JP2002359169A - Solid electrolytic capacitor and its manufacturing method - Google Patents

Solid electrolytic capacitor and its manufacturing method

Info

Publication number
JP2002359169A
JP2002359169A JP2001162600A JP2001162600A JP2002359169A JP 2002359169 A JP2002359169 A JP 2002359169A JP 2001162600 A JP2001162600 A JP 2001162600A JP 2001162600 A JP2001162600 A JP 2001162600A JP 2002359169 A JP2002359169 A JP 2002359169A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
capacitor elements
conductive polymers
valve metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001162600A
Other languages
Japanese (ja)
Inventor
Toshiaki Suganuma
沼 利 昭 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPPC CO Ltd
Original Assignee
OPPC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPPC CO Ltd filed Critical OPPC CO Ltd
Priority to JP2001162600A priority Critical patent/JP2002359169A/en
Publication of JP2002359169A publication Critical patent/JP2002359169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an ultra-thin non-polar solid electrolytic capacitor which is easy to design circuits and very good for removing high frequency correspond ing noises enough to improve the circuit reliability, the yield and the assembly workability. SOLUTION: The manufacturing method comprises steps for applying an etching process and a forming process to the surface of an aluminum foil 23 to form a dielectric film, forming solid electrolytic capacitor elements 22 impregnated with a conductive polymer 22 through an insulation resin 27 with leaving electrode leads 25 on the foil 23, laminating two conductive polymers 29, 29 one above the other with separated electrode leads 25 of the two capacitor elements 22, 22, inserting a TCNQ complex 33 between the conductive polymers 29, 29, heating and melting the TCNQ complex 33 to bond the two polymers 29, 29, and cooling and solidifying the complex 33.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エッチング処理及
び誘電体皮膜形成のための化成処理を施した弁作用金属
を有し、該弁作用金属に電極リード部を残し、絶縁樹脂
を隔てて導電性高分子を含浸してなる固体電解コンデン
サ素子を備える固体電解コンデンサ及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve metal which has been subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film. The present invention relates to a solid electrolytic capacitor provided with a solid electrolytic capacitor element impregnated with a conductive polymer, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来のデカップリング(ノイズ吸収)コ
ンデンサはセラミックコンデンサ,積層セラミックコン
デンサが主に用いられている。また、図4に示す如く、
固体電解コンデンサ1は、エッチング処理及び誘電体皮
膜5形成のための化成処理を施したアルミ箔等からなる
弁作用金属3を有し、この弁作用金属3に電極リード部
7を残し、絶縁樹脂9を隔てて導電性高分子11を含浸
してなる固体電解コンデンサ素子2を形成している。こ
の固体電解コンデンサ素子2の外側にカーボン層13を
介して銀ペースト層15が順次積層され、電極リード部
7に陽極となる外部電極17が接続され、銀ペースト層
15に陰極となる外部電極19が接続されて固体電解コ
ンデンサ1が形成されている。
2. Description of the Related Art As a conventional decoupling (noise absorption) capacitor, a ceramic capacitor and a multilayer ceramic capacitor are mainly used. Also, as shown in FIG.
The solid electrolytic capacitor 1 has a valve metal 3 made of aluminum foil or the like that has been subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film 5. The electrode lead 7 is left on the valve metal 3 and an insulating resin is formed. 9, a solid electrolytic capacitor element 2 impregnated with a conductive polymer 11 is formed. A silver paste layer 15 is sequentially laminated on the outside of the solid electrolytic capacitor element 2 via a carbon layer 13, an external electrode 17 serving as an anode is connected to the electrode lead portion 7, and an external electrode 19 serving as a cathode is connected to the silver paste layer 15. Are connected to form a solid electrolytic capacitor 1.

【0003】[0003]

【発明が解決しようとする課題】然し乍ら、上記従来の
固体電解コンデンサ1においてはアルミ箔等からなる弁
作用金属3を用いているので、極性を有し、無極性の固
体電解コンデンサ1を得ることができない欠点を有して
いた。またセラミックコンデンサを用いる場合には静電
容量が小さい欠点を有し、このため積層セラミックコン
デンサが用いられるも、何枚もセラミックを積層するた
め積層セラミックコンデンサの厚みが増大し、大型化す
る欠点を有していた。
However, since the conventional solid electrolytic capacitor 1 uses the valve metal 3 made of aluminum foil or the like, it is possible to obtain a non-polar solid electrolytic capacitor 1 having polarity. Had the drawback that it could not be done. Also, when a ceramic capacitor is used, there is a disadvantage that the capacitance is small.Thus, a multilayer ceramic capacitor is used. Had.

【0004】そこで、本発明は、上記従来例の未解決の
課題に着目してなされたものであり、超薄型,無極性の
固体電解コンデンサを得ることができ、回路設計が容易
となり、高周波対応ノイズ除去が極めて良好となり、複
数のセラミックコンデンサの使用を1つの固体電解コン
デンサの使用に代えることができ、複雑な回路を簡素化
することができ、実装コストの低減はもとより、回路の
信頼性及び歩留りを向上させることができ、組付け作業
性を向上させることができ、経済性に優れた固体電解コ
ンデンサ及びその製造方法を提供することを目的として
いる。
Therefore, the present invention has been made in view of the above-mentioned unsolved problems of the prior art, and it is possible to obtain an ultra-thin, non-polar solid electrolytic capacitor, to facilitate circuit design, and to realize a high frequency Corresponding noise removal is extremely good, the use of multiple ceramic capacitors can be replaced with the use of one solid electrolytic capacitor, which can simplify complicated circuits and reduce the mounting cost as well as the circuit reliability. It is an object of the present invention to provide a solid electrolytic capacitor which can improve the yield, improve the assembling workability, is excellent in economic efficiency, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
固体電解コンデンサは、エッチング処理及び誘電体皮膜
形成のための化成処理を施した弁作用金属を有し、該弁
作用金属に電極リード部を残し、絶縁樹脂を隔てて導電
性高分子を含浸してなる固体電解コンデンサ素子を備
え、該固体電解コンデンサ素子を2個用い、該2個の固
体電解コンデンサ素子の導電性高分子同士を接合したこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a solid electrolytic capacitor having a valve metal which has been subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film. A solid electrolytic capacitor element impregnated with a conductive polymer separated by an insulating resin, leaving a lead portion, using two solid electrolytic capacitor elements, and connecting the conductive polymers of the two solid electrolytic capacitor elements to each other; Are joined.

【0006】この請求項1に係る発明では、2個の固体
電解コンデンサ素子の導電性高分子同士を接合したの
で、銀ペースト層の金属的な接合が存在せず、一方の固
体電解コンデンサ素子が作動している場合に、他方の固
体電解コンデンサ素子は作動せず、他方の固体電解コン
デンサ素子が作動している場合に、一方の固体電解コン
デンサ素子は作動せず、結果として無極性の固体電解コ
ンデンサを得ることができ、超薄型の固体電解コンデン
サを得ることができ、回路設計が容易で高周波対応ノイ
ズ除去が極めて良好となり、複数のセラミックコンデン
サの使用を1つの固体電解コンデンサの使用に代えるこ
とができ、実装コストの低減はもとより、回路の信頼性
及び歩留りを向上させることができる。
According to the first aspect of the present invention, since the conductive polymers of the two solid electrolytic capacitor elements are joined to each other, there is no metallic joining of the silver paste layer, and one of the solid electrolytic capacitor elements is used. When operating, the other solid electrolytic capacitor element does not operate, and when the other solid electrolytic capacitor element operates, one solid electrolytic capacitor element does not operate, resulting in a non-polar solid electrolytic capacitor element. Capacitors can be obtained, ultra-thin solid electrolytic capacitors can be obtained, circuit design is easy, high frequency noise removal is extremely good, and the use of multiple ceramic capacitors is replaced with the use of one solid electrolytic capacitor As a result, not only the mounting cost can be reduced, but also the reliability and yield of the circuit can be improved.

【0007】また、請求項2に係る固体電解コンデンサ
は、エッチング処理及び誘電体皮膜形成のための化成処
理を施した弁作用金属を有し、該弁作用金属に電極リー
ド部を残し、絶縁樹脂を隔てて導電性高分子を含浸して
なる固体電解コンデンサ素子を備え、該固体電解コンデ
ンサ素子を2個用い、該2個の固体電解コンデンサ素子
の導電性高分子同士をTCNQ錯体により接合したこと
を特徴とする。
A solid electrolytic capacitor according to a second aspect of the present invention has a valve metal which has been subjected to an etching process and a chemical conversion process for forming a dielectric film, and an electrode lead is left on the valve metal to form an insulating resin. A solid electrolytic capacitor element impregnated with a conductive polymer separated by a distance, using two solid electrolytic capacitor elements, and joining the conductive polymers of the two solid electrolytic capacitor elements with a TCNQ complex. It is characterized by.

【0008】この請求項2に係る発明では、2個の固体
電解コンデンサ素子の導電性高分子同士をTCNQ錯体
により接合したので、銀ペースト層の金属的な接合が存
在せず、一方の固体電解コンデンサ素子が作動している
場合に、他方の固体電解コンデンサ素子は作動せず、他
方の固体電解コンデンサ素子が作動している場合に、一
方の固体電解コンデンサ素子は作動せず、結果として無
極性の固体電解コンデンサを得ることができ、請求項1
と同様の作用を有する。
In the invention according to the second aspect, since the conductive polymers of the two solid electrolytic capacitor elements are joined to each other by the TCNQ complex, there is no metallic joining of the silver paste layer. When the capacitor element is operating, the other solid electrolytic capacitor element is not operating, and when the other solid electrolytic capacitor element is operating, one solid electrolytic capacitor element is not operating, and as a result, non-polar The solid electrolytic capacitor of Claim 1 can be obtained.
Has the same function as.

【0009】更に、請求項3に係る固体電解コンデンサ
は、前記2個の固体電解コンデンサ素子の導電性高分子
同士を重ね合わせて接合したことを特徴とする。
Further, a solid electrolytic capacitor according to claim 3 is characterized in that the conductive polymers of the two solid electrolytic capacitor elements are overlapped and joined.

【0010】この請求項3に係る発明では、2個の固体
電解コンデンサ素子の導電性高分子同士を重ね合わせて
接合したので、2個の固体電解コンデンサ素子の接合が
容易で確実に接合させることができ、請求項1及び請求
項2と同様の作用を有する。
According to the third aspect of the present invention, since the conductive polymers of the two solid electrolytic capacitor elements are overlapped and joined, the two solid electrolytic capacitor elements can be easily and reliably joined. And has the same operation as the first and second aspects.

【0011】更にまた、本発明の請求項4に係る固体電
解コンデンサは、前記エッチング処理及び誘電体皮膜形
成のための化成処理を施した弁作用金属がアルミニウ
ム,タンタル,ニオブ,ジルコンまたはチタンの何れか
一つ、あるいはそれらの複合体もしくは合金からなるこ
とを特徴とする。
Further, in the solid electrolytic capacitor according to a fourth aspect of the present invention, the valve action metal subjected to the etching treatment and the chemical conversion treatment for forming the dielectric film is any one of aluminum, tantalum, niobium, zircon and titanium. Or a composite or alloy thereof.

【0012】この請求項4に係る発明では、弁作用金属
がアルミニウム,タンタル,ニオブ,ジルコンまたはチ
タンの何れか一つ、あるいはそれらの複合体もしくは合
金からなるので、請求項1乃至請求項3と同様の作用を
有する。
In the invention according to the fourth aspect, the valve metal is made of any one of aluminum, tantalum, niobium, zircon and titanium, or a composite or alloy thereof. It has a similar effect.

【0013】尚更に、請求項5に係る固体電解コンデン
サの製造方法は、弁作用金属の表面にエッチング処理及
び誘電体皮膜形成のための化成処理を施し、該弁作用金
属に電極リード部を残し、絶縁樹脂を隔てて導電性高分
子を含浸してなる固体電解コンデンサ素子を少なくとも
2個形成し、該2個の固体電解コンデンサ素子の電極リ
ード部を離間させて2個の固体電解コンデンサ素子の導
電性高分子同士の間にTCNQ錯体を挿入し、該TCN
Q錯体を加熱溶融させ、2個の固体電解コンデンサ素子
の導電性高分子同士を接合した後、TCNQ錯体を冷却
固化させることを特徴とする。
Still further, according to a method of manufacturing a solid electrolytic capacitor according to a fifth aspect, an etching process and a chemical conversion process for forming a dielectric film are performed on the surface of a valve action metal, and an electrode lead portion is left on the valve action metal. Forming at least two solid electrolytic capacitor elements impregnated with a conductive polymer with an insulating resin interposed therebetween, and separating the electrode leads of the two solid electrolytic capacitor elements to form two solid electrolytic capacitor elements. Inserting a TCNQ complex between conductive polymers,
It is characterized in that the Q complex is heated and melted, the conductive polymers of the two solid electrolytic capacitor elements are joined together, and then the TCNQ complex is cooled and solidified.

【0014】この請求項5に係る発明では、弁作用金属
の表面にエッチング処理及び誘電体皮膜形成のための化
成処理を施し、該弁作用金属に電極リード部を残し、絶
縁樹脂を隔てて導電性高分子を含浸してなる固体電解コ
ンデンサ素子を少なくとも2個形成し、該2個の固体電
解コンデンサ素子の電極リード部を離間させて2個の固
体電解コンデンサ素子の導電性高分子同士の間にTCN
Q錯体を挿入し、該TCNQ錯体を加熱溶融させ、2個
の固体電解コンデンサ素子の導電性高分子同士を接合し
た後、TCNQ錯体を冷却固化させるので、超薄型,無
極性の固体電解コンデンサを得ることができ、回路設計
が容易となり、高周波対応ノイズ除去が極めて良好とな
り、複数のセラミックコンデンサの使用を1つの固体電
解コンデンサの使用に代えることができ、複雑な回路が
簡素となり、実装コストの低減はもとより、回路の信頼
性及び歩留りを向上させることができ、組付け作業性を
向上させることができる。
According to the fifth aspect of the present invention, the surface of the valve action metal is subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film, and the electrode lead is left on the valve action metal, and the surface of the valve action metal is separated by an insulating resin. At least two solid electrolytic capacitor elements impregnated with a conductive polymer are formed, and the electrode leads of the two solid electrolytic capacitor elements are separated from each other so that the conductive polymers of the two solid electrolytic capacitor elements are separated from each other. To TCN
After inserting the Q complex, heating and melting the TCNQ complex and joining the conductive polymers of the two solid electrolytic capacitor elements, the TCNQ complex is cooled and solidified. Can be obtained, the circuit design becomes easy, the noise removal corresponding to high frequency becomes extremely good, the use of a plurality of ceramic capacitors can be replaced with the use of one solid electrolytic capacitor, the complicated circuit is simplified, and the mounting cost is reduced. In addition to the reduction, the reliability and yield of the circuit can be improved, and the assembling workability can be improved.

【0015】[0015]

【発明の実施の形態】以下、本発明の固体電解コンデン
サ及びその製造方法の実施の形態を図面を参照して説明
する。図1は本発明に係わる固体電解コンデンサの実施
形態を示すもので、本実施の形態では弁作用金属として
アルミニウムを使用したアルミ固体電解コンデンサに本
発明を適用した場合として説明するが、アルミニウムに
限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a solid electrolytic capacitor and a method of manufacturing the same according to the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a solid electrolytic capacitor according to the present invention. In this embodiment, a case will be described in which the present invention is applied to an aluminum solid electrolytic capacitor using aluminum as a valve metal. It is not something to be done.

【0016】アルミ固体電解コンデンサ21はエッチン
グ処理及び誘電体皮膜形成のための化成処理を施した弁
作用金属としてのアルミ箔23を有し、このアルミ箔2
3に電極リード部25を残し、絶縁樹脂27を隔てて導
電性高分子29を含浸してなる固体電解コンデンサ素子
22を備えている。前記固体電解コンデンサ素子22の
電極リード部25にはリードフレーム31が接続されて
いる。
The aluminum solid electrolytic capacitor 21 has an aluminum foil 23 as a valve metal which has been subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film.
3 is provided with a solid electrolytic capacitor element 22 which is impregnated with a conductive polymer 29 with an electrode lead portion 25 left and an insulating resin 27 interposed therebetween. A lead frame 31 is connected to the electrode lead portion 25 of the solid electrolytic capacitor element 22.

【0017】前記導電性高分子29はポリピロール,ポ
リチオフェン等からなり、固体電解質を形成している。
前記固体電解コンデンサ素子22を2個用い、この2個
の固体電解コンデンサ素子22は電極リード部25を反
対側に夫々配置して固体電解コンデンサ素子22の導電
性高分子29同士が接合されている。尚、2個の固体電
解コンデンサ素子22の電極リード部25は夫々反対側
に配設されるものに限定されるものではなく、相互に離
間していればよい。
The conductive polymer 29 is made of polypyrrole, polythiophene, etc., and forms a solid electrolyte.
The two solid electrolytic capacitor elements 22 are used, and the two solid electrolytic capacitor elements 22 have electrode leads 25 disposed on opposite sides, respectively, and the conductive polymers 29 of the solid electrolytic capacitor elements 22 are joined to each other. . Note that the electrode lead portions 25 of the two solid electrolytic capacitor elements 22 are not limited to those disposed on the opposite sides, respectively, and may be separated from each other.

【0018】ここで、2個の固体電解コンデンサ素子2
2の導電性高分子29同士を重ね合わせて接合する場合
に、本実施の形態では固体電解質として使用されている
TCNQ錯体(テトラシアノキノジメタン錯体)33を
用いた。この導電性高分子29,29同士をTCNQ錯
体33により接合したので、導電性高分子29,29の
間に障壁が存在せず、1個の無極性の固体電解コンデン
サ21を得ることができる。尚、TCNQ錯体33とし
て、n−ブチルイソキノリン−TCNQ錯体等を用いる
ことができる。前記TCNQ錯体33は190℃〜25
0℃で溶融し、冷却固化することができる。
Here, two solid electrolytic capacitor elements 2
In the case where the two conductive polymers 29 are overlapped and joined, in the present embodiment, a TCNQ complex (tetracyanoquinodimethane complex) 33 used as a solid electrolyte is used. Since the conductive polymers 29, 29 are joined together by the TCNQ complex 33, there is no barrier between the conductive polymers 29, 29, and one non-polar solid electrolytic capacitor 21 can be obtained. Note that, as the TCNQ complex 33, an n-butyl isoquinoline-TCNQ complex or the like can be used. The TCNQ complex 33 has a temperature of 190 ° C to 25 ° C.
It can be melted at 0 ° C. and solidified by cooling.

【0019】図1に示す実施の形態では、2個の固体電
解コンデンサ素子22の導電性高分子29を上下に重ね
合わせたが、図2に示す如く、導電性高分子29の先端
側同士を重ね合わせて接合するものであってもよく、ま
た図3に示す如く、導電性高分子29の先端側同士を突
き合わせて接合するものであってもよい。尚、図2及び
図3において、図1と対応する部分には同一符号を付し
て、これ以上の詳細説明はこれを省略する。
In the embodiment shown in FIG. 1, the conductive polymers 29 of the two solid electrolytic capacitor elements 22 are vertically overlapped. However, as shown in FIG. The conductive polymer 29 may be overlapped and joined, or as shown in FIG. 3, the leading ends of the conductive polymers 29 may be joined together. 2 and 3, the same reference numerals are given to the portions corresponding to FIG. 1, and further detailed description will be omitted.

【0020】尚、本実施の形態では弁作用金属としてア
ルミニウムを使用したアルミ固体電解コンデンサに本発
明を適用したが、アルミニウム,タンタル,ニオブ,ジ
ルコンまたはチタンの何れか一つ、あるいはそれらの複
合体もしくは合金から弁作用金属を形成することができ
る。
In the present embodiment, the present invention is applied to an aluminum solid electrolytic capacitor using aluminum as a valve metal. However, any one of aluminum, tantalum, niobium, zircon and titanium, or a composite thereof is used. Alternatively, the valve metal can be formed from an alloy.

【0021】次に、本発明のアルミ固体電解コンデンサ
21の製造方法を説明すると、先ず、弁作用金属として
のアルミ箔23の表面に表面積を拡大するためのエッチ
ング処理及び誘電体皮膜形成のための化成処理を施し、
該弁作用金属としてのアルミ箔23に電極リード部25
を残し、絶縁樹脂27を隔てて導電性高分子29を含浸
してなる固体電解コンデンサ素子22を複数形成する。
Next, a method of manufacturing the aluminum solid electrolytic capacitor 21 of the present invention will be described. First, an etching process for increasing the surface area on the surface of the aluminum foil 23 as a valve metal and a process for forming a dielectric film are performed. Chemical conversion treatment,
Electrode leads 25 are provided on aluminum foil 23 as the valve metal.
And a plurality of solid electrolytic capacitor elements 22 impregnated with the conductive polymer 29 with the insulating resin 27 interposed therebetween are formed.

【0022】前記固体電解コンデンサ素子22を少なく
とも2個用い、この2個の固体電解コンデンサ素子2
2,22の電極リード部25,25を離間させて、本実
施の形態では反対側にして配置し、2個の固体電解コン
デンサ素子22,22の導電性高分子29,29同士の
間にTCNQ錯体33を挿入する。このTCNQ錯体3
3を200℃で5秒間加熱し、1〜2秒間保持した後急
冷させる。TCNQ錯体33の冷却は冷風や液体窒素を
吹きかけることにより常温まで温度を下げるものであれ
ばよい。
At least two solid electrolytic capacitor elements 22 are used, and the two solid electrolytic capacitor elements 2 are used.
In this embodiment, the electrode leads 25, 25 of the two solid electrolytic capacitors 22, 22 are arranged on opposite sides, and the TCNQ is placed between the conductive polymers 29, 29 of the two solid electrolytic capacitor elements 22, 22. Complex 33 is inserted. This TCNQ complex 3
3 is heated at 200 ° C. for 5 seconds, held for 1 to 2 seconds, and then quenched. The TCNQ complex 33 may be cooled as long as the temperature is lowered to room temperature by blowing cold air or liquid nitrogen.

【0023】TCNQ錯体33を加熱溶融させることに
より、導電性高分子29,29同士を接合した後、TC
NQ錯体33を冷却固化させることにより2個の固体電
解コンデンサ素子22,22の導電性高分子29,29
同士を接合することができる。導電性高分子29,29
同士をTCNQ錯体33により接合したので、導電性高
分子29,29の間に障壁が存在せず、1個の無極性の
固体電解コンデンサ21を得ることができる。
By heating and melting the TCNQ complex 33 to join the conductive polymers 29, 29,
By cooling and solidifying the NQ complex 33, the conductive polymers 29, 29 of the two solid electrolytic capacitor elements 22, 22 are formed.
They can be joined together. Conductive polymer 29, 29
Since the two are joined by the TCNQ complex 33, there is no barrier between the conductive polymers 29, 29, and one non-polar solid electrolytic capacitor 21 can be obtained.

【0024】以上が本発明の固体電解コンデンサ及びそ
の製造方法の実施の形態であるが、本発明の請求項1に
係る固体電解コンデンサによれば、2個の固体電解コン
デンサ素子の導電性高分子同士を接合したので、銀ペー
スト層の金属的な接合が存在せず、一方の固体電解コン
デンサ素子が作動している場合に、他方の固体電解コン
デンサ素子は作動せず、他方の固体電解コンデンサ素子
が作動している場合に、一方の固体電解コンデンサ素子
は作動せず、結果として無極性の固体電解コンデンサを
得ることができ、超薄型の固体電解コンデンサを得るこ
とができ、回路設計が容易で高周波対応ノイズ除去が極
めて良好となり、複数のセラミックコンデンサの使用を
1つの固体電解コンデンサの使用に代えることができ、
実装コストの低減はもとより、回路の信頼性及び歩留り
を向上させることができる。
The above is an embodiment of the solid electrolytic capacitor of the present invention and the method of manufacturing the same. According to the solid electrolytic capacitor of the first aspect of the present invention, the conductive polymer of the two solid electrolytic capacitor elements is used. Since the metallic paste of the silver paste layer does not exist and one of the solid electrolytic capacitor elements is operating, the other solid electrolytic capacitor element does not operate and the other solid electrolytic capacitor element has joined. Is activated, one of the solid electrolytic capacitor elements does not operate, resulting in a non-polar solid electrolytic capacitor, an ultra-thin solid electrolytic capacitor, and easy circuit design. In this way, high-frequency noise removal is extremely good, and the use of multiple ceramic capacitors can be replaced with the use of one solid electrolytic capacitor.
Not only the mounting cost can be reduced, but also the reliability and yield of the circuit can be improved.

【0025】また、本発明の請求項2に係る固体電解コ
ンデンサによれば、2個の固体電解コンデンサ素子の導
電性高分子同士をTCNQ錯体により接合したので、銀
ペースト層の金属的な接合が存在せず、一方の固体電解
コンデンサ素子が作動している場合に、他方の固体電解
コンデンサ素子は作動せず、他方の固体電解コンデンサ
素子が作動している場合に、一方の固体電解コンデンサ
素子は作動せず、結果として無極性の固体電解コンデン
サを得ることができ、請求項1と同様の効果を有する。
Further, according to the solid electrolytic capacitor of the second aspect of the present invention, since the conductive polymers of the two solid electrolytic capacitor elements are joined by the TCNQ complex, the metallic joining of the silver paste layer is reduced. None, when one solid electrolytic capacitor element is operating, the other solid electrolytic capacitor element is not operating, and when the other solid electrolytic capacitor element is operating, one solid electrolytic capacitor element is As a result, a non-polar solid electrolytic capacitor can be obtained, which has the same effect as the first aspect.

【0026】更に、本発明の請求項3に係る固体電解コ
ンデンサによれば、2個の固体電解コンデンサ素子の導
電性高分子同士を重ね合わせて接合したので、2個の固
体電解コンデンサ素子の接合が容易で確実に接合させる
ことができ、請求項1及び請求項2と同様の効果を有す
る。
Further, according to the solid electrolytic capacitor of the third aspect of the present invention, since the conductive polymers of the two solid electrolytic capacitor elements are overlapped and joined, the two solid electrolytic capacitor elements are joined. Can be easily and reliably joined, and have the same effects as those of the first and second aspects.

【0027】更にまた、本発明の請求項4に係る固体電
解コンデンサによれば、弁作用金属がアルミニウム,タ
ンタル,ニオブ,ジルコンまたはチタンの何れか一つ、
あるいはそれらの複合体もしくは合金からなるので、請
求項1乃至請求項3と同様の効果を有する。
Further, according to the solid electrolytic capacitor of the present invention, the valve metal is any one of aluminum, tantalum, niobium, zircon and titanium;
Alternatively, since they are made of a composite or an alloy thereof, the same effects as those of claims 1 to 3 are obtained.

【0028】尚更に、本発明の請求項5に係る固体電解
コンデンサの製造方法によれば、弁作用金属の表面にエ
ッチング処理及び誘電体皮膜形成のための化成処理を施
し、該弁作用金属に電極リード部を残し、絶縁樹脂を隔
てて導電性高分子を含浸してなる固体電解コンデンサ素
子を少なくとも2個形成し、該2個の固体電解コンデン
サ素子の電極部を離間させて2個の固体電解コンデンサ
素子の導電性高分子同士の間にTCNQ錯体を挿入し、
該TCNQ錯体を加熱溶融させ、2個の固体電解コンデ
ンサ素子の導電性高分子同士を接合した後、TCNQ錯
体を冷却固化させるので、超薄型,無極性の固体電解コ
ンデンサを得ることができ、回路設計が容易となり、高
周波対応ノイズ除去が極めて良好となり、複数のセラミ
ックコンデンサの使用を1つの固体電解コンデンサの使
用に代えることができ、複雑な回路が簡素となり、実装
コストの低減はもとより、回路の信頼性及び歩留りを向
上させることができ、組付け作業性を向上させることが
できる。
Further, according to the method of manufacturing a solid electrolytic capacitor according to claim 5 of the present invention, the surface of the valve action metal is subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film, and the valve action metal is treated. At least two solid electrolytic capacitor elements are formed by impregnating a conductive polymer with an insulating resin therebetween, leaving an electrode lead portion, and separating the electrode portions of the two solid electrolytic capacitor elements to form two solid electrolytic capacitor elements. Insert the TCNQ complex between the conductive polymers of the electrolytic capacitor element,
After the TCNQ complex is heated and melted and the conductive polymers of the two solid electrolytic capacitor elements are joined together, the TCNQ complex is cooled and solidified, so that an ultra-thin, non-polar solid electrolytic capacitor can be obtained. The circuit design becomes easy, the noise removal corresponding to high frequency becomes extremely good, and the use of multiple ceramic capacitors can be replaced with the use of one solid electrolytic capacitor, which simplifies the complicated circuit and reduces the mounting cost as well as the circuit cost. , Reliability and yield can be improved, and assembling workability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる固体電解コンデンサの断面図。FIG. 1 is a sectional view of a solid electrolytic capacitor according to the present invention.

【図2】本発明に係わる固体電解コンデンサの異なる実
施の形態の断面図。
FIG. 2 is a cross-sectional view of another embodiment of the solid electrolytic capacitor according to the present invention.

【図3】本発明に係わる固体電解コンデンサの更に異な
る実施の形態の断面図。
FIG. 3 is a sectional view of still another embodiment of the solid electrolytic capacitor according to the present invention.

【図4】従来の固体電解コンデンサの断面図。FIG. 4 is a cross-sectional view of a conventional solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

21 固体電解コンデンサ 22 固体電解コンデンサ素子 23 アルミ箔 25 電極リード部 27 絶縁樹脂 29 導電性高分子 31 リードフレーム 33 TCNQ錯体(テトラシアノキノジメタン錯
体)
DESCRIPTION OF SYMBOLS 21 Solid electrolytic capacitor 22 Solid electrolytic capacitor element 23 Aluminum foil 25 Electrode lead part 27 Insulating resin 29 Conductive polymer 31 Lead frame 33 TCNQ complex (tetracyanoquinodimethane complex)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/14 H01G 9/05 H 9/02 331F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01G 9/14 H01G 9/05 H 9/02 331F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エッチング処理及び誘電体皮膜形成のた
めの化成処理を施した弁作用金属を有し、該弁作用金属
に電極リード部を残し、絶縁樹脂を隔てて導電性高分子
を含浸してなる固体電解コンデンサ素子を備え、該固体
電解コンデンサ素子を2個用い、該2個の固体電解コン
デンサ素子の導電性高分子同士を接合したことを特徴と
する固体電解コンデンサ。
1. A valve metal which has been subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film. The valve metal is impregnated with a conductive polymer through an insulating resin, leaving an electrode lead. A solid electrolytic capacitor element comprising: two solid electrolytic capacitor elements; and conductive polymers of the two solid electrolytic capacitor elements joined to each other.
【請求項2】 エッチング処理及び誘電体皮膜形成のた
めの化成処理を施した弁作用金属を有し、該弁作用金属
に電極リード部を残し、絶縁樹脂を隔てて導電性高分子
を含浸してなる固体電解コンデンサ素子を備え、該固体
電解コンデンサ素子を2個用い、該2個の固体電解コン
デンサ素子の導電性高分子同士をTCNQ錯体により接
合したことを特徴とする固体電解コンデンサ。
2. A valve metal which has been subjected to an etching process and a chemical conversion process for forming a dielectric film. The valve metal is impregnated with a conductive polymer through an insulating resin, leaving an electrode lead. A solid electrolytic capacitor comprising: a solid electrolytic capacitor element comprising: two solid electrolytic capacitor elements; and conductive polymers of the two solid electrolytic capacitor elements joined by a TCNQ complex.
【請求項3】 前記2個の固体電解コンデンサ素子の導
電性高分子同士を重ね合わせて接合したことを特徴とす
る請求項1または請求項2に記載の固体電解コンデン
サ。
3. The solid electrolytic capacitor according to claim 1, wherein the conductive polymers of the two solid electrolytic capacitor elements are overlapped and joined.
【請求項4】 前記エッチング処理及び誘電体皮膜形成
のための化成処理を施した弁作用金属がアルミニウム,
タンタル,ニオブ,ジルコンまたはチタンの何れか一
つ、あるいはそれらの複合体もしくは合金からなること
を特徴とする請求項1乃至請求項3の何れかに記載の固
体電解コンデンサ。
4. The valve metal which has been subjected to the etching treatment and the chemical conversion treatment for forming a dielectric film is aluminum,
The solid electrolytic capacitor according to any one of claims 1 to 3, comprising one of tantalum, niobium, zircon, and titanium, or a composite or alloy thereof.
【請求項5】 弁作用金属の表面にエッチング処理及び
誘電体皮膜形成のための化成処理を施し、該弁作用金属
に電極リード部を残し、絶縁樹脂を隔てて導電性高分子
を含浸してなる固体電解コンデンサ素子を少なくとも2
個形成し、該2個の固体電解コンデンサ素子の電極リー
ド部を離間させて2個の固体電解コンデンサ素子の導電
性高分子同士の間にTCNQ錯体を挿入し、該TCNQ
錯体を加熱溶融させ、2個の固体電解コンデンサ素子の
導電性高分子同士を接合した後、TCNQ錯体を冷却固
化させることを特徴とする固体電解コンデンサの製造方
法。
5. The valve metal is subjected to an etching treatment and a chemical conversion treatment for forming a dielectric film on the surface of the valve metal, leaving an electrode lead portion on the valve metal and impregnating the conductive metal with an insulating resin therebetween. At least two solid electrolytic capacitor elements
The TCNQ complex is inserted between the conductive polymers of the two solid electrolytic capacitor elements by separating the electrode leads of the two solid electrolytic capacitor elements.
A method for producing a solid electrolytic capacitor, comprising heating and melting a complex, joining conductive polymers of two solid electrolytic capacitor elements to each other, and then cooling and solidifying the TCNQ complex.
JP2001162600A 2001-05-30 2001-05-30 Solid electrolytic capacitor and its manufacturing method Pending JP2002359169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162600A JP2002359169A (en) 2001-05-30 2001-05-30 Solid electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162600A JP2002359169A (en) 2001-05-30 2001-05-30 Solid electrolytic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002359169A true JP2002359169A (en) 2002-12-13

Family

ID=19005699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162600A Pending JP2002359169A (en) 2001-05-30 2001-05-30 Solid electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002359169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279578B2 (en) 2006-10-16 2012-10-02 Nec Corporation Helical capacitor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279578B2 (en) 2006-10-16 2012-10-02 Nec Corporation Helical capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3276113B1 (en) Solid electrolytic capacitors
JP4440911B2 (en) Solid electrolytic capacitor
JP5466722B2 (en) Solid electrolytic capacitor
JP4757698B2 (en) Solid electrolytic capacitor
JP2011071559A (en) Solid electrolytic capacitor
JP2006040938A (en) Solid electrolytic capacitor, laminated capacitor using the same and its manufacturing method
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
JP2005079357A (en) Chip type solid electrolytic capacitor, its manufacturing method, and lead frame used therefor
JP2003158042A (en) Three-terminal thin aluminium solid electrolytic capacitor
JP2003249418A (en) Solid electrolytic capacitor and manufacturing method of the same
JP3510227B2 (en) Electrolytic capacitor, circuit board with built-in electrolytic capacitor, and method of manufacturing the same
JP2002359169A (en) Solid electrolytic capacitor and its manufacturing method
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2002050544A (en) Chip-type laminated capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP2002231582A (en) Anode foil for laminated electrolytic capacitor, and laminated electrolytic capacitor
JP2004228566A (en) Manufacturing method for circuit carrier having integrated passive components
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002050543A (en) Chip-type laminated capacitor
JP2006100295A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2004241435A (en) For electrode solid electrolytic capacitor, and its manufacturing method, and solid electlytic capacitor
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JP2858075B2 (en) Solid electrolytic capacitors
JP2005311216A (en) Solid electrolytic capacitor and its manufacturing method
JP2006165152A (en) Solid electrolytic capacitor and substrate with built-in solid electrolytic capacitor, and those manufacturing methods

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601