JP2002354895A - Hydro-poewr generator and method of operating and controlling it - Google Patents

Hydro-poewr generator and method of operating and controlling it

Info

Publication number
JP2002354895A
JP2002354895A JP2001150204A JP2001150204A JP2002354895A JP 2002354895 A JP2002354895 A JP 2002354895A JP 2001150204 A JP2001150204 A JP 2001150204A JP 2001150204 A JP2001150204 A JP 2001150204A JP 2002354895 A JP2002354895 A JP 2002354895A
Authority
JP
Japan
Prior art keywords
flow rate
rotation speed
fixed guide
water turbine
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001150204A
Other languages
Japanese (ja)
Inventor
Kaneo Sugishita
懷夫 杉下
Norio Otake
典男 大竹
Yasumi Kizaki
康巳 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP2001150204A priority Critical patent/JP2002354895A/en
Publication of JP2002354895A publication Critical patent/JP2002354895A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operating and controlling device that makes it possible to expand the adjusting range of flow rate taking power generating efficiency into consideration in a hydro-power generator having a water turbine of a fixed guide vane. SOLUTION: A water turbine speed reducer (9) is provided that changes the revolutions of the water turbine of the fixed guide vane according to the adjustment of the flow rate by a flow rate adjusting valve (2). In this case, it is better to additionally provide an opening and revolution adjuster that outputs a command signal for adjusting the flow rate adjusting valve (2) to a prescribed opening and that outputs to the water turbine sped reducer (9) a command signal for adjusting the revolutions (10) of the water turbine to a prescribed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水力発電装置の運転
制御装置に係り、特にダムからの水を地上の川に流す放
水管路などに設置される、固定案内羽根の水車を有する
小規模水力発電設備に好適な水力発電装置および運転制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a hydroelectric power generator, and more particularly to a small-scale hydropower plant having fixed guide vanes and a water turbine installed in a discharge pipe for flowing water from a dam to a river on the ground. The present invention relates to a hydraulic power generation device and an operation control method suitable for power generation equipment.

【0002】[0002]

【従来の技術】図11は、上記のような小規模水力発電
設備の一般的構成図を示したもので、上池1から流量調
整機能を有する入口弁である流量調整弁2を通り、図示
しない固定案内羽根を有する水車3に流入した水は、こ
の固定案内羽根で整流されたのち羽根車を通過し、吸出
し配管4に流入し、下池5に流出する。また羽根車は回
転軸6を介して発電機7に接続されており、水の力で水
車の羽根車が回転すると発電機7も回転し電力が発生す
る。
2. Description of the Related Art FIG. 11 is a diagram showing a general configuration of a small-scale hydroelectric power plant as described above. FIG. 11 shows a flow from an upper pond 1 through a flow control valve 2 which is an inlet valve having a flow control function. The water that has flowed into the water wheel 3 having the fixed guide blades that do not flow is straightened by the fixed guide blades, passes through the impeller, flows into the suction pipe 4, and flows out to the lower pond 5. Further, the impeller is connected to a generator 7 via a rotating shaft 6, and when the impeller of the water wheel rotates by the force of water, the generator 7 also rotates to generate electric power.

【0003】上記の構成で水車の回転数を一定にして運
転した場合の落差Hと流量Qの関係は、図12に示すよ
うになる。この図で、縦軸は水車の落差H、横軸は水車
の流量Qを示す。また、 Hstは、図11の上池1の
水位と下池5の水位差である。有効落差Hは流量調整弁
2の下流の圧力と水車出口の圧力(=下池水位)の差に
等しい。ここで、実線Lは水車の運転点の変化を示し、
点Oは定格点、点NRは無拘束点である。
[0003] The relationship between the head H and the flow rate Q when the turbine is operated with the rotation speed of the water turbine kept constant is as shown in FIG. In this figure, the vertical axis indicates the head H of the turbine and the horizontal axis indicates the flow rate Q of the turbine. Hst is a water level difference between the upper pond 1 and the lower pond 5 in FIG. The effective head H is equal to the difference between the pressure downstream of the flow control valve 2 and the pressure at the turbine outlet (= water level at the lower pond). Here, the solid line L indicates a change in the operating point of the turbine,
Point O is a rated point, and point NR is an unconstrained point.

【0004】こうした水力発電装置において、流量調整
弁2の開度を小さくすると、流量調整弁2での流動損失
が増加するため、水車の有効落差Hは小さいくなり運転
点はO’となり、流量もQからQ’に減少する。すなわ
ち、このような水力発電装置は、可動式の案内羽根を持
たず、流量調整弁2によってその流量を調整するため、
流量調整に伴って流量調整弁2の流動抵抗が変化し、こ
の流動損失分だけ有効落差Hが変化する。例えば流量調
整弁2の開度を全開から絞っていくと、回転数一定の場
合有効落差Hが小さくなるにつれその運転点が点Oから
点NRへと変化する。このとき、この水車3による発電
効率は徐々に低下し、点NRで零となる。そして、この
回転数を保ったまま流量調整弁2をこれよりも更に絞っ
て有効落差Hを小さくすることは不可能である。すなわ
ち、このような水力発電装置において、流量調整が可能
な範囲は図12の矢印で示したQrangeの範囲とな
る。
In such a hydraulic power plant, when the opening of the flow control valve 2 is reduced, the flow loss at the flow control valve 2 increases, so that the effective head H of the turbine becomes small, the operating point becomes O ', and Also decreases from Q to Q ′. That is, since such a hydroelectric power generator does not have a movable guide blade and adjusts its flow rate by the flow rate adjusting valve 2,
The flow resistance of the flow control valve 2 changes with the flow control, and the effective head H changes by the flow loss. For example, when the opening of the flow control valve 2 is reduced from the fully opened position, the operating point changes from the point O to the point NR as the effective head H becomes smaller when the rotation speed is constant. At this time, the power generation efficiency of the water turbine 3 gradually decreases and becomes zero at the point NR. Then, it is impossible to reduce the effective head H by further narrowing the flow control valve 2 while maintaining this rotation speed. That is, in such a hydroelectric generator, the range in which the flow rate can be adjusted is the range of Qrange indicated by the arrow in FIG.

【0005】[0005]

【発明が解決しようとする課題】ところで、上池1に流
れ込む水量は、大雨が降った場合など急激に増加し、上
池1からの溢水を防ぐため放水量も増加させる必要があ
る一方で、上池の水量が減少しても下流側の要求で多少
の水量を確保しなければならない場合がある。このた
め、水力発電装置を介して流す流量は、季節や天候など
の条件によって大幅に変える必要がある。
By the way, the amount of water flowing into the upper pond 1 suddenly increases when heavy rain falls, and the amount of water discharged needs to be increased in order to prevent overflow from the upper pond 1. Even if the amount of water in the upper pond decreases, it may be necessary to secure a certain amount of water according to downstream requirements. For this reason, the flow rate flowing through the hydroelectric generator needs to be largely changed depending on conditions such as the season and the weather.

【0006】しかしながら、前記従来の水力発電装置に
おいては、流量調整弁2の開度を調整して流量調整が行
えるのは、Qrangeの範囲であり、更にこの水車3
の発電効率を考えると、実用上ごく狭い範囲に限られ
る。このため、上池1からの流量を大幅に変更する要求
にこらえられない問題点があった。
However, in the above-mentioned conventional hydraulic power generator, the flow rate can be adjusted by adjusting the opening of the flow control valve 2 in the range of Qrange.
In consideration of the power generation efficiency of the system, it is practically limited to a very narrow range. For this reason, there has been a problem that the demand for greatly changing the flow rate from the upper pond 1 cannot be satisfied.

【0007】本発明は、上記の点に鑑み、発電効率を考
慮した上で、水車に流れる流量の調整範囲を広げること
が可能な固定案内羽根水車を有する水力発電装置および
その運転制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a hydraulic power generator having a fixed guide impeller and a method of controlling the operation thereof, which is capable of expanding the range of adjusting the flow rate flowing through the water turbine in consideration of the power generation efficiency. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
流動抵抗が変化する流量調整弁を用いて固定案内羽根水
車に流す流量を調整する水力発電装置において、前記流
量調整弁による前記流量の調整に応じて、前記固定案内
羽根水車の回転数を変化させる水車変速装置を備えたこ
とを特徴とする。
The invention according to claim 1 is
In a hydraulic power generator that adjusts a flow rate flowing through a fixed guide impeller using a flow control valve whose flow resistance changes, a rotation speed of the fixed guide impeller is changed in accordance with the adjustment of the flow rate by the flow control valve. It is characterized by having a water turbine transmission.

【0009】請求項2に係る発明は、請求項1の構成に
更に、前記流量調整弁を所定開度に調整する指令信号と
共に、前記水車変速装置に前記固定案内羽根水車の回転
数を所定値に調整する指令信号を出力する開度回転数調
整器を備えたことを特徴とする。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, a command signal for adjusting the flow control valve to a predetermined opening and a rotation speed of the fixed guide impeller turbine are set to a predetermined value by the water turbine transmission. And an opening rotation speed adjuster that outputs a command signal for adjusting the rotation speed.

【0010】請求項3に係る発明は、請求項1又は2に
記載の構成に更に、前記流量に最適な前記固定案内羽根
水車の回転数を算出する演算装置を設けたことを特徴と
する。
According to a third aspect of the present invention, there is provided the configuration according to the first or second aspect, further comprising an arithmetic unit for calculating a rotational speed of the fixed guide impeller, which is optimal for the flow rate.

【0011】請求項4に係る発明は、請求項1の構成に
更に、前記流量調整弁を所定開度に調整する指令信号を
出力する開度調整器と、前記固定案内羽根水車の入口と
出口の差圧である有効落差を検出する有効落差検出器
と、前記固定案内羽根水車の回転数を調整する指令信号
を前記有効落差の関数として前記水車変速装置に出力す
る回転数調整器を設けたことを特徴とする。
According to a fourth aspect of the present invention, in addition to the configuration of the first aspect, an opening adjuster for outputting a command signal for adjusting the flow adjustment valve to a predetermined opening, and an inlet and an outlet of the fixed guide impeller turbine. An effective head detector for detecting an effective head which is a differential pressure of the turbine, and a rotation speed adjuster for outputting a command signal for adjusting the rotation speed of the fixed guide impeller turbine to the water turbine transmission as a function of the effective head. It is characterized by the following.

【0012】請求項5に係る発明は、請求項1から4の
いずれかにおける前記水車変速装置を、前記固定案内羽
根水車に接続する発電機の励磁周波数を変えることによ
り水車の回転数を変化させるように構成したことを特徴
とする。
According to a fifth aspect of the present invention, the rotation speed of the water turbine is changed by changing an excitation frequency of a generator connected to the fixed guide vane turbine of the water turbine transmission according to any one of the first to fourth aspects. It is characterized by having such a configuration.

【0013】請求項6に係る発明は、請求項1から4の
いずれかに記載の水車変速装置を、前記固定案内羽根水
車の回転軸と発電機の回転軸との間の回転数比を変える
ことにより水車の回転数を変化させるように構成したも
のである。
According to a sixth aspect of the present invention, there is provided the water turbine transmission according to any one of the first to fourth aspects, wherein a rotation speed ratio between a rotation shaft of the fixed guide impeller and a rotation shaft of the generator is changed. Thus, the rotation speed of the water turbine is changed.

【0014】請求項7に係る発明は、流動抵抗が変化す
る流量調整弁を用いて固定案内羽根水車に流す流量を調
整する水力発電装置の運転制御方法において、前記流量
調整弁による前記流量の調整に応じて、前記固定案内羽
根水車の回転数を変化させることを特徴とする。
According to a seventh aspect of the present invention, there is provided an operation control method of a hydraulic power generator for adjusting a flow rate flowing through a fixed guide impeller using a flow rate control valve having a variable flow resistance, wherein the flow rate is controlled by the flow rate control valve. The rotation speed of the fixed guide impeller turbine is changed in accordance with

【0015】請求項8係る発明は、請求項7における固
定案内羽根水車の回転数を、該固定案内羽根水車の有効
落差の関数となるように調整するようにしたことを特徴
とする。
The invention according to claim 8 is characterized in that the rotation speed of the fixed guide impeller is set to be a function of the effective head of the fixed guide impeller.

【0016】請求項9に係る発明は、流動抵抗が変化す
る流量調整弁を用いて固定案内羽根水車に流す流量を調
整する水力発電装置において、要求される水車の流量と
定格流量との比に応じた周期で前記流量調整弁をON/
OFFする指令信号と共に、前記水車変速装置により前
記固定案内羽根水車に接続される発電機をON/OFF
する指令信号を出力する間欠運転指令装置を設けたこと
を特徴とする。
According to a ninth aspect of the present invention, there is provided a hydraulic power generator for adjusting a flow rate of a fixed guide vane turbine using a flow rate control valve having a variable flow resistance. The flow control valve is turned ON /
Along with the command signal to turn off, the generator connected to the fixed guide impeller by the water turbine transmission is turned on / off.
An intermittent operation command device for outputting a command signal to perform the operation.

【0017】請求項10に係る発明は、流動抵抗が変化
する流量調整弁を用いて固定案内羽根水車に流す流量を
調整する水力発電装置の運転制御方法において、前記流
量調整弁を間欠的に開閉制御し、前記流量調整弁が開い
ているとき発電を行うことを特徴とする。
According to a tenth aspect of the present invention, there is provided an operation control method of a hydraulic power generator for adjusting a flow rate flowing to a fixed guide impeller using a flow rate control valve having a variable flow resistance. Controlling, and generating electricity when the flow regulating valve is open.

【0018】[0018]

【発明の実施の形態】図1は、本発明による水力発電装
置の運転制御装置の第1実施例を示す概念構成図で、前
述図11と同一符号は同一又は相当部分を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a conceptual diagram showing a first embodiment of an operation control device for a hydroelectric power generator according to the present invention. The same reference numerals as those in FIG. 11 denote the same or corresponding parts.

【0019】この実施例で、図11と異なる点は、発電
機7から電力系統への出力周波数を系統周波数と同じ値
に保ったままで水車3の回転数を変えるため、発電機7
の回転子に交流励磁電流を供給する周波数変換装置8と
からなる水車変速装置9を備えた点、および、上池1か
ら水車3を経て下池5に流れる流量を調節する流量調整
弁2に開度指令aを出すと共に、周波数変換装置8に回
転数指令bを出す開度回転数調整器10を備えた点であ
る。
This embodiment differs from FIG. 11 in that the rotation frequency of the water turbine 3 is changed while the output frequency from the generator 7 to the power system is kept at the same value as the system frequency.
And a flow control valve 2 for adjusting a flow rate from the upper pond 1 to the lower pond 5 through the water turbine 3 through the water turbine 3 and a frequency converter 8 for supplying an AC exciting current to the rotor. The difference is that an opening degree rotation speed adjuster 10 that issues a degree command a and issues a rotation number command b to the frequency conversion device 8 is provided.

【0020】すなわち、本実施例においては、発電機7
と周波数変換機8が水車変速装置9を構成しており、こ
の水車変速装置9により電力系統への出力周波数を変化
させずに水車3の回転数を変化させることができる。
That is, in this embodiment, the generator 7
And the frequency converter 8 constitute a water turbine transmission 9, which allows the rotation speed of the water turbine 3 to be changed without changing the output frequency to the electric power system.

【0021】なお、流量調整弁2は、図では水車3の入
口側に設けているが、出口側に設けるなど、上池1から
下池5に至る配水管路上の適宜の位置に設けることがで
きる。
Although the flow control valve 2 is provided at the inlet side of the water turbine 3 in the drawing, it can be provided at an appropriate position on the water distribution pipe from the upper pond 1 to the lower pond 5, such as at the outlet side. .

【0022】この構成で、流量と流量調整弁2の開度と
の関係は予め分かっているので、水車3の運転中は、手
動あるいはプログラムによる自動で、流量を所望の値に
するための開度指令aを開度回転数調整器10より流量
調整弁2に出力する。また、その開度指令aによる流量
に対応して、発電効率を考慮して水車3の回転数を所望
の値にするための回転数指令bを周波数変換装置8に出
力する。
In this configuration, since the relationship between the flow rate and the degree of opening of the flow rate regulating valve 2 is known in advance, during operation of the water turbine 3, the flow rate is controlled manually or automatically by a program to set the flow rate to a desired value. The degree command a is output from the opening degree rotational speed regulator 10 to the flow rate regulating valve 2. Further, in response to the flow rate according to the opening degree command a, a rotation speed command b for setting the rotation speed of the water turbine 3 to a desired value in consideration of the power generation efficiency is output to the frequency converter 8.

【0023】これにより、例えば流量調整弁2が電動弁
により構成されている場合は、開度回転数調整器10か
らの開度指令aを受けてモータが回転し、流量調整弁2
を所定の開度に設定して対応する流量を水車3に供給す
る。
Thus, for example, when the flow control valve 2 is constituted by a motor-operated valve, the motor rotates in response to the opening command a from the opening rotation speed controller 10, and the flow control valve 2
Is set to a predetermined opening, and the corresponding flow rate is supplied to the water turbine 3.

【0024】一方、周波数変換装置8は、開度回転数調
整器10からの回転数指令bを受けて、所定の周波数の
励磁電流を発電機7の回転子に供給し、発電機7の回転
子を励磁する。この発電機7は、回転子が直流で励磁さ
れている場合に定格回転数n0で回転し、系統周波数f
0と同一周波数の電力を出力する。励磁電流の周波数を
0の直流からfの交流に変えたときの回転数をnとする
と、 (n0−n)/n0=f/f0・・・(1) の関係式が成り立つ。従って、この関係式を満足するよ
うに励磁電流の周波数を決定すれば、水車3の回転数を
所望の値に設定することが出来る。例えば、50Hzの
電力系統で回転数nを定格回転数n0の1/2にしたい
場合は、f=25Hzの交流電流で発電機7を励磁すれ
ばよい。
On the other hand, the frequency converter 8 receives the rotation speed command b from the opening rotation speed controller 10 and supplies an exciting current of a predetermined frequency to the rotor of the generator 7 to rotate the generator 7. Excite the child. This generator 7 rotates at the rated speed n0 when the rotor is excited with DC, and the system frequency f
Outputs power of the same frequency as 0. Assuming that the number of rotations when the frequency of the exciting current is changed from 0 direct current to f alternating current is n, the relational expression of (n0−n) / n0 = f / f0 (1) holds. Therefore, if the frequency of the exciting current is determined so as to satisfy this relational expression, the rotation speed of the water turbine 3 can be set to a desired value. For example, when it is desired to set the rotation speed n to の of the rated rotation speed n0 in a 50 Hz power system, the generator 7 may be excited with an alternating current of f = 25 Hz.

【0025】図2は、水車3の回転数をn1からn2に変
化した場合の、水車3における流量Qと有効落差Hの関
係を示したものである。水車の回転数nがn1に等しい
時の流量Qと有効落差Hの関係は曲線L1で示すよう、
点O1が定格運転点で点NR1が無拘束速度点となってい
る。したがって、回転数がnがn1の時の流量調整範囲
は図のQrange1の範囲となる。一方水車3の回転
がnがn1よりも低いn 2である場合の水車3における流
量Qと有効落差Hの関係は曲線L2に示すようになり、
点O2が定格運転点で点NR2のが無拘束速度点となる。
従って、回転数nがn2の時の流量調整範囲はQran
ge2の範囲となる。
FIG. 2 shows that the rotation speed of the water turbine 3 is n1To nTwoStrange
Between the flow rate Q and the effective head H in the turbine 3
It shows the person in charge. The rotation speed n of the water turbine is n1be equivalent to
The relationship between the flow Q at the time and the effective head H is represented by a curve L.1As shown in
Point O1Is the rated operating point and the point NR1Is an unconstrained speed point
You. Therefore, when the rotation speed is n1Flow adjustment range at
Is the Qrange of the figure1Range. On the other hand, rotation of water wheel 3
Is n1Lower than n TwoIn the water turbine 3 when
The relationship between the quantity Q and the effective head H is represented by a curve L.TwoAs shown in
Point OTwoIs the rated operating point and the point NRTwoIs the unconstrained speed point.
Therefore, when the rotational speed n is nTwoThe flow rate adjustment range at the time of
geTwoRange.

【0026】そして、水車3の回転数nを調整すること
が可能な場合、回転数がn1のときの流量調整範囲であ
るQrange1と回転数がn2のときの流量調整範囲Q
range2を組み合わせて水車3を運転することが可
能となるので、水車3の全運転可能範囲は図示したQr
angeの範囲となり、回転数nが固定されている場合
と比して流量Qの調整範囲を広く取ることが可能であ
る。
[0026] Then, if it is possible to adjust the rotational speed n of the hydraulic turbine 3, the flow rate adjustment range when qRange 1 and the rotational speed rotational speed is the flow rate adjustment range when the n 1 is n 2 Q
It is possible to drive the water turbine 3 by combining the range 2 and the entire operable range of the water turbine 3 is represented by Qr shown in the figure.
and the range of adjustment of the flow rate Q can be made wider than in the case where the rotation speed n is fixed.

【0027】本実施例では、開度回転数調整器10から
の回転数指令bに基づいて周波数変換装置8より周波数
fの励磁電流を発電機7の回転子に供給することによっ
て、電力系統への出力周波数を系統周波数f10に保っ
たまま、発電機7の定格回転数n0から(1)式によっ
て任意に回転数を低下させることが可能である。このた
め、この周波数変換装置8と発電機7によって構成され
る水車変速装置9を用いると、水車3の回転数nについ
ても発電機7の定格回転数n0から任意に低下させるこ
とができる。
In the present embodiment, an exciting current having a frequency f is supplied from the frequency converter 8 to the rotor of the generator 7 based on the rotation speed command b from the opening rotation speed regulator 10, thereby providing a power system. Can be arbitrarily reduced from the rated rotational speed n0 of the generator 7 by the equation (1) while the output frequency of the generator 7 is maintained at the system frequency f10. For this reason, if the water turbine transmission 9 composed of the frequency converter 8 and the generator 7 is used, the rotation speed n of the turbine 3 can be arbitrarily reduced from the rated rotation speed n0 of the generator 7.

【0028】したがって本実施例を用いると、可動式の
案内羽根を備えず、流量調整に伴って流動損失が生じて
有効落差が変化するような水車であっても流量の調整範
囲を廣く取って運転することが可能となる。
Therefore, when the present embodiment is used, even if the turbine is not provided with movable guide vanes and a flow loss occurs with the flow rate adjustment and the effective head changes, the flow rate adjustment range is widened. It becomes possible to drive.

【0029】図3は、本発明による水力発電装置の運転
制御装置の第2実施例を示す概念構成図で、前述図1と
同一符号は同一又は相当部分を示している。この構成で
図1と異なる点は、水車変速装置9が、変速機操作器1
3と変速機14とから構成されている点である。
FIG. 3 is a conceptual block diagram showing a second embodiment of the operation control apparatus for a hydroelectric power generator according to the present invention. The same reference numerals as those in FIG. 1 denote the same or corresponding parts. This configuration differs from FIG. 1 in that the water turbine transmission 9 is
3 and the transmission 14.

【0030】発電機7は系統周波数と同期回転して同一
周波数の電力を出力する同期発電機であり、水車3の主
軸6aと発電機7の主軸6bは変速機14を介して接続
されている。
The generator 7 is a synchronous generator that rotates in synchronism with the system frequency and outputs electric power of the same frequency. The main shaft 6a of the water turbine 3 and the main shaft 6b of the generator 7 are connected via a transmission 14. .

【0031】変速機14は、水車主軸6aに装着された
2種類の直径を有する水車軸プーリー14a、14b
と、発電機7の主軸6bに装着された直径が一定の発電
機軸プーリー14cと、これらのプーリー14aまたは
14bと、プーリー14cとを結合するベルト14dと
で構成されている。
The transmission 14 includes two types of water turbine pulleys 14a, 14b mounted on the water turbine main shaft 6a.
And a generator shaft pulley 14c having a constant diameter mounted on the main shaft 6b of the generator 7, and a belt 14d connecting the pulley 14a or 14b and the pulley 14c.

【0032】この変速機14は、変速機操作器13によ
り操作されて、ベルト14dの位置を14aの位置から
14bの位置に変えることにより、発電機7を同期速度
に保ちつつ水車3の回転数を変化させることができる。
The transmission 14 is operated by the transmission operation device 13 to change the position of the belt 14d from the position of 14a to the position of 14b, thereby keeping the generator 7 at the synchronous speed and the rotation speed of the water turbine 3. Can be changed.

【0033】図4は、本実施例の水車変速装置9を用い
た場合の、水車3における流量Qと有効落差Hとの関係
を示したものである。同図において、ベルト14dの位
置が14aの場合、水車3の回転数nはn3となり、こ
の回転数のときの流量Qと有効落差Hとの関係は曲線L
3で示されるものとなる。また、ベルト14dの位置が
14bの場合、水車3の回転数nはn4となり、この回
転数の時の流量Qと有効落差Hとの関係は曲線L4で示
されるものとなる。
FIG. 4 shows the relationship between the flow rate Q and the effective head H in the water turbine 3 when the water turbine transmission 9 of this embodiment is used. In the figure, when the position of the belt 14d is 14a, the rotational speed n is n 3 next to the water wheel 3, the relationship between the flow rate Q and the effective head H when the rotational speed curve L
It is shown by 3 . Also, if the position of the belt 14d is 14b, the rotational speed n is n 4 next to the water wheel 3, the relationship between the flow rate Q and the effective head H when the rotational speed becomes that shown by the curve L 4.

【0034】そして、本実施例においては、水車3の回
転数がn3の場合曲線L3の定格運転点O3に対応する流
量Qから無拘束速度点NR3に対応する流量QまでのQ
range1に対して流量Qの調整が可能であり、水車
3の回転数がN4の場合曲線L4の定格運転点O4に対応
する流量Qから無拘束運転点R4に対応する流量Qまで
のQrange2に対して流量Qの調整が可能であるの
で、これらを組み合わせることによって、Qrange
で示される範囲で流量Qの調整を行うことが可能とな
る。
In this embodiment, when the rotation speed of the water turbine 3 is n 3 , the flow rate Q from the flow rate Q corresponding to the rated operating point O 3 of the curve L 3 to the flow rate Q corresponding to the unconstrained speed point NR 3 is obtained.
it is possible to adjust the flow rate Q with respect to range 1, the flow rate Q of the rotation speed of the water wheel 3 corresponds to the unrestrained operating point R 4 from the flow Q corresponding to the rated operation point O 4 where the curve L 4 of N 4 Since the flow rate Q can be adjusted for Qrange 2 up to Qrange 2 , by combining these, Qrange
It is possible to adjust the flow rate Q within the range indicated by.

【0035】特に、例えば、曲線L3の無拘束速度点N
3に対応する流量Qと、曲線L4の定格運転点O4に対
応する流量Qが等しくなるように水車3の回転数n3
よびn 4を決定すると、流量Qの調整範囲は回転数の調
整をしない場合のほぼ2倍になる。
In particular, for example, the curve LThreeUnconstrained speed point N
RThreeAnd the curve L corresponding toFourRated operating point OFourTo
The rotation speed n of the water turbine 3 so that the corresponding flow rates Q become equal.ThreeYou
And n FourIs determined, the adjustment range of the flow rate Q is adjusted to the rotational speed.
It is almost twice as much as without adjustment.

【0036】また、曲線L3の無拘束速度点NR3付近で
は発電効率がほとんど零に近くなるため、曲線L3上で
実用的な流量調整範囲を許容できる発電効率によって定
め、この発電効率の最低点における流量Qと、曲線L4
の定格運転点O4に対応する流量Qが等しくなるように
することで、発電効率を大きく低下させずに、幅広い範
囲で流量調整を行うことができる。
Further, since the power generation efficiency is close to almost zero in the vicinity of unrestrained velocity point NR 3 curves L 3, defined by the power generation efficiency can tolerate practical flow adjustment range on the curve L 3, the power generation efficiency The flow rate Q at the lowest point and the curve L 4
By making the flow rates Q corresponding to the rated operating point O 4 equal, the flow rate can be adjusted in a wide range without greatly lowering the power generation efficiency.

【0037】なお、上記実施例では、水車3の回転数n
を2つの回転数n3、n4に切り換える場合を示したが、
3つ以上の回転数を切り換えるものとすることもでき
る。また、上記実施例では変速機14はベルトとプーリ
ーにより構成した例について示したが、歯車、チェーン
を用いても構成することができ、同様の作用効果を奏す
る。
In the above embodiment, the rotation speed n of the water turbine 3
Is switched to two rotation speeds n 3 and n 4 ,
It is also possible to switch three or more rotation speeds. Further, in the above-described embodiment, the example has been described in which the transmission 14 is configured by a belt and a pulley. However, the transmission 14 can be configured by using a gear and a chain, and the same operation and effect can be obtained.

【0038】図5は、本発明による水力発電装置の運転
制御装置の第3実施例を示す概念構成図で、前述図1と
同一符号は同一又は相当部分を示している。この構成で
図1と異なる点は、流量調整弁2の開度と水車3の回転
数とを最適な組み合わせにする値を算出する演算装置1
5を設けた点である。
FIG. 5 is a conceptual block diagram showing a third embodiment of the operation control apparatus for a hydroelectric power generator according to the present invention. The same reference numerals as those in FIG. 1 denote the same or corresponding parts. The difference between this configuration and FIG. 1 is that the arithmetic unit 1 calculates a value that makes the opening of the flow control valve 2 and the rotation speed of the water turbine 3 an optimal combination.
5 is provided.

【0039】この演算装置15は、流量Qの指令を受
け、最適な調整弁開度と発電機/水車回転数を演算す
る。即ち、この演算装置15には、あらかじめ流量調整
弁2と水車3の特性を考慮して決められ各流量における
最適な調整弁開度の水車の回転数の組み合わせが記憶さ
れており、流量Qの指令を受けると、ただちに最適な調
整弁開度と水車の回転数を演算して出力する。
The arithmetic unit 15 receives a command for the flow rate Q, and calculates an optimum adjustment valve opening and a generator / water turbine rotation speed. That is, the arithmetic unit 15 stores in advance the combination of the rotation speed of the turbine with the optimal opening degree of the regulating valve at each flow rate which is determined in advance in consideration of the characteristics of the flow rate regulating valve 2 and the turbine 3. Upon receiving the command, the optimum valve opening and the rotation speed of the turbine are calculated and output immediately.

【0040】この演算結果を受けて、開度回転数調整器
10は流量調整弁2に開度指令aを出すと共に、周波数
変換装置8に回転数指令bを出す。この開度指令aに応
じて流量調整弁2が所定開度に設定されて対応する流量
Qを水車3に供給する。これと共に、前記図1の場合と
同様にして、周波数変換装置8が所定の周波数の交流励
磁電流を発電機7の回転子に供給して水車3の回転数を
所定の値に制御する。
In response to the calculation result, the opening rotation speed controller 10 issues an opening command a to the flow control valve 2 and issues a rotation command b to the frequency converter 8. The flow control valve 2 is set to a predetermined opening in accordance with the opening command a to supply a corresponding flow Q to the water turbine 3. At the same time, as in the case of FIG. 1, the frequency converter 8 supplies an AC exciting current of a predetermined frequency to the rotor of the generator 7 to control the rotation speed of the water turbine 3 to a predetermined value.

【0041】これにより、図6に示すように、流量Qに
応じて水車3の回転数nを連続かつ最適に変化させるこ
とができる。図6は、水車3における流量Qと有効落差
との関係を示したグラフである。同図において点線で示
される曲線L1、L2、L3は水車3の回転数nをそれぞ
れnのn1、n2、n3の一定に保った場合の流量Qと有
効落差Hとの関係を示した流量−有効落差特性曲線であ
る。
Thus, as shown in FIG. 6, the rotation speed n of the water turbine 3 can be continuously and optimally changed according to the flow rate Q. FIG. 6 is a graph showing the relationship between the flow rate Q and the effective head in the water turbine 3. Curves L 1 , L 2 , and L 3 indicated by dotted lines in FIG. 3 indicate the relationship between the flow rate Q and the effective head H when the rotation speed n of the water turbine 3 is maintained at n 1 , n 2 , and n 3 , respectively. 6 is a flow rate-effective head characteristic curve showing the relationship.

【0042】また、一点鎖線で示される曲線V1、V2
3は流量調整弁2の開度を一定に保った場合の流量と
有効落差との関係を示す仮想的な曲線(流動抵抗曲線)
である。ここで、曲線V1は流量調整弁2の開度が全開
に近い場合を示し、曲線V2、V3となるにつれ開度が小
さくなる(流動調整弁2が閉じられる)ことを示してい
る。すなわち、流量調整弁2の開度を一定に保った場
合、流量Qを増大しようとする流量調整弁2における流
動損失も増大して有効落差Hが低下することを示してい
る。
The curves V 1 , V 2 ,
V 3 is a virtual curve (flow resistance curve) showing the relationship between the flow rate and the effective head when the opening of the flow control valve 2 is kept constant.
It is. Here, the curve V 1 was shows the case opening of flow control valve 2 is close to the full open, indicating that the opening is reduced as the the curve V 2, V 3 (flow control valve 2 is closed) . That is, when the opening degree of the flow control valve 2 is kept constant, the flow loss in the flow control valve 2 in which the flow rate Q is to be increased also increases, and the effective head H decreases.

【0043】ここで、水車3の運転点は、上述の流量−
有効落差特性曲線(曲線L1、L2、L3)と流動抵抗曲
線(曲線V1、V2、V3)との交点で決定される。
Here, the operating point of the water turbine 3 is determined by the above-mentioned flow rate−
It is determined at the intersection of the effective head characteristic curves (curves L 1 , L 2 , L 3 ) and the flow resistance curves (curves V 1 , V 2 , V 3 ).

【0044】いま、水車3の回転数nがn1の場合定格
運転点O1は曲線L1と曲線V1の交点であり、回転数が
2の場合定格運転点O2は曲線L2と曲線V2の交点、そ
して、回転数がn3の場合の定格運転点O3は曲線L3
曲線V3の交点となる場合、曲線V1、V2、V3を規定す
る流量調整弁2の開度は、それぞれ回転数nがn1
2、n3の場合に高い発電効率が得られる開度となる。
すなわち、水車3の回転数nと流量調整弁2の開度を適
正に調整すれば発電効率の高い定格運転点O1、O2、O
3で水車3を運転することが可能となり、その場合に流
量QはQ1、Q2、Q3へと変化することになる。
[0044] Now, the rated operation point O 1 when the rotational speed n is n 1 of the water wheel 3 is the intersection of the curve L 1 and the curve V 1, the rated operation point O 2 when the rotational speed n 2 the curve L 2 the intersection of the curve V 2 and, when the rotation speed is the rated operation point O 3 in the case of n 3 is made of the intersection of the curve L 3 and the curve V 3, the flow rate adjustment that define the curve V 1, V 2, V 3 The opening degree of the valve 2 is such that the rotation speed n is n 1 ,
In the case of n 2 and n 3, the opening is such that high power generation efficiency can be obtained.
That is, if the rotation speed n of the water turbine 3 and the opening of the flow control valve 2 are properly adjusted, the rated operating points O 1 , O 2 , O with high power generation efficiency are obtained.
3 it is possible to operate the hydraulic turbine 3, the flow rate Q will be changed to Q 1, Q 2, Q 3 in this case.

【0045】そして、このように発電効率の高く保った
まま水車3を運転するために、本実施例では水車3の運
転点が、水車3の回転数nが変化しても水車3が定格運
転を行うことが可能な曲線L0上を移動するように回転
数nと流量調整弁2の開度を制御する。
In order to operate the water turbine 3 while keeping the power generation efficiency high, in this embodiment, the operating point of the water turbine 3 is set to the rated operation even if the rotation speed n of the water turbine 3 changes. The rotation speed n and the degree of opening of the flow control valve 2 are controlled so as to move on a curve L0 that can perform the following operations.

【0046】このため、本実施例において演算装置15
は、流量Qと、この流量Qに対応する直線L0上の点に
おける回転数nと流量調整弁2の開度の組合せの関数を
備えるものとなっている。
For this reason, in the present embodiment, the arithmetic unit 15
Has a function of the flow rate Q and a combination of the rotation speed n and the opening degree of the flow rate control valve 2 at a point on the straight line L0 corresponding to the flow rate Q.

【0047】以上の様に、この実施例では、水車の運転
点は線L0上を動くことになる。この場合、回転数をn1
にしたまま調整弁を絞ることにより曲線L1上を点NR1
まで移動させることにより流量を減らすこともできる
が、曲線L0上を動かした方が有効落差が高くとれるの
で、調整弁のみを操作して曲線L1上で流量調整運転を
するより発電効率は高くなる。
[0047] As described above, in this embodiment, the operating point of the water wheel will be moved over the line L 0. In this case, the rotation speed is n 1
Point on the curve L 1 by squeezing the left control valve was NR 1
Although the flow rate can be reduced by moving the control valve up to the curve L 0 , the effective head can be increased by moving the curve L 0. Therefore, the power generation efficiency is lower than the flow rate adjustment operation performed on the curve L 1 by operating only the regulating valve. Get higher.

【0048】なお、流量調整範囲はQ1からQ3までとな
り、図中に示したQrangeの範囲となる。ここで、
Q3の値は、水車3および発電機7の回転数nを最小に
した場合に、最高の発電効率を示す流動調整弁2の開度
に対応するものであるので、水車3および発電機7の回
転数nの調整可能範囲によって決定されることとなる。
しかしながら、流量Q3以下であっても、水車3の回転
数はnを一定(n3)として、流量調整弁2の開度を絞
っていけば、曲線L3に沿って流量Qと有効落差Hの関
係が変化するため、曲線L3上の点NR3までは運転する
ことができる。これにより、広範囲の流量調整が可能と
なる。
[0048] The flow rate adjustment range is from Q 1 to Q 3, a range of Qrange shown in FIG. here,
Since the value of Q3 corresponds to the opening of the flow control valve 2 showing the highest power generation efficiency when the rotation speed n of the turbine 3 and the generator 7 is minimized, the value of the turbine 3 and the generator 7 It is determined by the adjustable range of the rotational speed n.
However, even if the flow rate is equal to or less than the flow rate Q 3 , if the rotation speed of the water turbine 3 is kept constant at n (n 3 ) and the opening of the flow control valve 2 is reduced, the flow rate Q and the effective head fall along the curve L 3 since the relationship between the H is changed, to the point NR 3 on the curve L 3 can be operated. This allows a wide range of flow rate adjustment.

【0049】したがって、本実施例によれば、高い発電
効率を保って広範囲の流量調整を可能とした固定案内羽
根水車を提供できる。
Therefore, according to the present embodiment, it is possible to provide a fixed guide vane turbine that can adjust the flow rate over a wide range while maintaining high power generation efficiency.

【0050】図7は、本発明による水力発電装置の運転
制御装置の第4実施例を示す概念構成図で、前述図1と
同一符号は同一又は相当部分を示している。この構成で
図1と異なる点は、図1の開度回転数調整器10に代え
て、水車3の流量を所望の値にするための開度指令aを
流量調整弁2に出力する開度調整器10Aと、水車3の
入口、出口の差圧を測定し、水車3に作用する有効落差
を算定する水車有効落差検出器16と、有効落差に応じ
た最適の回転数nを計算して回転数指令bを出力する回
転数調整器10Bとを備えて成る点である。
FIG. 7 is a conceptual block diagram showing a fourth embodiment of the operation control apparatus for a hydroelectric power generator according to the present invention. The same reference numerals as those in FIG. 1 denote the same or corresponding parts. 1 is different from FIG. 1 in that the opening command a for setting the flow rate of the water turbine 3 to a desired value is output to the flow control valve 2 in place of the opening speed controller 10 in FIG. The regulator 10A, the differential pressure at the inlet and the outlet of the turbine 3 and the turbine effective drop detector 16 for calculating the effective drop acting on the turbine 3 and the optimum rotational speed n according to the effective drop are calculated. A rotation speed adjuster 10B for outputting a rotation speed command b is provided.

【0051】この構成で、開度調整器10Aより出力さ
れる開度指令aに応じて、流量調整弁2が所定開度に設
定されて所定の流量が水車3に流れる。このとき、水車
有効落差検出器16により水車3の入口、出口の差圧が
検出される。回転数調整器10Bは、その検出された水
車有効落差Hに応じて、例えば回転数n/H1/2が一定
になるように計算して、得られる回転数指令bを周波数
変換装置8に出力する。周波数変換装置8はこの回転数
指令bに基づき発電機7の回転子を前記関係式(1)を
満足する周波数の交流で励磁する。
In this configuration, the flow control valve 2 is set to a predetermined opening in accordance with the opening command a output from the opening controller 10A, and a predetermined flow rate flows to the water wheel 3. At this time, the differential pressure at the entrance and exit of the turbine 3 is detected by the turbine effective head detector 16. The rotation speed adjuster 10B calculates, for example, the rotation speed n / H 1/2 in accordance with the detected water turbine effective head H, and outputs the obtained rotation speed command b to the frequency conversion device 8. Output. The frequency converter 8 excites the rotor of the generator 7 with an alternating current having a frequency satisfying the relational expression (1) based on the rotation speed command b.

【0052】これにより、常に水車3の回転数nを流量
に応じた最適値に設定することができるようになる。即
ち、要求流量に応じて開度調整器10Aにより流量調整
弁2が開閉されるが、その結果、水車に作用する有効落
差Hは変化する。ただし、有効落差Hの変化に応じて、
回転数調整器10Bで水車3の回転数nも変化させられ
る。結果として水車の運転状態は図6の曲線L0の様に
変化する。特に、この実施例の場合、常に水車の運転状
態を示す指数である単位落差当たりの回転数(n/H
1/2)が一定になる様に制御することにより、あらかじ
め最も効率が高い単位落差当たりの回転数を求めておけ
ば、流量が変化した場合も回転数の調整範囲内であれば
常に高い効率で運転できる。なお、有効落差Hに対する
回転数nの関係は、かならずしもn/H1/2が一定とい
う式に限定されることなく、流量調整範囲を可能な限り
広くとるという観点で別の式で制御するようにしてもよ
い。
Thus, the rotation speed n of the water wheel 3 can always be set to an optimum value according to the flow rate. That is, the flow rate regulating valve 2 is opened and closed by the opening degree regulator 10A according to the required flow rate. As a result, the effective head H acting on the water turbine changes. However, according to the change of the effective head H,
The rotation speed n of the water turbine 3 is also changed by the rotation speed controller 10B. As a result water wheel operating state changes like a curve L 0 in Fig. In particular, in the case of this embodiment, the number of rotations per unit head (n / H), which is an index that always indicates the operating state of the turbine.
By controlling so that 1/2 ) is constant, if the rotation speed per unit head with the highest efficiency is determined in advance, the efficiency is always high even if the flow rate changes within the rotation speed adjustment range. Can be driven by Note that the relationship between the effective head H and the rotation speed n is not necessarily limited to the equation that n / H 1/2 is constant, but is controlled by another equation from the viewpoint of making the flow rate adjustment range as wide as possible. It may be.

【0053】この実施例によれば、あらかじめ調整弁開
度と水車の回転数の最適な関係がわかっていなくても、
その有効落差における最適回転数で運転されるため常に
効率の高い状態で運転できる。
According to this embodiment, even if the optimal relationship between the opening degree of the regulating valve and the rotation speed of the turbine is not known in advance,
Since the operation is performed at the optimum rotation speed at the effective head, the operation can always be performed with high efficiency.

【0054】図8は、本発明による水力発電装置の運転
制御装置の第5実施例を示す概念構成図で、前述図7と
同一符号は同一又は相当部分を示している。この構成で
図7の構成と異なる点は、水車変速装置9が、変速機操
作装置13と機械式無段変速機17とから構成されてい
る点である。
FIG. 8 is a conceptual diagram showing a fifth embodiment of the operation control device for a hydroelectric power generator according to the present invention. The same reference numerals as those in FIG. 7 denote the same or corresponding parts. This configuration differs from the configuration in FIG. 7 in that the water turbine transmission 9 includes a transmission operating device 13 and a mechanical continuously variable transmission 17.

【0055】この構成で、開度調整器8Aより出力され
る開度指令aに応じて流量調整弁2が開閉されると共
に、水車有効落差検出器16により水車3の入口、出口
の差圧である有効落差が検出され、その検出された水車
有効落差Hに基づき、例えば回転数n/H1/2が一定に
なるように計算されて回転数指令bが回転数調整器8B
より出力される点は、上述図7の場合と同様である。
With this configuration, the flow control valve 2 is opened and closed according to the opening command a output from the opening adjuster 8A, and the water turbine effective head drop detector 16 detects the differential pressure between the inlet and outlet of the water turbine 3. A certain effective head is detected, and based on the detected water turbine effective head H, for example, the rotation speed n / H 1/2 is calculated to be constant, and the rotation speed command b is set to the rotation speed regulator 8B.
The output point is the same as in the case of FIG. 7 described above.

【0056】図8の実施例の場合は、回転数調整器8B
より出力される回転数指令bを変速機操作装置13で受
けて無段変速機を操作する点が異なり、機械的に水車3
の回転数nを調整して有効落差Hに応じた最適の回転数
nに設定する。
In the case of the embodiment shown in FIG. 8, the rotation speed adjuster 8B
The difference is that the transmission operation device 13 receives the rotational speed command b output from the transmission device 13 and operates the continuously variable transmission.
Is adjusted to an optimum rotational speed n according to the effective head H.

【0057】このように、回転数調整器8Bでは、水車
有効落差Hに基づき回転数n/H1/ 2が一定になるよう
に回転数nを調整することにより、図7の場合同様に、
どの流量でも最高効率点で運転することができる。
[0057] Thus, the rotational speed regulator 8B, by the rotational speed n / H 1/2 on the basis of the waterwheel effective head H is adjusted to the rotational speed n so as to be constant, as in the case of FIG. 7,
It can operate at the highest efficiency point at any flow rate.

【0058】図9は、本発明による水力発電装置の運転
制御装置の第6実施例を示す概念構成図で、前述従来図
11と同一符号は同一又は相当部分を示している。この
構成で従来図11と異なる点は、流量を所望の値にする
ための開度指令aを手動で流量調整弁2に出力する開度
調整器10Aを設ける一方、水車3と発電機7とを水車
変速装置9を介して接続するようにした点である。
FIG. 9 is a conceptual block diagram showing a sixth embodiment of the operation control device for a hydroelectric power generator according to the present invention. The same reference numerals as those in FIG. 11 denote the same or corresponding parts. This configuration differs from the prior art in FIG. 11 in that an opening adjuster 10A for manually outputting an opening command a for setting the flow rate to a desired value to the flow control valve 2 is provided, while the water turbine 3 and the Are connected via a water turbine transmission 9.

【0059】この水車変速装置9は、水車3の主軸6a
に交換可能に装着されたプーリー18aと発電機7の主
軸6bに固定されたプーリー18bとをベルト18cで
接続する回転伝達機構18と、そのプーリー18aと交
換するそれぞれ径の異なるプーリー18d、18eを備
えて構成される。
The water turbine transmission 9 includes a main shaft 6 a of the water turbine 3.
A rotation transmitting mechanism 18 that connects a pulley 18a that is exchangeably mounted on the main body 6 and a pulley 18b that is fixed to the main shaft 6b of the generator 7 with a belt 18c, and pulleys 18d and 18e having different diameters to be replaced with the pulley 18a. It is configured with.

【0060】この構成で、降水量の異なる季節等に応じ
て水車3の流量を調整する場合に、運転員は、開度調整
器10Aを操作して流量調整弁2の開度を所望の値に設
定する。同時に、そのとき設定した流量調整弁2の開度
に合わせて適切な水車3の回転数が得られるように水車
3の主軸6aにプーリー18a、18d、18eのいず
れかを選んで装着する。
In this configuration, when adjusting the flow rate of the water turbine 3 in accordance with the different seasons of precipitation, the operator operates the opening degree adjuster 10A to set the opening degree of the flow adjustment valve 2 to a desired value. Set to. At the same time, one of the pulleys 18a, 18d and 18e is selected and mounted on the main shaft 6a of the water turbine 3 so that an appropriate rotation speed of the water turbine 3 can be obtained in accordance with the opening degree of the flow control valve 2 set at that time.

【0061】このようにして、水車3の流量を調整する
場合は、水車3および発電機7を停止してプーリーを交
換することにより、発電機7の回転数が一定な場合でも
3つの異なる回転数で水車を運転することが可能とな
る。
When the flow rate of the turbine 3 is adjusted in this way, the turbine 3 and the generator 7 are stopped and the pulleys are replaced, so that three different rotations are performed even when the rotation speed of the generator 7 is constant. It becomes possible to drive the waterwheel by number.

【0062】これにより、流れ込み式の発電所等で、河
川の流量が季節により大きく変動する場合は、上記の様
に季節に応じて流量調整弁2の開度を変えるが、それの
みでなく流量調整弁2の開度に応じて水車軸プーリー1
8a、18d、18eの中から水車3の回転数が最適に
なるものを選択して水車軸6aに装着することにより、
流量調整範囲を広くすることができる。この様に、比較
的長い周期で流量が変動する場合は、この実施例の様な
運転制御装置を用いることにより、年間を通して高い効
率で水車を運転することができる。
Thus, in a run-of-river type power plant or the like, when the flow rate of the river greatly fluctuates depending on the season, the opening of the flow control valve 2 is changed according to the season as described above. Water wheel axle pulley 1 according to the opening of regulating valve 2
8a, 18d, and 18e, by selecting the rotation speed of the water wheel 3 that is optimal, and mounting it on the water wheel shaft 6a,
The flow rate adjustment range can be widened. As described above, when the flow rate fluctuates in a relatively long cycle, the water turbine can be operated with high efficiency throughout the year by using the operation control device as in this embodiment.

【0063】図10は、本発明による水力発電装置の運
転制御装置の第7実施例を示す概念構成図で、前述図1
と同一符号は同一又は相当部分を示している。この構成
で図1と異なる点は、流量調整弁2をON/OFF電磁
弁で構成する一方、水車変速装置の代わりに発電機7の
運転/停止を操作する運転停止操作器19を設けて構成
した点、および、開度回転数調整器10に代えて、要求
される流量指令Qに応じて、水車3に平均して所望の流
量が流れるように流量調整弁2を所定周期で開閉する間
欠運転指令aを出力すると同時に、流量調整弁2の開閉
周期に合わせて発電機7を運転停止するための間欠運転
指令bを出力する間欠運転指令装置20を設けて構成し
た点である。
FIG. 10 is a conceptual diagram showing a seventh embodiment of the operation control apparatus for a hydroelectric power generator according to the present invention.
The same reference numerals indicate the same or corresponding parts. This configuration differs from FIG. 1 in that the flow rate regulating valve 2 is configured by an ON / OFF solenoid valve, while the operation stop operation device 19 for operating / stopping the generator 7 is provided instead of the water turbine transmission. Intermittently opening and closing the flow control valve 2 in a predetermined cycle so that a desired flow rate flows on average to the water turbine 3 according to the required flow rate command Q in place of the opening degree rotation speed adjuster 10 An intermittent operation command device 20 that outputs the intermittent operation command b for outputting the operation command a and simultaneously stopping the operation of the generator 7 in accordance with the opening and closing cycle of the flow control valve 2 is provided.

【0064】この構成で、流量指令Qに基づき間欠運転
指令装置20から間欠運転指令a、bが出力されると、
流量調整弁2はこの間欠運転指令aに応じて開閉し、水
車3へ水を間欠的に流す。また、運転停止操作器19は
間欠運転指令bを受けて発電機7の系統に接続する遮断
器や励磁回路などを入り切りすることにより、水車発電
機の運転と停止を調整弁2の開閉に合わせて周期的に繰
り返す。
In this configuration, when the intermittent operation commands a and b are output from the intermittent operation command device 20 based on the flow rate command Q,
The flow control valve 2 opens and closes in response to the intermittent operation command a, and allows water to flow to the water wheel 3 intermittently. Further, the operation stop operation device 19 receives the intermittent operation command b and turns on and off a circuit breaker and an excitation circuit connected to the system of the generator 7 so that the operation and the stop of the water turbine generator are synchronized with the opening and closing of the regulating valve 2. Repeat periodically.

【0065】このときの運転と停止の周期は以下のよう
にして決定される。すなわち、間欠運転指令装置20か
ら出力される間欠運転指令の基本周期をTとし、流量指
令値Q、水車の定格流量をQoとすると、運転する時間
間隔Toは To=T×Q/Qo・・・(2) として求めることができる。また、基本周期Tは、河川
の水位変化の時定数により変わるが、設置場所が決まれ
ば一定値として決めることができる。
The cycle of operation and stop at this time is determined as follows. That is, assuming that the basic cycle of the intermittent operation command output from the intermittent operation command device 20 is T, the flow rate command value is Q, and the rated flow rate of the turbine is Qo, the operation time interval To is To = T × Q / Qo.・ (2) can be obtained as The basic period T varies depending on the time constant of the change in the water level of the river, but can be determined as a constant value once the installation location is determined.

【0066】この運転制御装置によれば、水車の下流で
測定される流量は、ある程度長い時間平均を取ると指令
値Qに等しくなり、定格流量Qoの水車を用いて実質的
に流量を減らすことができる。しかも、運転中の流量は
定格流量Qoなので、水車は常に効率の高い状態で運転
できることになる。
According to this operation control device, the flow rate measured downstream of the turbine becomes equal to the command value Q when the average is taken for a relatively long time, and the flow rate is substantially reduced by using a turbine having the rated flow rate Qo. Can be. In addition, since the flow rate during operation is the rated flow rate Qo, the water turbine can always be operated with high efficiency.

【0067】[0067]

【発明の効果】以上のように本発明によれば、可動式の
案内羽根を有さず、流動損失を生じる弁によって流量調
整を行う水力発電装置においても、水車の回転数を制御
することによって広範囲の流量調整が可能になる。さら
に、有効落差と回転数との関係を適正に制御することに
よって、発電効率を低下させずに広範囲の流量調整が可
能となる。
As described above, according to the present invention, even in the case of a hydroelectric power generator that does not have movable guide vanes and that adjusts the flow rate using a valve that causes a flow loss, the number of rotations of the turbine is controlled. A wide range of flow adjustment is possible. Furthermore, by appropriately controlling the relationship between the effective head and the number of revolutions, it is possible to adjust the flow rate over a wide range without lowering the power generation efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す水力発電装置の概
念構成図。
FIG. 1 is a conceptual configuration diagram of a hydroelectric power generator showing a first embodiment of the present invention.

【図2】本発明の第1実施例の水力発電装置における水
車の回転数をn1からn2に切り替えた場合の水車の流量
Qと有効落差Hとの関係を示す図。
FIG. 2 is a diagram showing the relationship between the flow rate Q of the turbine and the effective head H when the number of revolutions of the turbine is switched from n 1 to n 2 in the hydraulic power generator according to the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す水力発電装置の概
念構成図。
FIG. 3 is a conceptual configuration diagram of a hydroelectric generator showing a second embodiment of the present invention.

【図4】本発明の第2実施例の水力発電装置における水
車の回転数を切り替えた場合の水車の流量Qと有効落差
Hとの関係を示す図。
FIG. 4 is a diagram showing the relationship between the flow rate Q of the water turbine and the effective head H when the rotation speed of the water turbine is switched in the hydraulic power generator according to the second embodiment of the present invention.

【図5】本発明の第3の実施例を示す水力発電装置の概
念構成図。
FIG. 5 is a conceptual configuration diagram of a hydroelectric generator according to a third embodiment of the present invention.

【図6】本発明の第1実施例の水力発電装置における水
車の回転数を連続的に変えた場合について説明するため
の水車の流量Qと有効落差Hとの関係を示す図。
FIG. 6 is a diagram showing the relationship between the flow rate Q of the turbine and the effective head H for explaining a case where the rotation speed of the turbine is continuously changed in the hydraulic power generator according to the first embodiment of the present invention.

【図7】本発明の第4の実施例を示す水力発電装置の概
念構成図。
FIG. 7 is a conceptual configuration diagram of a hydroelectric generator according to a fourth embodiment of the present invention.

【図8】本発明の第5の実施例を示す水力発電装置の概
念構成図。
FIG. 8 is a conceptual configuration diagram of a hydroelectric generator showing a fifth embodiment of the present invention.

【図9】本発明の第6の実施例を示す水力発電装置の概
念構成図。
FIG. 9 is a conceptual configuration diagram of a hydroelectric generator according to a sixth embodiment of the present invention.

【図10】本発明の第7の実施例を示す水力発電装置の
概念構成図。
FIG. 10 is a conceptual configuration diagram of a hydroelectric generator according to a seventh embodiment of the present invention.

【図11】案内羽根が固定された従来の水力発電装置の
概念構成図。
FIG. 11 is a conceptual configuration diagram of a conventional hydroelectric power generator to which guide vanes are fixed.

【図12】従来の水力発電装置運転制御装置について説
明するための水車の流量Qと有効落差Hとの関係を示す
図。
FIG. 12 is a diagram illustrating a relationship between a flow rate Q of a water turbine and an effective head H for describing a conventional hydraulic power plant operation control device.

【符号の説明】[Explanation of symbols]

2 流量調整弁、3 固定案内羽根水車、6a 主軸
(水車)、6b 主軸(発電機)、7 発電機、8 周
波数変換装置、9 水車変速装置、10 開度回転数調
整器、10A 開度調整器、10B 回転数調整器、1
3 変速機操作器、15 演算装置、16 水車有効落
差検出器、17 機械式無段変速機、18変速機、19
運転停止操作機、20 間欠運転指令装置
2 Flow control valve, 3 fixed guide impeller turbine, 6a main shaft (water turbine), 6b main shaft (generator), 7 generator, 8 frequency converter, 9 water turbine transmission, 10 rotation speed adjuster, 10A opening adjustment , 10B rotation speed regulator, 1
3 transmission operation device, 15 arithmetic unit, 16 water turbine effective head detector, 17 mechanical continuously variable transmission, 18 transmission, 19
Operation stop operation device, 20 intermittent operation command device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大竹 典男 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 木崎 康巳 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 Fターム(参考) 3H072 AA02 AA27 BB40 CC23 CC42 3H073 AA02 AA26 BB25 CC13 CE06 CE09 CE26 5H590 AA02 AA30 CA11 CB01 CC01 CC10 CC18 CE01 EA14 EB07 EB14 EB20 FA01 FA03 FA06 FA08 GA06 GA10 HA06 HA14 HA26  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Norio Otake, Inventor 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Keihin Works Co., Ltd. 2 F-term in Toshiba Engineering Corporation (reference) 3H072 AA02 AA27 BB40 CC23 CC42 3H073 AA02 AA26 BB25 CC13 CE06 CE09 CE26 5H590 AA02 AA30 CA11 CB01 CC01 CC10 CC18 CE01 EA14 EB07 EB14 EB20 FA01 FA03 FA06 FA06 FA06 FA06 FA06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 流動抵抗が変化する流量調整弁を用いて
固定案内羽根水車に流す流量を調整する水力発電装置に
おいて、 前記流量調整弁による前記流量の調整に応じて、前記固
定案内羽根水車の回転数を変化させる水車変速装置を備
えたことを特徴とする水力発電装置。
1. A hydraulic power generator for adjusting a flow rate flowing through a fixed guide impeller using a flow control valve whose flow resistance changes, wherein the flow rate of the fixed guide impeller is adjusted in accordance with the flow rate adjustment by the flow control valve. A hydraulic power plant comprising a water turbine transmission for changing the number of revolutions.
【請求項2】 前記流量調整弁を所定開度に調整する指
令信号と共に、前記水車変速装置に前記固定案内羽根水
車の回転数を所定値に調整する指令信号を出力する開度
回転数調整器を備えたことを特徴とする請求項1記載の
水力発電装置。
2. An opening speed controller for outputting a command signal for adjusting the rotation speed of the fixed guide impeller to a predetermined value to the water turbine transmission together with a command signal for adjusting the flow control valve to a predetermined opening. The hydroelectric power generator according to claim 1, further comprising:
【請求項3】 前記流量に最適な前記固定案内羽根水車
の回転数を算出する演算装置を設けたことを特徴とする
請求項1または2に記載の水力発電装置。
3. The hydraulic power generator according to claim 1, further comprising an arithmetic unit for calculating a rotation speed of the fixed guide impeller, which is optimal for the flow rate.
【請求項4】 前記流量調整弁を所定開度に調整する指
令信号を出力する開度調整器と、前記固定案内羽根水車
の入口と出口の差圧である有効落差を検出する有効落差
検出器と、前記固定案内羽根水車の回転数を調整する指
令信号を前記有効落差の関数として前記水車変速装置に
出力する回転数調整器を設けたことを特徴とする請求項
1記載の水力発電装置。
4. An opening controller for outputting a command signal for adjusting the flow control valve to a predetermined opening, and an effective head detector for detecting an effective head which is a pressure difference between an inlet and an outlet of the fixed guide impeller. 2. The hydraulic power generator according to claim 1, further comprising a rotation speed regulator for outputting a command signal for adjusting a rotation speed of the fixed guide impeller to the water turbine transmission as a function of the effective head.
【請求項5】 前記水車変速装置は、前記固定案内羽根
水車に接続する発電機の励磁周波数を変えることにより
水車の回転数を変化させることを特徴とする請求項1か
ら4のいずれかに記載の水力発電装置。
5. The water turbine transmission according to claim 1, wherein the turbine speed is changed by changing an excitation frequency of a generator connected to the fixed guide impeller wheel. Hydropower equipment.
【請求項6】 前記水車変速装置は、前記固定案内羽根
水車の回転軸と発電機の回転軸との間の回転数比を変え
ることにより水車の回転数を変化させることを特徴とす
る請求項1から4のいずれかに記載の水力発電装置。
6. The turbine transmission according to claim 1, wherein the rotation speed of the turbine is changed by changing a rotation speed ratio between a rotation shaft of the fixed guide impeller turbine and a rotation shaft of the generator. The hydroelectric generator according to any one of 1 to 4.
【請求項7】 流動抵抗が変化する流量調整弁を用いて
固定案内羽根水車に流す流量を調整する水力発電装置の
運転制御方法において、 前記流量調整弁による前記流量の調整に応じて、前記固
定案内羽根水車の回転数を変化させることを特徴とする
水力発電装置の運転制御方法。
7. A method for controlling the operation of a hydraulic power generation apparatus for adjusting a flow rate of a fixed guide impeller using a flow rate control valve having a variable flow resistance, wherein the fixed flow rate is adjusted in accordance with the flow rate adjustment by the flow rate control valve. An operation control method for a hydraulic power plant, wherein the rotation speed of a guide impeller is changed.
【請求項8】 前記固定案内羽根水車の回転数は、該固
定案内羽根水車の有効落差の関数となるように調整され
ることを特徴とする請求項7記載の水力発電装置の運転
制御方法。
8. The method according to claim 7, wherein the rotation speed of the fixed guide impeller is adjusted so as to be a function of an effective head of the fixed guide impeller.
【請求項9】 流動抵抗が変化する流量調整弁を用いて
固定案内羽根水車に流す流量を調整する水力発電装置に
おいて、 要求される水車の流量と定格流量との比に応じた周期で
前記流量調整弁をON/OFFする指令信号と共に、前
記水車変速装置により前記固定案内羽根水車に接続され
る発電機をON/OFFする指令信号を出力する間欠運
転指令装置を設けたことを特徴とする水力発電装置。
9. A hydraulic power generator for adjusting a flow rate of a fixed guide impeller turbine using a flow rate control valve having a variable flow resistance, wherein the flow rate is controlled at a cycle corresponding to a required ratio between a flow rate of the turbine and a rated flow rate. An intermittent operation command device that outputs a command signal for turning on / off a generator connected to the fixed guide impeller by the water turbine transmission device, together with a command signal for turning on / off a regulating valve. Power generator.
【請求項10】 流動抵抗が変化する流量調整弁を用い
て固定案内羽根水車に流す流量を調整する水力発電装置
の運転制御方法において、 前記流量調整弁を間欠的に開閉制御し、前記流量調整弁
が開いているとき発電を行うことを特徴とする水力発電
装置の運転制御方法。
10. A method for controlling the operation of a hydraulic power generation apparatus for adjusting a flow rate flowing through a fixed guide impeller using a flow rate control valve having a variable flow resistance, wherein the flow rate control valve is intermittently opened and closed to control the flow rate. An operation control method for a hydroelectric power generator, wherein power is generated when a valve is open.
JP2001150204A 2001-05-18 2001-05-18 Hydro-poewr generator and method of operating and controlling it Withdrawn JP2002354895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150204A JP2002354895A (en) 2001-05-18 2001-05-18 Hydro-poewr generator and method of operating and controlling it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150204A JP2002354895A (en) 2001-05-18 2001-05-18 Hydro-poewr generator and method of operating and controlling it

Publications (1)

Publication Number Publication Date
JP2002354895A true JP2002354895A (en) 2002-12-06

Family

ID=18995254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150204A Withdrawn JP2002354895A (en) 2001-05-18 2001-05-18 Hydro-poewr generator and method of operating and controlling it

Country Status (1)

Country Link
JP (1) JP2002354895A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056829A (en) * 2005-08-26 2007-03-08 Hitachi Industrial Equipment Systems Co Ltd Energy recovery device
JP2008172953A (en) * 2007-01-12 2008-07-24 Kobe Steel Ltd Power generating device
JP2010051120A (en) * 2008-08-22 2010-03-04 Chugoku Electric Power Co Inc:The Hydraulic power-generator insulation recovery equipment
JP2010509537A (en) * 2006-11-10 2010-03-25 ジョセフ パオリ Reversible hydroelectric generator
JP2010077971A (en) * 2009-11-30 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd Water turbine generator
JP2013078195A (en) * 2011-09-30 2013-04-25 Hitachi Mitsubishi Hydro Corp Control method for variable-speed synchronous power generator motor
JP2014214711A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Fluid device
JP2016086479A (en) * 2014-10-23 2016-05-19 ダイキン工業株式会社 Fluid system
JP2018119409A (en) * 2017-01-23 2018-08-02 ダイキン工業株式会社 Hydraulic power generating system
CN110214227A (en) * 2017-01-23 2019-09-06 大金工业株式会社 Hydroelectric power system
CN113179736A (en) * 2021-06-04 2021-07-30 上海集熠节能环保技术有限公司 Need not automatic fertilizer injection unit of extra power supply
CN113757024A (en) * 2021-09-03 2021-12-07 汤世强 Small and micro water flow constant-pressure hydroelectric power station
CN114341484A (en) * 2019-09-26 2022-04-12 大金工业株式会社 Hydroelectric power generation system and generator control method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056829A (en) * 2005-08-26 2007-03-08 Hitachi Industrial Equipment Systems Co Ltd Energy recovery device
JP4704856B2 (en) * 2005-08-26 2011-06-22 株式会社日立産機システム Energy recovery equipment
JP2010509537A (en) * 2006-11-10 2010-03-25 ジョセフ パオリ Reversible hydroelectric generator
JP2008172953A (en) * 2007-01-12 2008-07-24 Kobe Steel Ltd Power generating device
JP2010051120A (en) * 2008-08-22 2010-03-04 Chugoku Electric Power Co Inc:The Hydraulic power-generator insulation recovery equipment
JP2010077971A (en) * 2009-11-30 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd Water turbine generator
JP2013078195A (en) * 2011-09-30 2013-04-25 Hitachi Mitsubishi Hydro Corp Control method for variable-speed synchronous power generator motor
JP2014214711A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Fluid device
JP2016086479A (en) * 2014-10-23 2016-05-19 ダイキン工業株式会社 Fluid system
JP2018119409A (en) * 2017-01-23 2018-08-02 ダイキン工業株式会社 Hydraulic power generating system
CN110214227A (en) * 2017-01-23 2019-09-06 大金工业株式会社 Hydroelectric power system
US11313343B2 (en) 2017-01-23 2022-04-26 Daikin Industries, Ltd. Hydroelectric power generation system
CN114341484A (en) * 2019-09-26 2022-04-12 大金工业株式会社 Hydroelectric power generation system and generator control method
EP4020790A4 (en) * 2019-09-26 2023-08-23 Daikin Industries, Ltd. Hydropower generation system and power generator control method
CN113179736A (en) * 2021-06-04 2021-07-30 上海集熠节能环保技术有限公司 Need not automatic fertilizer injection unit of extra power supply
CN113757024A (en) * 2021-09-03 2021-12-07 汤世强 Small and micro water flow constant-pressure hydroelectric power station

Similar Documents

Publication Publication Date Title
ES2685747T3 (en) Hydraulic turbine generator
JP2002354895A (en) Hydro-poewr generator and method of operating and controlling it
US8581430B2 (en) Hydro turbine generator
US4629904A (en) Micro-hydroelectric power plant
CN101535652B (en) Reversible hydroelectric device
WO2018167240A1 (en) Method for operating a hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
KR20100047810A (en) Method and device for power regulation of an underwater power plant
KR20130103074A (en) High efficiency mall hydro power apparatus
KR101455033B1 (en) Method for contrlling of the small hydropower generation apparatus for adjusting to flow
KR101455032B1 (en) Small hydropower generation apparatus for adjusting to flow
JPH11287178A (en) Generating set
CN101435572A (en) Water feed flow control and pressure compensating system of boiler
JP2002242813A (en) Power generation system
CN104696253A (en) Adjustment and control method of inlet guide blade of air compressor
KR101908867B1 (en) Small Hydro Power Device using waterworks
JP6572315B2 (en) A method of controlling the torque of a small hydroelectric generator in response to fluctuations in the inflow rate without system frequency synchronization step-out.
JPH09250442A (en) Water turbine device
JPH09287546A (en) Turbine for wave activated generation
JP2018071100A (en) Hydropower generation system, hydropower generation method, and hydropower generation program
JP2006022745A (en) Micro-hydro power generation method and apparatus using surplus pressure
JP2004360479A (en) Pump reverse rotation turbine type power generating apparatus
RU2157468C1 (en) Method for regulation of usage of rotary pump
CN107294465A (en) The frequency modulation method and system of irrigation and drainage axial-flow pump electric motor frequency converter
JP2647116B2 (en) How to operate a variable speed hydraulic machine
KR200202016Y1 (en) Apparatus for improving water quality of reservoir

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805