its manufacturing method
EP1962338A1 (en) * 2005-12-14 2008-08-27 NEC Corporation Field effect transistor
JP2008219054A (en) * 2008-06-16 2008-09-18 Fujitsu Ltd Compound semiconductor device
JP2009032713A (en) * 2007-07-24 2009-02-12 National Institute Of Advanced Industrial & Technology NITRIDE SEMICONDUCTOR TRANSISTOR IN WHICH GaN IS MADE AS CHANNEL LAYER, AND ITS MANUFACTURING METHOD
JP2009038392A (en) * 2003-05-15 2009-02-19 Panasonic Corp Semiconductor device
JP2010147347A (en) * 2008-12-19 2010-07-01 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same
JP2010522434A (en) * 2007-03-20 2010-07-01 ヴェロックス セミコンダクター コーポレーション Termination and contact structures for high voltage GaN based heterojunction transistors
US7821030B2 (en) 2005-03-02 2010-10-26 Panasonic Corporation Semiconductor device and method for manufacturing the same
US7838904B2 (en) 2007-01-31 2010-11-23 Panasonic Corporation Nitride based semiconductor device with concave gate region
JP2010283372A (en) * 2010-07-30 2010-12-16 Sumitomo Electric Device Innovations Inc Semiconductor device
US7910464B2 (en) 2003-12-26 2011-03-22 Panasonic Corporation Method for manufacturing a semiconductor device having a III-V nitride semiconductor
JP2011082216A (en) * 2009-10-02 2011-04-21 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2011097102A (en) * 2011-01-31 2011-05-12 Fujitsu Ltd Compound semiconductor device
JP2011523218A (en) * 2008-06-13 2011-08-04 ダイナックス セミコンダクター,インコーポレイティド HEMT device and manufacturing method thereof
US8003452B2 (en) 2008-12-26 2011-08-23 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
JP2011171640A (en) * 2010-02-22 2011-09-01 Sanken Electric Co Ltd Nitride semiconductor device and method of manufacturing the same
WO2011108614A1 (en) 2010-03-02 2011-09-09 次世代パワーデバイス技術研究組合 Semiconductor transistor production method
US8030164B2 (en) 2006-04-10 2011-10-04 Fujitsu Limited Compound semiconductor structure
US8030686B2 (en) 2008-01-30 2011-10-04 Fujitsu Limited Semiconductor device and method for manufacturing the same
WO2012160875A1 (en) * 2011-05-25 2012-11-29 シャープ株式会社 Switching element
JP2012256923A (en) * 2012-08-09 2012-12-27 Fujitsu Ltd Compound semiconductor device
US8390029B2 (en) 2008-03-21 2013-03-05 Panasonic Corporation Semiconductor device for reducing and/or preventing current collapse
US8389351B2 (en) 2010-12-10 2013-03-05 Fujitsu Limited Method for fabricating semiconductor device
EP2575180A2 (en) 2011-09-29 2013-04-03 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
US8487384B2 (en) 2011-02-16 2013-07-16 Fujitsu Limited Semiconductor device, power-supply unit, amplifier and method of manufacturing semiconductor device
JP2013207166A (en) * 2012-03-29 2013-10-07 Toyota Central R&D Labs Inc Semiconductor device and semiconductor device manufacturing method
US8598571B2 (en) 2010-03-09 2013-12-03 Fujitsu Limited Method of manufacturing a compound semiconductor device with compound semiconductor lamination structure
JP2013247196A (en) * 2012-05-24 2013-12-09 Rohm Co Ltd Nitride semiconductor device and manufacturing method of the same
US8633494B2 (en) 2011-08-01 2014-01-21 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US8637904B2 (en) 2011-02-24 2014-01-28 Fujitsu Limited Method of producing semiconductor device and semiconductor device
JP2014042025A (en) * 2012-08-22 2014-03-06 Lg Electronics Inc Nitride semiconductor element and method for manufacturing the same
US20140091316A1 (en) * 2012-09-28 2014-04-03 Fujitsu Limited Semiconductor device and manufacturing method of semiconductor device
KR20140042649A (en) 2012-09-28 2014-04-07 후지쯔 가부시끼가이샤 Method of manufacturing semiconductor crystal substrate, method of manufacturing semiconductor apparatus, semiconductor crystal substrate, and semiconductor apparatus
WO2014061051A1 (en) * 2012-10-15 2014-04-24 三菱電機株式会社 Schottky barrier diode and electronic device using same
EP2760051A2 (en) 2013-01-28 2014-07-30 Fujitsu Limited High Electron Mobility Transistor (HEMT)
US8829569B2 (en) 2010-12-10 2014-09-09 Fujitsu Limited Semiconductor apparatus having fluorine containing region formed in recessed portion of semiconductor layer
US8846479B2 (en) 2012-03-29 2014-09-30 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US8878248B2 (en) 2011-09-28 2014-11-04 Transphorm Japan, Inc. Semiconductor device and fabrication method
EP2816606A1 (en) 2013-06-13 2014-12-24 Fujitsu Limited Semiconductor device and manufacturing method thereof
US8957425B2 (en) 2011-02-21 2015-02-17 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US8962409B2 (en) 2011-09-28 2015-02-24 Transphorm Japan, Inc. Semiconductor device and fabrication method
EP2846358A2 (en) 2013-08-12 2015-03-11 Fujitsu Limited Semiconductor device and manufacturing method thereof
JP2015060896A (en) * 2013-09-17 2015-03-30 株式会社東芝 Semiconductor device
JP2015072975A (en) * 2013-10-02 2015-04-16 トランスフォーム・ジャパン株式会社 Field effect type compound semiconductor device and manufacturing method of the same
US9029868B2 (en) 2012-09-28 2015-05-12 Fujitsu Limited Semiconductor apparatus having nitride semiconductor buffer layer doped with at least one of Fe, Si, and C
US9093512B2 (en) 2011-02-24 2015-07-28 Fujitsu Limited Compound semiconductor device
JP2015159274A (en) * 2014-01-24 2015-09-03 国立大学法人 名古屋工業大学 Normally-off nitride semiconductor field effect transistor having improved ohmic characteristics
US9136344B2 (en) 2012-03-26 2015-09-15 Fujitsu Limited Manufacturing method of semiconductor device, semiconductor device, and semiconductor crystal growth substrate
US9184241B2 (en) 2012-09-28 2015-11-10 Fujitsu Limited Semiconductor apparatus
US9240472B2 (en) 2012-03-19 2016-01-19 Fujitsu Limited Semiconductor device, PFC circuit, power supply device, and amplifier
US9269782B2 (en) 2011-09-27 2016-02-23 Fujitsu Limited Semiconductor device
US9269799B2 (en) 2012-09-28 2016-02-23 Fujitsu Limited Semiconductor apparatus
US9276103B2 (en) 2011-07-25 2016-03-01 Lg Electronics Inc. Nitride semiconductor and fabricating method thereof
US9276100B2 (en) 2010-12-10 2016-03-01 Fujitsu Limited Semiconductor device having a gate recess structure
US9276072B2 (en) 2013-11-13 2016-03-01 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US9312350B2 (en) 2013-05-24 2016-04-12 Fujitsu Limited Semiconductor device and manufacturing method thereof
US9349828B2 (en) 2013-05-27 2016-05-24 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
US9379230B2 (en) 2011-09-16 2016-06-28 Fujitsu Limited Semiconductor crystal substrate, manufacturing method of semiconductor crystal substrate, manufacturing method of semiconductor device, power unit, and amplifier
US9379229B2 (en) 2011-02-24 2016-06-28 Fujitsu Limited Semiconductor apparatus including protective film on gate electrode and method for manufacturing the semiconductor apparatus
US9412830B2 (en) 2014-04-17 2016-08-09 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
JP2016167638A (en) * 2016-06-14 2016-09-15 富士通株式会社 Compound semiconductor device and manufacturing method of the same
US9461135B2 (en) 2013-12-09 2016-10-04 Fujitsu Limited Nitride semiconductor device with multi-layer structure electrode having different work functions
WO2016185715A1 (en) * 2015-05-19 2016-11-24 パナソニックIpマネジメント株式会社 Semiconductor device
US9553152B2 (en) 2014-01-08 2017-01-24 Fujitsu Limited Semiconductor device
US9564527B2 (en) 2010-11-05 2017-02-07 Fujitsu Limited Semiconductor device and manufacturing method of semiconductor device
JP2017063172A (en) * 2015-09-22 2017-03-30 株式会社デンソー Semiconductor device
WO2017051688A1 (en) * 2015-09-22 2017-03-30 株式会社デンソー Semiconductor device
US9647105B2 (en) 2013-11-12 2017-05-09 Fujitsu Limited Semiconductor device and method of manufacturing the same
US9660065B2 (en) 2013-10-31 2017-05-23 Fujitsu Limited Semiconductor device and method for producing same having multilayer wiring structure with contact hole having hydrophobic film formed on side surface of the contact hole
US9761670B2 (en) 2011-07-29 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device composed of AlGaInN layers with inactive regions
JP2017168583A (en) * 2016-03-15 2017-09-21 株式会社東芝 Semiconductor device
US10032875B2 (en) 2016-04-21 2018-07-24 Fujitsu Limited Semiconductor device and method for manufacturing the semiconductor device
US10043897B2 (en) 2012-03-16 2018-08-07 Fujitsu Limited Semiconductor device and method of fabricating semiconductor device
US10084059B2 (en) 2016-06-23 2018-09-25 Fujitsu Limited Semiconductor device and manufacturing method of semiconductor device
US10263103B2 (en) 2015-10-30 2019-04-16 Fujitsu Limited Semiconductor apparatus
US10312094B2 (en) 2016-05-25 2019-06-04 Fujitsu Limited AlOx/InOx gate insulator for HEMT
US10312344B2 (en) 2016-09-28 2019-06-04 Fujitsu Limited Semiconductor device, manufacturing method of semiconductor device, power unit, and amplifier
CN110299408A (en) * 2019-07-22 2019-10-01 东南大学 A kind of semi-polarity GaN base enhancement type high electron mobility transistor with slot grid modulated structure
JP6625287B1 (en) * 2019-02-19 2019-12-25 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device
US11038045B2 (en) 2018-03-12 2021-06-15 Fujitsu Limited Semiconductor device
US11127743B2 (en) 2015-12-24 2021-09-21 Sony Corporation Transistor, semiconductor device, electronic apparatus, and method for producing transistor
US11201235B2 (en) 2018-11-21 2021-12-14 Fujitsu Limited Semiconductor device, method for producing semiconductor device, power supply device, and amplifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335637A (en) * 1997-05-30 1998-12-18 Sony Corp Hetero-junction field effect transistor
JP2001085670A (en) * 1999-09-14 2001-03-30 Nec Corp Field effect type transistor and its manufacturing method
JP2001326232A (en) * 2000-05-12 2001-11-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JP2002016087A (en) * 2000-06-29 2002-01-18 Nec Corp Semiconductor device
JP2002076024A (en) * 2000-09-01 2002-03-15 Sharp Corp Iii-v nitride compound semiconductor device
WO2002093650A1 (en) * 2001-05-11 2002-11-21 Cree, Inc. Group-iii nitride based high electron mobility transistor (hemt) with barrier/spacer layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335637A (en) * 1997-05-30 1998-12-18 Sony Corp Hetero-junction field effect transistor
JP2001085670A (en) * 1999-09-14 2001-03-30 Nec Corp Field effect type transistor and its manufacturing method
JP2001326232A (en) * 2000-05-12 2001-11-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JP2002016087A (en) * 2000-06-29 2002-01-18 Nec Corp Semiconductor device
JP2002076024A (en) * 2000-09-01 2002-03-15 Sharp Corp Iii-v nitride compound semiconductor device
WO2002093650A1 (en) * 2001-05-11 2002-11-21 Cree, Inc. Group-iii nitride based high electron mobility transistor (hemt) with barrier/spacer layer

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973335B2 (en) 2002-12-16 2011-07-05 Nec Corporation Field-effect transistor having group III nitride electrode structure
WO2004055905A1 (en) * 2002-12-16 2004-07-01 Nec Corporation Field effect transistor
WO2004061978A1 (en) * 2003-01-07 2004-07-22 Nec Corporation Field-effect transistor
US7256432B2 (en) 2003-01-07 2007-08-14 Nec Corporation Field-effect transistor
US7989278B2 (en) 2003-01-15 2011-08-02 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US8614461B2 (en) 2003-01-15 2013-12-24 Fujitsu Limited Compound semiconductor device
US7494855B2 (en) 2003-01-15 2009-02-24 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US7002189B2 (en) 2003-01-15 2006-02-21 Fujitsu Limited Compound semiconductor device
US8658482B2 (en) 2003-01-15 2014-02-25 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US8901610B2 (en) 2003-01-15 2014-12-02 Fujitsu Limited Compound semiconductor device
US9147761B2 (en) 2003-01-15 2015-09-29 Fujitsu Limited Compound semiconductor device
US7132699B2 (en) 2003-01-27 2006-11-07 Fujitsu Limited Compound semiconductor device and its manufacture
US7407859B2 (en) 2003-01-27 2008-08-05 Fujitsu Limited Compound semiconductor device and its manufacture
KR100582624B1 (en) 2003-02-06 2006-05-23 산요덴키가부시키가이샤 Semiconductor device
JP2009038392A (en) * 2003-05-15 2009-02-19 Panasonic Corp Semiconductor device
JP2005136001A (en) * 2003-10-28 2005-05-26 Fujitsu Ltd Compound semiconductor device and its manufacturing method
JP2007519231A (en) * 2003-12-05 2007-07-12 インターナショナル・レクティファイヤ・コーポレーション Passivation of group III nitride devices and method thereof
JP2005183551A (en) * 2003-12-17 2005-07-07 Nec Corp Semiconductor device, field effect transistor, and method for manufacturing same
US7910464B2 (en) 2003-12-26 2011-03-22 Panasonic Corporation Method for manufacturing a semiconductor device having a III-V nitride semiconductor
JP2005277047A (en) * 2004-03-24 2005-10-06 Ngk Insulators Ltd Semiconductor lamination structure and transistor element
JP2005286135A (en) * 2004-03-30 2005-10-13 Eudyna Devices Inc Semiconductor device and manufacturing method thereof
JP2008500732A (en) * 2004-05-22 2008-01-10 クリー インコーポレイテッド Improved dielectric passivation for semiconductor devices.
JP2006024927A (en) * 2004-06-30 2006-01-26 Interuniv Micro Electronica Centrum Vzw Semiconductor device and method for manufacturing the semiconductor device
JP2006222191A (en) * 2005-02-09 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
US7821030B2 (en) 2005-03-02 2010-10-26 Panasonic Corporation Semiconductor device and method for manufacturing the same
US8710548B2 (en) 2005-03-02 2014-04-29 Panasonic Corporation Semiconductor device and method for manufacturing the same
EP1699085A3 (en) * 2005-03-03 2009-04-29 Fujitsu Limited III-V nitride semiconductor device and production method thereof
EP1699085A2 (en) 2005-03-03 2006-09-06 Fujitsu Limited III-V nitride semiconductor device and production method thereof
WO2007007589A1 (en) * 2005-07-08 2007-01-18 Nec Corporation Field effect transistor and method for manufacturing same
JPWO2007007589A1 (en) * 2005-07-08 2009-01-29 日本電気株式会社 Field effect transistor and manufacturing method thereof
WO2007018918A3 (en) * 2005-07-20 2007-06-07 Cree Inc Nitride-based transistors and fabrication methods with an etch stop layer
US9142636B2 (en) 2005-07-20 2015-09-22 Cree, Inc. Methods of fabricating nitride-based transistors with an ETCH stop layer
EP2479790A3 (en) * 2005-07-20 2012-10-10 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
WO2007018918A2 (en) 2005-07-20 2007-02-15 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
JP2007134608A (en) * 2005-11-14 2007-05-31 National Institute Of Advanced Industrial & Technology Nitride semiconductor hetero-junction transistor using resurf structure
JP2007158143A (en) * 2005-12-07 2007-06-21 Nippon Telegr & Teleph Corp <Ntt> Heterojunction field effect transistor
EP1962338A1 (en) * 2005-12-14 2008-08-27 NEC Corporation Field effect transistor
EP1962338A4 (en) * 2005-12-14 2009-07-15 Nec Corp Field effect transistor
JP2007200975A (en) * 2006-01-24 2007-08-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and method for manufacturing the same
EP1998376A1 (en) * 2006-03-16 2008-12-03 Fujitsu Ltd. Compound semiconductor device and process for producing the same
EP1998376A4 (en) * 2006-03-16 2009-07-22 Fujitsu Ltd Compound semiconductor device and process for producing the same
EP2175494A3 (en) * 2006-03-16 2012-10-17 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US8841706B2 (en) 2006-03-16 2014-09-23 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
EP2175494A2 (en) * 2006-03-16 2010-04-14 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
WO2007108055A1 (en) 2006-03-16 2007-09-27 Fujitsu Limited Compound semiconductor device and process for producing the same
EP2166575A1 (en) * 2006-03-16 2010-03-24 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
EP2657976A2 (en) 2006-03-16 2013-10-30 Fujitsu Limited Compound Semiconductor Device and Manufacturing Method of the Same
US8466029B2 (en) 2006-03-16 2013-06-18 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US8344419B2 (en) 2006-03-16 2013-01-01 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US8637903B2 (en) 2006-03-16 2014-01-28 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
EP2677544A1 (en) 2006-03-16 2013-12-25 Fujitsu Limited Compound Semiconductor Device and Manufacturing Method of the Same
EP2657976A3 (en) * 2006-03-16 2013-12-25 Fujitsu Limited Compound Semiconductor Device and Manufacturing Method of the Same
JP2007250950A (en) * 2006-03-17 2007-09-27 Nippon Telegr & Teleph Corp <Ntt> Heterostructure field effect transistor using nitride semiconductor
US8030164B2 (en) 2006-04-10 2011-10-04 Fujitsu Limited Compound semiconductor structure
JP5274245B2 (en) * 2006-04-10 2013-08-28 富士通株式会社 Compound semiconductor structure and manufacturing method thereof
WO2007139231A1 (en) * 2006-05-31 2007-12-06 Toyoda Gosei Co., Ltd. Semiconductor device
JP2007329483A (en) * 2006-06-07 2007-12-20 Interuniv Micro Electronica Centrum Vzw Enhancement mode field effect device, and manufacturing method thereof
JP2008010526A (en) * 2006-06-28 2008-01-17 New Japan Radio Co Ltd Nitride semiconductor device, and its manufacturing method
JP2008091394A (en) * 2006-09-29 2008-04-17 National Institute Of Advanced Industrial & Technology Field effect transistor, and its manufacturing method
US7838904B2 (en) 2007-01-31 2010-11-23 Panasonic Corporation Nitride based semiconductor device with concave gate region
JP2010522434A (en) * 2007-03-20 2010-07-01 ヴェロックス セミコンダクター コーポレーション Termination and contact structures for high voltage GaN based heterojunction transistors
JP2009032713A (en) * 2007-07-24 2009-02-12 National Institute Of Advanced Industrial & Technology NITRIDE SEMICONDUCTOR TRANSISTOR IN WHICH GaN IS MADE AS CHANNEL LAYER, AND ITS MANUFACTURING METHOD
US8809136B2 (en) 2008-01-30 2014-08-19 Fujitsu Limited Semiconductor device and method for manufacturing the same
US8030686B2 (en) 2008-01-30 2011-10-04 Fujitsu Limited Semiconductor device and method for manufacturing the same
US8390029B2 (en) 2008-03-21 2013-03-05 Panasonic Corporation Semiconductor device for reducing and/or preventing current collapse
JP2011523218A (en) * 2008-06-13 2011-08-04 ダイナックス セミコンダクター,インコーポレイティド HEMT device and manufacturing method thereof
JP2008219054A (en) * 2008-06-16 2008-09-18 Fujitsu Ltd Compound semiconductor device
JP2010147347A (en) * 2008-12-19 2010-07-01 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same
US8278688B2 (en) 2008-12-19 2012-10-02 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
US8003452B2 (en) 2008-12-26 2011-08-23 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
JP2011082216A (en) * 2009-10-02 2011-04-21 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2011171640A (en) * 2010-02-22 2011-09-01 Sanken Electric Co Ltd Nitride semiconductor device and method of manufacturing the same
US8906796B2 (en) 2010-03-02 2014-12-09 Tohoku University Method of producing semiconductor transistor
WO2011108614A1 (en) 2010-03-02 2011-09-09 次世代パワーデバイス技術研究組合 Semiconductor transistor production method
US8598571B2 (en) 2010-03-09 2013-12-03 Fujitsu Limited Method of manufacturing a compound semiconductor device with compound semiconductor lamination structure
JP2010283372A (en) * 2010-07-30 2010-12-16 Sumitomo Electric Device Innovations Inc Semiconductor device
US9564527B2 (en) 2010-11-05 2017-02-07 Fujitsu Limited Semiconductor device and manufacturing method of semiconductor device
US8389351B2 (en) 2010-12-10 2013-03-05 Fujitsu Limited Method for fabricating semiconductor device
US9123793B2 (en) 2010-12-10 2015-09-01 Fujitsu Limited Method for manufacturing semiconductor apparatus having fluorine containing region formed in recessed portion of semiconductor layer
US8829569B2 (en) 2010-12-10 2014-09-09 Fujitsu Limited Semiconductor apparatus having fluorine containing region formed in recessed portion of semiconductor layer
US9276100B2 (en) 2010-12-10 2016-03-01 Fujitsu Limited Semiconductor device having a gate recess structure
JP2011097102A (en) * 2011-01-31 2011-05-12 Fujitsu Ltd Compound semiconductor device
US8487384B2 (en) 2011-02-16 2013-07-16 Fujitsu Limited Semiconductor device, power-supply unit, amplifier and method of manufacturing semiconductor device
US9324808B2 (en) 2011-02-16 2016-04-26 Fujitsu Limited Semiconductor device, power-supply unit, amplifier and method of manufacturing semiconductor device
US8957425B2 (en) 2011-02-21 2015-02-17 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US9231095B2 (en) 2011-02-21 2016-01-05 Fujitsu Limited Method for manufacturing semiconductor device
US8962427B2 (en) 2011-02-24 2015-02-24 Fujitsu Limited Method of producing semiconductor device
US9685547B2 (en) 2011-02-24 2017-06-20 Fujitsu Limited Semiconductor apparatus including barrier film provided between electrode and protection film
US8637904B2 (en) 2011-02-24 2014-01-28 Fujitsu Limited Method of producing semiconductor device and semiconductor device
US9379229B2 (en) 2011-02-24 2016-06-28 Fujitsu Limited Semiconductor apparatus including protective film on gate electrode and method for manufacturing the semiconductor apparatus
US9093512B2 (en) 2011-02-24 2015-07-28 Fujitsu Limited Compound semiconductor device
CN103563060A (en) * 2011-05-25 2014-02-05 夏普株式会社 Switching element
JP2012248570A (en) * 2011-05-25 2012-12-13 Sharp Corp Switching element
WO2012160875A1 (en) * 2011-05-25 2012-11-29 シャープ株式会社 Switching element
US9171945B2 (en) 2011-05-25 2015-10-27 Sharp Kabushiki Kaisha Switching element utilizing recombination
US9276103B2 (en) 2011-07-25 2016-03-01 Lg Electronics Inc. Nitride semiconductor and fabricating method thereof
US9761670B2 (en) 2011-07-29 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device composed of AlGaInN layers with inactive regions
US8633494B2 (en) 2011-08-01 2014-01-21 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US9379230B2 (en) 2011-09-16 2016-06-28 Fujitsu Limited Semiconductor crystal substrate, manufacturing method of semiconductor crystal substrate, manufacturing method of semiconductor device, power unit, and amplifier
US9269782B2 (en) 2011-09-27 2016-02-23 Fujitsu Limited Semiconductor device
US8962409B2 (en) 2011-09-28 2015-02-24 Transphorm Japan, Inc. Semiconductor device and fabrication method
US8878248B2 (en) 2011-09-28 2014-11-04 Transphorm Japan, Inc. Semiconductor device and fabrication method
US9035353B2 (en) 2011-09-29 2015-05-19 Fujitsu Limited Compound semiconductor device comprising electrode above compound semiconductor layer and method of manufacturing the same
EP2575180A2 (en) 2011-09-29 2013-04-03 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
US10043897B2 (en) 2012-03-16 2018-08-07 Fujitsu Limited Semiconductor device and method of fabricating semiconductor device
US9240472B2 (en) 2012-03-19 2016-01-19 Fujitsu Limited Semiconductor device, PFC circuit, power supply device, and amplifier
US9136344B2 (en) 2012-03-26 2015-09-15 Fujitsu Limited Manufacturing method of semiconductor device, semiconductor device, and semiconductor crystal growth substrate
JP2013207166A (en) * 2012-03-29 2013-10-07 Toyota Central R&D Labs Inc Semiconductor device and semiconductor device manufacturing method
US8846479B2 (en) 2012-03-29 2014-09-30 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
JP2013247196A (en) * 2012-05-24 2013-12-09 Rohm Co Ltd Nitride semiconductor device and manufacturing method of the same
JP2012256923A (en) * 2012-08-09 2012-12-27 Fujitsu Ltd Compound semiconductor device
JP2014042025A (en) * 2012-08-22 2014-03-06 Lg Electronics Inc Nitride semiconductor element and method for manufacturing the same
US9184241B2 (en) 2012-09-28 2015-11-10 Fujitsu Limited Semiconductor apparatus
US9818840B2 (en) 2012-09-28 2017-11-14 Transphorm Japan, Inc. Semiconductor device and manufacturing method of semiconductor device
US9269799B2 (en) 2012-09-28 2016-02-23 Fujitsu Limited Semiconductor apparatus
US20140091316A1 (en) * 2012-09-28 2014-04-03 Fujitsu Limited Semiconductor device and manufacturing method of semiconductor device
KR20140042649A (en) 2012-09-28 2014-04-07 후지쯔 가부시끼가이샤 Method of manufacturing semiconductor crystal substrate, method of manufacturing semiconductor apparatus, semiconductor crystal substrate, and semiconductor apparatus
US9029868B2 (en) 2012-09-28 2015-05-12 Fujitsu Limited Semiconductor apparatus having nitride semiconductor buffer layer doped with at least one of Fe, Si, and C
US9299822B2 (en) 2012-09-28 2016-03-29 Transphorm Japan, Inc. Semiconductor device and manufacturing method of semiconductor device
US9640648B2 (en) 2012-09-28 2017-05-02 Transphorm Japan, Inc. Semiconductor device and manufacturing method of semiconductor device
WO2014061051A1 (en) * 2012-10-15 2014-04-24 三菱電機株式会社 Schottky barrier diode and electronic device using same
EP2760051A2 (en) 2013-01-28 2014-07-30 Fujitsu Limited High Electron Mobility Transistor (HEMT)
US9312350B2 (en) 2013-05-24 2016-04-12 Fujitsu Limited Semiconductor device and manufacturing method thereof
US9728618B2 (en) 2013-05-24 2017-08-08 Fujitsu Limited Semiconductor device and manufacturing method thereof
US9947781B2 (en) 2013-05-24 2018-04-17 Fujitsu Limited Semiconductor device and manufacturing method thereof
US9349828B2 (en) 2013-05-27 2016-05-24 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
EP2816606A1 (en) 2013-06-13 2014-12-24 Fujitsu Limited Semiconductor device and manufacturing method thereof
US9437723B2 (en) 2013-08-12 2016-09-06 Fujitsu Limited Manufacturing method of semiconductor device including indium
EP2846358A2 (en) 2013-08-12 2015-03-11 Fujitsu Limited Semiconductor device and manufacturing method thereof
JP2015060896A (en) * 2013-09-17 2015-03-30 株式会社東芝 Semiconductor device
JP2015072975A (en) * 2013-10-02 2015-04-16 トランスフォーム・ジャパン株式会社 Field effect type compound semiconductor device and manufacturing method of the same
US9966463B2 (en) 2013-10-31 2018-05-08 Fujitsu Limited Semiconductor device and method for producing same having multilayer wiring structure with contact hole having hydrophobic film formed on side surface of the contact hole
US9660065B2 (en) 2013-10-31 2017-05-23 Fujitsu Limited Semiconductor device and method for producing same having multilayer wiring structure with contact hole having hydrophobic film formed on side surface of the contact hole
US9647105B2 (en) 2013-11-12 2017-05-09 Fujitsu Limited Semiconductor device and method of manufacturing the same
US9276072B2 (en) 2013-11-13 2016-03-01 Fujitsu Limited Semiconductor device and method for manufacturing semiconductor device
US9461135B2 (en) 2013-12-09 2016-10-04 Fujitsu Limited Nitride semiconductor device with multi-layer structure electrode having different work functions
US9966445B2 (en) 2013-12-09 2018-05-08 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
US9553152B2 (en) 2014-01-08 2017-01-24 Fujitsu Limited Semiconductor device
JP2015159274A (en) * 2014-01-24 2015-09-03 国立大学法人 名古屋工業大学 Normally-off nitride semiconductor field effect transistor having improved ohmic characteristics
US9779933B2 (en) 2014-04-17 2017-10-03 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
US9412830B2 (en) 2014-04-17 2016-08-09 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
US10002942B2 (en) 2014-04-17 2018-06-19 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
WO2016185715A1 (en) * 2015-05-19 2016-11-24 パナソニックIpマネジメント株式会社 Semiconductor device
US10475802B2 (en) 2015-05-19 2019-11-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
WO2017051688A1 (en) * 2015-09-22 2017-03-30 株式会社デンソー Semiconductor device
JP2017063172A (en) * 2015-09-22 2017-03-30 株式会社デンソー Semiconductor device
US10714606B2 (en) 2015-09-22 2020-07-14 Denso Corporation Semiconductor device
US10263103B2 (en) 2015-10-30 2019-04-16 Fujitsu Limited Semiconductor apparatus
US11127743B2 (en) 2015-12-24 2021-09-21 Sony Corporation Transistor, semiconductor device, electronic apparatus, and method for producing transistor
JP2017168583A (en) * 2016-03-15 2017-09-21 株式会社東芝 Semiconductor device
US10032875B2 (en) 2016-04-21 2018-07-24 Fujitsu Limited Semiconductor device and method for manufacturing the semiconductor device
US10796917B2 (en) 2016-05-25 2020-10-06 Fujitsu Limited Method for manufacturing gate insulator for HEMT
US10312094B2 (en) 2016-05-25 2019-06-04 Fujitsu Limited AlOx/InOx gate insulator for HEMT
JP2016167638A (en) * 2016-06-14 2016-09-15 富士通株式会社 Compound semiconductor device and manufacturing method of the same
US10084059B2 (en) 2016-06-23 2018-09-25 Fujitsu Limited Semiconductor device and manufacturing method of semiconductor device
US10312344B2 (en) 2016-09-28 2019-06-04 Fujitsu Limited Semiconductor device, manufacturing method of semiconductor device, power unit, and amplifier
US11038045B2 (en) 2018-03-12 2021-06-15 Fujitsu Limited Semiconductor device
US11201235B2 (en) 2018-11-21 2021-12-14 Fujitsu Limited Semiconductor device, method for producing semiconductor device, power supply device, and amplifier
JP6625287B1 (en) * 2019-02-19 2019-12-25 三菱電機株式会社 Semiconductor device and method of manufacturing semiconductor device
WO2020170318A1 (en) * 2019-02-19 2020-08-27 三菱電機株式会社 Semiconductor device, and manufacturing process for semiconductor device
GB2594669A (en) * 2019-02-19 2021-11-03 Mitsubishi Electric Corp Semiconductor device, and manufacturing process for semiconductor device
GB2594669B (en) * 2019-02-19 2022-12-14 Mitsubishi Electric Corp Semiconductor device, and method of manufacturing semiconductor device
CN110299408A (en) * 2019-07-22 2019-10-01 东南大学 A kind of semi-polarity GaN base enhancement type high electron mobility transistor with slot grid modulated structure

Also Published As

Publication number Publication date
JP4663156B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP2002359256A (en) Field effect compound semiconductor device
US8779438B2 (en) Field-effect transistor with nitride semiconductor and method for fabricating the same
US8101972B2 (en) Nitride semiconductor device and method for fabricating the same
JP5292716B2 (en) Compound semiconductor device
US8841706B2 (en) Compound semiconductor device and manufacturing method of the same
US7576373B1 (en) Nitride semiconductor device and method for manufacturing the same
US7956383B2 (en) Field effect transistor
US8390029B2 (en) Semiconductor device for reducing and/or preventing current collapse
US8569797B2 (en) Field effect transistor and method of manufacturing the same
US7985984B2 (en) III-nitride semiconductor field effect transistor
US20130240901A1 (en) Nitride semiconductor device
US20100148184A1 (en) Gan-based field effect transistor
WO2021189182A1 (en) Semiconductor device and manufacturing method therefor
JP5546104B2 (en) GaN-based field effect transistor
JP2011238805A (en) Field effect transistor, method of manufacturing field effect transistor and electronic device
JP4474292B2 (en) Semiconductor device
US8698202B2 (en) Semiconductor device
JP5581601B2 (en) Compound semiconductor device and manufacturing method thereof
JP5418482B2 (en) Compound semiconductor multilayer structure
JP5730505B2 (en) Compound semiconductor device
KR101935928B1 (en) High Electron Mobility Transistor having Reduced Gate Leakage Current
JP5673725B2 (en) Compound semiconductor multilayer structure
JP5773035B2 (en) Compound semiconductor device
TW202345402A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

R150 Certificate of patent or registration of utility model

Ref document number: 4663156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

EXPY Cancellation because of completion of term