JP2002356707A - Method for solidification-molding of powder molding material - Google Patents

Method for solidification-molding of powder molding material

Info

Publication number
JP2002356707A
JP2002356707A JP2001160612A JP2001160612A JP2002356707A JP 2002356707 A JP2002356707 A JP 2002356707A JP 2001160612 A JP2001160612 A JP 2001160612A JP 2001160612 A JP2001160612 A JP 2001160612A JP 2002356707 A JP2002356707 A JP 2002356707A
Authority
JP
Japan
Prior art keywords
powder
molding
density
hot
produce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160612A
Other languages
Japanese (ja)
Inventor
Akihiko Yanagiya
彰彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2001160612A priority Critical patent/JP2002356707A/en
Publication of JP2002356707A publication Critical patent/JP2002356707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for solidification-molding of a powder molding material in which powder of low tapping density such as ground powder, is mixed in small of large quantities and which is used for manufacturing alloy for a heat-resistant material, a target material for HDD and a target material for reflective films. SOLUTION: In the method for solidification-molding of the powder molding material, powder of <=60% tapping density is hot-pressed to prepare a molding of >=80% density, and the molding is subjected to hot plastic working under the condition of >=5% plastic deformation ratio to attain >=97% density; or the powder of <=60% tapping density is hot-pressed to prepare a molding of >=80% density and the molding is subjected to hot plastic working under the condition of >=400 MPa pressure, >=10 s<-1> strain rate and >=5% plastic deformation ratio to attain >=97% density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末成形材料の固
化成形方法に関し、特に粉砕粉末などタッピング密度の
低い粉末を一部または多く混合する耐熱材料やHDD用
ターゲット材および反射膜用ターゲット材の合金を製造
するための粉末成形材料の固化成形方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for solidifying and molding a powder molding material. The present invention relates to a method for solidifying and molding a powder molding material for producing an alloy.

【0002】[0002]

【従来の技術】近年、粉砕粉末などタッピング密度の低
い粉末を一部または多く混合する耐熱材料やHDD用タ
ーゲット材の新しい高融点金属元素を含有する合金が見
出され、その製造方法は従来の耐熱材料やHDD用ター
ゲット材および反射膜用ターゲット材の製造方法である
鋳造・圧延方法および一部粉末工法が試みられようとし
ていたものであったが、粉末成形材料の殆どが一般的な
焼結法、ホットプレス法または熱間静水圧プレスによる
ものであった。しかし、従来からの焼結法やホットプレ
ス法は充填密度が低く、さらに、近年粉末の固化成形方
法として、工業的に汎用に用いられている熱間静水圧プ
レスも試みられたが、高圧状態で長時間保持する必要が
あった。
2. Description of the Related Art In recent years, heat-resistant materials in which powder having a low tapping density such as pulverized powder is mixed partially or in large amounts, and alloys containing new refractory metal elements for HDD target materials have been found. Casting / rolling methods and some powdering methods, which are methods for producing heat-resistant materials, HDD target materials, and reflective film target materials, were to be attempted. , Hot pressing or hot isostatic pressing. However, conventional sintering and hot pressing methods have low packing density, and in recent years, hot isostatic pressing, which is widely used in industry, has been attempted as a method for solidifying and molding powder. For a long time.

【0003】これらの熱間固化成形の予備成形方法とし
て冷間静水圧プレス(CIP)法が一部用いられていた
が、ゴム型からの水の混入や硬さの高い材料は予備成形
しにくい問題があった。また、これらを改善した方法と
して、押出しプレス機を用いたアップセット法も行われ
てきたが、固化成形前の充填密度が極端に低く、粉砕粉
末または一部粉砕粉末との混合粉末を使用する場合は、
熱間のアップセット時に容器の変形から成形材に割れが
入ることが多いという問題があった。
A cold isostatic pressing (CIP) method has been partially used as a preforming method for these hot solidification moldings. However, it is difficult to premix a material having high hardness and mixing of water from a rubber mold. There was a problem. In addition, as an improved method, an upset method using an extrusion press machine has been performed, but the packing density before solidification molding is extremely low, and a mixed powder with a crushed powder or a partially crushed powder is used. If
There has been a problem that the molded material often cracks due to deformation of the container during hot upset.

【0004】[0004]

【発明が解決しようとする課題】上述のように、粉末の
固化成形材料は耐熱材料やHDD用ターゲット材および
反射膜用ターゲット材としては非常に優れた材料である
が、しかし、鋳造・圧延法では作製が不可能な材料の作
製を可能にすべく、本発明者らは粉末成形材料の固化成
形方法について鋭意検討を行い、次のような問題点を解
決する知見に至った。すなわち、粉末の予備成形時に温
度を上げて圧力をかければ、構成元素の原子の拡散が促
進され、冷間静水圧プレスによる固化成形より焼結が容
易に起こり、また、予備成形材への水の混入などの問題
は起こらないと考え、この予備成形では充填密度の増加
は望めないが、高密度に充填するには、高温状態で高圧
を負荷すれば、高密度に充填できると考えた。また、予
備成形を行い、熱間での本成形時に容器の変形に起因す
る成形材の割れの問題を解消するには、予備成形時に充
填密度を80%にすれば良いという知見を得た。
As described above, the solidified molding material of a powder is a very excellent material as a heat-resistant material, a target material for an HDD, and a target material for a reflective film. The present inventors have conducted intensive studies on a method for solidifying and molding a powder molding material in order to make it possible to produce a material that cannot be produced, and have come to the knowledge to solve the following problems. That is, if the pressure is increased by increasing the temperature during the preforming of the powder, the diffusion of the atoms of the constituent elements is promoted, and sintering occurs more easily than solidification by cold isostatic pressing. It is thought that no problem such as mixing of sulfide will occur, and it is not expected that the filling density can be increased by this preforming. However, it is thought that high density can be filled by applying a high pressure in a high temperature state for high density filling. In addition, it has been found that in order to eliminate the problem of cracking of the formed material caused by deformation of the container during the preforming by hot preforming, the filling density may be set to 80% during the preforming.

【0005】[0005]

【課題を解決するための手段】上記知見に基づき、その
目的を達成するためには、本成形の前に予備成形を用
い、特に予備成形として、熱間で圧力を加えることによ
り材料の焼結を促進させることが必要であるという知見
を得た。その方法として工業的に汎用性のあるホットプ
レス法を予備成形法に用いた後、高圧のアップセット法
により固化成形すれば、冷間静水圧プレス法に見られる
水の混入の問題もなく、容器の変形に起因する固化成形
材料のわれの問題も解消できる粉末成形材料の固化成形
方法を提供する。
On the basis of the above findings, in order to achieve the object, preforming is performed before main forming, and in particular, as preforming, sintering of a material is performed by applying hot pressure. It was found that it was necessary to promote After using the industrially versatile hot press method for the preforming method as the method, and then solidifying and forming by the high-pressure upset method, there is no problem of water mixing seen in the cold isostatic pressing method, Provided is a method for solidifying and molding a powder molding material, which can solve the problem of cracking of a solidified molding material caused by deformation of a container.

【0006】その発明の要旨とするところは、 (1)タッピング密度が60%以下の粉末をホットプレ
スして密度80%以上の成形体を作製し、これを塑性変
形率5%以上の条件下で熱間塑性加工により密度97%
以上を得ることを特徴とする粉末成形材料の固化成形方
法。 (2)タッピング密度が60%以下の粉末をホットプレ
スして密度80%以上の成形体を作製し、これは圧力4
00MPa以上歪み速度10s-1以上、塑性変形率5%
以上の条件下で熱間塑性加工により密度97%以上を得
ることを特徴とする粉末成形材料の固化成形方法にあ
る。
The gist of the invention is as follows: (1) A powder having a tapping density of 60% or less is hot-pressed to produce a compact having a density of 80% or more, and the compact is formed under a condition of a plastic deformation rate of 5% or more. 97% density by hot plastic working
A method for solidifying and molding a powder molding material, characterized by obtaining the above. (2) A powder having a tapping density of 60% or less is hot-pressed to produce a molded body having a density of 80% or more.
00MPa or more, strain rate 10s -1 or more, plastic deformation rate 5%
A method for solidifying and molding a powder molding material, wherein a density of 97% or more is obtained by hot plastic working under the above conditions.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳細に説明
する。耐熱材料やHDD用ターゲット材および反射膜用
ターゲット材の製造方法としては、従来の鋳造圧延工法
および粉末工法が行われている。特に最近のターゲット
材には、スパッタリングにより作成される薄膜の特性お
よびターゲットの磁気特性が重要視され、ターゲット材
の品質には組織の微細・均一性も要求されている。この
ことから、鋳造・圧延法によるものは鋳造時に均一な組
織を得ることは難しく、凝固時の成分の偏析を基本的に
なくすことはできず、均一化の熱処理を行わなければな
らなかった。さらに、バルクとしての溶解鋳造時には、
非固溶の元素または過飽和の組成の材料を作製すること
は不可能であった。このことから粉末を成形することに
より、鋳造・圧延法では作製不可能な材料を作製するこ
とを可能とした。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. As a method of manufacturing a heat-resistant material, a target material for an HDD, and a target material for a reflective film, a conventional casting and rolling method and a powder method are used. Particularly in recent target materials, the characteristics of a thin film formed by sputtering and the magnetic characteristics of the target are regarded as important, and the quality of the target material also requires fineness and uniformity of the structure. For this reason, it is difficult to obtain a uniform structure at the time of casting by the casting / rolling method, so that segregation of components during solidification cannot be basically eliminated, and heat treatment for uniformity has to be performed. Furthermore, at the time of melting casting as bulk,
It has not been possible to produce materials with insoluble elements or supersaturated compositions. Thus, by molding the powder, it was possible to produce a material that could not be produced by the casting / rolling method.

【0008】また、予備成形にホットプレスを用いるの
は、通常の焼結より短時間で高密度に予備成形できるこ
と、冷間静水圧プレス法で生じる水の混入などの問題を
解消できることによる。さらに予備成形時に充填密度を
80%以上にすることは、本発明での固化成形時に容器
の変形に起因する固化成形材の割れの問題を解消できる
からである。しかし、80%未満では、その効果が得ら
れないので、80%以上とした。その後塑性変形率5%
以上の条件下で熱間塑性加工により密度97%以上とい
う高充填密度に成形するものである。しかし、塑性変形
率が5%未満ではその効果が充分得られないので5%以
上とした。さらに、圧力400MPa以上、歪み速度1
0s-1 以上の高温高歪み速度で固化成形するのは、予
備成形したものを97%以上という高充填密度に成形す
るために有効であるからである。しかし、圧力400M
Pa未満、歪み速度10s-1 未満ではその効果が充分
に得られないことから、圧力400MPa以上、歪み速
度10s-1 以上とした。
The use of the hot press for the preforming is because the preforming can be performed at a high density in a shorter time than ordinary sintering, and problems such as mixing of water generated by the cold isostatic pressing can be solved. Further, setting the packing density to 80% or more at the time of preforming can solve the problem of cracking of the solidified molded material due to deformation of the container at the time of solidified molding in the present invention. However, if it is less than 80%, the effect cannot be obtained. After that, plastic deformation rate 5%
Under the above-mentioned conditions, a high packing density of 97% or more is formed by hot plastic working. However, if the plastic deformation rate is less than 5%, the effect cannot be sufficiently obtained, so the content is set to 5% or more. Further, a pressure of 400 MPa or more, a strain rate of 1
The reason why the solidification molding is performed at a high temperature and a high strain rate of 0 s -1 or more is effective for molding the preformed material to a high packing density of 97% or more. However, pressure 400M
If the pressure is less than Pa and the strain rate is less than 10 s -1 , the effect cannot be sufficiently obtained. Therefore, the pressure is 400 MPa or more and the strain rate is 10 s -1 or more.

【0009】[0009]

【実施例】(実施例1)以下、本発明について具体的に
実施例によって説明する。平均粒径100μm、最大粒
径500μmの純Co粉末70at%と平均粒径20μ
m、最大粒径50μmの純W粉末30at%を秤量配合
し、混合機で機械的に混合し、ホットプレスにより10
00℃で予備成形し、予備成形材の外周を切削加工し、
これを直径169mm、長さ100mmのステンレス製
容器に充填後脱気封入してビレットを作製し、1200
℃、500MPa、歪み速度30s-1以上塑性変形率5
%以上の条件下で高密度成形材に加工し、その後ステン
レス製容器を除去し、スライス、研磨加工し、ターゲッ
ト材を作製した。完成したターゲット材の密度を測定
し、99.5%以上であることを確認した。また、光学
顕微鏡により、成形材は微細組織を有していることを確
認した。
EXAMPLES (Example 1) Hereinafter, the present invention will be described specifically with reference to examples. 70 at% of pure Co powder having an average particle diameter of 100 μm and a maximum particle diameter of 500 μm and an average particle diameter of 20 μm
, 30at% of pure W powder having a maximum particle size of 50μm is weighed and blended, mechanically mixed with a mixer, and hot-pressed to obtain 10%.
Preforming at 00 ° C, cutting the outer periphery of the preformed material,
This was filled in a stainless steel container having a diameter of 169 mm and a length of 100 mm, and then deaerated and sealed to produce a billet.
℃, 500MPa, strain rate 30s -1 or more Plastic deformation rate 5
%, And then processed into a high-density molded material, then the stainless steel container was removed, sliced and polished to produce a target material. The density of the completed target material was measured and confirmed to be 99.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0010】(実施例2)平均粒径50μm、最大粒径
105μmの純Mn粉末60at%と平均粒径20μ
m、最大粒径50μmの純Pt粉末40at%を秤量配
合し、混合機で機械的に混合し、ホットプレスにより9
00℃で予備成形し、予備成形材の外周を切削加工し、
これを直径169mm、長さ100mmのステンレス製
容器に充填後脱気封入してビレットを作製し、1100
℃、500MPa、歪み速度50s-1以上塑性変形率5
%以上の条件下で高密度成形材に加工し、その後ステン
レス製容器を除去し、スライス、研磨加工し、ターゲッ
ト材を作製した。完成したターゲット材の密度を測定
し、99.5%以上であることを確認した。また、光学
顕微鏡により、成形材は微細組織を有していることを確
認した。
(Example 2) 60 at% of pure Mn powder having an average particle diameter of 50 μm and a maximum particle diameter of 105 μm and an average particle diameter of 20 μm
m, 40 at% of pure Pt powder having a maximum particle size of 50 μm are weighed and blended, mechanically mixed by a mixer, and hot-pressed to 9 wt.
Preforming at 00 ° C, cutting the outer periphery of the preformed material,
This was filled in a stainless steel container having a diameter of 169 mm and a length of 100 mm, and then deaerated and sealed to produce a billet.
℃, 500MPa, strain rate 50s -1 or more Plastic deformation rate 5
%, And then processed into a high-density molded material, then the stainless steel container was removed, sliced and polished to produce a target material. The density of the completed target material was measured and confirmed to be 99.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0011】(実施例3)平均粒径80μm、最大粒径
500μmの純Cr粉末80at%と平均粒径20μ
m、最大粒径40μmの純Ti粉末20at%を秤量配
合し、混合機で機械的に混合し、ホットプレスにより1
000℃で予備成形し、予備成形材の外周を切削加工
し、これを直径205mm、長さ200mmのステンレ
ス製容器に充填後脱気封入してビレットを作製し、12
00℃、500MPa、歪み速度50s -1、塑性変形率
7%以上の条件下で高密度成形材に加工し、その後ステ
ンレス製容器を除去し、スライス、研磨加工し、ターゲ
ット材を作製した。完成したターゲット材の密度を測定
し、99.5%以上であることを確認した。また、光学
顕微鏡により、成形材は微細組織を有していることを確
認した。
(Example 3) Average particle size 80 μm, maximum particle size
80at% pure Cr powder of 500μm and average particle diameter 20μ
m, 20at% of pure Ti powder with a maximum particle size of 40μm is weighed and distributed
And mechanically mixed with a mixer, and
Preforming at 000 ° C and cutting the outer periphery of the preformed material
This is a stainless steel with a diameter of 205 mm and a length of 200 mm.
After filling into a container made of stainless steel, it was degassed and sealed to produce a billet.
00 ° C, 500MPa, strain rate 50s -1, Plastic deformation rate
It is processed into a high-density molded material under the condition of 7% or more.
Remove the stainless steel container, slice, grind,
A cut material was produced. Measure density of completed target material
And 99.5% or more. Also optical
The microscope confirms that the molding has a microstructure.
I accepted.

【0012】(実施例4)平均粒径80μm、最大粒径
500μmの純Co粉末80at%と平均粒径20μ
m、最大粒径40μmの純Ru粉末20at%を秤量配
合し、混合機で機械的に混合し、ホットプレスにより9
00℃で予備成形し、予備成形材の外周を切削加工し、
これを直径170mm、長さ150mmのステンレス製
容器に充填後脱気封入してビレットを作製し、1200
℃、500MPa、歪み速度50s-1、塑性変形率7%
の条件下で高密度成形材に加工し、その後ステンレス製
容器を除去し、スライス、研磨加工し、ターゲット材を
作製した。完成したターゲット材の密度を測定し、9
9.5%以上であることを確認した。また、光学顕微鏡
により、成形材は微細組織を有していることを確認し
た。
Example 4 80 at% of pure Co powder having an average particle diameter of 80 μm and a maximum particle diameter of 500 μm, and an average particle diameter of 20 μm
m, 20 at% of pure Ru powder having a maximum particle size of 40 μm are weighed and blended, mechanically mixed by a mixer, and hot-pressed to 9 wt%.
Preforming at 00 ° C, cutting the outer periphery of the preformed material,
This was filled in a stainless steel container having a diameter of 170 mm and a length of 150 mm, and then deaerated and sealed to produce a billet.
℃, 500MPa, strain rate 50s -1 , plastic deformation rate 7%
Then, the stainless steel container was removed, sliced and polished to produce a target material. The density of the completed target material was measured and 9
It was confirmed that it was 9.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0013】(実施例5)平均粒径60μm、最大粒径
500μmの純Ni粉末50at%と平均粒径30μ
m、最大粒径75μmの純Al粉末50at%を秤量配
合し、混合機で機械的に混合し、ホットプレスにより6
00℃で予備成形し、予備成形材の外周を切削加工し、
これを直径170mm、長さ150mmのステンレス製
容器に充填後脱気封入してビレットを作製し、600
℃、500MPa、歪み速度50s-1、塑性変形率10
%の条件下で高密度成形材に加工し、その後ステンレス
製容器を除去し、バルク材を作製した。完成したバルク
材の密度を測定し、99.5%以上であることを確認し
た。また、光学顕微鏡により、成形材は微細組織を有し
ていることを確認した。
(Example 5) 50 at% of pure Ni powder having an average particle diameter of 60 μm and a maximum particle diameter of 500 μm and an average particle diameter of 30 μm
m, 50 at% of pure Al powder having a maximum particle size of 75 μm are weighed and blended, mechanically mixed by a mixer, and hot-pressed to form 6 wt.
Preforming at 00 ° C, cutting the outer periphery of the preformed material,
This was filled in a stainless steel container having a diameter of 170 mm and a length of 150 mm, and then degassed and sealed to produce a billet.
℃, 500MPa, strain rate 50s -1 , plastic deformation rate 10
%, And then the stainless steel container was removed to prepare a bulk material. The density of the completed bulk material was measured and was confirmed to be 99.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0014】(実施例6)平均粒径50μm、最大粒径
100μmの純Ti粉末50at%と平均粒径50μ
m、最大粒径105μmの純Al粉末50at%を秤量
配合し、混合機で機械的に混合し、ホットプレスにより
600℃で予備成形し、予備成形材の外周を切削加工
し、これを直径170mm、長さ200mmのステンレ
ス製容器に充填後脱気封入してビレットを作製し、60
0℃、500MPa、歪み速度30s-1、塑性変形率1
0%の条件下で高密度成形材に加工し、その後ステンレ
ス製容器を除去し、スライス、研磨加工し、バルク材を
作製した。バルク材の密度を測定し、99.5%以上で
あることを確認した。また、光学顕微鏡により、成形材
は微細組織を有していることを確認した。
Example 6 50 at% of pure Ti powder having an average particle size of 50 μm and a maximum particle size of 100 μm and an average particle size of 50 μm
m, 50 at% of pure Al powder having a maximum particle size of 105 μm are weighed and blended, mechanically mixed by a mixer, pre-formed at 600 ° C. by hot pressing, and the outer periphery of the pre-formed material is cut to obtain a diameter of 170 mm. After filling in a 200 mm long stainless steel container, the container was degassed and sealed to produce a billet.
0 ° C., 500 MPa, strain rate 30 s −1 , plastic deformation rate 1
It was processed into a high-density molded material under the condition of 0%, then the stainless steel container was removed, sliced and polished to produce a bulk material. The density of the bulk material was measured and was confirmed to be 99.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0015】(実施例7)平均粒径50μm、最大粒径
105μmの純Cr粉末80at%と平均粒径30μ
m、最大粒径105μmの純Mo粉末20at%を秤量
配合し、混合機で機械的に混合し、ホットプレスにより
1000℃で予備成形し、予備成形材の外周を切削加工
し、これを直径170mm、長さ200mmのステンレ
ス製容器に充填後脱気封入してビレットを作製し、12
00℃、450MPa、歪み速度30s-1、塑性変形率
7%の条件下で高密度成形材に加工し、その後ステンレ
ス製容器を除去し、スライス、研磨加工し、ターゲット
材を作製した。完成したターゲット材の密度を測定し、
99.5%以上であることを確認した。また、光学顕微
鏡により、成形材は微細組織を有していることを確認し
た。
Example 7 80 at% of pure Cr powder having an average particle size of 50 μm and a maximum particle size of 105 μm and an average particle size of 30 μm
m, 20 at% of pure Mo powder having a maximum particle size of 105 μm are weighed and mixed, mechanically mixed by a mixer, pre-formed at 1000 ° C. by hot pressing, and the outer periphery of the pre-formed material is cut to obtain a diameter of 170 mm. After filling into a stainless steel container having a length of 200 mm, the container was degassed and sealed to produce a billet.
It was processed into a high-density molded material under the conditions of 00 ° C., 450 MPa, a strain rate of 30 s −1 , and a plastic deformation rate of 7%. Thereafter, the stainless steel container was removed, sliced and polished to prepare a target material. Measure the density of the completed target material,
It was confirmed that it was 99.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0016】(実施例8)平均粒径50μm、最大粒径
105μmの純Al粉末95at%と平均粒径50μ
m、最大粒径100μmの純Ti粉末5at%を秤量配
合し、混合機で機械的に混合し、ホットプレスにより6
00℃で予備成形し、予備成形材の外周を切削加工し、
これを直径170mm、長さ200mmのアルミニウム
製容器に充填後脱気封入してビレットを作製し、580
℃、500MPa、歪み速度30s-1、塑性変形率10
%の条件下で高密度成形材に加工し、その後アルミニウ
ム製容器を除去し、スライス、研磨加工し、ターゲット
材を作製した。完成したターゲット材の密度を測定し、
99.5%以上であることを確認した。また、光学顕微
鏡により、成形材は微細組織を有していることを確認し
た。
Example 8 95 at% of pure Al powder having an average particle diameter of 50 μm and a maximum particle diameter of 105 μm and an average particle diameter of 50 μm
, 5at% of pure Ti powder having a maximum particle size of 100 μm is weighed and blended, and mechanically mixed by a mixer.
Preforming at 00 ° C, cutting the outer periphery of the preformed material,
This was filled in an aluminum container having a diameter of 170 mm and a length of 200 mm, and then degassed and sealed to produce a billet.
℃, 500MPa, strain rate 30s -1 , plastic deformation rate 10
%, The aluminum container was removed, sliced and polished to prepare a target material. Measure the density of the completed target material,
It was confirmed that it was 99.5% or more. Further, it was confirmed by an optical microscope that the molded material had a fine structure.

【0017】[0017]

【発明の効果】以上述べたように、本発明により、これ
まで鋳造・圧延法では作製することが出来なかった耐熱
材料やHDD用ターゲット材の作製が可能となり、しか
も歩留りよく製造することが出来る極めて優れた効果を
奏するものである。
As described above, according to the present invention, it is possible to produce a heat-resistant material or a target material for an HDD which could not be produced by the casting / rolling method, and it is possible to produce with a high yield. It has an extremely excellent effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タッピング密度が60%以下の粉末をホ
ットプレスして密度80%以上の成形体を作製し、これ
を塑性変形率5%以上の条件下で熱間塑性加工により密
度97%以上を得ることを特徴とする粉末成形材料の固
化成形方法。
1. A powder having a tapping density of 60% or less is hot-pressed to produce a molded body having a density of 80% or more, and this is subjected to hot plastic working under a condition of a plastic deformation rate of 5% or more to a density of 97% or more. And a method for solidifying and molding a powder molding material.
【請求項2】 タッピング密度が60%以下の粉末をホ
ットプレスして密度80%以上の成形体を作製し、これ
は圧力400MPa以上歪み速度10s-1以上、塑性変
形率5%以上の条件下で熱間塑性加工により密度97%
以上を得ることを特徴とする粉末成形材料の固化成形方
法。
2. A powder having a tapping density of 60% or less is hot-pressed to produce a compact having a density of 80% or more under a condition of a pressure of 400 MPa or more, a strain rate of 10 s -1 or more, and a plastic deformation rate of 5% or more. 97% density by hot plastic working
A method for solidifying and molding a powder molding material, characterized by obtaining the above.
JP2001160612A 2001-05-29 2001-05-29 Method for solidification-molding of powder molding material Pending JP2002356707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160612A JP2002356707A (en) 2001-05-29 2001-05-29 Method for solidification-molding of powder molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160612A JP2002356707A (en) 2001-05-29 2001-05-29 Method for solidification-molding of powder molding material

Publications (1)

Publication Number Publication Date
JP2002356707A true JP2002356707A (en) 2002-12-13

Family

ID=19003996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160612A Pending JP2002356707A (en) 2001-05-29 2001-05-29 Method for solidification-molding of powder molding material

Country Status (1)

Country Link
JP (1) JP2002356707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063640A (en) * 2006-09-11 2008-03-21 Sanyo Special Steel Co Ltd Cow-based target material and production method therefor
JP2009287092A (en) * 2008-05-30 2009-12-10 Mitsubishi Materials Corp Method for producing sputtering target for use in forming chalcopyrite type semiconductor film
CN114088026A (en) * 2022-01-20 2022-02-25 江苏奥琳斯邦装备科技股份有限公司 Hot-pressing curing device and curing method for strain measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063640A (en) * 2006-09-11 2008-03-21 Sanyo Special Steel Co Ltd Cow-based target material and production method therefor
JP2009287092A (en) * 2008-05-30 2009-12-10 Mitsubishi Materials Corp Method for producing sputtering target for use in forming chalcopyrite type semiconductor film
CN114088026A (en) * 2022-01-20 2022-02-25 江苏奥琳斯邦装备科技股份有限公司 Hot-pressing curing device and curing method for strain measurement
CN114088026B (en) * 2022-01-20 2022-04-05 江苏奥琳斯邦装备科技股份有限公司 Hot-pressing curing device and curing method for strain measurement

Similar Documents

Publication Publication Date Title
TWI431140B (en) Method for manufacturing sputtering standard materials for aluminum - based alloys
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP2005240160A (en) METHOD OF PRODUCING Mo-BASED TARGET MATERIAL
JP2860064B2 (en) Method for producing Ti-Al alloy target material
JP2005533182A (en) Method for producing sputtering target doped with boron / carbon / nitrogen / oxygen / silicon
JPH07145442A (en) Soft magnetic alloy compact and its production
JP2001098366A (en) METHOD OF PRODUCING Ge-Sb-Te SPUTTERING TARGET MATERIAL
JP2002356707A (en) Method for solidification-molding of powder molding material
JP2004524974A (en) High-temperature isostatic compression molding of castings
JP5661540B2 (en) Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
JP5360040B2 (en) Wrought material and manufacturing method thereof
JPH0586456A (en) Target for sputtering
WO2017110813A1 (en) High-hardness high-toughness powder
JPS62224602A (en) Production of sintered aluminum alloy forging
JP2002212607A (en) Method for producing high melting point alloy
JPH02259029A (en) Manufacture of aluminide
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JP2001011609A (en) Sputtering target and its manufacture
JP3442641B2 (en) Method for producing Cu-Ni-Fe alloy wire or thin plate for magnetic scale
JP3113893B2 (en) Manufacturing method of plastic working material and manufacturing method of plastic working material
JPS62256902A (en) Intermetallic al3ti powder and its production
JP2002256302A (en) Spherical titanium hydride powder for sintered alloy and method for producing the sintered alloy
JP2009013471A (en) Ru TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2752857B2 (en) Manufacturing method of powder alloy billet
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602