JP2002353813A - Digital communication unit and communication unit for distribution line carrier using it - Google Patents

Digital communication unit and communication unit for distribution line carrier using it

Info

Publication number
JP2002353813A
JP2002353813A JP2001153641A JP2001153641A JP2002353813A JP 2002353813 A JP2002353813 A JP 2002353813A JP 2001153641 A JP2001153641 A JP 2001153641A JP 2001153641 A JP2001153641 A JP 2001153641A JP 2002353813 A JP2002353813 A JP 2002353813A
Authority
JP
Japan
Prior art keywords
circuit
signal
amplification
converter
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001153641A
Other languages
Japanese (ja)
Inventor
Hideo Hase
英生 長谷
Mutsumi Ishii
睦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001153641A priority Critical patent/JP2002353813A/en
Publication of JP2002353813A publication Critical patent/JP2002353813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a digital communication unit that can decide an amplification factor of an amplifier circuit in a short time and can be used for a distribution line carrier use communication unit adopting the multicarrier communication system and have high reception sensitivity, and to provide the distribution line carrier use communication unit using the communication unit. SOLUTION: The digital communication unit is provided with a 1st control circuit 10a that detects saturation of an analog/digital converter 16 to roughly and tentatively decide an amplification factor of an AGC amplifier circuit 17 and with a 2nd control circuit 10b that extracts a signal generating circuit component, compares its level with a predetermined level and finely controls the gain of the AGC amplifier circuit 17 according to the comparison result. Thus, number of levels of the selectable gain of the AGC amplifier circuit 17 can be increased and the optimum reception sensitivity can quickly be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に、配電線を
伝送路とし、複数の周波数の配電線搬送信号を送受信す
る通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a communication apparatus for transmitting and receiving distribution line carrier signals of a plurality of frequencies, using a distribution line as a transmission line.

【0002】[0002]

【従来の技術】従来のディジタル通信装置として、広帯
域ディジタル受信機(以下ディジタル受信機という)が
あり、例えば特開2000−236276号公報に示さ
れている。図8は、上記公報に示された従来のディジタ
ル受信機の構成を示す構成概要図である。なお、ここで
言う広帯域ディジタル受信機とは、受信した広帯域信号
を高周波信号のままRF帯あるいはIF帯においてA/
D変換し、チャネル分離以降の処理をディジタル回路で
行う受信機である。このようなデイジタル受信機を開示
した公報としては特願昭61−504791号公報“デ
ィジタル無線周波受信機”があるが、既によく知られて
いると考えられるので、同公報の説明は省略する。
2. Description of the Related Art As a conventional digital communication apparatus, there is a wideband digital receiver (hereinafter referred to as a digital receiver), which is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-236276. FIG. 8 is a schematic diagram showing the configuration of a conventional digital receiver disclosed in the above publication. Note that the broadband digital receiver referred to here means that a received wideband signal is converted to an A / A signal in an RF band or an IF band as a high frequency signal.
It is a receiver that performs D-conversion and processes after channel separation by digital circuits. Japanese Patent Application No. 61-504791 entitled "Digital Radio Frequency Receiver" discloses such a digital receiver. However, since it is considered that the digital receiver is well known, the description of the publication is omitted.

【0003】図8に示すように、ディジタル受信機は、
無線電波(RF信号)を受信するアンテナ31と、帯域
制限を行うRFバンドパスフィルタ(RFBPF)32
と、前記RF信号をIF信号に周波数変換するローカル
信号発振器34とミキサ33、このIF信号に帯域制限
を施すためのとIFバンドパスフィルタ(IFBPF)
36と、IF信号増幅用のAGCアンプ(増幅率可制御
アンプ)37と、増幅されたIF信号(アナログ受信信
号)をディジタルに変換するA/D変換器38と、所望
のチャネル帯域を分離するチャネル分離器(CH分離)
39と、該チャネル分離器39の出力信号からデータ信
号を復調する復調器41とで構成される。
[0003] As shown in FIG. 8, a digital receiver comprises:
An antenna 31 for receiving a radio wave (RF signal), and an RF bandpass filter (RFBPF) 32 for band limitation
A local signal oscillator 34 and a mixer 33 for frequency-converting the RF signal into an IF signal, and an IF band-pass filter (IFBPF) for band-limiting the IF signal.
36, an AGC amplifier (amplifier controllable amplifier) 37 for amplifying an IF signal, an A / D converter 38 for converting the amplified IF signal (analog received signal) into a digital signal, and separating a desired channel band. Channel separator (CH separation)
39, and a demodulator 41 for demodulating a data signal from the output signal of the channel separator 39.

【0004】図8において、アンテナ31で受信した受
信信号は、RFバンドパスフィルタ32に入力されて必
要な帯域制限を受ける。ここで言う必要な帯域とは、本
広帯域ディジタル受信機が受信可能なバンド幅であり、
通常使用されるシステムのサービスバンド帯域に一致す
るよう設定される。例えば、PDC800MHz方式携
帯電話システムでは16MHzの帯域幅となる。RFバ
ンドパスフィルタ32のこの通過帯域幅をWとする。
[0004] In FIG. 8, a received signal received by an antenna 31 is input to an RF bandpass filter 32 and subjected to necessary band limitation. The necessary band here is a bandwidth that the wideband digital receiver can receive,
It is set to match the service band of the system normally used. For example, a PDC 800 MHz mobile phone system has a bandwidth of 16 MHz. This pass band width of the RF band-pass filter 32 is defined as W.

【0005】次に、RFバンドパスフィルタ32で帯域
制限を受けた受信信号は、ミキサ33、ローカル発振器
34及びIFバンドパスフィルタ35により周波数変換
及び帯域制限を施されてIF信号となる。IFバンドパ
スフィルタ35の帯域幅即ちIF信号の帯域幅は、RF
バンドパスフィルタ32のそれと同じWである。次に、
IF信号はAGCアンプ37で増幅された後、A/D変
換器38で広帯域ディジタル信号に変換される。AGC
アンプ37の増幅率は、A/D変換器38への入力信号
がA/D変換器38の最大許容入力レベルを越えない範
囲で最大になるようにフィードバック制御される。
[0005] Next, the received signal subjected to the band limitation by the RF bandpass filter 32 is subjected to frequency conversion and band limitation by the mixer 33, the local oscillator 34 and the IF bandpass filter 35 to become an IF signal. The bandwidth of the IF bandpass filter 35, that is, the bandwidth of the IF signal is RF
W is the same as that of the bandpass filter 32. next,
The IF signal is amplified by an AGC amplifier 37 and then converted to a wideband digital signal by an A / D converter 38. AGC
The amplification factor of the amplifier 37 is feedback-controlled so that the input signal to the A / D converter 38 becomes maximum within a range not exceeding the maximum allowable input level of the A / D converter 38.

【0006】第一の課題として、この構成では、例えば
A/D変換器38の入力信号にレベルの高いノイズが重
畳されていると、AGCアンプの増幅率が低下させら
れ、A/D変換器38への入力信号レベルが減少し、復
調器41において復調されたデータ信号のうち伝送に使
用された周波数信号成分のレベルがこれらの信号処理回
路のダイナミツクレンジに対して相対的に小さくなり、
送信信号の正常な再生が困難になる。A/D変換器38
から出力された広帯域ディジタル信号はチャネル分離器
39に入力され、所望の狭帯域(チャネル帯域)ディジ
タル信号に分離される。ここで言う狭帯域(チャネル帯
域)とは、例えばPDC800MHz方式携帯電話シス
テムでは25kHzである。チャネル分離された狭帯域
(チャネル帯域)ディジタル信号は、復調器41におい
てシステムの変調方式(PDC800MHz方式携帯電
話ではπ/4QPSK)に応じて復調されデータ信号と
なる。
As a first problem, in this configuration, for example, when high-level noise is superimposed on the input signal of the A / D converter 38, the amplification factor of the AGC amplifier is reduced, and the A / D converter 38, the level of the frequency signal component used for transmission among the data signals demodulated by the demodulator 41 becomes relatively small with respect to the dynamic range of these signal processing circuits.
Normal reproduction of the transmission signal becomes difficult. A / D converter 38
Is input to the channel separator 39 and is separated into a desired narrow-band (channel band) digital signal. The narrow band (channel band) referred to here is, for example, 25 kHz in a PDC 800 MHz system portable telephone system. The narrow-band (channel band) digital signal separated from the channel is demodulated in the demodulator 41 in accordance with the system modulation system (π / 4QPSK in a PDC 800 MHz mobile phone) to become a data signal.

【0007】また、近年、上記のようなデイジタル通信
装置がコスト削減などの理由から既存の電力線(配電
線)を利用して通信を行なう電力線モデムなどの技術と
して利用されはじめている。この技術に関しては例えば
特開2001−111518号公報に開示されたものが
ある。この公報では、様々な家電機器の電源回路等から
漏えいするノイズへの耐ノイズ性を高めるという観点か
ら、複数の周波数帯域に同一のデータを載せ、ノイズの
影響の大きい周波数帯域を避けノイズの影響の少ない周
波数帯域を利用した通信が可能なマルチキャリア通信方
式が提案されている。第2の課題として、このようなマ
ルチキャリア通信方式の場合には、単一の周波数帯域を
利用したシングルキャリア通信方式に比較し、データの
処理時間が長いので、前述のAGCのフィードバック制
御の安定時間が加われば、ますます長くなり、実用上、
フィードバック制御の応答速度が遅過ぎるという課題が
あった。
In recent years, the above-mentioned digital communication device has begun to be used as a technology such as a power line modem for performing communication using an existing power line (distribution line) for reasons such as cost reduction. This technique is disclosed, for example, in Japanese Patent Application Laid-Open No. 2001-111518. In this gazette, from the viewpoint of improving the noise resistance against noise leaking from the power supply circuit of various home appliances, the same data is placed in a plurality of frequency bands, and the influence of noise is avoided by avoiding frequency bands where noise is greatly affected. A multi-carrier communication system capable of performing communication using a frequency band with few frequencies has been proposed. As a second problem, in the case of such a multi-carrier communication system, the data processing time is longer than that of the single-carrier communication system using a single frequency band. With time, it gets longer and longer,
There is a problem that the response speed of the feedback control is too slow.

【0008】[0008]

【発明が解決しようとする課題】従来の広帯域ディジタ
ル受信機は、A/D変換器への入力信号がその最大許容
入力レベルを越えない範囲で最大になるように、AGC
アンプの増幅率がフィードバック制御されているので、
例えばA/D変換器の入力信号にレベルの高いノイズが
混入すると、相対的にA/D変換器への入力信号レベル
が減少し、復調器で復調されたデータ信号のうち伝送に
使用された周波数信号成分のレベルが信号処理回路のダ
イナミツクレンジに対して小さくなってしまうので、送
信信号の正常な再生が困難になるという課題があった。
The conventional wideband digital receiver uses an AGC so that the input signal to the A / D converter is maximized without exceeding its maximum allowable input level.
Since the amplification rate of the amplifier is feedback controlled,
For example, when high-level noise is mixed in the input signal of the A / D converter, the input signal level to the A / D converter relatively decreases, and the data signal demodulated by the demodulator is used for transmission. Since the level of the frequency signal component becomes smaller than the dynamic range of the signal processing circuit, there is a problem that it is difficult to normally reproduce the transmission signal.

【0009】また、以上のようなディジタル通信装置を
配電線搬送用通信装置として使用するためには、様々な
家電機器の電源回路等から漏えいするノイズが不特定か
つ時間的に変化するため、AGCアンプ7の増幅率の決
定をより短時間でもっと細かく行うことが求められてい
た。さらに、複数の周波数帯域に同一のデータを載せ、
ノイズの影響の少ない周波数帯域を利用した通信が可能
なマルチキャリア通信方式の場合には、単一の周波数帯
域を利用したシングルキャリア通信方式に比較し、デー
タの処理時間が長くなるため、AGC処理時間をより短
することが望ましい。
In order to use the above digital communication device as a communication device for transporting distribution lines, noise leaking from a power supply circuit of various home electric appliances and the like varies unspecified and changes over time. It has been required to determine the amplification factor of the amplifier 7 in a shorter time and in more detail. Furthermore, the same data is placed on multiple frequency bands,
In the case of a multi-carrier communication system capable of performing communication using a frequency band less affected by noise, the data processing time is longer than that of a single carrier communication system using a single frequency band. Shorter times are desirable.

【0010】この発明は、かかる問題点を解決するため
になされたものであり、短時間で増幅回路の増幅率を決
定でき、マルチキャリア通信方式の配電線搬送用通信装
置にも使用可能で、かつ受信感度の高いディジタル通信
装置及びこれを用いた配電線搬送用通信装置を得ること
を目的としている。
The present invention has been made in order to solve such a problem, and can determine the amplification factor of an amplifier circuit in a short time, and can be used for a communication device for carrying distribution lines of a multicarrier communication system. Another object of the present invention is to provide a digital communication device having high reception sensitivity and a communication device for distribution line transport using the digital communication device.

【0011】[0011]

【課題を解決するための手段】この発明のディジタル通
信装置は、外部から所定の搬送周波数で入力されたアナ
ログ信号を増幅する増幅回路、前記増幅回路の出力側に
接続されたA/Dコンバータ、前記増幅回路から前記A
/Dコンバータに入力される信号の大きさが、前記A/
Dコンバータのダイナミックレンジに対してあらかじめ
定めた所定の値になるように前記増幅回路の増幅率を制
御する第一の制御回路、前記A/Dコンバータの出力信
号から、前記搬送周波数の周波数成分の信号を抽出し、
この抽出した信号のレベルをあらかじめ定めた所定のレ
ベルと比較し、その結果にもとづき前記増幅回路の増幅
率を制御する第二の制御回路を備えたものである。
According to the present invention, there is provided a digital communication apparatus comprising: an amplifier circuit for amplifying an analog signal input from an external device at a predetermined carrier frequency; an A / D converter connected to an output side of the amplifier circuit; From the amplifying circuit to the A
The magnitude of the signal input to the / D converter is A / D
A first control circuit for controlling an amplification factor of the amplifying circuit so as to have a predetermined value predetermined with respect to a dynamic range of the D converter, and a frequency component of the carrier frequency from an output signal of the A / D converter. Extract the signal,
A second control circuit is provided for comparing the level of the extracted signal with a predetermined level and controlling the amplification factor of the amplifier circuit based on the result.

【0012】また、前記増幅回路の増幅率は段階的に変
化する不連続な値を持ち、前記第一の制御回路は前記増
幅回路が設定可能な全ての増幅率の段階の中から選択し
た互いに隣接しない複数の増幅率の段階により前記増幅
回路を制御し、前記第二の制御回路は前記全ての増幅率
の中から選択した増幅率で制御するものである。
The amplification factor of the amplification circuit has a discontinuous value that changes stepwise, and the first control circuit selects one of all amplification factor stages that can be set by the amplification circuit. The amplifier circuit is controlled by a plurality of stages of amplification factors that are not adjacent to each other, and the second control circuit is controlled by an amplification factor selected from all the amplification factors.

【0013】また、前記第一の制御回路は、前記増幅回
路の増幅率を制御する際、増幅率の大きい方から開始し
て前記A/Dコンバータの出力の飽和程度を観測し、そ
の観測結果にもとづいて、制御する増幅率を順次低い方
へ移行するものである。
When controlling the amplification factor of the amplifier circuit, the first control circuit observes the degree of saturation of the output of the A / D converter, starting from the one with the largest amplification factor, and observes the observation result. Based on this, the amplification factor to be controlled is sequentially shifted to a lower one.

【0014】また、前記第二の制御回路は、前記A/D
コンバータから出力されたディジタル信号をフーリエ変
換するFFT回路によりフーリエ変換された信号中から
搬送波周波数の成分の信号を抽出し、この信号の大きさ
を予め定めた所定のレベルと比較した結果にもとづい
て、前記増幅回路の増幅率を制御するように構成したも
のである。
Further, the second control circuit is provided with the A / D
A signal of the component of the carrier frequency is extracted from the Fourier-transformed signal by the FFT circuit that performs a Fourier transform on the digital signal output from the converter, and the magnitude of this signal is compared with a predetermined level based on the result. , And is configured to control the amplification factor of the amplifier circuit.

【0015】この発明にかかる配電線搬送用通信装置
は、配電線に接続する結合回路、前記結合回路から所定
の搬送周波数で入力されたアナログ信号を増幅する増幅
回路、前記増幅回路の出力側に接続されたA/Dコンバ
ータ、前記増幅回路から前記A/Dコンバータに入力さ
れる信号の大きさが、前記A/Dコンバータのダイナミ
ックレンジに対してあらかじめ定めた所定の値になるよ
うに前記増幅回路の増幅率を制御する第一の制御回路、
前記A/Dコンバータの出力信号から、前記搬送周波数
の周波数成分の信号を抽出し、この抽出した信号のレベ
ルをあらかじめ定めた所定のレベルと比較し、その結果
にもとづき前記増幅回路の増幅率を制御する第二の制御
回路を備えたディジタル通信装置を用いたものである。
According to the present invention, there is provided a communication device for conveying a distribution line, comprising: a coupling circuit connected to a distribution line; an amplification circuit for amplifying an analog signal input at a predetermined carrier frequency from the coupling circuit; The amplification is performed so that the magnitude of a signal input from the connected A / D converter and the amplification circuit to the A / D converter becomes a predetermined value predetermined with respect to a dynamic range of the A / D converter. A first control circuit for controlling the amplification of the circuit,
A signal of the frequency component of the carrier frequency is extracted from the output signal of the A / D converter, the level of the extracted signal is compared with a predetermined level, and the amplification factor of the amplifier circuit is determined based on the result. This uses a digital communication device provided with a second control circuit for controlling.

【0016】また、配電線に配送される前記アナログ信
号の周波数は複数としたものである。
Further, the analog signal delivered to the distribution line has a plurality of frequencies.

【0017】[0017]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1に係るデイジタル通信装置の構成図で、例
として複数周波数を搬送波として用いて通信を行なう配
電線搬送用の通信装置を示している。図1において、9
0は送信すべき送信データであり図示しないデータ処理
装置などから入力される。1はフレーミング回路で送信
データ90に対して図2に示すようなフレーミング処理
を行ない、これを一次変調器2へ出力する。2は予め定
めた方式(例えばDBPSKなど)で変調を行なう一次
変調器、3は制御回路10の指令にもとづいて特定(複
数も可)のトーンの信号を抽出するトーン選択器、4は
逆高速フーリエ変換回路(IFFT:Inverse Fast Fou
rier Transform)で抽出されたトーン信号の周波数軸デ
ータを時間軸データに変換する。5はパラレル/シリア
ル変換回路(P/S)、6はディジタル/アナログ変換
回路(D/A)、7は無線出力回路を配電線に接続する
ための結合回路、8は伝送路(配電線)、10は制御回
路(詳細後述)であり、内部に第一の制御回路10aと
第二の制御回路10bとを有している。フレーミング回
路1、一次変調器2、トーン選択器3、IFFT4、P
/S5、D/A6、結合回路7で送信系110を構成し
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of a digital communication device according to a first embodiment of the present invention. As an example, a communication device for distribution line transport that performs communication using a plurality of frequencies as carrier waves is shown. In FIG. 1, 9
0 is transmission data to be transmitted, and is input from a data processing device (not shown) or the like. Reference numeral 1 denotes a framing circuit which performs a framing process as shown in FIG. 2 on the transmission data 90, and outputs this to the primary modulator 2. Reference numeral 2 denotes a primary modulator for performing modulation by a predetermined method (for example, DBPSK). Reference numeral 3 denotes a tone selector for extracting a signal of a specific (multiple) tone based on a command from the control circuit 10; Fourier transform circuit (IFFT: Inverse Fast Fou
The frequency domain data of the tone signal extracted by the carrier transform is converted into time domain data. 5 is a parallel / serial conversion circuit (P / S), 6 is a digital / analog conversion circuit (D / A), 7 is a coupling circuit for connecting a wireless output circuit to a distribution line, and 8 is a transmission line (distribution line). Reference numeral 10 denotes a control circuit (to be described in detail later), which internally includes a first control circuit 10a and a second control circuit 10b. Framing circuit 1, primary modulator 2, tone selector 3, IFFT4, P
/ S5, D / A6, and the coupling circuit 7 constitute the transmission system 110.

【0018】120は受信系で、17は結合回路7から
受信された高周波信号を制御回路10の制御に基づく増
幅率(段階的に変化する不連続な増幅率の値を持つ)で
増幅するAGC増幅回路(Auto Gain Control )、16
はアナログ/ディジタル変換回路(A/D変換器)、1
5はシリアル/パラレル変換回路(S/P)、14は高
速フーリエ変換回路(FFT:Fast Fourier Transfor
m)、13はトーン選択器、12は一次復調器、11は
デフレーミング回路で、図2に示したフレーミングの信
号から受信データ91を出力する。これらは送信系11
0を構成する対応部分と逆の動作を行なうものであるの
で、個々についての詳細な説明は省略する。そして、結
合回路7、AGC回路17、A/D16、S/P15、
FFT14、トーン選択器13、一次復調器12、デフ
レーミング回路11で受信系120を構成する。結合回
路7は送信系110にも、受信系120にも属してい
る。
Reference numeral 120 denotes a reception system. Reference numeral 17 denotes an AGC which amplifies the high-frequency signal received from the coupling circuit 7 at an amplification factor (having a stepwise varying discontinuous amplification factor) under the control of the control circuit 10. Amplifier circuit (Auto Gain Control), 16
Is an analog / digital converter (A / D converter), 1
5 is a serial / parallel conversion circuit (S / P), 14 is a fast Fourier transform circuit (FFT).
m) and 13 are tone selectors, 12 is a primary demodulator, and 11 is a deframing circuit, which outputs received data 91 from the framing signal shown in FIG. These are the transmission system 11
Since the operation is the reverse of that of the corresponding part constituting 0, detailed description of each is omitted. Then, the coupling circuit 7, the AGC circuit 17, the A / D16, the S / P15,
The FFT 14, the tone selector 13, the primary demodulator 12, and the deframing circuit 11 constitute a receiving system 120. The coupling circuit 7 belongs to both the transmission system 110 and the reception system 120.

【0019】結合回路7は、例えばトランスとハイパス
フィルターにより構成され、通信装置の送受信部(図示
省略しているが例えばD/A変換器6の出力側に接続さ
れた電力増幅回路など)を伝送路8である配電線に接続
し、商用周波数の流入を阻止しつつ配電線搬送信号を通
過させる役割を持つ。AGC回路17は、結合回路7を
通過した高周波ノイズを含む配電線搬送信号レベルの大
小に関わらず、A/D変換器16に許容の範囲でできる
限り大きい信号電圧を入力し、信号成分の抽出を容易に
するためのものであり、例えば複数のオペアンプにより
構成されており、制御回路10の指示により増幅に使用
するオペアンプの組を選択するなどしてAGC回路ゲイ
ンを設定する。理解を助けるため、図3に例えば、4個
のオペアンプA,B,C,Dの組み合わせにより増幅回
路を構成する場合を示す。図3(b)図はその回路で、
スイッチSA,SB,SC,SDをそれぞれアンプ側に
切り換えればアンプを使用し、バイパス回路側に切り換
えればアンプを使用しないことを示す。この場合、図3
(a)に示すように、2の4乗通り即ち16通りの増幅
率の組合わせが得られる。ここでどのアンプも使用しな
い組み合わせもゲイン1として1組に数えている。
The coupling circuit 7 is composed of, for example, a transformer and a high-pass filter, and transmits and receives a transmitting / receiving section (not shown, for example, a power amplifier circuit connected to the output side of the D / A converter 6) of the communication device. It is connected to the distribution line, which is the path 8, and has a role of passing the distribution line carrier signal while preventing the inflow of the commercial frequency. The AGC circuit 17 inputs a signal voltage as large as possible within the allowable range to the A / D converter 16 irrespective of the level of the distribution line carrier signal including high-frequency noise that has passed through the coupling circuit 7, and extracts a signal component. The AGC circuit is configured by, for example, a plurality of operational amplifiers, and sets the AGC circuit gain by selecting a set of operational amplifiers used for amplification in accordance with an instruction from the control circuit 10. For ease of understanding, FIG. 3 shows a case where an amplifier circuit is formed by combining, for example, four operational amplifiers A, B, C, and D. FIG. 3B shows the circuit.
Switching the switches SA, SB, SC, and SD to the amplifier side respectively indicates that the amplifier is used, and switching to the bypass circuit side indicates that the amplifier is not used. In this case, FIG.
As shown in (a), 2 4 power combinations, that is, 16 combinations of amplification factors are obtained. Here, a combination that does not use any amplifier is counted as one set as gain 1.

【0020】図4は図1の回路のAGC制御動作を説明
する図であり、(a)はAGC回路17の入力信号で、
説明上、異なる振幅レベルの5つの入力信号がある場合
を示している。AGC回路17通過後の信号は(b)に
示したように振幅レベルが、あらかじめ定めたほぼ一定
の範囲(上下限とも)に押さえられるように、小さい信
号は大きく増幅され、大きい信号は縮小されている。こ
のように、AGC回路17通過後の信号を、大きさが一
定の範囲の信号としてA/Dコンバータ16に入力させ
ることにより、A/Dコンバータ16のダイナミックレ
ンジを有効に使用することができる。
FIGS. 4A and 4B are diagrams for explaining the AGC control operation of the circuit of FIG. 1. FIG.
For explanation, a case where there are five input signals of different amplitude levels is shown. As shown in (b), the signal after passing through the AGC circuit 17 has a small signal greatly amplified and a large signal reduced so that the amplitude level is kept within a predetermined substantially constant range (both upper and lower limits). ing. In this way, by inputting the signal after passing through the AGC circuit 17 to the A / D converter 16 as a signal having a fixed range, the dynamic range of the A / D converter 16 can be used effectively.

【0021】トーン選択器13は、制御回路10からの
指示により、ある個別周波数成分(複数も可)のトーン
データを選択する。図2は、上記フレーミング回路1に
よるフレーミング処理で生成されるフレームの構成と、
そのフレームにおけるPOCフィールド(Power Line C
ommunication Overhead Control Field )の構成を示す
図である。図2に示すフレームは、 1)キャリア検出用の信号の領域であるプリアンブル
(1)フィールドと、 2)シンボル同期用の信号の領域であるプリアンブル
(2)フィールドと、 3)予め定められた固定コードの領域である同期コード
フィールドと、 4)データフィールドの長さを示す信号の領域であるF
rameType(FT)フィールドと、 5)住宅識別用コードの領域であるHouseCode
(HC)フィールドと、 6)物理層で使用する制御コマンドの領域であるPOC
フィールドと、 7)FT,HC,POCに対する誤り訂正符号の領域で
あるR−S符号フィールドと、 8)データフィールド から構成され、このフレームがフレーミング回路1にて
生成され、前述の処理で変調後、伝送路8に出力され
る。なお、実施の形態1においては、たとえば、上記プ
リアンブル(1)を16シンボル区間にわたる同一デー
タの繰り返しパターンとし、上記プリアンブル(2)を
16シンボル区間にわたる反転データの繰り返しパター
ン(シンボル単位にデータを反転させるパターン)とす
る。
The tone selector 13 selects tone data of a certain individual frequency component (a plurality of individual frequency components) according to an instruction from the control circuit 10. FIG. 2 shows a configuration of a frame generated by the framing process by the framing circuit 1;
POC field in the frame (Power Line C
It is a figure showing the composition of ommunication Overhead Control Field). The frame shown in FIG. 2 includes: 1) a preamble (1) field which is an area of a signal for carrier detection; 2) a preamble (2) field which is an area of a signal for symbol synchronization; and 3) a predetermined fixed number. A sync code field which is a code area; and 4) an F area which is a signal area indicating the length of the data field.
5) a HouseType which is an area for a house identification code.
(HC) field and 6) POC which is an area of a control command used in the physical layer
And 7) an RS code field which is an area of an error correction code for FT, HC, and POC; and 8) a data field. This frame is generated by the framing circuit 1 and is modulated by the processing described above. Are output to the transmission line 8. In the first embodiment, for example, the preamble (1) is a repetition pattern of the same data over 16 symbol sections, and the preamble (2) is a repetition pattern of inversion data over 16 symbol sections (data is inverted in symbol units). Pattern).

【0022】また、伝送路8(配電線)上のフレーム
は、伝送路8に接続されたすべての通信装置(図示しな
い)で受け取られ、制御回路10では、RS(リードソ
ロモン)符号を利用してエラーチェックを行い、HCの
識別を行った上で自家のHCと一致した場合、伝送路上
に送信されているデータが自分宛てであると判断し、R
S(リードソロモン)符号を利用してエラーチェック/
訂正を行い、その内容を理解する。自家のHCと一致し
ない場合は、動作を行わない。
The frame on the transmission line 8 (distribution line) is received by all communication devices (not shown) connected to the transmission line 8, and the control circuit 10 uses an RS (Reed-Solomon) code. Error check is performed to identify the HC, and if the HC matches the own HC, it is determined that the data transmitted on the transmission path is addressed to itself, and R
Error check using S (Reed-Solomon) code /
Make corrections and understand their content. If it does not match the own HC, no operation is performed.

【0023】一方、POCは、通信の速度(たとえば、
低速モード、高速モード等)を設定する2ビットの通信
モードフィールドと、選択可能な変調方式(たとえば、
DQPSK,DBPSK,DBPSK+時間ダイバーシ
チ等)を示す2ビットの変調方式フィールドと、制御コ
マンド(通常動作、変更動作)を示す1ビットのコマン
ドフィールドと、制御コマンドの機能を示す2ビットの
サブコマンドと、各機能の設定情報(トーングループ、
セットポジション)を示す8ビットのコマンド引数と、
1ビットの拡張ビットから構成され、たとえば、トーン
の移動および一次変調方式の変更等の処理を行うために
使用される。
On the other hand, the POC indicates the communication speed (for example,
A 2-bit communication mode field for setting a low-speed mode, a high-speed mode, and the like, and a selectable modulation method (for example,
A 2-bit modulation method field indicating DQPSK, DBPSK, DBPSK + time diversity, etc., a 1-bit command field indicating a control command (normal operation, change operation), a 2-bit subcommand indicating a function of the control command, Setting information of each function (tone group,
An 8-bit command argument indicating the set position)
It is composed of one extended bit, and is used, for example, for performing processing such as movement of a tone and change of a primary modulation method.

【0024】次に、動作について説明する。 (送信動作)送信データ90がフレーミング回路1に入
力されると制御回路10からの制御で変調されるデータ
に変換され一次変調器2に入力される。一次変調器2
は、制御回路10からの制御によりデータを一次変調
し、トーン選択器3へ出力する。トーン選択器3は、制
御回路10からの制御でトーンごとにデータを生成し、
IFFT4に出力する。IFFT4は、入力されたデー
タを逆フーリエ変換して複数トーン分の合成されたデー
タとして生成する。5はシリアルパラレル変換回路であ
り、入力されたシリアルデータをパラレルデータに変換
し、D/Aコンバータ入力する。D/Aコンバータ6は
入力されたデータを変換し、結合回路7を経由して伝送
路8に出力する。
Next, the operation will be described. (Transmission Operation) When transmission data 90 is input to the framing circuit 1, it is converted into data to be modulated under the control of the control circuit 10 and input to the primary modulator 2. Primary modulator 2
Performs primary modulation of data under the control of the control circuit 10 and outputs the data to the tone selector 3. The tone selector 3 generates data for each tone under the control of the control circuit 10,
Output to IFFT4. The IFFT 4 performs inverse Fourier transform of the input data to generate data that is synthesized for a plurality of tones. Reference numeral 5 denotes a serial / parallel conversion circuit which converts input serial data into parallel data and inputs the data to a D / A converter. The D / A converter 6 converts the input data and outputs the converted data to the transmission line 8 via the coupling circuit 7.

【0025】(受信動作)配電線搬送信号が到来すると
伝送路8に接続された結合回路7の伝送路側に商用周波
数電圧に重畳された複数トーンの配電線搬送信号の信号
電圧が誘起する。配電線搬送信号は商用周波数より十分
に高い周波数であるため、商用周波数を阻止する結合回
路7を通過する。この時、他の家電機器等の電源回路か
ら伝送路8に漏えいしている高周波ノイズも同時に結合
回路7を通過する。結合回路7を通過した高周波ノイズ
を含む配電線搬送信号はAGC回路17、A/Dコンバ
ータ16により、入力電圧の時系列ディジタルデータに
変換される。このディジタルデータを一定時間分記憶し
た後、FFT信号処理14により周波数分析を行い、ト
ーン選択器13で伝送に使用している周波数データのみ
を一次復調器12に導いている。
(Reception operation) When a distribution line carrier signal arrives, a signal voltage of a multi-tone distribution line carrier signal superimposed on the commercial frequency voltage is induced on the transmission line side of the coupling circuit 7 connected to the transmission line 8. Since the distribution line carrier signal has a frequency sufficiently higher than the commercial frequency, it passes through the coupling circuit 7 that blocks the commercial frequency. At this time, high-frequency noise leaking from the power supply circuit of another home electric appliance or the like to the transmission line 8 also passes through the coupling circuit 7 at the same time. The distribution line carrier signal containing high frequency noise that has passed through the coupling circuit 7 is converted into time-series digital data of the input voltage by the AGC circuit 17 and the A / D converter 16. After storing the digital data for a predetermined time, the frequency analysis is performed by the FFT signal processing 14, and only the frequency data used for transmission by the tone selector 13 is led to the primary demodulator 12.

【0026】図5はこの発明のAGC制御動作のフロー
チャートである。制御回路10の内部の第一の制御回路
10aによる初期制御で、AGC回路17は、最初は、
最大増幅度(即ち図3のレベルX16)に設定(ステッ
プS31)し、次に、A/Dコンバータ16のディジタ
ル変換値を第一の制御回路10aが読み取る(ステップ
S32)。第一の制御回路10aはA/Dコンバータ1
6の出力値により飽和判定(飽和判定の説明は後述)を
行い(ステップS33)、非飽和ならばその値で次処理
のFFT回路14によるFFT解析を実行する。飽和な
らば、第一の制御回路10aは図3に示すAGCテーブ
ルの第一の制御回路が選択する増幅率の一段下の増幅率
(即ち図3のレベルX14)をAGC回路17に設定変
更し(ステップS34)、再度A/Dコンバータ16の
ディジタル変換値を第一の制御回路10aが読み取り
(ステップS35)、飽和判定(ステップS37)を行
う。
FIG. 5 is a flowchart of the AGC control operation of the present invention. In the initial control by the first control circuit 10a inside the control circuit 10, the AGC circuit 17
The maximum amplification degree (that is, the level X16 in FIG. 3) is set (step S31), and the digital conversion value of the A / D converter 16 is read by the first control circuit 10a (step S32). The first control circuit 10a is an A / D converter 1
Saturation determination (the saturation determination will be described later) is performed using the output value of No. 6 (step S33). If it is saturated, the first control circuit 10a changes the setting of the gain below the gain selected by the first control circuit in the AGC table shown in FIG. 3 (that is, the level X14 in FIG. 3) to the AGC circuit 17. (Step S34), the first control circuit 10a reads the digital conversion value of the A / D converter 16 again (Step S35), and performs the saturation determination (Step S37).

【0027】ここで、飽和とは、図6に示すように、A
/D変換された全データに占めるA/Dコンバータ16
のダイナミックレンジの最大値、或いは最小値のデータ
の割合が、所定の割合を超えたときを意味する。図6に
おいて実線はA/Dコンバータ16のダイナミックレン
ジの最大値(MAX)及び最小値(MIN)、破線はA
/Dコンバータ16への入力信号、丸印はA/Dコンバ
ータ16からの出力データである。第一の制御回路10
aは、出力データをその大きさ毎に集計し、所定の周期
(時間)内にMAX或いはMINとなったデータが所定
の個数を超えると飽和と判断する。
Here, the saturation means A as shown in FIG.
A / D converter 16 occupying all the data converted into / D
Means that the ratio of the data of the maximum value or the minimum value of the dynamic range exceeds a predetermined ratio. In FIG. 6, the solid line is the maximum value (MAX) and the minimum value (MIN) of the dynamic range of the A / D converter 16, and the broken line is A
An input signal to the / D converter 16 and a circle represent output data from the A / D converter 16. First control circuit 10
As for a, the output data is totaled for each size, and if the data that has become MAX or MIN within a predetermined cycle (time) exceeds a predetermined number, it is determined that the data is saturated.

【0028】再び、図5のフローチャートの説明に戻
り、第一の制御回路10aによるAGC処理は第一の制
御回路が選択するAGCテーブルを最後まで使用するか
(ステップS36)、飽和判定の結果が非飽和になる
(ステップS37)まで、一連のAGC制御(ステップ
S34〜37)を行い、AGCの仮決定を行う(ステッ
プS61)。ここで、図3の第一の制御回路が選択する
増幅率の欄に示すように、例えば、AGC回路17が4
個のオペアンプにより構成され、第一の制御回路10a
が16通りの増幅率の組から8組(8段階X16,X1
4,X12,X10,X8,X6,X4,X2)の増幅
率を選択した使用テーブルによって制御する例について
説明する。使用テーブルは、図3に示す例に限らず予め
ユーザやシステムの開発者によって任意に決めることが
できる。一例として、AGC使用テーブルが(X16,
X14,X12,X10,X8,X6,X4,X2ここ
で数字は単なる識別符号であり増幅率を意味するもので
はない)の8段階の場合、増幅率の大きい方から順に最
大7回のAGC制御が行なわれることとなる。このよう
に第一の制御回路10aにより、大雑把な飛び飛びの増
幅率によりAGC制御を行なうので、A/Dコンバータ
16のディジタル出力値を飽和に近い大きい値に選定す
ることができる。
Returning to the description of the flowchart of FIG. 5 again, the AGC processing by the first control circuit 10a uses the AGC table selected by the first control circuit to the end (step S36), A series of AGC controls (steps S34 to S37) are performed until a non-saturation is reached (step S37), and the AGC is provisionally determined (step S61). Here, as shown in the column of the amplification factor selected by the first control circuit in FIG.
And a first control circuit 10a
Are 8 sets out of 16 sets of amplification factors (8 steps X16, X1
4, X12, X10, X8, X6, X4, X2) will be described by way of an example in which the amplification factor is controlled by a selected use table. The use table is not limited to the example shown in FIG. 3 and can be arbitrarily determined in advance by a user or a system developer. As an example, the AGC usage table is (X16,
X14, X12, X10, X8, X6, X4, X2, where the numbers are merely identification codes and do not mean the amplification rate), in the case of eight stages, the AGC control is performed up to seven times in ascending order of the amplification rate. Will be performed. As described above, since the AGC control is performed by the first control circuit 10a with a rough step-by-step amplification factor, the digital output value of the A / D converter 16 can be selected to a large value close to saturation.

【0029】(ステップS61)によるAGCのゲイン
の仮決定後、A/Dコンバータ16の出力したディジタ
ルデータを一定時間分記憶した後、FFT信号処理14
により周波数分析を行い、トーン選択器13で伝送に使
用している周波数データを抽出する。そして抽出した複
数の周波数成分毎にベクトル長を演算する(ステップS
62)。この演算により得られたベクトル長は、信号周
波数以外の周波数ノイズが除去された信号成分となる。
その理由は配電線に重畳されているノイズは広い周波数
帯にわたって比較的均等にエネルギーが分布するいわゆ
るホワイトノイズと称されるノイズが多く、これはFE
T信号処理14による周波数分析により消去できるから
である。(図7(a),(b)に示す信号レベルを参
照)。
After the AGC gain is provisionally determined in step S61, the digital data output from the A / D converter 16 is stored for a certain period of time, and then the FFT signal processing 14 is performed.
And frequency data used for transmission is extracted by the tone selector 13. Then, a vector length is calculated for each of the plurality of extracted frequency components (step S
62). The vector length obtained by this operation is a signal component from which frequency noise other than the signal frequency has been removed.
The reason is that the noise superimposed on the distribution line is often called so-called white noise in which energy is distributed relatively uniformly over a wide frequency band.
This is because it can be eliminated by frequency analysis by the T signal processing 14. (Refer to the signal levels shown in FIGS. 7A and 7B).

【0030】第二の制御回路10bは、演算により得ら
れたベクトル長を判定基準値と比較する(ステップS6
3)。判定基準値は予め設定された値であり、例えばA
/Dコンバータ16におけるダイナミックレンジの90
%のレンジ(信号レベル)とする。ステップS63での
比較結果により、そのベクトル長が判定基準値より大き
ければAGC仮決定値をAGC決定値として採用する
(ステップS64)。他方、ベクトル長が判定基準値よ
り小さければ、第二の制御回路10bはAGC使用テー
ブルの第二の制御回路が選択可能な増幅率の欄の中で、
AGC仮決定値より1段階高い値(増幅率)を選択する
(ステップS65)。例えば、第一の制御回路10aに
よるAGC使用テーブルが(X16,X14,X12,
X10,X8,X6,X4,X2)の8段階の場合にお
いて、AGC仮決定値がX10であるとき、演算により
得られたベクトル長が判定基準値より大きい場合AGC
決定値はX10、他方小さい場合AGC決定値はX11
となる。
The second control circuit 10b compares the vector length obtained by the calculation with a determination reference value (step S6).
3). The criterion value is a preset value, for example, A
90 of the dynamic range in the / D converter 16
% Range (signal level). As a result of the comparison in step S63, if the vector length is larger than the determination reference value, the AGC provisionally determined value is adopted as the AGC determined value (step S64). On the other hand, if the vector length is smaller than the criterion value, the second control circuit 10b sets the amplification factor selectable by the second control circuit in the AGC use table.
A value (amplification factor) one step higher than the AGC provisionally determined value is selected (step S65). For example, the AGC use table by the first control circuit 10a is (X16, X14, X12,
X10, X8, X6, X4, X2), when the AGC provisionally determined value is X10, and when the vector length obtained by the operation is larger than the determination reference value, AGC
The determined value is X10, while the AGC determined value is X11 when smaller.
Becomes

【0031】つまり、図7(a)に示すように、A/D
コンバータ16の入力にノイズが多く含まれているため
に、実信号成分が小さいときには、第一の制御回路10
aによるAGC仮決定値からプラス1段階され、他方、
図7(b)に示すようにA/Dコンバータ16の入力に
ノイズが少なく、実信号成分が十分大きいときには、第
一の制御回路10aによるAGC仮決定値が最終的に採
用され、それぞれの場合において信号レベルに合った増
幅がなされることとなる。
That is, as shown in FIG.
When the actual signal component is small because the input of the converter 16 contains much noise, the first control circuit 10
a plus one step from the AGC tentatively determined value by a,
As shown in FIG. 7B, when there is little noise at the input of the A / D converter 16 and the real signal component is sufficiently large, the AGC provisionally determined value by the first control circuit 10a is finally adopted, and in each case, In this case, amplification that matches the signal level is performed.

【0032】以上のように、第一の制御回路10aによ
り大雑把なAGCを仮決定した後、第二の制御回路10
bにより複数の信号周波数について信号のベクトル長を
判定基準値と比較し、その判定結果によりAGCの仮決
定値を変更するという2段階の制御を行なうようにした
ので、AGC使用テーブルの段数が多いにもかかわら
ず、素早く最適な増幅率に到達することができることと
なり、AGC選択ケースを増加させ、伝送に使用してい
る信号成分の抽出を容易に、最高受信感度を向上させる
配電線搬送通信装置を得ることができる。
As described above, after the rough AGC is provisionally determined by the first control circuit 10a, the second control circuit 10a
b, a two-stage control of comparing the vector length of the signal with the determination reference value for a plurality of signal frequencies and changing the provisional determination value of AGC based on the determination result is performed, so that the number of stages in the AGC use table is large. Nevertheless, it is possible to quickly reach the optimum amplification factor, increase the number of AGC selection cases, easily extract the signal components used for transmission, and improve the maximum receiving sensitivity of the distribution line carrier communication device. Can be obtained.

【0033】また、制御回路10は、仮決定までは、第
一の制御回路10aによりA/ Dコンバータ16の出力
データのカウントにより飽和を検出してAGC増幅率を
大雑派に仮決定し、その後、第二の制御回路10bによ
りA/ Dコンバータ16で変換されたデータから伝送に
使用している周波数データのみを抽出しFFT変換によ
り信号のベクトル長を演算するようにしたので、AGC
調整が短時間で最適な増幅率に設定が可能となり、アッ
ク電文(応答電文)や制御電文等の比較的フレームのヘ
ッダー部分が大きい(ヘッダー部分とデータ部分がほぼ
同じ長さの)フレームが頻繁に行き交う配電線搬送通信
装置に特に有効である。
Further, the control circuit 10 detects the saturation by counting the output data of the A / D converter 16 by the first control circuit 10a and provisionally determines the AGC amplification factor roughly until the provisional determination. After that, the second control circuit 10b extracts only the frequency data used for transmission from the data converted by the A / D converter 16 and calculates the signal vector length by FFT conversion.
Adjustment can be set to the optimum amplification rate in a short period of time, and relatively large frames (such as headers and data portions of almost the same length) such as acknowledgment messages (response messages) and control messages are frequently used. This is particularly effective for a distribution line carrier communication device that travels to and from a location.

【0034】また、第一の制御回路10aによるAGC
使用テーブルを(図3に示すようなX16,X14,X
12,X10,X8,X6,X4,X2)と、連続した
増幅率の中から大雑把に、飛び飛びの増幅率から選択す
るようにしているので、短時間で目標値の間近までAG
C調整をすることができる。また、第一の制御回路によ
るAGCの仮決定の後、第二の制御回路10bにより信
号のベクトル長を判定して仮決定値を変更するようにし
たので、最終選択レベルが細かく設定されていても素早
く目標値に到達することができる。そして伝送に使用し
ている信号成分の抽出を容易に、最高受信感度を向上さ
せる配電線搬送通信装置を得ることができる。
AGC by the first control circuit 10a
The use table is defined as (X16, X14, X
12, X10, X8, X6, X4, X2) and successive gains are roughly selected from discrete gains.
C adjustment can be performed. After the provisional determination of AGC by the first control circuit, the second control circuit 10b determines the vector length of the signal and changes the provisionally determined value, so that the final selection level is set finely. Can quickly reach the target value. Further, it is possible to easily obtain the signal component used for the transmission and to obtain the distribution line carrier communication device that improves the maximum reception sensitivity.

【0035】実施の形態2.以上の説明では、信号のベ
クトル長が小さい(大きい)ときAGC増幅率を1段増
加させるようにしたが、勿論1段でなければならぬとい
うことはない。例えば、第一の制御回路10aが選択す
る増幅率を3段ごとに設定し、AGC使用テーブルの隣
接する増幅率の組に2段以上の間隔があるときベクトル
長によって、その間の値の大きいほう、または小さいほ
うを選択仕分けるようにすると受信感度を更に細かくで
きる。
Embodiment 2 In the above description, when the vector length of the signal is small (large), the AGC amplification factor is increased by one stage. However, it is needless to say that one stage is required. For example, the amplification factor selected by the first control circuit 10a is set for every three stages, and when there is an interval of two or more stages in the pair of adjacent amplification factors in the AGC use table, the larger the value between the two depending on the vector length, Alternatively, if the smaller one is selected and sorted, the reception sensitivity can be further reduced.

【0036】また、AGC使用テーブルを10段階(X
16,X15,X14,X13,X12,X10,X
8,X6,X4,X2)とし、増幅率が一部(あるいは
16段階全部)連続するようにしても良い。この場合に
は、連続する増幅率(例えばX13)が第一の制御回路
10aにより仮決定され、第二の制御回路10bにより
増幅率を1段増加させるときには、最終的に選択される
増幅率は仮決定された増幅率より1段大きい増幅率(例
えばX14)となる。このように、増幅率の大きい領域
が密となったAGC使用テーブルを用いることで、搬送
信号の減衰が大きく受信信号のレベルがホワイトノイズ
に対して相対的に小さくなる条件、例えば、直下に負荷
が接続されている条件とか、搬送距離が長い条件などの
場合において、信号を受信できることとなる。また、上
記説明では、複数の信号周波数について信号レベル判定
のための演算は、抽出した複数の信号周波数についてベ
クトル長を演算しているが、最大値演算結果、重み付け
による演算結果など、配電線搬送用通信装置の各信号周
波数の重みによりレベル判定演算を変更できることは言
うまでもない。
The AGC use table is stored in 10 stages (X
16, X15, X14, X13, X12, X10, X
8, X6, X4, X2), and the amplification factor may be partially (or all 16 steps) continuous. In this case, a continuous amplification factor (for example, X13) is provisionally determined by the first control circuit 10a, and when the amplification factor is increased by one stage by the second control circuit 10b, the amplification factor finally selected is The gain becomes one step larger than the provisionally determined gain (for example, X14). As described above, by using the AGC use table in which the region with the large amplification factor is dense, the condition that the attenuation of the carrier signal is large and the level of the received signal is relatively small with respect to the white noise, for example, the load is directly below. Signal can be received under conditions such as the condition where is connected or the condition where the transport distance is long. In the above description, the operation for determining the signal level for a plurality of signal frequencies is performed by calculating the vector length for the extracted plurality of signal frequencies. Needless to say, the level determination calculation can be changed by the weight of each signal frequency of the communication device for communication.

【0037】また、AGC回路17から入力されるアナ
ログ信号がA/Dコンバータ16のダイナミックレンジ
内で飽和せずに最大となるようにAGC回路17の増幅
率を仮決定する例について説明したが、A/Dコンバー
タ16のダイナミックレンジの所定割合以上を占めるよ
うに、即ち図4における実線のハッチングで示す領域に
飽和せずに入力信号のピークが現れるようにしてもよ
い。また、電送路7は商用電源線であると説明したが、
専用の通信線であってもよいことは言うまでもない。
Also, an example has been described in which the amplification factor of the AGC circuit 17 is provisionally determined such that the analog signal input from the AGC circuit 17 does not saturate within the dynamic range of the A / D converter 16 and becomes maximum. The peak of the input signal may be set so as to occupy a predetermined ratio or more of the dynamic range of the A / D converter 16, that is, without saturating the region indicated by the solid-line hatching in FIG. Also, it has been described that the transmission path 7 is a commercial power line,
It goes without saying that a dedicated communication line may be used.

【0038】[0038]

【発明の効果】この発明に係る通信装置は、A/Dコン
バータからのディジタル信号に基づいて、増幅回路から
入力されるアナログ信号が上記A/Dコンバータのダイ
ナミックレンジの所定割合以上を占めるように増幅率を
大雑把に仮決定する第一の制御回路と、A/Dコンバー
タから入力されたディジタル信号より伝送に使用してい
る周波数成分の信号レベルをFFT解析によって抽出
し、このレベルを所定のレベルと比較した結果に基づい
て、増幅回路の増幅率を細かく変更する第二の制御回路
とを備えたので、増幅率の制御が細かいにもかかわら
ず、短時間で増幅回路の増幅率を目標値に決定でき、か
つ受信感度の高いディジタル通信装置を得ることができ
る。
According to the communication apparatus of the present invention, based on the digital signal from the A / D converter, the analog signal input from the amplifier circuit occupies a predetermined ratio or more of the dynamic range of the A / D converter. A first control circuit for roughly tentatively determining an amplification factor; and extracting a signal level of a frequency component used for transmission from a digital signal input from an A / D converter by FFT analysis, and setting this level to a predetermined level. And a second control circuit for finely changing the amplification factor of the amplification circuit based on the result of the comparison, so that the amplification factor of the amplification circuit can be set to the target value in a short time despite the fine control of the amplification factor. And a digital communication device with high reception sensitivity can be obtained.

【0039】また、第一の制御回路は、得られる全ての
増幅率の値から、少なくとも増幅率の大きさが連続しな
い飛び飛びの増幅率を選択し、第二の制御回路は前記全
ての増幅率を選択可能なように構成したので、短時間で
目標増幅率に近い値に到達し、また、最終的には極めて
細かい増幅率の値の制御ができる。
The first control circuit selects, from all the obtained gain values, at least discrete gains at which the magnitudes of the gains are not continuous, and the second control circuit selects all the gains. Can be selected, so that a value close to the target amplification factor can be reached in a short time, and finally, the value of the amplification factor can be very finely controlled.

【0040】また、第一の制御回路は、増幅回路の増幅
率を大きい方から順に小さい増幅率へ移行させる指令を
出力する(制御する)ので、短時間で増幅回路の増幅率
を決定できる。
Further, the first control circuit outputs (controls) the command to shift the amplification factor of the amplifier circuit from the larger one to the smaller one, so that the amplification factor of the amplifier circuit can be determined in a short time.

【0041】また、A/Dコンバータから出力されたデ
ィジタル信号をフーリエ変換するFFT回路を有し、 第
一の制御回路は、上記FFT回路によりフーリエ変換さ
れる前のディジタル信号により増幅率を仮決定し、第二
の制御回路はFFT回路によりフーリエ変換された信号
により増幅率の変更を行なうように構成したので、短時
間で増幅回路の増幅率を細かく決定でき、かつ受信感度
を高くできる。
Further, there is provided an FFT circuit for performing a Fourier transform of the digital signal output from the A / D converter, and the first control circuit tentatively determines the amplification factor based on the digital signal before the Fourier transform is performed by the FFT circuit. However, since the second control circuit is configured to change the amplification factor based on the signal subjected to the Fourier transform by the FFT circuit, the amplification factor of the amplification circuit can be finely determined in a short time, and the reception sensitivity can be increased.

【0042】この発明の配電線搬送用の通信装置は、以
上のディジタル通信装置を用い、商用電源ラインを伝送
路として用いているので、家電電機機器の制御などに使
用できる。
Since the communication apparatus for conveying distribution lines of the present invention uses the above-described digital communication apparatus and uses a commercial power supply line as a transmission line, it can be used for controlling home electric appliances and the like.

【0043】また、配電線を拝送される信号の周波数は
複数としたので、安定した通信が可能となる。
Further, since the frequency of the signal transmitted through the distribution line is plural, stable communication is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1のディジタル通信装
置で配電線搬送用に複数周波数で通信するものの構成を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a digital communication device according to a first embodiment of the present invention which communicates at a plurality of frequencies for distribution line conveyance.

【図2】 図1の通信装置のフレームの構成を説明する
図である。
FIG. 2 is a diagram illustrating a configuration of a frame of the communication device in FIG. 1;

【図3】 AGC増幅回路の増幅率の選択組み合わせを
説明する図である。
FIG. 3 is a diagram illustrating a selective combination of amplification factors of an AGC amplifier circuit.

【図4】 図1の通信装置のAGC制御動作の例を示す
図である。
FIG. 4 is a diagram illustrating an example of an AGC control operation of the communication device in FIG. 1;

【図5】 図1の通信装置のAGC制御動作のフローチ
ャートである。
FIG. 5 is a flowchart of an AGC control operation of the communication device of FIG. 1;

【図6】 図5のAGC制御動作における飽和判定動作
を説明するための図である。
6 is a diagram for explaining a saturation determination operation in the AGC control operation of FIG.

【図7】 図1の通信装置のノイズの大小と信号レベル
との関連を示す図である。
7 is a diagram showing the relationship between the magnitude of noise and the signal level of the communication device of FIG. 1;

【図8】 従来の広帯域ディジタル受信機の構成を示す
構成概要図である。
FIG. 8 is a schematic configuration diagram showing a configuration of a conventional wideband digital receiver.

【符号の説明】[Explanation of symbols]

1 フレーミング回路、 2 一次変調回路、 3 トー
ン選択器、4 IFFT処理、 5 パラレル/シリア
ル変換回路、6 D/Aコンバータ、 7 結合回路、
8 配電線伝送路、10 制御回路、 10a第一の
制御回路、 10b 第二の制御回路、11 デフレー
ミング回路、 12 一次復調回路、13 トーン選
択器、 14 FFT処理、15 シリアル/パラレル
変換回路、 16 A/ D変換器、17 AGC回路。
1 framing circuit, 2 primary modulation circuit, 3 tone selector, 4 IFFT processing, 5 parallel / serial conversion circuit, 6 D / A converter, 7 coupling circuit,
8 distribution line transmission line, 10 control circuit, 10a first control circuit, 10b second control circuit, 11 deframing circuit, 12 primary demodulation circuit, 13 tone selector, 14 FFT processing, 15 serial / parallel conversion circuit, 16 A / D converter, 17 AGC circuit.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J022 AA01 BA02 BA08 BA10 CC01 CC04 CD02 CF02 5K046 AA03 BA06 BB05 CC06 DD13 DD15 DD25  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5J022 AA01 BA02 BA08 BA10 CC01 CC04 CD02 CF02 5K046 AA03 BA06 BB05 CC06 DD13 DD15 DD25

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 外部から所定の搬送周波数で入力された
アナログ信号を増幅する増幅回路、 前記増幅回路の出力側に接続されたA/Dコンバータ、 前記増幅回路から前記A/Dコンバータに入力される信
号の大きさが、前記A/Dコンバータのダイナミックレ
ンジに対してあらかじめ定めた所定の値になるように前
記増幅回路の増幅率を制御する第一の制御回路、 前記A/Dコンバータの出力信号から、前記搬送周波数
の周波数成分の信号を抽出し、この抽出した信号のレベ
ルをあらかじめ定めた所定のレベルと比較し、その結果
にもとづき前記増幅回路の増幅率を制御する第二の制御
回路を備えたことを特徴とするディジタル通信装置。
Amplifying circuit for amplifying an analog signal inputted from the outside at a predetermined carrier frequency, an A / D converter connected to an output side of the amplifying circuit, and input from the amplifying circuit to the A / D converter. A first control circuit for controlling an amplification factor of the amplifying circuit so that a magnitude of the signal becomes a predetermined value predetermined with respect to a dynamic range of the A / D converter; A second control circuit that extracts a signal of the frequency component of the carrier frequency from the signal, compares the level of the extracted signal with a predetermined level, and controls the amplification factor of the amplifier circuit based on the result. A digital communication device comprising:
【請求項2】 前記増幅回路は段階的に変化する不連続
な増幅率を持ち、前記第一の制御回路は前記増幅回路が
設定可能な全ての増幅率の段階の中から選択した互いに
隣接しない複数の増幅率の値により前記増幅回路を制御
し、前記第二の制御回路は前記全ての増幅率の中から選
択した増幅率の値で制御することを特徴とする請求項1
に記載のディジタル通信装置。
2. The amplifying circuit has a discontinuous gain that varies stepwise, and the first control circuit is not adjacent to each other selected from all gain stages that can be set by the amplifying circuit. 2. The amplification circuit according to claim 1, wherein the amplification circuit is controlled by a plurality of amplification factors, and the second control circuit is controlled by an amplification factor selected from all the amplification factors.
A digital communication device according to claim 1.
【請求項3】 前記第一の制御回路は、前記増幅回路の
増幅率を制御する際、増幅率の大きい方から開始して前
記A/Dコンバータの出力の飽和程度を観測し、その観
測結果にもとづいて、制御する増幅率を順次低い方へ移
行することを特徴とする請求項1に記載のディジタル通
信装置。
3. The first control circuit, when controlling the amplification factor of the amplifier circuit, starts from the one with the larger amplification factor and observes the degree of saturation of the output of the A / D converter. 2. The digital communication device according to claim 1, wherein the amplification factor to be controlled is sequentially shifted to a lower one based on the control signal.
【請求項4】 前記第二の制御回路は、前記A/Dコン
バータから出力されたディジタル信号をフーリエ変換す
るFFT回路によりフーリエ変換された信号中から搬送
波周波数の成分の信号を抽出し、この信号の大きさを予
め定めた所定のレベルと比較した結果にもとづいて、前
記増幅回路の増幅率を制御するように構成したことを特
徴とする請求項1〜3のいずれか一項に記載の通信装
置。
4. The second control circuit extracts a carrier frequency component signal from a signal Fourier-transformed by an FFT circuit that Fourier-transforms the digital signal output from the A / D converter. The communication according to any one of claims 1 to 3, wherein an amplification factor of the amplification circuit is controlled based on a result of comparing a magnitude of the amplification with a predetermined level. apparatus.
【請求項5】 配電線に接続する結合回路、前記結合回
路から所定の搬送周波数で入力されたアナログ信号を増
幅する増幅回路、 前記増幅回路の出力側に接続されたA/Dコンバータ、 前記増幅回路から前記A/Dコンバータに入力される信
号の大きさが、前記A/Dコンバータのダイナミックレ
ンジに対してあらかじめ定めた所定の値になるように前
記増幅回路の増幅率を制御する第一の制御回路、 前記A/Dコンバータの出力信号から、前記搬送周波数
の周波数成分の信号を抽出し、この抽出した信号のレベ
ルをあらかじめ定めた所定のレベルと比較し、その結果
にもとづき前記増幅回路の増幅率を制御する第二の制御
回路を備えたディジタル通信装置を用いた配電線搬送用
の通信装置。
5. A coupling circuit connected to a distribution line, an amplification circuit for amplifying an analog signal input from the coupling circuit at a predetermined carrier frequency, an A / D converter connected to an output side of the amplification circuit, the amplification A first method of controlling an amplification factor of the amplifier circuit so that a signal input from the circuit to the A / D converter has a predetermined value predetermined with respect to a dynamic range of the A / D converter. A control circuit, extracting a signal of the frequency component of the carrier frequency from an output signal of the A / D converter, comparing the level of the extracted signal with a predetermined level, and based on the result, determining whether the amplification circuit A communication device for transporting distribution lines using a digital communication device having a second control circuit for controlling an amplification factor.
【請求項6】 配電線に配送される前記アナログ信号の
周波数は複数であることを特徴とする請求項5に記載の
配電線搬送用の通信装置。
6. The communication device according to claim 5, wherein the analog signal delivered to the distribution line has a plurality of frequencies.
JP2001153641A 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it Pending JP2002353813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153641A JP2002353813A (en) 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153641A JP2002353813A (en) 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it

Publications (1)

Publication Number Publication Date
JP2002353813A true JP2002353813A (en) 2002-12-06

Family

ID=18998130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153641A Pending JP2002353813A (en) 2001-05-23 2001-05-23 Digital communication unit and communication unit for distribution line carrier using it

Country Status (1)

Country Link
JP (1) JP2002353813A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073208A (en) * 2003-08-28 2005-03-17 Tdk Corp Power line communication unit and coupler circuit
JP2010500821A (en) * 2006-08-11 2010-01-07 エンテグリース,インコーポレイテッド Automatic ranging system and method for analog signals
WO2011065142A1 (en) * 2009-11-30 2011-06-03 日本電気株式会社 Reception device and gain control method
JP2011530874A (en) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッド Shared time and frequency automatic gain control for wireless communication
US8331503B2 (en) 2008-02-15 2012-12-11 Panasonic Corporation Receiving level control apparatus and receiver
US8532492B2 (en) 2009-02-03 2013-09-10 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8639121B2 (en) 2009-11-13 2014-01-28 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
JP2014526226A (en) * 2011-08-19 2014-10-02 ルメダイン テクノロジーズ インコーポレイテッド Time domain switching type analog / digital conversion apparatus and method
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073208A (en) * 2003-08-28 2005-03-17 Tdk Corp Power line communication unit and coupler circuit
JP2010500821A (en) * 2006-08-11 2010-01-07 エンテグリース,インコーポレイテッド Automatic ranging system and method for analog signals
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8331503B2 (en) 2008-02-15 2012-12-11 Panasonic Corporation Receiving level control apparatus and receiver
JP2011530874A (en) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッド Shared time and frequency automatic gain control for wireless communication
US8548105B2 (en) 2008-08-05 2013-10-01 Qualcomm Incorported Joint time-frequency automatic gain control for wireless communication
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8532492B2 (en) 2009-02-03 2013-09-10 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US10070258B2 (en) 2009-07-24 2018-09-04 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US8639121B2 (en) 2009-11-13 2014-01-28 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
JP5360227B2 (en) * 2009-11-30 2013-12-04 日本電気株式会社 Receiver and gain control method
WO2011065142A1 (en) * 2009-11-30 2011-06-03 日本電気株式会社 Reception device and gain control method
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8983301B2 (en) 2010-03-31 2015-03-17 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US11653175B2 (en) 2010-08-09 2023-05-16 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10959047B2 (en) 2010-08-09 2021-03-23 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9913094B2 (en) 2010-08-09 2018-03-06 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10448205B2 (en) 2010-08-09 2019-10-15 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10420025B2 (en) 2010-10-13 2019-09-17 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US10104610B2 (en) 2010-10-13 2018-10-16 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US10045288B2 (en) 2010-10-13 2018-08-07 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10425891B2 (en) 2010-10-13 2019-09-24 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9699723B2 (en) 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10454270B2 (en) 2010-11-24 2019-10-22 Corning Optical Communicatons LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US11114852B2 (en) 2010-11-24 2021-09-07 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11715949B2 (en) 2010-11-24 2023-08-01 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
JP2014526226A (en) * 2011-08-19 2014-10-02 ルメダイン テクノロジーズ インコーポレイテッド Time domain switching type analog / digital conversion apparatus and method
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US10530670B2 (en) 2012-11-28 2020-01-07 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10999166B2 (en) 2012-11-28 2021-05-04 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11665069B2 (en) 2012-11-28 2023-05-30 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9414192B2 (en) 2012-12-21 2016-08-09 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11516030B2 (en) 2013-08-28 2022-11-29 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Similar Documents

Publication Publication Date Title
JP2002353813A (en) Digital communication unit and communication unit for distribution line carrier using it
RU2168860C2 (en) Radio-frequency transceiver system for digital communications
KR19980042507A (en) Wireless receiver
KR0137720B1 (en) Automatic gain control apparatus
US20080160945A1 (en) Automatic gain controller for rf transceiver
US8213891B2 (en) Gain control apparatus and method in receiver of multiband OFDM system
WO2008066290A1 (en) Automatic gain control circuit and method for automatic gain control
EP1061643B1 (en) Receiver and gain control method of the same
JP2001358601A (en) Method for controlling transmitting power and radio communication equipment
JP3822163B2 (en) AGC system
KR20010072319A (en) Communication device
US6917803B2 (en) Wireless communications equipment
JPH10190381A (en) Transmitter-receiver
JP4027565B2 (en) Digital receiver
JP2000349640A (en) Code division multiplex transmitter
US6341140B1 (en) Code synchronization apparatus of multi-carrier direct sequence spread spectrum communication system
AU2006269678B2 (en) RF receiver, wireless communication terminal and method of operation
US7062289B2 (en) Method and apparatus of multi-carrier power control of base station in broad-band digital mobile communication system
JP5274382B2 (en) Receiving machine
JP2003188754A (en) Local oscillation frequency signal output circuit and portable terminal using the same
JP3746209B2 (en) Wireless transceiver
CN1117777A (en) Circuit for removing random FM noise
JP3322307B2 (en) Transmitter
JPH05268178A (en) Transmission power control system
JP4357732B2 (en) Diversity receiver