JP2002356623A - Biodegradable resin containing microorganism - Google Patents

Biodegradable resin containing microorganism

Info

Publication number
JP2002356623A
JP2002356623A JP2001163107A JP2001163107A JP2002356623A JP 2002356623 A JP2002356623 A JP 2002356623A JP 2001163107 A JP2001163107 A JP 2001163107A JP 2001163107 A JP2001163107 A JP 2001163107A JP 2002356623 A JP2002356623 A JP 2002356623A
Authority
JP
Japan
Prior art keywords
biodegradable resin
microorganisms
microcapsules
resin
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163107A
Other languages
Japanese (ja)
Inventor
Toku Tsutsugi
▲徳▼ 筒木
Shigeru Satake
茂 佐竹
Yasushi Kageyama
裕史 影山
Takashi Inao
隆嗣 稲生
Seiji Yamashita
征士 山下
Yasumitsu Isobe
泰充 礒部
Katsunobu Mitsune
勝信 三根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001163107A priority Critical patent/JP2002356623A/en
Publication of JP2002356623A publication Critical patent/JP2002356623A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin which quickly biodegrades when wasted. SOLUTION: The biodegradable resin contains a microcapsule in which a microorganism or an enzyme capable of decomposing the biodegradable resin is encapsulated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用後の廃棄の際
に自然環境中で容易に分解される生分解性樹脂を提供す
る。
[0001] The present invention provides a biodegradable resin which is easily decomposed in the natural environment upon disposal after use.

【0002】[0002]

【従来の技術】自然界で容易に分解・消滅し、自然環境
に対する負荷が少ない材料として生分解樹脂が種々提案
されている。これらの樹脂は、使用後、廃棄物処理場等
に廃棄され、土壌など自然界に生来的に存在する微生物
により、必要によりこれらの微生物を人為的栄養補給等
による活性化を伴って、分解される。あるいは、廃棄物
を廃棄する際に、あらかじめ培養しておいた生分解性微
生物を添加することにより廃棄物の生物分解が促進され
る。しかしながらこれらの方法においては、自然界に存
在する生分解性樹脂分解質の活性が十分に強いとは限ら
ず、また廃棄の度に微生物を添加しなければならない等
の不便が伴う。
2. Description of the Related Art Various biodegradable resins have been proposed as materials which are easily decomposed and disappear in the natural world and have a small load on the natural environment. After use, these resins are discarded in a waste disposal site or the like, and are decomposed by microorganisms naturally existing in nature such as soil, if necessary, with activation by artificial nutrition and the like. . Alternatively, when the waste is discarded, the biodegradation of the waste is promoted by adding a biodegradable microorganism that has been cultured in advance. However, in these methods, the activity of biodegradable resin degradants existing in nature is not always sufficiently strong, and there are inconveniences such as addition of microorganisms every time of disposal.

【0003】[0003]

【発明が解決しようとする課題】従って本発明は、廃棄
された際に自然界に存在する微生物の生分解活性に影響
されず、また廃棄の際に微生物を添加しなくても容易に
分解・消滅し、しかも使用中には生分解を受けにくい生
分解性樹脂を提供しようとするものである。
Therefore, the present invention is not affected by the biodegradation activity of microorganisms existing in nature at the time of disposal, and can be easily decomposed and eliminated without adding microorganisms at the time of disposal. Further, it is an object of the present invention to provide a biodegradable resin which is hardly subjected to biodegradation during use.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく種々検討した結果、生分解性樹脂を分解す
る能力を有する微生物又は酵素をマイクロカプセルに封
入し、このマイクロカプセルを生分解性樹脂に含有せめ
ることにより、使用中は微生物や酵素が生分解性樹脂に
作用せず、廃棄の際に生分解性樹脂を粉砕した後に作用
して急速に生分解性樹脂を分解させることができること
を見出し本発明を完成した。従って本発明は、生分解性
樹脂を分解することができる微生物又は酵素を封入した
マイクロカプセルを含有する生分解性樹脂を提供する。
The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, encapsulated in a microcapsule a microorganism or an enzyme capable of degrading a biodegradable resin, and Microorganisms and enzymes do not act on the biodegradable resin during use by containing it in the biodegradable resin. The inventors have found that the present invention can be performed and completed the present invention. Accordingly, the present invention provides a biodegradable resin containing microcapsules encapsulating microorganisms or enzymes capable of degrading the biodegradable resin.

【0005】[0005]

【発明の実施の形態】本発明において使用する生分解性
樹脂(マトリクス樹脂)としては、例えばポリカプロラ
クトン、ポリブチルサクシネート、ポリ乳酸、ポリ3−
ヒドロキシ酪酸、ポリエチレングリコール、ポリカプロ
ラクトンと澱粉とのブレンド体、脂肪族ポリエステルと
ポリアミドとの共重合体、脂肪族ポリエステルと芳香族
ポリエステルとの共重合体、エステル型ポリウレタン、
2−メチレン−1,3,6−トリオキソカンとビニルモ
ノマーから成る共重合体、糖含有高分子、等が挙げられ
るが、これらに限定されない。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the biodegradable resin (matrix resin) used in the present invention include polycaprolactone, polybutylsuccinate, polylactic acid, and poly (3-lactic acid).
Hydroxybutyric acid, polyethylene glycol, blends of polycaprolactone and starch, copolymers of aliphatic polyesters and polyamides, copolymers of aliphatic polyesters and aromatic polyesters, ester-type polyurethanes,
Examples include, but are not limited to, copolymers of 2-methylene-1,3,6-trioxocan and vinyl monomers, sugar-containing polymers, and the like.

【0006】本発明において用いる微生物は、生分解性
樹脂により異り、例えば、ポリフプロラクトン分解質と
してペニシリウム(Penicillium)属の微生物等、ポリブ
チレンサクシネート分解質としてアミュラトプシス(Am
ycolatopsis)属微生物等、ポリ乳酸分解質としてアミ
ュラトプシス属微生物、ストレプトマイセス(Streptom
yces)属微生物等、ポリ3−ヒドロキシ酪酸分解質とし
てシュードモナス属微生物例えばシュードモナス・レモ
イグネイ(Pseudomonas lemoignei)、アルカリゲネス
(Alcaligenes)属微生物、例えばアルカリゲネス・パ
ラドキサス(Alcaligenes paradoxas)等、ポリエチレ
ングリコール等ポリエーテルの分解質として、シュード
モナス属微生物、例えばシュードモナス・スッツエリー
(Pseudomonas stutzeri)、シュードモナス・アエルギ
ノサ(Pseudomonas aeruginosa)、シュードモナス・ベ
シクラリス(Pseudomonas vesicularis)、アルカリゲ
ネス属微生物、アシネトバクター(Acinetobacter)属
微生物、キサントモナス(Xanthomonas)属微生物など
が挙げられる。
The microorganisms used in the present invention differ depending on the biodegradable resin. For example, microorganisms of the genus Penicillium as polyfuprolactone decomposers, and Amulatopsis (Amoptosis) as polybutylene succinate decomposers.
ycolatopsis microorganisms, such as Amulatopsis microorganisms, Streptomyces (Streptomys)
Yces) microorganisms such as Pseudomonas lemoignei, Alcaligenes microorganisms such as Alcaligenes paradoxas, and polyethers such as polyethylene glycol as poly-3-hydroxybutyric acid decomposing substances. As a quality, Pseudomonas microorganisms, such as Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas vesicularis, Pseudomonas microorganisms, and microorganisms belonging to the genus Xanthomonas such as Xanthomonas Xanthomonas (Acinetobacter) Is mentioned.

【0007】また、ポリウレタン等イソシアネート結合
を含むポリマーを分解する微生物としては、アルターナ
リア(Alternaria)属微生物、例えばアルターナリア・
アルナタ(Alternaria alternata)、アスペルギルス
(Aspergillus)属微生物、例えばアスペルギルス・ニガ
ー(Aspergillus niger)、トリコデルマ(Tricoderma)
属微生物、例えばトリコデルマ・ハルジウム(Tricoder
ma harzium)、フサリウム(Fusarium)属微生物、例え
ばフサリウム・モニリホルメ(Fusarium moniliform
e)、ウトダジウム(Utodadium)属微生物、例えばウト
ダジウム・アトラム(Utodadium atrum)等が挙げられ
る。
Further, as microorganisms that degrade polymers containing isocyanate bonds such as polyurethane, Alternaria microorganisms such as Alternaria
Alternaria alternata, a microorganism of the genus Aspergillus, such as Aspergillus niger, Tricoderma
Microorganisms such as Trichoderma haldium (Tricoder)
ma harzium), a microorganism of the genus Fusarium, such as Fusarium moniliform
e), a microorganism of the genus Utodadium, for example, Utodadium atrum.

【0008】本発明において用いる酵素としては、例え
ば上記の微生物から抽出される種々の酵素が挙げられ
る。例えば、ポリビニルアルコールの分解のためにはポ
リビニルアルコールデヒドロゲナーゼ、ポリビニルアル
コールオキシダーゼ、第2級アルコールオキシダーゼ等
が挙げられ、ポリウレタン分解用の酵素としてはコレス
テロールエステラーゼ、キトパールコレステロールエス
テラーゼ、ウレアーゼ等が挙げられる。
The enzymes used in the present invention include, for example, various enzymes extracted from the above-mentioned microorganisms. For example, polyvinyl alcohol dehydrogenase, polyvinyl alcohol oxidase, secondary alcohol oxidase and the like can be mentioned for decomposing polyvinyl alcohol, and cholesterol esterase, chitopearl cholesterol esterase, urease and the like can be mentioned as enzymes for decomposing polyurethane.

【0009】マイクロカプセルに微生物や酵素を封入す
る技術はすでに確立されており、すでに知られている任
意の技術を用いることができる。例えば、ポリアミドマ
イクロカプセル、メタクリレートマイクロカプセル、等
が挙げられる。マイクロカプセルの材質は、前記の生分
解性樹脂(マトリクス)に近い性質のものが好ましい。
なぜなら、マイクロカプセルと生分解性マトリクス樹脂
との親和性が高く、生分解性樹脂の破壊の際にマイクロ
カプセルも破壊されて、封入されていた微生物や酵素が
放出され、湿性の自然環境下で容易に生分解性樹脂を分
解するからである。マイクロカプセルの1つの態様にお
いては、1個のマイクロカプセル内に多数のガラスバル
ーンを入れ、その表面に微生物や酵素を付着せしめる。
この場合、生分解性樹脂マトリクスの破壊の際にガラス
バルーンが非常に破壊されやすく、微生物や酵素の放出
に寄与する。
Techniques for encapsulating microorganisms and enzymes in microcapsules have already been established, and any known techniques can be used. For example, polyamide microcapsules, methacrylate microcapsules and the like can be mentioned. It is preferable that the material of the microcapsule has a property close to that of the biodegradable resin (matrix).
Because of the high affinity between microcapsules and the biodegradable matrix resin, the microcapsules are also destroyed when the biodegradable resin is destroyed, and the encapsulated microorganisms and enzymes are released, and in a moist natural environment This is because the biodegradable resin is easily decomposed. In one embodiment of a microcapsule, a number of glass balloons are placed in one microcapsule, and microorganisms and enzymes are attached to the surface of the balloon.
In this case, the glass balloon is very easily broken when the biodegradable resin matrix is broken, which contributes to the release of microorganisms and enzymes.

【0010】生分解樹脂マトリクスに対するマイクロカ
プセルの量は、 0.1〜30体積%であることが好ましく、
0.5〜20体積%がさらに好ましい。マイクロカプセルの
量が少な過ぎると、十分な量の微生物や酵素を封入する
ことができず、従って生分解性樹脂の廃棄後の生分解速
度が十分でない。他方、マイクロカプセルの量が多過ぎ
ると、生分解樹脂の機械的強度が低くなる。例えば、マ
イクロカプセル含有量とポリウレタン樹脂の引張り強さ
の関係は、図1に示すようになる。
The amount of the microcapsules based on the biodegradable resin matrix is preferably 0.1 to 30% by volume,
0.5-20% by volume is more preferred. If the amount of the microcapsules is too small, a sufficient amount of microorganisms and enzymes cannot be encapsulated, so that the biodegradable resin has a low biodegradation rate after disposal. On the other hand, if the amount of the microcapsules is too large, the mechanical strength of the biodegradable resin decreases. For example, the relationship between the microcapsule content and the tensile strength of the polyurethane resin is as shown in FIG.

【0011】マイクロカプセルの大きさは数μm〜数mm
であり、好ましくは1μm〜1mmである。マイクロカプ
セルのサイズが小さ過ぎると、廃棄の際に生分解性樹脂
が破砕する場合にマイクロカプセルが破壊されにくく、
そのためその中に封されている微生物や酵素の放出が十
分でなくなる。他方、マイクロカプセルのサイズが大き
過ぎると、小さい場合に比べて、マイクロカプセルが樹
脂中に偏在する事となり、破砕されて放出される微生物
や酵素も偏って存在し、結果として生分解速度が遅くな
る。さらにマイクロカプセルのサイズが大き過ぎると、
生分解樹脂の機械的強度も低下する。マイクロカプセル
の直径とポリウレタンが生分解により半減するのに必要
な時間と機械的強度の関係を図2に示す。
The size of the microcapsule is several μm to several mm
And preferably 1 μm to 1 mm. If the size of the microcapsules is too small, the microcapsules are less likely to be broken when the biodegradable resin is crushed during disposal,
Therefore, the release of microorganisms and enzymes sealed therein becomes insufficient. On the other hand, if the size of the microcapsules is too large, the microcapsules will be unevenly distributed in the resin as compared with the case where the size is small, and microorganisms and enzymes that are crushed and released will also be unevenly distributed, resulting in a slow biodegradation rate. Become. If the size of the microcapsules is too large,
The mechanical strength of the biodegradable resin also decreases. The relationship between the diameter of the microcapsules, the time required for the polyurethane to be halved by biodegradation and the mechanical strength is shown in FIG.

【0012】生分解性樹脂の廃棄に当っては、これをシ
ュレッダー等の常用手段により粉砕し、土壌中に埋立処
分すればよい。この場合、酸性土壌の中和が必要な場合
には消石灰、石灰水等を散布するのが好ましい。また、
この場合、微生物の栄養源を加えた水を散布するのが好
ましい。
When disposing the biodegradable resin, the biodegradable resin may be pulverized by a conventional means such as a shredder or the like and landfilled in soil. In this case, when it is necessary to neutralize the acidic soil, it is preferable to spray slaked lime, lime water or the like. Also,
In this case, it is preferable to spray water to which a nutrient source of microorganisms has been added.

【0013】[0013]

【実施例】次に、実施例により本発明をさらに具体的に
説明する。実施例1 シュードモナス sp.0−3株の細胞をポリアミドマイク
ロカプセルに封入し、80℃の熱水に溶解したポリビニル
アルコールを室温にまで冷却し、これに10体積%の比率
で加えて均一に混合し、室温にて真空乾燥した。同様に
して、シュードモナス 113−P3株、シュードモナス・ベ
ジクラリス(Pseudomonas vesicularis)等を、マイクロ
カプセル化し、このマイクロカプセルをポリビニルアル
コール水溶液に 0.1〜20体積%加えて固化する。
Next, the present invention will be described more specifically with reference to examples. Example 1 Cells of Pseudomonas sp. 0-3 were encapsulated in polyamide microcapsules, polyvinyl alcohol dissolved in hot water at 80 ° C. was cooled to room temperature, and added thereto at a ratio of 10% by volume to mix uniformly. And vacuum dried at room temperature. Similarly, Pseudomonas strain 113-P3, Pseudomonas vesicularis (Pseudomonas vesicularis), and the like are microencapsulated, and the microcapsules are solidified by adding 0.1 to 20% by volume to an aqueous polyvinyl alcohol solution.

【0014】実施例2 アルターナリア・アルタナタ(Alternaria alternata)
の細胞をポリイソシアネートカプセルに封入した。多糖
類及びポリオールとイソシアネートとを包含させ、この
生合の際に前記マイクロカプセルを混合してマイクロカ
プセル入りポリウレタン樹脂を形成した。マイクロカプ
セルの量はポリウレタン樹脂に対して30体積%とした。
同様にして、アスペルギルス・ニガー、トリコデルマ・
ハルジウム、フサリウム・モノリホルメ、ウトダジウム
・アトルム等の微生物の菌体を含むポリウレタン樹脂を
調製する。
Example 2 Alternaria alternata
Of cells were encapsulated in polyisocyanate capsules. Polysaccharides, polyols, and isocyanates were included, and the microcapsules were mixed during the synthesis to form microcapsule-containing polyurethane resins. The amount of microcapsules was 30% by volume based on the polyurethane resin.
Similarly, Aspergillus niger, Trichoderma
A polyurethane resin containing microbial cells such as haldium, fusarium monoliforme, and utdadium atrum is prepared.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、マイクロカプセルを含有する生分解樹
脂マトリクスとしてのウレタン樹脂において、マイクロ
カプセルの量とウレタン樹脂の引張り強度との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the amount of microcapsules and the tensile strength of urethane resin in a urethane resin as a biodegradable resin matrix containing microcapsules.

【図2】図2は、マイクロカプセルを含有する生分解樹
脂マトリクスとしてのウレタン樹脂において、マイクロ
カプセルの直径とウレタン樹脂の分解速度(重量が半減
するのに要する時間(週))ならびにウレタン樹脂の引
張り強度との関係を示すグラフである。
FIG. 2 shows the microcapsule diameter, the urethane resin decomposition rate (time required for the weight to be reduced by half (week)), and the urethane resin content of urethane resin as a biodegradable resin matrix containing microcapsules. It is a graph which shows the relationship with tensile strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 影山 裕史 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 稲生 隆嗣 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 山下 征士 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 礒部 泰充 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 三根 勝信 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4B050 CC07 JJ06 KK14 LL10 4B065 BD05 BD06 BD25 BD40 CA55 4F301 AA30 AB01 CA09 CA32 CA38 4J002 AB041 AD002 CF031 CF041 CF181 CF191 CH021 CK031 CL081 GT00  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Kageyama 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Takashi Ino 1 Toyota Town, Toyota City, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation ( 72) Inventor Seiji Yamashita 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Yasumitsu Isobe 1 Toyota Town Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Katsunobu Mine Aichi Prefecture 1 Toyota Town, Toyota City Toyota Motor Corporation F term (reference) 4B050 CC07 JJ06 KK14 LL10 4B065 BD05 BD06 BD25 BD40 CA55 4F301 AA30 AB01 CA09 CA32 CA38 4J002 AB041 AD002 CF031 CF041 CF181 CF191 CH021 CK031 CL081 GT00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 生分解性樹脂を分解することができる微
生物又は酵素を封入したマイクロカプセルを含有する生
分解性樹脂。
1. A biodegradable resin containing microcapsules encapsulating microorganisms or enzymes capable of decomposing the biodegradable resin.
【請求項2】 前記樹脂中に占めるマイクロカプセルの
割合が0.1〜30体積%である、請求項1に記載の樹
脂。
2. The resin according to claim 1, wherein the proportion of the microcapsules in the resin is 0.1 to 30% by volume.
【請求項3】 前記マイクロカプセルの直径が1μm〜
1mmである、請求項1に記載の樹脂。
3. The microcapsule having a diameter of 1 μm or less.
The resin according to claim 1, which is 1 mm.
【請求項4】 請求項1〜3のいずれか1項に記載の樹
脂の廃棄方法において、該樹脂を粉砕することによって
前記マイクロカプセルを破壊した後に自然環境中に廃棄
することを特徴とする方法。
4. The method for disposing of a resin according to claim 1, wherein the microcapsules are destroyed by crushing the resin and then disposed in a natural environment. .
JP2001163107A 2001-05-30 2001-05-30 Biodegradable resin containing microorganism Pending JP2002356623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163107A JP2002356623A (en) 2001-05-30 2001-05-30 Biodegradable resin containing microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163107A JP2002356623A (en) 2001-05-30 2001-05-30 Biodegradable resin containing microorganism

Publications (1)

Publication Number Publication Date
JP2002356623A true JP2002356623A (en) 2002-12-13

Family

ID=19006139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163107A Pending JP2002356623A (en) 2001-05-30 2001-05-30 Biodegradable resin containing microorganism

Country Status (1)

Country Link
JP (1) JP2002356623A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224223A (en) * 2004-02-16 2005-08-25 Mikasa Sangyo Kk Resin-decomposing microorganism-cultured material
JP2007097578A (en) * 2005-09-08 2007-04-19 Ritsumeikan Filamentous fungus and method for decomposing resin by using the same
JP2009148891A (en) * 2009-04-02 2009-07-09 Nitta Haas Inc Polishing pad
JP2010508425A (en) * 2006-10-31 2010-03-18 バイオ−テック エンバイロメンタル,エルエルシー Chemical additives that make polymer materials biodegradable
CN102352064A (en) * 2011-07-06 2012-02-15 丁邦瑞 Dual-degradant additive for promoting photo oxidative degradation and biodegradation of polymer
JP2013116959A (en) * 2011-12-02 2013-06-13 Osaka Municipal Technical Research Institute Method of removing polyvinyl alcohol from cultural properties
US8513329B2 (en) 2006-10-31 2013-08-20 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
JP2014201706A (en) * 2013-04-09 2014-10-27 松山毛織株式会社 Application method of wrapping net made from biodegradable plastic having time control system
JP2015509990A (en) * 2011-12-20 2015-04-02 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィクCentre National De La Recherche Scientifique Method for producing polymer / biological element alloy
WO2020066974A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Resin composition, film, multilayer body, bonded structure, method for producing multilayer body, and method for producing bonded structure
JP2021169608A (en) * 2015-06-12 2021-10-28 キャルビオスCarbios Masterbatch composition comprising high concentration of biological entities
EP4130125A1 (en) * 2021-08-04 2023-02-08 ContiTech AG Controlled polymer chain degradation by microencapsulated substances

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520176B2 (en) * 2004-02-16 2010-08-04 三笠産業株式会社 Resin-degrading microbial culture
JP2005224223A (en) * 2004-02-16 2005-08-25 Mikasa Sangyo Kk Resin-decomposing microorganism-cultured material
JP2007097578A (en) * 2005-09-08 2007-04-19 Ritsumeikan Filamentous fungus and method for decomposing resin by using the same
CN103865288A (en) * 2006-10-31 2014-06-18 生物科技环境公司 Chemical Additives to Make Polymeric Materials Biodegradable
JP2010508425A (en) * 2006-10-31 2010-03-18 バイオ−テック エンバイロメンタル,エルエルシー Chemical additives that make polymer materials biodegradable
US9382416B2 (en) 2006-10-31 2016-07-05 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
US8513329B2 (en) 2006-10-31 2013-08-20 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
JP2013177623A (en) * 2006-10-31 2013-09-09 Bio-Tec Environmental Llc Chemical additive to make polymeric material biodegradable
US8618189B2 (en) 2006-10-31 2013-12-31 Bio-Tec Environmental, Llc Chemical additives to make polymeric materials biodegradable
JP2009148891A (en) * 2009-04-02 2009-07-09 Nitta Haas Inc Polishing pad
CN102352064A (en) * 2011-07-06 2012-02-15 丁邦瑞 Dual-degradant additive for promoting photo oxidative degradation and biodegradation of polymer
JP2013116959A (en) * 2011-12-02 2013-06-13 Osaka Municipal Technical Research Institute Method of removing polyvinyl alcohol from cultural properties
JP2015509990A (en) * 2011-12-20 2015-04-02 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィクCentre National De La Recherche Scientifique Method for producing polymer / biological element alloy
US10829598B2 (en) 2011-12-20 2020-11-10 Centre National De La Recherche Scientifique-Cnrs Process for preparing a polymer/biological entities alloy
US11370890B2 (en) 2011-12-20 2022-06-28 Centre National de la Recherche Scientifique—CNRS Process for preparing a polymer/biological entities alloy
JP2014201706A (en) * 2013-04-09 2014-10-27 松山毛織株式会社 Application method of wrapping net made from biodegradable plastic having time control system
JP2021169608A (en) * 2015-06-12 2021-10-28 キャルビオスCarbios Masterbatch composition comprising high concentration of biological entities
JP7275201B2 (en) 2015-06-12 2023-05-17 キャルビオス Masterbatch compositions containing high concentrations of biological entities
US11802185B2 (en) 2015-06-12 2023-10-31 Carbios Masterbatch composition comprising a high concentration of biological entities
WO2020066974A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Resin composition, film, multilayer body, bonded structure, method for producing multilayer body, and method for producing bonded structure
JPWO2020066974A1 (en) * 2018-09-27 2021-09-24 富士フイルム株式会社 Resin composition, membrane, laminate, bonded structure, method of manufacturing the laminate and method of manufacturing the bonded structure
JP7057432B2 (en) 2018-09-27 2022-04-19 富士フイルム株式会社 Resin composition, film, laminated body, bonded structure, manufacturing method of laminated body and manufacturing method of bonded structure
EP4130125A1 (en) * 2021-08-04 2023-02-08 ContiTech AG Controlled polymer chain degradation by microencapsulated substances

Similar Documents

Publication Publication Date Title
JP2002356623A (en) Biodegradable resin containing microorganism
Meereboer et al. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites
CN101589097B (en) Chemical additives to make polymeric materials biodegradable
CA2813660C (en) Biodegradable resin composition
US4532123A (en) Dual Microcapsules and process for their preparation
WO1998036086A1 (en) Degradation of biologically degradable polymers using enzymes
CA1204058A (en) Dual microcapsules
WO2002002745A3 (en) Method and system for consistent and effective encapsulation of biological material
US3905923A (en) Poly (urea-urethane) foams containing immobilized active enzymes
Rudnik 11. Biodegradability testing of compostable polymer materials
La Fuente et al. Biodegradable polymers: A review about biodegradation and its implications and applications
WO2006017480A1 (en) Bio-waste enzyme packet
Hakkarainen et al. Degradation products of aliphatic and aliphatic–aromatic polyesters
Jiang et al. Preparation and characterization of porous horseradish peroxidase microspheres for the removal of phenolic compound and dye
Yu et al. Immobilization of esterase SulE in cross-linked gelatin/chitosan and its application in remediating soils polluted with tribenuron-methyl and metsulfuron-methyl
JP2000511567A (en) Degradation of biodegradable polyesteramide by enzymes
Sompornpailin et al. Diethyl phthalate degradation by the freeze-dried, entrapped Bacillus subtilis strain 3C3
JP2006124677A (en) Decomposition treatment liquid for biodegradable resin and disposal treatment method using the same
KR20160090559A (en) Treatment Method for Organic Wastes Using Bamboo Bio Chips
DE19633475C2 (en) Process for the production of polyhydroxyalkanoates and their use
NZ508073A (en) Biologically active composition
JP2000236892A (en) High-molecular compound microparticle and its production
JP2000166587A (en) Production of polymer fine particle using organism
KR102626834B1 (en) Package for food using starfish and manufacturing method thereof
CN115192769B (en) Preparation method and application of polyhydroxyalkanoate microsphere