JP2002358122A - Agricultural work vehicle - Google Patents

Agricultural work vehicle

Info

Publication number
JP2002358122A
JP2002358122A JP2001163888A JP2001163888A JP2002358122A JP 2002358122 A JP2002358122 A JP 2002358122A JP 2001163888 A JP2001163888 A JP 2001163888A JP 2001163888 A JP2001163888 A JP 2001163888A JP 2002358122 A JP2002358122 A JP 2002358122A
Authority
JP
Japan
Prior art keywords
azimuth
sensor
output
route
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163888A
Other languages
Japanese (ja)
Inventor
Fumio Ishibashi
文雄 石橋
Yuji Yamaguchi
雄司 山口
Takayuki Shiromizu
崇之 白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Agricultural Equipment Co Ltd
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Agricultural Equipment Co Ltd, Yanmar Co Ltd filed Critical Yanmar Agricultural Equipment Co Ltd
Priority to JP2001163888A priority Critical patent/JP2002358122A/en
Publication of JP2002358122A publication Critical patent/JP2002358122A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Instructional Devices (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an agricultural work vehicle that can autonomously run while accurately following up a target route without causing any error. SOLUTION: This work vehicle is provided with a geomagnetic azimuth sensor 29 for detecting the azimuth of a body, a GPS receiver 20 for recognizing the traveling position of the body, an autonomous running means 51 for allowing the front wheel central positions to follow up a target route B1 of the body, and an autonomous running correcting means 52 for allowing the set position of the GPS receiver 20 to follow up the target route B1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はGPS(全地域測位
システム)衛星からの電波を受信するGPS受信装置を
備え、例えば圃場内における作業車の走行位置を認識し
て自律走行させる農業用作業車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an agricultural work vehicle provided with a GPS receiver for receiving radio waves from a GPS (Global Positioning System) satellite, for example, recognizing a running position of a work vehicle in a field and autonomously running. About.

【0002】[0002]

【発明が解決しようとする課題】従来、GPS受信機と
方位センサの出力で前輪中央位置を内部演算し、演算さ
れた前輪中央位置を目標経路に追従させる自律制御を行
う手段がある。しかし乍ら上述手段の場合、図24
(1)にも示す如く、周囲温度などの影響で方位センサ
の出力にオフセットが生じている場合、実際の車体の制
御位置とコントローラが認識している車体の制御位置と
の間に走行ずれ△xが発生し、目標経路に正確に追従し
た走行が困難となる不都合がある。つまり方位センサに
オフセットが生じている場合のコントローラが認識して
いる車体と目標経路との関係は、図24(2)に示す如
く後輪中央のGPS位置と前輪中央位置との間の距離W
1、前輪中央位置と前方目標点の距離W2、方位オフセ
ットφとするとき、△x=W1×tanφ+W2×Si
nφで、走行ずれ△xを有した位置でコントローラは前
方目標点にハンドルを向いた状態にあるので、走行中は
ハンドルを切ることなく目標経路から△xずれたまま車
体を走行させる。
Conventionally, there is a means for performing autonomous control to internally calculate the front wheel center position based on the outputs of the GPS receiver and the direction sensor and to follow the calculated front wheel center position on a target path. However, in the case of the above means, FIG.
As shown in (1), when an offset occurs in the output of the azimuth sensor due to the influence of the ambient temperature or the like, the travel deviation between the actual control position of the vehicle body and the control position of the vehicle body recognized by the controller. x occurs, which makes it difficult to accurately follow the target route. In other words, the relationship between the vehicle body and the target route recognized by the controller when an offset occurs in the direction sensor is represented by the distance W between the GPS position at the center of the rear wheel and the center position of the front wheel as shown in FIG.
1. When the distance W2 between the front wheel center position and the forward target point and the azimuth offset φ, Δx = W1 × tan φ + W2 × Si
At nφ, the controller is facing the steering wheel toward the forward target point at a position having a travel deviation Δx. Therefore, during traveling, the vehicle travels with the vehicle shifted Δx from the target route without turning the steering wheel.

【0003】[0003]

【課題を解決するための手段】したがって本発明は、車
体の方位を検出する地磁気方位センサと、車体の走行位
置を認識するGPS受信装置を備え、前輪中央位置を車
体の目標経路に追従させる自律走行手段と、GPS受信
装置の設置位置を目標経路に追従させる補正自律走行手
段とを設けて、方位センサの出力に基づく直進制御にオ
フセット誤差が生じても、GPS受信装置の設置位置を
目標経路に沿わせるPI(比例・積分)制御でもって経
路追従性能を向上させると共に、従来の方位センサに基
づく経路追従性能を確保して、ステアリング操作の安定
性や操作性を向上させるものである。
SUMMARY OF THE INVENTION Accordingly, the present invention comprises a geomagnetic direction sensor for detecting the direction of a vehicle body and a GPS receiving device for recognizing a running position of the vehicle body. Providing a traveling means and a correction autonomous traveling means for causing the installation position of the GPS receiver to follow the target route, so that even if an offset error occurs in the straight-ahead control based on the output of the direction sensor, the installation position of the GPS receiver is set to the target route. In addition to improving the path following performance by PI (proportional / integral) control that conforms to the above, the path following performance based on the conventional azimuth sensor is ensured, and the stability and operability of the steering operation are improved.

【0004】また、GPS受信装置で認識する車***置
の時間変化で方位を演算して、方位センサの補正を行う
ように設けて、GPS出力によって方位センサで検出さ
れる方位誤差を低減して方位センサに基づく正確な経路
追従制御を容易に可能とさせるものである。
Further, a direction is calculated based on a time change of the vehicle body position recognized by the GPS receiver, and the direction sensor is corrected so as to reduce a direction error detected by the direction sensor based on the GPS output. This makes it possible to easily perform accurate route following control based on sensors.

【0005】さらに、同一方向の目標経路を最初に走行
する時の方位センサの出力で方位センサのオフセット誤
差を検出し、次回走行時の方位センサの出力をオフセッ
ト誤差で補正して、同一の方位センサを有効利用して方
位センサのオフセット誤差を低減させて、正確な経路追
従制御を容易に可能とさせるものである。
Further, an offset error of the azimuth sensor is detected based on an output of the azimuth sensor when the vehicle travels on a target route in the same direction for the first time. An object of the present invention is to effectively utilize a sensor to reduce an offset error of a direction sensor, thereby enabling accurate path following control to be easily performed.

【0006】またさらに、車体旋回中の方位センサの出
力でオフセット状況を算出し、次回方位センサの出力の
補正を行って、旋回後の方位センサの方位検出誤差を低
減させて、正確な経路追従制御を容易に可能とさせるも
のである。
Further, an offset situation is calculated based on the output of the azimuth sensor during the turning of the vehicle body, the output of the azimuth sensor is corrected next time, the azimuth detection error of the azimuth sensor after the turning is reduced, and accurate path following is performed. This makes it easy to control.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて詳述する。図1は全体の側面図、図2は同平面図
を示し、図中1は農業用作業車であるトラクタであり、
エンジン2を内設させるボンネット3両側に左右の前輪
4・4を装設させ、前記ボンネット3後部に丸形操向ハ
ンドル5を設け、該ハンドル5後方に運転席6を設置さ
せ、運転席6両側外方に左右の後輪7・7を装設させ、
運転席6前側のステップ8に左右ブレーキペダル9・9
及びクラッチペダル10を配設させ、作業者が運転席6
に座乗して走行移動させると共に、トラクタ機体後方に
3点リンク機構11を介し耕耘ロータリ作業機12を昇
降自在に装設させて耕耘作業を行うように構成してい
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a side view of the whole, FIG. 2 is a plan view of the same, in which 1 is a tractor which is an agricultural work vehicle,
Left and right front wheels 4 are provided on both sides of the hood 3 in which the engine 2 is installed. A round steering wheel 5 is provided at the rear of the hood 3, and a driver's seat 6 is installed behind the handle 5. The left and right rear wheels 7, 7 are installed on both sides outward,
Left and right brake pedals 9.9 in step 8 in front of driver's seat 6
And the clutch pedal 10 are arranged, and the operator
, And a tilling rotary work machine 12 is mounted on the rear of the tractor body via a three-point link mechanism 11 so as to be able to move up and down to perform tilling work.

【0008】また、走行主変速レバー13と、作業機1
2を昇降させる昇降レバー14とを運転席6の右側に配
設すると共に、走行副変速レバー15と、作業機12の
出力を変速するPTO変速レバー16を運転席6の左側
に配設させている。
[0008] The traveling main transmission lever 13 and the work implement 1
An elevator lever 14 for raising and lowering the gear 2 is disposed on the right side of the driver's seat 6, and a traveling auxiliary transmission lever 15 and a PTO transmission lever 16 for shifting the output of the work implement 12 are disposed on the left side of the driver's seat 6. I have.

【0009】さらに、四角箱形の運転キャビン17内の
正面右側上部にタッチパネル式液晶ディスプレイである
モニタ18を配設させ、マイクロコンピュータで形成す
る管理コントローラ19を運転キャビン17に内設さ
せ、GPS(全地球測位システム)衛星からの電波を受
信するカーナビ用GPS受信機20と、前記モニタ18
とを管理コントローラ19に接続させると共に、自律走
行用(RTK)GPS受信機20Aと、無線操縦用の自
律走行開始及び停止スイッチなど有する無線発信機から
の信号を受信する無線受信機21と管理コントローラ1
9に接続させ、トラクタ1を自律走行させる自律制御機
構である自律コントローラ22に着脱自在な配線コネク
タ23を介して管理コントローラ19に接続させてい
る。なおモニタ18の取付位置は各種レバー位置、道路
の走行状況などに応じ自在とさせるものであり、モニタ
18・管理及び自律コントローラ19・22は別体或い
は一体の何れでも良い。
Further, a monitor 18 which is a touch panel type liquid crystal display is arranged on the upper right side of the front inside the square box-shaped operation cabin 17, and a management controller 19 formed by a microcomputer is installed in the operation cabin 17, and the GPS ( Global positioning system) GPS receiver 20 for car navigation which receives radio waves from satellites, and monitor 18
Is connected to the management controller 19, a GPS receiver 20 A for autonomous driving (RTK), a radio receiver 21 for receiving a signal from a radio transmitter having an autonomous driving start and stop switch for radio control, and a management controller 1
9 and an autonomous controller 22 which is an autonomous control mechanism for making the tractor 1 autonomously run is connected to a management controller 19 via a detachable wiring connector 23. The mounting position of the monitor 18 can be freely adjusted according to various lever positions, road running conditions, and the like. The monitor 18 and the management and autonomous controllers 19 and 22 may be separate or integrated.

【0010】また、前記トラクタ1のエンジン2回転数
をアクセルの設定回転数に自動的に調節する電子ガバナ
などのエンジン制御機構24と、前記トラクタ1の走行
速度を自動制御する油圧無段変速装置などの変速機構2
5と、前記トラクタ1の走行進路を自動的に変更する油
圧操向装置などの操向機構26と、トラクタ1を片ブレ
ーキ状態として左右旋回させる左右ブレーキ機構27
と、前記トラクタ1が方向転換するときロータリ作業機
12を自動的に上昇及び下降させる油圧昇降シリンダな
どの昇降機構28とを自律走行コントローラ12に接続
させると共に、トラクタ1の方位を検出する地磁気方位
センサ29と、トラクタ1の前後傾斜を検出するピッチ
ングセンサ30と、トラクタ1の左右傾斜を検出するロ
ーリングセンサ31と、操向ハンドル5のハンドル軸の
回転などより操舵角(ハンドル切れ角)を検出する操舵
角センサ32と、ミッションケース副変速出力軸の回転
より前輪の回転を検出する車輪回転センサ33と、前記
作業機12の上下高さ位置を検出する作業機昇降位置セ
ンサ28aとを自律走行コントローラ22に接続させて
いる。
Further, an engine control mechanism 24 such as an electronic governor for automatically adjusting the number of revolutions of the engine 2 of the tractor 1 to a set number of accelerators, and a hydraulic continuously variable transmission for automatically controlling the traveling speed of the tractor 1 Transmission mechanism 2 such as
5, a steering mechanism 26 such as a hydraulic steering device for automatically changing the traveling course of the tractor 1, and a left and right brake mechanism 27 for turning the tractor 1 left and right in a one-brake state.
And an elevating mechanism 28 such as a hydraulic elevating cylinder that automatically raises and lowers the rotary work machine 12 when the tractor 1 changes direction. A sensor 29, a pitching sensor 30 for detecting the front-back inclination of the tractor 1, a rolling sensor 31 for detecting the left-right inclination of the tractor 1, and a steering angle (steering angle) is detected from rotation of a steering shaft of the steering wheel 5. A steering angle sensor 32, a wheel rotation sensor 33 that detects the rotation of the front wheels based on the rotation of the transmission case subtransmission output shaft, and a work implement elevating position sensor 28a that detects the vertical position of the work implement 12. It is connected to the controller 22.

【0011】そして、前記GPS受信機20のアンテナ
20aを前後方向の車体中心ライン上で左右後輪7・7
間の鉛直線上に固定させるもので、車体の振動も比較的
少なく車体各部位置の算出が容易な左右後輪7・7間
で、エンジン2及びミッションケースなどの電波を乱す
外乱の影響の最も少なく防振性も良好な運転キャビン1
7の後部上面にアンテナ20aを受信精度良好に配置さ
せている。また、方位センサ29やピッチングセンサ3
0などをキャビン17上部のキャビンルーフ34内に配
置させるもので、前輪中央位置をGPS受信機20と方
位センサ29の出力を用いて内部演算するように構成し
ている。なお自律走行用受信機20AのアンテナもGP
S受信機20のアンテナ20aと略同一位置に設けるも
のである。
Then, the antenna 20a of the GPS receiver 20 is moved to the left and right rear wheels 7
Between the left and right rear wheels 7, 7 with relatively little vibration of the vehicle body and easy calculation of the position of each part of the vehicle body, with the least influence of disturbance that disturbs the radio waves of the engine 2, the transmission case, etc. Driving cabin 1 with good vibration isolation
The antenna 20a is arranged on the rear upper surface of the antenna 7 with good reception accuracy. Also, the direction sensor 29 and the pitching sensor 3
The center position of the front wheels is internally calculated using outputs of the GPS receiver 20 and the direction sensor 29. The antenna of the autonomous traveling receiver 20A is also a GP.
It is provided at substantially the same position as the antenna 20a of the S receiver 20.

【0012】図4に示す如く、前記モニタ18にナビゲ
ーションシステムの情報など画面表示させるもので、メ
インスイッチの操作でメニュー画面35を表示させて、
メニュー画面35上の営農情報ボタン36を操作すると
き、図5(1)2の如く、表示圃場の所有者及び面積及
び作物及び前年実績(収穫量及び農薬及び肥料)などを
記録している圃場経営情報37や特定の圃場内部の土壌
分析データを記録した土壌地図38などを、またインタ
ーネットボタン39を操作するとき、図6(1)の如く
ホームページ及び天気情報及びJA情報などインターネ
ット情報40を、またカーナビボタン41を操作すると
き、図6(2)の如く目的とする圃場の場所などを表示
する地図情報42を、また自律走行ボタン43を操作す
るとき、図6(3)に示す如く自律走行を行う圃場の領
域や経路など表示する自律走行情報44を、またサービ
スコールボタン45を操作するときトラクタ1及び作業
機12の取扱説明などサービス情報を画面表示するよう
に構成している。
As shown in FIG. 4, a screen such as navigation system information is displayed on the monitor 18 by operating a main switch to display a menu screen 35.
When the farming information button 36 on the menu screen 35 is operated, as shown in FIG. 5 (1) 2, a field in which the owner and the area of the displayed field and the crop and the previous year's results (yield, pesticide and fertilizer) are recorded. When operating the management information 37, the soil map 38 recording soil analysis data inside a specific field, and the Internet button 39, the Internet information 40 such as a homepage and weather information and JA information as shown in FIG. When the car navigation button 41 is operated, the map information 42 indicating the location of the target field is displayed as shown in FIG. 6B, and when the autonomous driving button 43 is operated, the autonomous driving button 43 is displayed as shown in FIG. Autonomous driving information 44 to be displayed, such as the area and route of a field on which the vehicle is to run, and handling instructions for the tractor 1 and the working machine 12 when operating the service call button 45 Constitute the throat service information to the screen display.

【0013】そして図7に示す如く、このトラクタによ
る耕耘作業時にあっては、作業を行う圃場までカーナビ
使用時にはカーナビによるモニタ18画面の道路案内に
よって車体を走行させ、圃場到達時には前回の作業内容
や走行軌跡など圃場情報をモニタ18に画面表示させ、
作業開始時には今回の作業内容や走行軌跡など作業情報
をコントローラ22に入力させ、自動或いは手動での耕
耘作業を行うと共に、作業後は作業情報や耕耘経路を記
録する。
As shown in FIG. 7, during the tilling operation by the tractor, when using the car navigation system, the vehicle body is driven by the road guidance on the monitor 18 screen by the car navigation system to the field where the work is to be performed. Field information such as running trajectory is displayed on the monitor 18 on the screen,
At the start of the work, the work information such as the current work content and the running locus is input to the controller 22 to perform the tilling work automatically or manually, and after the work, the work information and the tilling route are recorded.

【0014】また、図8に示す如く、自動耕耘作業にあ
って初回時GPS信号に基づいた圃場の領域や方位の設
定を行う一方、2回以降のときには初回時に設定された
圃場の領域や方位を呼び出し、目的とする圃場領域を決
定し、この領域内を新たな耕耘経路で走行させるときに
は経路を自動計算し、過去の経路で走行するときには過
去の経路を選択して認識し、耕耘条件の手動設定後に耕
耘作業を開始するもので、作業開始後は計算された或い
は過去の経路に沿って車体を自律走行させながら耕耘作
業が行われるものである。
As shown in FIG. 8, in the automatic tilling operation, the field and orientation of the field based on the GPS signal at the first time are set. Call, determine the target field area, automatically calculate the route when running in this area with a new tilling route, select and recognize the past route when running in the past route, The tilling work is started after the manual setting, and after the start of the work, the tilling work is performed while the vehicle body travels autonomously along the calculated or past route.

【0015】図9に示す如く、自律走行制御にあっては
GPS受信機20のGPS信号及び無線受信機21の操
作スイッチ信号、モニタ18のコマンド信号、各センサ
29〜33の出力信号が一定時間s毎にコントローラ2
2に入力されることによって、一定時間s毎のトラクタ
1の現在位置が正確に認識され、経路に正確に沿わせた
トラクタ1の自律走行処理や、トラクタ1を走行移動さ
せての圃場領域設定及び経路生成処理などが行われるも
ので、この作業中作業状態に応じ作業機12の昇降装置
に昇降指令や、モニタ18にトラクタ1の位置情報など
の信号を出力させて各種の出力処理を行うものである。
As shown in FIG. 9, in the autonomous driving control, the GPS signal of the GPS receiver 20, the operation switch signal of the radio receiver 21, the command signal of the monitor 18, and the output signals of the sensors 29 to 33 are output for a predetermined time. controller 2 every s
2, the current position of the tractor 1 at every fixed time s is accurately recognized, and the tractor 1 autonomously travels along the route, and sets the field area by moving the tractor 1 And a route generation process, etc., and performs various output processes by causing the elevating device of the work machine 12 to output an elevating command and the monitor 18 to output signals such as position information of the tractor 1 according to the working state during the operation. Things.

【0016】図10、図11に示す如く、前記トラクタ
1を目的とする圃場まで移動させてモニタ18をX−Y
座標で表示する圃場設定画面に切換え、オペレータ操作
で車体が圃場端に到達する毎に圃場端に作業機12を合
わせて画面内のセットボタン46を押すことによって、
実際の圃場領域が認識領域Aとして座標上に設定記憶さ
れるもので、本実施例の場合例えば長方形の圃場領域に
あって4つの角部に到達する毎に1〜4のセットボタン
46を押すことによって、4つの圃場端を4つの認識領
域地点A1・A2・A3・A4として認識する圃場情報
が記憶され、画面座標にはこれら各地点A1・A2・A
3・A4を直線で結んだ長方形が近似の認識領域Aとし
て自動計算されて表示されると共に、座標に表示される
車体方位αの自動設定が行われる。(X軸方向の方位セ
ンサ29の出力をαa、方位αのときの出力αbとする
とα=αb−αa)
As shown in FIGS. 10 and 11, the tractor 1 is moved to a target field and the monitor 18 is moved to the XY direction.
By switching to the field setting screen to be displayed in coordinates, each time the vehicle body reaches the field edge by the operator's operation, the work machine 12 is aligned with the field edge, and the set button 46 in the screen is pressed.
The actual field area is set and stored on the coordinates as the recognition area A, and in the case of the present embodiment, for example, in the case of a rectangular field area, the set buttons 46 are pressed every time four corners are reached. As a result, field information for recognizing the four field edges as four recognition area points A1, A2, A3, and A4 is stored, and these points A1, A2, and A are stored in the screen coordinates.
A rectangle connecting 3 · A4 with a straight line is automatically calculated and displayed as an approximate recognition area A, and the body direction α displayed on the coordinates is automatically set. (If the output of the azimuth sensor 29 in the X-axis direction is αa and the output αb at the azimuth α is α = αb−αa)

【0017】そしてこの圃場領域A設定後にあっては、
図12に示す如く耕耘経路を計算して、モニタ18に生
成経路Bとして画面表示させ、オペレータが適正と判断
したときには、設定された圃場領域A・方位α及び経路
Bを記録(記憶)し、不適正と判断したときには修正を
加える。
After setting the field area A,
The tillage route is calculated as shown in FIG. 12 and displayed on the monitor 18 as a generated route B. When the operator determines that the tillage route is appropriate, the set field area A, the direction α and the route B are recorded (stored). If it is determined to be inappropriate, make corrections.

【0018】また、経路Bに沿った自律走行を行うもの
で、自律走行時における直進制御は図13、図14に示
す如く、直線目標経路B1に沿って車体の走行中、車体
前側の前輪4・4中央位置である中心部47及び車体後
側のGPS受信機20のアンテナ20a設置位置である
GPS位置計測点48と目標経路B1とが距離(位置偏
差)L1・L2離れて、前輪4・4の任意操舵角θ1状
態にあるときには、車体前側の中心部47より一定距離
D前方の目標経路B1上に目標点49を設定して、中心
部47と目標点49を結ぶ直線C1と前記中心部47を
通る経路B1と平行な直線F1との間の前目標方位α2
(α2=Arctan(L1/D))を算出させ、経路
B1に対する車体の方位α1と操舵角θ1と目標方位θ
2とで目標操舵角θ(θ=α1+θ1+α2)を算出さ
せ、またGPS位置計測点48より一定距離D前方の
目標経路B1上に後目標点50を設定し、計測点48と
後目標点50を結ぶ直線C2と前記計測点48を通る経
路B1と平行な直線F2との間の目標方位β(β=Ar
ctan(L2/D))を算出させ、前輪4の目標操
舵角θに基づく操舵制御値と、計測点48の目標方位β
に基づくPI制御の比例及び積分値でもって操向機構2
6の油圧操向バルブ26aの指令値T(T=Kpθ+
Kpβ+Ki∫β)(Kp,Kp,Kiは比例定
数)を算出させ、指令値Tに基づくバルブ26aの駆動
制御によって経路B1に機体をスムーズに沿わせた直進
の自律走行を行うように構成している。
The autonomous traveling along the route B is performed. The straight-ahead control during the autonomous traveling is performed as shown in FIGS. 13 and 14, while the vehicle is traveling along the straight target route B1, the front wheels 4 on the front side of the vehicle are controlled. The distance (positional deviation) L1 · L2 between the center position 47 at the center of the vehicle and the GPS position measurement point 48 at the antenna 20a of the GPS receiver 20 on the rear side of the vehicle body and the target path B1 are separated by the distance between the front wheels 4. 4, when the vehicle is in the arbitrary steering angle θ1 state, a target point 49 is set on a target path B1 that is a predetermined distance D ahead of the center part 47 on the front side of the vehicle body, and a straight line C1 connecting the center part 47 and the target point 49 and the center Target azimuth α2 between the path B1 passing through the part 47 and the parallel straight line F1
(Α2 = Arctan (L1 / D)) is calculated, and the azimuth α1, the steering angle θ1, and the target azimuth θ of the vehicle body with respect to the route B1 are calculated.
2 is calculated target steering angle θ (θ = α1 + θ1 + α2) , the also sets the post-target point 50 on a fixed distance D G ahead of the target route B1 from GPS position measurement point 48, the measurement point 48 and a rear target point 50 Azimuth β (β = Ar) between a straight line C2 connecting
ctan (L2 / D G )), the steering control value based on the target steering angle θ of the front wheel 4 and the target azimuth β of the measurement point 48.
Steering mechanism 2 with proportional and integral values of PI control based on
The command value T of the hydraulic steering valve 26a of No. 6 (T = Kp 1 θ +
Kp 2 β + Ki∫β) (where Kp 1 , Kp 2 , and Ki are proportional constants), and drive control of the valve 26 a based on the command value T to perform straight-line autonomous traveling with the aircraft smoothly along the route B 1. It is composed.

【0019】このように、図14のブロック線図に示す
如く、前記GPS位置計測点48と目標経路B1との間
の誤差のPI制御を行うことによって、計測点(GPS
出力位置)48を方位センサの誤差なく直接的に計測し
て、経路追従性能を向上させると共に、積分I動作の効
果で車輪スリップなどによる定常偏差も低減させて、経
路B1に正確に追従させることができる。
As described above, as shown in the block diagram of FIG. 14, by performing PI control of the error between the GPS position measurement point 48 and the target route B1, the measurement point (GPS)
Direct measurement of the output position (48) without an error of the direction sensor to improve the path following performance, and to reduce the steady-state deviation due to the wheel slip and the like by the effect of the integral I operation to accurately follow the path B1. Can be.

【0020】上記からも明らかなように、前輪中央位置
を車体の目標経路B1に追従させる目標操舵角θに基づ
く自律走行手段51と、GPS受信装置20の設置位置
を目標経路B1に追従させるPI制御に基づく自律走行
補正手段52とを設けることによって、方位センサ29
の出力に基づく直進制御にオフセット誤差が生じても、
GPS受信装置20の出力に基づくPI(比例・積分)
制御でもって経路追従性能を向上させると共に、従来の
方位センサ29に基づく経路追従性能を確保して、ステ
アリング操作の安定性や操作性を向上させることができ
る。
As is clear from the above description, the autonomous traveling means 51 based on the target steering angle θ for causing the front wheel center position to follow the target route B1 of the vehicle body, and the PI for causing the installation position of the GPS receiver 20 to follow the target route B1. By providing the autonomous traveling correction means 52 based on the control, the azimuth sensor 29
Even if an offset error occurs in the straight running control based on the output of
PI (proportional / integral) based on the output of the GPS receiver 20
It is possible to improve the route following performance by the control and to secure the route following performance based on the conventional azimuth sensor 29, thereby improving the stability and operability of the steering operation.

【0021】また図15にも示す如く、前記目標点49
を車体前側の左右離間距離L1の大小変化によって切換
えるもので、距離L1が一定値より大となる距離L3の
とき、車体前側の中心部47と目標点49a間の直進距
離D1を小、距離L1が一定値より小となる距離L4の
とき、車体前側の中心部47と目標点49b間の直進距
離D2を大に切換えて、車体前側の距離L3・L4の大
小変化に応じ目標操舵角θも大小に変更して速やかに収
束させて直進制御の精度を向上させるように構成してい
る。
As shown in FIG.
Is switched according to a change in the left-right separation distance L1 on the front side of the vehicle body, and when the distance L1 is a distance L3 greater than a certain value, the straight traveling distance D1 between the center portion 47 on the front side of the vehicle body and the target point 49a is reduced by a distance L1. When the distance L4 is smaller than a predetermined value, the straight traveling distance D2 between the center portion 47 on the front side of the vehicle body and the target point 49b is switched to a large value, and the target steering angle θ is also changed according to the change in the distance L3 · L4 on the front side of the vehicle body. It is configured to change to a large or small value and quickly converge to improve the accuracy of the straight traveling control.

【0022】また図16、図17に示す如く、車体旋回
時には円旋回目標経路B2に沿う自律旋回制御を行うも
ので、車体前側の前輪4・4中心部47を制御基準位置
に設け、目標経路B2の旋回中心50と中心部47とを
結ぶ直線Eと、経路B2との交点aを通る車体の接線ベ
クトルbに対し、中心部47の位置偏差dと方位偏差α
3を算出して、これら偏差d・α3に基づいて油圧操向
バルブ26aの指令値t(t=K3d+K4α3)(K
3,K4は定数)を算出させ、指令値tに基づくバルブ
26aの駆動制御によって、円旋回経路B2に機体をス
ムーズに沿わせた旋回制御を行うように構成している。
As shown in FIGS. 16 and 17, when turning the vehicle, autonomous turning control along the circular turning target route B2 is performed. With respect to a straight line E connecting the turning center 50 of B2 and the center part 47 and a tangent vector b of the vehicle body passing through an intersection a with the route B2, the position deviation d and the azimuth deviation α of the center part 47 are obtained.
3 is calculated, and a command value t (t = K3d + K4α3) (K
3, and K4 are constants), and the driving control of the valve 26a based on the command value t is performed so as to perform the turning control in which the body smoothly follows the circular turning path B2.

【0023】また、図12に示す如く耕耘作業にあって
は、初回に走行する経路Bの1工程のエンジン回転数や
走行速度を走行条件として記憶し、以後の作業はこの走
行条件を自動的に保って耕耘作業を行うもので、前輪4
・4の操舵角や農作業機12の上昇するときには同期し
てエンジン回転数N1を作業時の回転数Nより低下(N
1<N)させ、作業途中の中断時或いは作業前にはアイ
ドリング状態とさせるなどして回転数N2をさらに低下
させて動力ロスのない効果的なエンジン2の駆動を可能
とさせるように構成している。さらに耕耘作業中にあっ
ては、前輪回転センサ33の検出でもって前輪4の移動
距離を算出させ、GPSデータに基づく実際の移動距離
と回転センサ33に基づく移動距離とでスリップ率を算
出させるもので、スリップ率が一定以上に大のときには
警報装置など作動させてオペレータに報知させるように
構成している。
As shown in FIG. 12, in the tilling work, the engine speed and the running speed of one process of the route B which is run for the first time are stored as running conditions. Tilling work while keeping the
When the steering angle of 4 or the agricultural work machine 12 rises, the engine speed N1 is reduced synchronously with the engine speed N during work (N
1 <N) so that the engine 2 is idling before or during the interruption of the operation to further reduce the number of revolutions N2 to enable effective driving of the engine 2 without power loss. ing. Further, during the tilling operation, the moving distance of the front wheel 4 is calculated by the detection of the front wheel rotation sensor 33, and the slip ratio is calculated by the actual moving distance based on the GPS data and the moving distance based on the rotation sensor 33. When the slip ratio is larger than a certain value, an alarm device or the like is activated to notify the operator.

【0024】なお前記方位センサ29は前輪4・4中心
部47位置やキャビンルーフ34内或いはキャビンルー
フ34上面の何れに設置しても良く、キャビンルーフ3
4内に設けた場合車体駆動部などより遠隔させて、振動
や塵埃より保護させることができると共に磁場(金属)
より遠隔させることができる。
The azimuth sensor 29 may be installed at the position of the center portion 47 of the front wheels 4, 4 or in the cabin roof 34 or on the upper surface of the cabin roof 34.
4, it can be remote from the vehicle body drive unit, etc., and can be protected from vibration and dust, and can be protected from magnetic field (metal)
Can be more remote.

【0025】図19乃至図22に示す如く、前記方位セ
ンサ29或いはGPS受信機20の出力を利用して、方
位センサ29のオフセット誤差の補正を可能とさせるも
ので、図19、図20に示すものは、直進中の車体方位
は略一定であることから、GPS受信機20より得られ
る座標データXn,Ynよりデータ取得時間の平均方位
dgを算出させ、このGPSより求めた平均方位と方位
センサ値dnの平均方位との差から方位オフセット量を
演算し、そのオフセット量を補正値△αとして、随時出
力される方位センサ29の出力値を減算補正して、経路
B1の追従性能を向上させるように構成したものであ
る。
As shown in FIGS. 19 to 22, the offset error of the azimuth sensor 29 can be corrected by using the output of the azimuth sensor 29 or the GPS receiver 20, as shown in FIGS. Since the vehicle direction while traveling straight is substantially constant, the average direction dg of the data acquisition time is calculated from the coordinate data Xn and Yn obtained from the GPS receiver 20, and the average direction and the direction sensor obtained from the GPS are calculated. The azimuth offset amount is calculated from the difference between the value dn and the average azimuth, and the offset amount is used as a correction value △ α to subtract and correct the output value of the azimuth sensor 29 that is output as needed to improve the following performance of the route B1. It is configured as follows.

【0026】図21、図22に示すものは、図12中の
耕耘経路4方向の各直進経路の方向の各補正角度H0・
H90・H180・H270を求めるもので、現在走行
中の目標直進経路の方位M0をとし、この方向M0を走
行するときの方位センサ29の出力平均値M1とさせる
とき、方位補正値H0をH0=M1−M0で算出させ、
2回目以降同じ方向M0の経路を走行するときの方位セ
ンサ29の出力値がM1′となるとき(M1′はある時
刻の実測値)、補正値H0で補正してこの経路での方位
M(M=M1′−H0)を算出させて、各直進経路に沿
った正確な追従走行を可能とさせるものである。また1
回前の同一方向のオフセット角度を用いて、現在の走行
方向を補正するので、方位センサ29のオフセット誤差
が変化してもその影響を最小とさせることができる。
FIGS. 21 and 22 show the correction angles H0.multidot.H.multidot. In the direction of each straight path of the four tillage paths in FIG.
H90, H180, and H270 are obtained, and the azimuth M0 of the currently traveling target straight-ahead route is used. When the output average value M1 of the azimuth sensor 29 when traveling in this direction M0 is used, the azimuth correction value H0 is calculated as H0 = Calculated by M1-M0,
When the output value of the azimuth sensor 29 when traveling on the route in the same direction M0 from the second time is M1 '(M1' is an actual measurement value at a certain time), the azimuth M on this route is corrected by the correction value H0. M = M1'-H0) to enable accurate follow-up running along each straight path. Also one
Since the current traveling direction is corrected using the offset angle in the same direction before the current rotation, even if the offset error of the azimuth sensor 29 changes, its influence can be minimized.

【0027】なお、走行する直進経路の方位M0は自律
走行にあっては目標経路B1の方位を用い、オペレータ
による走行時にはGPSで計測した位置より演算するも
ので、自律走行時の場合最初の圃場設定時の4方向のオ
フセット角度を記憶することにより、自律走行の最初の
経路B1からの補正を可能とさせるものである。
The azimuth M0 of the straight traveling route is calculated by using the azimuth of the target route B1 in the autonomous driving and from the position measured by the GPS when the operator runs. By storing the offset angles in the four directions at the time of setting, correction from the first route B1 of autonomous traveling is enabled.

【0028】図23に示すものは、車体旋回時の方位セ
ンサ29の出力値を用いて該センサ29の補正を行うも
ので、地磁気方位センサ29はX,Yの2軸の出力から
なり、地磁気ベクトルの方位成分に比例した電圧を出力
し、地磁気ベクトルの大きさは一定のため、車体が旋回
すると方位センサ29は地磁気ベクトルの大きさに比例
したX・Y成分を持つベクトル(Vx,Vy)を出力
し、その集合は原点を中心とする円軌道となる。
FIG. 23 shows an example in which the sensor 29 is corrected by using the output value of the direction sensor 29 when the vehicle is turning. The geomagnetic direction sensor 29 is composed of outputs of two axes, X and Y. Since a voltage proportional to the azimuth component of the vector is output and the magnitude of the geomagnetic vector is constant, when the vehicle turns, the azimuth sensor 29 causes the vector (Vx, Vy) having the X and Y components proportional to the magnitude of the geomagnetic vector. And the set is a circular orbit centered on the origin.

【0029】そして方位センサ29の周囲温度が変化し
センサ出力にオフセット誤差が生じるとき、車体が旋回
するときのセンサ出力の電圧分布は中心が原点から外れ
た楕円となって方位出力に誤差を生じる。そのため旋回
時の方位センサ29の出力ベクトルを多数用いて最小二
乗法(楕円とセンサ出力の二乗誤差が最小となるように
係数を求める)によりセンサ出力の楕円電圧分布を推定
し、楕円形の電圧分布を真円形の電圧分布に修正後に、
方位を算出させることによって正確な方位の検出が行え
るもので、このような方位演算を随時行うことで方位誤
差を低減させ自律走行性能を向上させることができる。
When the ambient temperature of the azimuth sensor 29 changes and an offset error occurs in the sensor output, the voltage distribution of the sensor output when the vehicle turns is an ellipse whose center deviates from the origin, causing an error in the azimuth output. . Therefore, the elliptic voltage distribution of the sensor output is estimated by the least square method (calculating a coefficient so that the square error between the ellipse and the sensor output is minimized) using a large number of output vectors of the azimuth sensor 29 at the time of turning, and the elliptical voltage is estimated. After correcting the distribution to a true circular voltage distribution,
Accurate azimuth detection can be performed by calculating the azimuth. By performing such azimuth calculation as needed, azimuth errors can be reduced and autonomous driving performance can be improved.

【0030】また上記の最小二乗法で用いるデータに重
みをつけ、新しいデータが加わる毎に過去のデータに1
より小さな定数を乗算させるもので、長時間作業時に地
磁気方位センサ付近が温度変化して方位センサの特性が
変化した場合にも良好に対応可能とさせることができ
る。
The data used in the least-squares method is weighted, and each time new data is added, 1 is added to the past data.
By multiplying by a smaller constant, it is possible to satisfactorily cope with a change in the characteristics of the azimuth sensor due to a temperature change near the geomagnetic azimuth sensor during long working hours.

【0031】[0031]

【発明の効果】以上実施例から明らかなように本発明
は、車体の方位を検出する地磁気方位センサ29と、車
体の走行位置を認識するGPS受信装置20を備え、前
輪中央位置を車体の目標経路B1に追従させる自律走行
手段51と、GPS受信装置20の設置位置を目標経路
B1に追従させる自律走行補正手段52とを設けるもの
であるから、方位センサ29の出力に基づく直進制御に
オフセット誤差が生じても、GPS受信装置20の設置
位置を目標経路B1に沿わせるPI(比例・積分)制御
でもって経路追従性能を向上させると共に、従来の方位
センサ29に基づく経路追従性能を確保して、ステアリ
ング操作の安定性や操作性を向上させることができるも
のである。
As is apparent from the above embodiment, the present invention comprises a geomagnetic direction sensor 29 for detecting the direction of the vehicle body and a GPS receiver 20 for recognizing the running position of the vehicle body. An autonomous traveling unit 51 that follows the route B1 and an autonomous traveling correction unit 52 that follows the installation position of the GPS receiver 20 to follow the target route B1 are provided. Even if the wake-up occurs, the path following performance is improved by PI (proportional / integral) control for causing the installation position of the GPS receiver 20 to follow the target route B1, and the route following performance based on the conventional direction sensor 29 is secured. In addition, the stability and operability of the steering operation can be improved.

【0032】また、GPS受信装置20で認識する車体
位置の時間変化で方位を演算して、方位センサ29の補
正を行うものであるから、GPS出力によって方位セン
サ29で検出される方位誤差を低減して方位センサ29
に基づく正確な経路追従制御を容易に可能とさせること
ができるものである。
Since the azimuth is calculated based on the time change of the vehicle body position recognized by the GPS receiver 20 and the azimuth sensor 29 is corrected, the azimuth error detected by the azimuth sensor 29 by the GPS output is reduced. Direction sensor 29
It is possible to easily enable accurate route following control based on the information.

【0033】さらに、同一方向の目標経路B1を最初に
走行する時の方位センサ29の出力で方位センサ29の
オフセット誤差を検出し、次回走行時の方位センサ29
の出力をオフセット誤差で補正するものであるから、同
一の方位センサ29を有効利用して方位センサ29のオ
フセット誤差を低減させて、正確な経路追従制御を容易
に可能とさせることができるものである。
Further, an offset error of the azimuth sensor 29 is detected from the output of the azimuth sensor 29 when the vehicle travels on the target route B1 in the same direction for the first time.
Is corrected by the offset error, the same azimuth sensor 29 can be effectively used to reduce the offset error of the azimuth sensor 29, and accurate path following control can be easily performed. is there.

【0034】またさらに、車体旋回中の方位センサ29
の出力でオフセット状況を算出し、次回方位センサ29
の出力の補正を行うものであるから、旋回後の方位セン
サ29の方位検出誤差を低減させて、正確な経路追従制
御を容易に可能とさせることができるものである。
Further, the azimuth sensor 29 during turning of the vehicle body
Calculates the offset status with the output of
Therefore, it is possible to reduce the azimuth detection error of the azimuth sensor 29 after turning, and to easily perform accurate path following control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】全体の側面図。FIG. 1 is an overall side view.

【図2】全体の平面図。FIG. 2 is an overall plan view.

【図3】自律走行の制御回路図。FIG. 3 is a control circuit diagram of autonomous traveling.

【図4】モニタのナビゲーションシステムのメニュー画
面の説明図。
FIG. 4 is an explanatory diagram of a menu screen of a monitor navigation system.

【図5】モニタのナビゲーションシステム画面の説明
図。
FIG. 5 is an explanatory diagram of a monitor navigation system screen.

【図6】モニタのナビゲーションシステム画面の説明
図。
FIG. 6 is an explanatory diagram of a navigation system screen of a monitor.

【図7】GPSデータに基づくトラクタ作業のフローチ
ャート。
FIG. 7 is a flowchart of a tractor operation based on GPS data.

【図8】GPSデータに基づく自動耕耘作業のフローチ
ャート。
FIG. 8 is a flowchart of an automatic tilling operation based on GPS data.

【図9】GPSデータに基づく自律走行のフローチャー
ト。
FIG. 9 is a flowchart of autonomous traveling based on GPS data.

【図10】GPSデータに基づく経路生成のフローチャ
ート。
FIG. 10 is a flowchart of route generation based on GPS data.

【図11】GPSデータに基づく領域設定の説明図。FIG. 11 is an explanatory diagram of area setting based on GPS data.

【図12】GPSデータに基づく経路生成の説明図。FIG. 12 is an explanatory diagram of route generation based on GPS data.

【図13】直進制御の説明図。FIG. 13 is an explanatory diagram of straight-ahead control.

【図14】直進制御のブロック線図。FIG. 14 is a block diagram of straight-ahead control.

【図15】目標点の設定説明図。FIG. 15 is an explanatory diagram of setting a target point.

【図16】旋回制御のフローチャート。FIG. 16 is a flowchart of turning control.

【図17】旋回制御の説明図。FIG. 17 is an explanatory diagram of turning control.

【図18】エンジン制御のフローチャート。FIG. 18 is a flowchart of engine control.

【図19】GPSに基づく方位センサの補正説明図。FIG. 19 is an explanatory diagram of correction of a direction sensor based on GPS.

【図20】GPSに基づく方位センサの補正流れ図。FIG. 20 is a flowchart of correction of a GPS-based azimuth sensor.

【図21】方位センサによる方位センサの補正説明図。FIG. 21 is an explanatory diagram of correction of a direction sensor by a direction sensor.

【図22】方位センサによる方位センサの補正フローチ
ャート。
FIG. 22 is a flowchart of correction of the direction sensor by the direction sensor.

【図23】旋回時における方位センサの出力説明図。FIG. 23 is an explanatory diagram of an output of a direction sensor during a turn.

【図24】方位センサのオフセット説明図。FIG. 24 is an explanatory view of an offset of a direction sensor.

【符号の説明】[Explanation of symbols]

20 GPS受信機(GPS受信装置) 29 方位センサ B1 目標経路 20 GPS receiver (GPS receiver) 29 Direction sensor B1 Target route

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01S 5/14 G01S 5/14 G09B 29/00 G09B 29/00 A 29/10 29/10 A // G05D 1/00 G05D 1/00 B B62D 101:00 B62D 101:00 113:00 113:00 (72)発明者 山口 雄司 大阪市北区茶屋町1番32号 ヤンマーディ ーゼル株式会社内 (72)発明者 白水 崇之 大阪市北区茶屋町1番32号 ヤンマーディ ーゼル株式会社内 Fターム(参考) 2B043 AA10 BA09 BB03 DA20 DC03 EA32 EB05 EB08 EB29 EC13 EC16 ED12 2C032 HB22 HC08 HC14 HC21 HD16 3D032 CC20 DA03 DA24 DA87 DD02 EA01 EB04 EC35 FF07 GG12 5H301 AA03 AA10 BB01 CC03 CC06 DD06 DD15 GG07 HH01 5J062 AA04 BB01 CC07 FF06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01S 5/14 G01S 5/14 G09B 29/00 G09B 29/00 A 29/10 29/10 A // G05D 1/00 G05D 1/00 B B62D 101: 00 B62D 101: 00 113: 00 113: 00 (72) Inventor Yuji Yamaguchi 1-32 Chayacho, Kita-ku, Osaka-shi Yanmar Diesel Co., Ltd. (72) Inventor Takayuki Shiramizu 1-32 Chayamachi, Kita-ku, Osaka F-term (reference) 2B043 AA10 BA09 BB03 DA20 DC03 EA32 EB05 EB08 EB29 EC13 EC16 ED12 2C032 HB22 HC08 HC14 HC21 HD16 3D032 CC20 DA03 DA24 DA87EB04 EA02 EC35 FF07 GG12 5H301 AA03 AA10 BB01 CC03 CC06 DD06 DD15 GG07 HH01 5J062 AA04 BB01 CC07 FF06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 車体の方位を検出する地磁気方位センサ
と、車体の走行位置を認識するGPS受信装置を備え、
前輪中央位置を車体の目標経路に追従させる自律走行手
段と、GPS受信装置の設置位置を目標経路に追従させ
る補正自律走行手段とを設けたことを特徴とする農業用
作業車。
1. A vehicle comprising: a geomagnetic direction sensor for detecting a direction of a vehicle body; and a GPS receiver for recognizing a traveling position of the vehicle body.
An agricultural work vehicle comprising: an autonomous traveling unit that causes a front wheel center position to follow a target route of a vehicle body; and a corrected autonomous traveling unit that causes an installation position of a GPS receiver to follow a target route.
【請求項2】 GPS受信装置で認識する車***置の時
間変化で方位を演算して、方位センサの補正を行うよう
に設けたことを特徴とする請求項1記載の農業用作業
車。
2. The agricultural work vehicle according to claim 1, wherein an azimuth is calculated based on a time change of the vehicle body position recognized by the GPS receiver, and the azimuth sensor is corrected.
【請求項3】 同一方向の目標経路を最初に走行する時
の方位センサの出力で方位センサのオフセット誤差を検
出し、次回走行時の方位センサの出力をオフセット誤差
で補正するように設けたことを特徴とする請求項1記載
の農業用作業車。
3. An offset error of the azimuth sensor is detected based on an output of the azimuth sensor when the vehicle travels on a target route in the same direction for the first time, and an output of the azimuth sensor during the next travel is corrected using the offset error. The agricultural work vehicle according to claim 1, wherein:
【請求項4】 車体旋回中の方位センサの出力でオフセ
ット状況を算出し、次回方位センサの出力の補正を行う
ように設けたことを特徴とする請求項1記載の農業用作
業車。
4. The agricultural work vehicle according to claim 1, wherein an offset situation is calculated based on an output of the direction sensor during the turning of the vehicle body, and the output of the direction sensor is corrected next time.
JP2001163888A 2001-05-31 2001-05-31 Agricultural work vehicle Pending JP2002358122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163888A JP2002358122A (en) 2001-05-31 2001-05-31 Agricultural work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163888A JP2002358122A (en) 2001-05-31 2001-05-31 Agricultural work vehicle

Publications (1)

Publication Number Publication Date
JP2002358122A true JP2002358122A (en) 2002-12-13

Family

ID=19006777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163888A Pending JP2002358122A (en) 2001-05-31 2001-05-31 Agricultural work vehicle

Country Status (1)

Country Link
JP (1) JP2002358122A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126980A (en) * 2004-10-27 2006-05-18 Nissan Motor Co Ltd Travel path creating apparatus
KR100781807B1 (en) 2006-03-02 2007-12-04 김진완 self-control automobile and method of tracking target waypoint
JP2009240221A (en) * 2008-03-31 2009-10-22 Kubota Corp Control device of working vehicle
KR101339750B1 (en) * 2012-06-13 2013-12-10 동양물산기업 주식회사 Autonomous tracktor
JP2014145629A (en) * 2013-01-28 2014-08-14 Tohoku Electric Power Co Inc Underground radar system achieving three-dimensional display
WO2015057630A1 (en) * 2013-10-14 2015-04-23 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for ag based operations
JP2015221010A (en) * 2014-05-22 2015-12-10 ヤンマー株式会社 Traction control device
JP2016029912A (en) * 2014-07-29 2016-03-07 井関農機株式会社 Work vehicle
JP2016094093A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Antenna for satellite navigation system
WO2016178294A1 (en) * 2015-05-07 2016-11-10 ヤンマー株式会社 Induction control system for autonomous-traveling vehicle
JPWO2016060283A1 (en) * 2015-11-30 2017-04-27 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine control method
KR101765746B1 (en) * 2015-09-25 2017-08-08 서울대학교산학협력단 Positioning method and system for autonomous driving of agricultural unmmaned tractor using multiple low cost gps
WO2017203733A1 (en) * 2016-05-26 2017-11-30 株式会社クボタ Work vehicle, and time-based management system applicable to said work vehicle
JP2018064590A (en) * 2014-07-17 2018-04-26 株式会社クボタ Agricultural machine
JP2018117566A (en) * 2017-01-24 2018-08-02 株式会社クボタ Travel route generation system
WO2018159261A1 (en) * 2017-03-03 2018-09-07 ヤンマー株式会社 Wireless communication device
JP2018165922A (en) * 2017-03-28 2018-10-25 ヤンマー株式会社 Remote monitoring system for agricultural machine
EP3395139A1 (en) 2017-04-26 2018-10-31 Kubota Corporation Automatic steering system
JP2019503523A (en) * 2016-09-27 2019-02-07 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC Method for distributing vehicle position points for autonomous vehicles
WO2019054057A1 (en) * 2017-09-14 2019-03-21 ヤンマー株式会社 Autonomous travel system for work vehicle
JP2019053470A (en) * 2017-09-14 2019-04-04 ヤンマー株式会社 Work vehicle-purpose autonomous travelling system
JP2019053471A (en) * 2017-09-14 2019-04-04 ヤンマー株式会社 Work vehicle-purpose autonomous travelling system
WO2019123923A1 (en) 2017-12-18 2019-06-27 株式会社クボタ Automatic steering system and automatic steering method
JP2019106973A (en) * 2017-12-20 2019-07-04 株式会社クボタ Work vehicle
JP2019168939A (en) * 2018-03-23 2019-10-03 ヤンマー株式会社 Autonomous travel system
JP2019170199A (en) * 2018-03-27 2019-10-10 ヤンマー株式会社 Autonomic steering device
JP2019185437A (en) * 2018-04-11 2019-10-24 株式会社クボタ Working vehicle
CN110573979A (en) * 2018-03-29 2019-12-13 深圳市大疆软件科技有限公司 job path adjusting method and apparatus, removable device job path adjusting method and device, and recording medium
JP2021036920A (en) * 2020-12-08 2021-03-11 株式会社クボタ Paddy field working machine
KR20210067924A (en) 2019-11-29 2021-06-08 가부시끼 가이샤 구보다 Automatic traveling control system, combine and harvester
KR20210096079A (en) 2018-11-30 2021-08-04 가부시끼 가이샤 구보다 Auto Steering System, Auto Steering Method and Auto Steering Program
WO2021193269A1 (en) * 2020-03-26 2021-09-30 日立建機株式会社 Work vehicle
CN114206703A (en) * 2019-09-30 2022-03-18 株式会社小松制作所 Control system, control method for work vehicle, and work vehicle
CN115298395A (en) * 2020-06-25 2022-11-04 株式会社小松制作所 System and method for correcting the orientation of a work machine
JP2023004371A (en) * 2021-06-25 2023-01-17 井関農機株式会社 work vehicle
WO2023112752A1 (en) * 2021-12-17 2023-06-22 株式会社クボタ Automated travel control system

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622453B2 (en) * 2004-10-27 2011-02-02 日産自動車株式会社 Self-steering vehicle
JP2006126980A (en) * 2004-10-27 2006-05-18 Nissan Motor Co Ltd Travel path creating apparatus
KR100781807B1 (en) 2006-03-02 2007-12-04 김진완 self-control automobile and method of tracking target waypoint
JP4713610B2 (en) * 2008-03-31 2011-06-29 株式会社クボタ Work vehicle control device
JP2009240221A (en) * 2008-03-31 2009-10-22 Kubota Corp Control device of working vehicle
KR101339750B1 (en) * 2012-06-13 2013-12-10 동양물산기업 주식회사 Autonomous tracktor
JP2014145629A (en) * 2013-01-28 2014-08-14 Tohoku Electric Power Co Inc Underground radar system achieving three-dimensional display
US10130022B2 (en) 2013-10-14 2018-11-20 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
US11252853B2 (en) 2013-10-14 2022-02-22 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
WO2015057630A1 (en) * 2013-10-14 2015-04-23 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for ag based operations
US10080321B2 (en) 2013-10-14 2018-09-25 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
US10111373B2 (en) 2013-10-14 2018-10-30 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
US10104824B2 (en) 2013-10-14 2018-10-23 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
US10575453B2 (en) 2013-10-14 2020-03-03 Kinze Manufacturing, Inc. Autonomous systems, methods, and apparatus for AG based operations
JP2015221010A (en) * 2014-05-22 2015-12-10 ヤンマー株式会社 Traction control device
JP2018064590A (en) * 2014-07-17 2018-04-26 株式会社クボタ Agricultural machine
JP2016029912A (en) * 2014-07-29 2016-03-07 井関農機株式会社 Work vehicle
JP2016094093A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Antenna for satellite navigation system
JPWO2016178294A1 (en) * 2015-05-07 2018-03-01 ヤンマー株式会社 Guidance control system for autonomous vehicles
US10761531B2 (en) 2015-05-07 2020-09-01 Kpit Technologies Limited Guidance control system for autonomous-traveling vehicle
JP2019061695A (en) * 2015-05-07 2019-04-18 ヤンマー株式会社 Guide control system
WO2016178294A1 (en) * 2015-05-07 2016-11-10 ヤンマー株式会社 Induction control system for autonomous-traveling vehicle
KR101765746B1 (en) * 2015-09-25 2017-08-08 서울대학교산학협력단 Positioning method and system for autonomous driving of agricultural unmmaned tractor using multiple low cost gps
JPWO2016060283A1 (en) * 2015-11-30 2017-04-27 株式会社小松製作所 Work machine control system, work machine, work machine management system, and work machine control method
US10126753B2 (en) 2015-11-30 2018-11-13 Komatsu Ltd. Work machine control system, work machine, work machine management system, and method for controlling work machine
WO2017203733A1 (en) * 2016-05-26 2017-11-30 株式会社クボタ Work vehicle, and time-based management system applicable to said work vehicle
US11144061B2 (en) 2016-05-26 2021-10-12 Kubota Corporation Work vehicle and time-based management system applicable to the work vehicle
JP2017209070A (en) * 2016-05-26 2017-11-30 株式会社クボタ Work vehicle and time based management system applied to the work vehicle
JP2019503523A (en) * 2016-09-27 2019-02-07 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC Method for distributing vehicle position points for autonomous vehicles
JP2018117566A (en) * 2017-01-24 2018-08-02 株式会社クボタ Travel route generation system
WO2018159261A1 (en) * 2017-03-03 2018-09-07 ヤンマー株式会社 Wireless communication device
JP2018165922A (en) * 2017-03-28 2018-10-25 ヤンマー株式会社 Remote monitoring system for agricultural machine
EP3395139A1 (en) 2017-04-26 2018-10-31 Kubota Corporation Automatic steering system
US10813267B2 (en) 2017-04-26 2020-10-27 Kubota Corporation Control apparatus for automatic traveling vehicle
WO2019054057A1 (en) * 2017-09-14 2019-03-21 ヤンマー株式会社 Autonomous travel system for work vehicle
JP2019053470A (en) * 2017-09-14 2019-04-04 ヤンマー株式会社 Work vehicle-purpose autonomous travelling system
JP2019053471A (en) * 2017-09-14 2019-04-04 ヤンマー株式会社 Work vehicle-purpose autonomous travelling system
WO2019123923A1 (en) 2017-12-18 2019-06-27 株式会社クボタ Automatic steering system and automatic steering method
US11317557B2 (en) 2017-12-18 2022-05-03 Kubota Corporation Automatic steering system and automatic steering method
KR20200096500A (en) 2017-12-18 2020-08-12 가부시끼 가이샤 구보다 Automatic steering system and automatic steering method
JP2019106973A (en) * 2017-12-20 2019-07-04 株式会社クボタ Work vehicle
JP2019168939A (en) * 2018-03-23 2019-10-03 ヤンマー株式会社 Autonomous travel system
JP2019170199A (en) * 2018-03-27 2019-10-10 ヤンマー株式会社 Autonomic steering device
CN110573979B (en) * 2018-03-29 2023-11-14 深圳市大疆软件科技有限公司 Method and device for adjusting working path, method and device for adjusting working path of movable equipment, and recording medium
CN110573979A (en) * 2018-03-29 2019-12-13 深圳市大疆软件科技有限公司 job path adjusting method and apparatus, removable device job path adjusting method and device, and recording medium
JP2019185437A (en) * 2018-04-11 2019-10-24 株式会社クボタ Working vehicle
JP7117886B2 (en) 2018-04-11 2022-08-15 株式会社クボタ work vehicle
KR20210096079A (en) 2018-11-30 2021-08-04 가부시끼 가이샤 구보다 Auto Steering System, Auto Steering Method and Auto Steering Program
CN114206703A (en) * 2019-09-30 2022-03-18 株式会社小松制作所 Control system, control method for work vehicle, and work vehicle
KR20210067924A (en) 2019-11-29 2021-06-08 가부시끼 가이샤 구보다 Automatic traveling control system, combine and harvester
WO2021193269A1 (en) * 2020-03-26 2021-09-30 日立建機株式会社 Work vehicle
JP2021156678A (en) * 2020-03-26 2021-10-07 日立建機株式会社 Work vehicle
CN115298395A (en) * 2020-06-25 2022-11-04 株式会社小松制作所 System and method for correcting the orientation of a work machine
JP2021036920A (en) * 2020-12-08 2021-03-11 株式会社クボタ Paddy field working machine
JP2023004371A (en) * 2021-06-25 2023-01-17 井関農機株式会社 work vehicle
JP7392689B2 (en) 2021-06-25 2023-12-06 井関農機株式会社 work vehicle
WO2023112752A1 (en) * 2021-12-17 2023-06-22 株式会社クボタ Automated travel control system

Similar Documents

Publication Publication Date Title
JP2002358122A (en) Agricultural work vehicle
JP4801252B2 (en) Agricultural work vehicle
JP2002354905A (en) Agricultural working vehicle
JP4295911B2 (en) Agricultural work vehicle
JP6925780B2 (en) Work platform
US10407097B2 (en) Automatic traveling work vehicle, steering controller for automatic traveling work vehicle, and steering control method for automatic traveling work vehicle
US11937526B2 (en) Control device for work vehicle configured to travel autonomously
US11964692B2 (en) Application of auxiliary lighting in automatic hitch operation
US11713078B2 (en) Working vehicle
CN110476527B (en) Working vehicle
JP7083445B2 (en) Autonomous driving system
JP2022097701A (en) Work vehicle
US20210061280A1 (en) Prevention of trailer coupler tracking jump during hitch assist operation
US11753076B2 (en) Automated hitching system with subject trailer selection from multiple identified trailers
JP2019170197A (en) Region registration system
JP6618244B2 (en) Paddy field machine
KR20220010474A (en) autonomous driving system
JP7117886B2 (en) work vehicle
JPH09128043A (en) Method for controlling unmanned moving work machine
JP2003303021A (en) Traveling vehicle for working
US11945498B2 (en) Work vehicle
JP6995040B2 (en) Paddy field work machine
JP7137970B2 (en) work vehicle
JP2021108577A (en) Work vehicle
US11968917B2 (en) Working vehicle and working machine having the working vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610