JP2002349498A - Low noise fan stationary blade - Google Patents

Low noise fan stationary blade

Info

Publication number
JP2002349498A
JP2002349498A JP2001154865A JP2001154865A JP2002349498A JP 2002349498 A JP2002349498 A JP 2002349498A JP 2001154865 A JP2001154865 A JP 2001154865A JP 2001154865 A JP2001154865 A JP 2001154865A JP 2002349498 A JP2002349498 A JP 2002349498A
Authority
JP
Japan
Prior art keywords
angle
hub
stationary blade
noise
lean angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001154865A
Other languages
Japanese (ja)
Inventor
Naoki Tsuchiya
直木 土屋
Akira Umeyama
亮 楳山
Masaru Kato
大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001154865A priority Critical patent/JP2002349498A/en
Priority to CA002407702A priority patent/CA2407702C/en
Priority to US10/220,061 priority patent/US6726445B2/en
Priority to PCT/JP2002/004734 priority patent/WO2002103206A1/en
Priority to EP02780779.1A priority patent/EP1333181B1/en
Publication of JP2002349498A publication Critical patent/JP2002349498A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/327Application in turbines in gas turbines to drive shrouded, high solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

PROBLEM TO BE SOLVED: To provide a low noise fan stationary blade capable of reducing noise without reducing aerodynamic performance by reducing full pressure losses of both a hub side and a tip side and reducing noise both on the hub side and the tip side. SOLUTION: This stationary blade has a negative lean angle θL in the opposite direction of rotation near the hub and a positive lean angle θL in the rotation direction on the tip side other than the hub. The negative lean angle θL is -10 deg.±3 deg. in a high loss region near the hub, and the positive lean angle θL is 30 deg.±3 deg. on the tip side. The stationary blade also has a positive sweep angle θS. The positive sweep angle θS is 20 deg.±3 deg. on the hub side and 20 deg.±3 deg. also on the tip side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空力性能が高くか
つ低騒音化が可能な低騒音ファン静翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-noise fan vane having high aerodynamic performance and low noise.

【0002】[0002]

【従来の技術】超音速旅客機用のエンジンは、低バイパ
ス比ターボファンエンジンであり、ファン騒音はジェッ
ト騒音に次ぐ騒音源である。また、亜音速旅客機用のエ
ンジンでは、高バイパス比化が進んでおり、相対的にフ
ァン騒音の占める割合が増加している。そのため、ファ
ン騒音を現行の規制値よりも更に低減することが今後の
環境適合性を高めるために要望されている。
2. Description of the Related Art An engine for a supersonic airliner is a low-bypass-ratio turbofan engine, and fan noise is a noise source next to jet noise. In addition, in engines for subsonic passenger aircraft, the bypass ratio has been increased, and the proportion of fan noise has relatively increased. Therefore, it is required to further reduce the fan noise from the current regulation value in order to enhance environmental compatibility in the future.

【0003】ファン騒音の主音源は、動翼後流と静翼と
の干渉によるトーン騒音である。従来、かかるトーン騒
音の低減手段として、(1)吸音ライナの取付け、
(2)動静翼枚数の最適化、(3)動静翼間隔の拡大、
等の手段が採用されてきた。(1)の吸音ライナの取付
けは、一旦発生した発生音を吸音ライナで吸収するもの
である。しかし、この手段では、現状より3dB騒音を
下げるために例えば約70kgの吸音材を必要とし、エ
ンジン重量が増大する問題がある。(2)の動静翼枚数
の最適化は、ダクト内を伝搬する特定周波数の音響モー
ドが指数関数的に減衰するカットオフ現象を利用するも
ので、通常、翼通過周波数(Blade passin
g frequency)の一次の周方向音響モードを
カットオフするように動静翼枚数が選定される。しか
し、この手段は、設計上動静翼枚数の取り方に制約を受
け、カットオフできるモードも特定モードに限定される
問題がある。(3)の動静翼間隔の拡大は、動翼後縁か
ら放出された後流が静翼に達するまでの距離を拡大し、
後流の減衰を促進し、騒音源となる静翼面上の非定常空
気力を弱める手段である。しかし、この手段では、エン
ジン全体の軸方向長さが長くなってしまい重量増加を招
くことになる。
[0003] The main sound source of fan noise is tone noise due to interference between the wake of the moving blade and the stationary blade. Conventionally, as means for reducing such tone noise, (1) installation of a sound absorbing liner,
(2) optimization of the number of moving and stationary blades, (3) expansion of the moving and stationary blade interval,
And other means have been adopted. The mounting of the sound absorbing liner in (1) is to absorb the sound once generated by the sound absorbing liner. However, this means requires a sound absorbing material of, for example, about 70 kg in order to reduce 3 dB noise from the current state, and there is a problem that the engine weight increases. The optimization of the number of moving and stationary blades in (2) utilizes a cutoff phenomenon in which an acoustic mode of a specific frequency propagating in a duct attenuates exponentially. Usually, the blade passing frequency (Blade passin) is used.
The number of moving and stationary blades is selected so as to cut off the primary circumferential acoustic mode of the g frequency. However, this means has a problem in that the mode in which cutoff can be performed is limited to a specific mode because the design is restricted by how to obtain the number of moving and stationary blades. (3) The expansion of the moving blade and stationary blade interval increases the distance until the wake discharged from the moving blade trailing edge reaches the stationary blade,
This is a means to promote the attenuation of the wake and weaken the unsteady aerodynamic force on the stationary blade surface, which is a noise source. However, this means increases the axial length of the entire engine and increases the weight.

【0004】また、上述した低騒音化技術は、従来から
ターボファンエンジンに適用されており、現行の騒音規
制値を達成することはできているものの、それ以上の大
きな騒音低減効果は望めなかった。
The above-described noise reduction technology has been conventionally applied to a turbofan engine, and although it has been possible to achieve the current noise regulation value, no further great noise reduction effect was expected. .

【0005】[0005]

【発明が解決しようとする課題】一方、低バイパス比タ
ーボファンエンジンの従来以上の低騒音化を達成するた
めに、ファン静翼のスタッキングラインを、図6に例示
するように、軸方向及び周方向に傾斜させたスイープ・
リーン静翼が、以下の文献で報告されている。
On the other hand, in order to achieve a lower noise of a turbofan engine with a low bypass ratio than before, a stacking line of the fan stationary blades is formed in an axial direction and a circumferential direction as shown in FIG. Sweep tilted in the direction
Lean vanes have been reported in the following documents:

【0006】(1)“Design Selectio
n and Analysis ofa Swept
and Leaned Stator Concep
t”,NASA/TM−1998−208662,De
cember 1998. (2)“Benefits of Swept and
Leaned Stators for Fan N
oise Reduction”,37th Aero
space Sciences Meeting &
Exhibit,January 1999.
(1) “Design Selection”
n and Analysis of Swept
and Leaned Stator Concept
t ", NASA / TM-1998-208662, De
member 1998. (2) "Benefits of Swept and
Leaned Stators for Fan N
oise Reduction ", 37th Aero
space Sciences Meeting &
Exhibit, January 1999.

【0007】これら従来のスイープ・リーン静翼では、
ファン騒音が約3EPNdB程度低減することが報告さ
れている。これは静翼を傾け音源となる動翼後流との干
渉の位相を半径方向に多様化し、結果として半径方向の
音響モードが高次化されカットオフされるためと考えら
る。しかし、かかる従来のスイープ・リーン静翼では、
騒音低減に伴いシステムロスも約3%前後増加する問題
点があった。すなわち、従来のスイープ・リーン静翼
は、騒音低減効果と同時に空力性能が低下してしまう問
題点があった。
[0007] In these conventional sweep / lean vanes,
It is reported that fan noise is reduced by about 3 EPNdB. It is considered that this is because the phase of the interference with the rotor wake, which is the sound source, is tilted in the radial direction, and as a result, the acoustic mode in the radial direction is made higher-order and cut off. However, in such a conventional sweep / lean vane,
There has been a problem that the system loss increases by about 3% due to the noise reduction. That is, the conventional sweep / lean stationary vane has a problem that the aerodynamic performance is lowered simultaneously with the noise reduction effect.

【0008】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、ハブ
側及びチップ側の両方の全圧損失を低減し、かつハブ側
及びチップ側の両方で騒音を低減することができ、これ
により、空力性能を低下させることなく、低騒音化が達
成可能な低騒音ファン静翼を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to reduce the total pressure loss on both the hub side and the chip side, and to reduce noise on both the hub side and the chip side, thereby reducing the aerodynamic performance. Another object of the present invention is to provide a low-noise fan stationary blade capable of achieving low noise.

【0009】[0009]

【課題を解決するための手段】本発明の発明者等は、従
来のスイープ・リーン静翼の性能解析を種々行った結
果、ファン静翼のリーン角を回転方向の逆方向にすると
ハブ付近の高損失領域が改善されることを解析により見
いだした。そこで、ハブ付近の高損失領域のみを回転方
向逆向きのリーン角とし、それ以外で回転方向のリーン
角とすることで、空力損失を抑えた低騒音ファン静翼を
実現することができることを解析により確認した。本発
明はかかる新規の知見に基づくものである。
Means for Solving the Problems The inventors of the present invention have performed various analyzes of the performance of the conventional sweep / lean vane, and as a result, when the lean angle of the fan vane is reversed in the rotational direction, the vicinity of the hub is reduced. It was found by analysis that the high loss region was improved. Therefore, it was analyzed that a low-noise fan vane with reduced aerodynamic loss can be realized by setting only the high-loss area near the hub to the lean angle in the opposite direction of rotation and the other to the lean angle in the rotational direction. Confirmed by The present invention is based on such a new finding.

【0010】すなわち、本発明によれば、ハブ近傍で回
転方向逆向きの負のリーン角θLを有し、それ以外のチ
ップ側で回転方向の正のリーン角θLを有する、ことを
特徴とする低騒音ファン静翼が提供される。この構成に
より、ハブ側及びチップ側の両方の全圧損失を低減し、
かつハブ側及びチップ側の両方で騒音を低減することが
できる。
[0010] That is, according to the present invention, wherein the hub near has a negative lean angle theta L in the rotational direction opposite, in other chip-side has a positive lean angle theta L in the rotational direction, it A low-noise fan stationary blade is provided. With this configuration, the total pressure loss on both the hub side and tip side is reduced,
In addition, noise can be reduced on both the hub side and the chip side.

【0011】本発明の好ましい実施形態によれば、前記
負のリーン角θLは、ハブ近傍の高損失領域において、
約−20°以上、0°未満であり、前記正のリーン角θ
Lは、チップ側において、約10°以上、40°未満で
ある。後述する空力性能の検討結果から、ハブ側のリー
ン角は、約−20°以上、0°未満の範囲で、チップ側
のリーン角は、約10°以上、40°未満の範囲で全圧
損失が改善されかつ騒音低減効果も得られることが確認
された。
According to a preferred embodiment of the present invention, the negative lean angle θ L is set in a high loss region near the hub.
Not less than about -20 ° and less than 0 °, and the positive lean angle θ
L is about 10 ° or more and less than 40 ° on the chip side. From the aerodynamic performance study results described below, the lean angle on the hub side is in the range of about -20 ° or more and less than 0 °, and the lean angle on the tip side is in the range of about 10 ° or more and less than 40 °, and the total pressure loss is in the range. Was improved and a noise reduction effect was also obtained.

【0012】前記負のリーン角θLは、ハブ近傍の高損
失領域において、−10°±3°であり、前記正のリー
ン角θLは、チップ側において、30°±3°である、
ことが好ましい。空力性能の検討結果から、ハブ側のリ
ーン角は、−10°±3°で、チップ側のリーン角は、
30°±3°で全圧損失が最小となり、かつ騒音低減効
果も得られることが確認された。
The negative lean angle θ L is −10 ° ± 3 ° in a high loss region near the hub, and the positive lean angle θ L is 30 ° ± 3 ° on the chip side.
Is preferred. From the aerodynamic performance study results, the lean angle on the hub side is -10 ° ± 3 °, and the lean angle on the chip side is
It was confirmed that the total pressure loss was minimized at 30 ° ± 3 ° and a noise reduction effect was also obtained.

【0013】更に正のスイープ角θSを有する低騒音フ
ァン静翼が提供される。かかる正のスイープ角θSを有
することにより、ハブ側及びチップ側の両方で騒音を更
に低減することができる。
Further, a low noise fan vane having a positive sweep angle θ S is provided. By having such positive sweep angle theta S, it is possible to further reduce noise in both the hub and chip sides.

【0014】前記正のスイープ角θSは、ハブ側におい
て、約15°以上、40°未満であり、チップ側におい
て、約0°以上、20°以下である。後述する空力性能
の検討結果から、正のスイープ角は、ハブ側で約15°
以上、40°未満、チップ側で約0°以上、20°以下
の範囲で、全圧損失が改善されかつ騒音低減効果も得ら
れることが確認された。
The positive sweep angle θ S is about 15 ° or more and less than 40 ° on the hub side, and about 0 ° or more and 20 ° or less on the chip side. From the aerodynamic performance study results described below, the positive sweep angle is about 15 ° on the hub side.
As described above, it was confirmed that the total pressure loss was improved and the noise reduction effect was obtained in a range of less than 40 ° and a range of about 0 ° to 20 ° on the chip side.

【0015】前記正のスイープ角θSは、ハブ側におい
て、20°±3°であり、チップ側においても、20°
±3°である、ことが好ましい。空力性能の検討結果か
ら、スイープ角θSが、ハブ側において20°±3°で
騒音低減効果が最大となりかつ全圧損失を低減でき、チ
ップ側において20°±3°で全圧損失を低減しながら
騒音低減効果も得られることが確認された。
The positive sweep angle θ S is 20 ° ± 3 ° on the hub side, and 20 ° ± 3 ° on the chip side.
It is preferably ± 3 °. From the aerodynamic performance study results, the sweep angle θ S is 20 ° ± 3 ° on the hub side, the noise reduction effect is maximum and the total pressure loss can be reduced, and the total pressure loss is reduced on the chip side at 20 ° ± 3 °. It was confirmed that the noise reduction effect was also obtained.

【0016】[0016]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し、重複した説明を省略す
る。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description is omitted.

【0017】図1は、本発明による低騒音ファン静翼の
模式図であり、図2は、その翼形状図である。なお図1
及び図2において、(A)は側面図、(B)は背面図で
ある。図1及び図2に示すように、本発明の低騒音ファ
ン静翼10は、ハブ近傍で回転方向逆向きの負のリーン
角θLを有し、それ以外のチップ側で回転方向の正のリ
ーン角θLを有する。また、正のスイープ角θSを有して
いる。
FIG. 1 is a schematic diagram of a low-noise fan stationary blade according to the present invention, and FIG. 2 is a blade shape diagram thereof. FIG. 1
2A is a side view, and FIG. 2B is a rear view. As shown in FIGS. 1 and 2, the low-noise fan stationary blade 10 of the present invention has a negative lean angle θ L in the rotational direction opposite to the hub and a positive rotational direction in the other chip side. It has a lean angle θ L. In addition, it has a positive sweep angle θ S.

【0018】図3は、スイープ角及びリーン角と騒音低
減量との関係図である。この図において、横軸はスイー
プ角及びリーン角、縦軸は騒音低減量である。また図中
の横軸は騒音低減量3PNLdBの目標ライン、3本の
曲線は、スイープ角のみ(◆)、リーン角のみ(■)及
び両方(▲)の場合の解析結果である。この表から、ス
イープ角とリーン角のどちらも場合でも、角度を増すほ
ど騒音低減効果が増大することがわかる。また、目標の
騒音低減効果を得るためには、リーン角のみでは不十分
だが、スイープ角のみを約23°以上にするか、スイー
プ角とリーン角の両方を約15°以上にする必要がある
ことがわかる。
FIG. 3 is a diagram showing the relationship between the sweep angle and the lean angle and the noise reduction amount. In this figure, the horizontal axis represents the sweep angle and the lean angle, and the vertical axis represents the noise reduction amount. The horizontal axis in the figure is the target line of the noise reduction amount 3PNLdB, and the three curves are the analysis results for only the sweep angle (◆), only the lean angle (■), and both (▲). From this table, it can be seen that in both the sweep angle and the lean angle, the noise reduction effect increases as the angle increases. To achieve the target noise reduction effect, the lean angle alone is not sufficient, but only the sweep angle needs to be about 23 ° or more, or both the sweep angle and the lean angle need to be about 15 ° or more. You can see that.

【0019】図4は、低騒音ファン静翼の特性図であ
る。この図において、左半分はスイープ角を変化させた
ときの騒音低減量(上図)と全圧損失(下図)の特性、
右半分はリーン角を変化させたときの同様の特性を示し
ている。
FIG. 4 is a characteristic diagram of the low-noise fan stationary blade. In this figure, the left half shows the characteristics of noise reduction (upper figure) and total pressure loss (lower figure) when the sweep angle is changed,
The right half shows similar characteristics when the lean angle is changed.

【0020】図4の右側の特性図から、ハブ側のリーン
角は、約−20°以上、0°未満の範囲で、チップ側の
リーン角は、約10°以上、40°未満の範囲で全圧損
失が改善されかつ騒音低減効果も得られることが確認で
きる。また、特に、ハブ側のリーン角が、約−10°
で、全圧損失がほぼ最小となり、かつこの角度で騒音低
減効果も得られることがわかる。更に、チップ側のリー
ン角が、約30°で最小の全圧損失となり、かつこの角
度で非常に大きな騒音低減効果も得られることがわか
る。
From the characteristic diagram on the right side of FIG. 4, the lean angle on the hub side is in the range of about -20 ° or more and less than 0 °, and the lean angle on the chip side is in the range of about 10 ° or more and less than 40 °. It can be confirmed that the total pressure loss is improved and the noise reduction effect is obtained. Particularly, when the lean angle on the hub side is about -10 °
It can be seen that the total pressure loss is substantially minimized, and the noise reduction effect can be obtained at this angle. Further, it can be seen that when the lean angle on the tip side is about 30 °, the total pressure loss becomes the minimum, and a very large noise reduction effect can be obtained at this angle.

【0021】一方、図4の左側の特性図から、正のスイ
ープ角は、ハブ側で約15°以上、40°未満、チップ
側で約0°以上、20°以下の範囲で、全圧損失が改善
されかつ騒音低減効果も得られることが確認できる。ま
た、特に、このスイープ角θ Sは、ハブ側において約2
0°で騒音低減効果が最大となりかつ全圧損失も低減で
きる。更に、チップ側において約20°で全圧損失をわ
ずかに低減しかつ騒音低減効果も得られることがわか
る。
On the other hand, from the characteristic diagram on the left side of FIG.
Hoop angle is about 15 ° or more and less than 40 ° on the hub side, tip
The total pressure loss is improved in the range of about 0 ° or more and 20 ° or less on the side
It can be confirmed that the noise reduction effect is also obtained. Ma
In particular, this sweep angle θ SIs about 2 on the hub side
0 ° maximizes noise reduction effect and reduces total pressure loss
Wear. Further, the total pressure loss is reduced at about 20 ° on the tip side.
It can be seen that the noise is reduced quickly and the noise reduction effect is also obtained.
You.

【0022】図4の特性図から、本発明による低騒音フ
ァン静翼の最適形態例として、表1に示す低騒音ファン
静翼を設定した。なお、この表に示すように、負のリー
ン角−10°は、ハブから30%スパンまでとし、正の
リーン角30°は、それからチップ側とした。
From the characteristic diagram shown in FIG. 4, low noise fan stationary blades shown in Table 1 were set as an example of the optimal embodiment of the low noise fan stationary blade according to the present invention. As shown in this table, the negative lean angle of −10 ° was set to the 30% span from the hub, and the positive lean angle of 30 ° was set to the chip side.

【0023】[0023]

【表1】 [Table 1]

【0024】表2は、本発明の低騒音ファン静翼の騒音
低減量の予測値である。この表において、(1)は、表
1に示した低騒音ファン静翼(Redesign1)、
(2)は参考としてリーン角が0の場合(Redesi
gn2)を示している。この表から、リーン角が0の場
合には、目標騒音低減量の3PNLdBにわずかに達し
得ないが、本発明の低騒音ファン静翼では、これを十分
に達成していることがわかる。
Table 2 shows predicted values of the noise reduction amount of the low-noise fan stationary blade of the present invention. In this table, (1) indicates the low-noise fan stationary blade (Redesign1) shown in Table 1,
(2) is for reference when the lean angle is 0 (Redesi
gn2). From this table, it can be seen that when the lean angle is 0, the target noise reduction amount of 3 PNL dB cannot be reached slightly, but this is sufficiently achieved by the low-noise fan vane of the present invention.

【0025】[0025]

【表2】 [Table 2]

【0026】表3は、表1に示した本発明の低騒音ファ
ン静翼(Redesign1)と、参考用のリーン角が
0の静翼(Redesign2)を、従来の静翼(Ba
seline)と比較したものである。この表から、本
発明の低騒音ファン静翼(Redesign1)は、従
来の静翼(Baseline)に対して全圧損失が流量
平均で約30%、面積平均で約50%、改善されている
のがわかる。
Table 3 shows that the low-noise fan stationary blade (Redesign1) of the present invention shown in Table 1 and the stationary stationary blade (Redesign2) having a lean angle of 0 for reference use the conventional stationary blade (Ba).
(line). From this table, it can be seen that the low-noise fan stationary blade (Redesign1) of the present invention has a total pressure loss improved by about 30% in flow average and about 50% in area average over the conventional stationary blade (Baseline). I understand.

【0027】[0027]

【表3】 [Table 3]

【0028】表4は、流入角を±3°ずらしたときの計
算結果の比較である。この表から、流入角をプラス側に
ずらした場合に、屈曲部の影響がでているが、損失増加
はハブ、チップ側の剥離領域の増大によるものがほとん
どで、屈曲部による影響は小さいといえる。また、この
表から、上述したリーン角及びスイープ角は、±3°の
範囲ではほぼ同一の性能特性があるといえる。
Table 4 is a comparison of calculation results when the inflow angle is shifted by ± 3 °. From this table, when the inflow angle is shifted to the positive side, the effect of the bent portion is observed, but the increase in loss is mostly due to the increase in the separation area on the hub and chip side, and the effect of the bent portion is small. I can say. From this table, it can be said that the above-mentioned lean angle and sweep angle have almost the same performance characteristics in the range of ± 3 °.

【0029】[0029]

【表4】 [Table 4]

【0030】図5は、ファン静翼の出口流れ場の比較図
であり、等マッハ線図を比較したものである。この図に
おいて、(A)はリーン角のない従来の静翼、(B)は
正のリーン角のみを持つ従来のリーン静翼、(C)は本
発明の低騒音ファン静翼である。この図から、(C)に
おいてハブ側でリーン角を正圧面側(負)にとることに
より、従来のリーン静翼(B)で見られるハブ側剥離領
域が大幅に低減されていることがわかる。従って、この
ハブ側剥離領域の低減により、上述した表3に示したよ
うに、全圧損失が大幅に低減され、かつ表2に示したよ
うに、騒音低減効果も十分に達成できることがわかる。
FIG. 5 is a comparison diagram of the outlet flow field of the fan stationary blade, and is a comparison of iso-Mach diagrams. In this figure, (A) is a conventional stationary vane having no lean angle, (B) is a conventional lean stationary blade having only a positive lean angle, and (C) is a low noise fan stationary blade of the present invention. From this figure, it can be seen that by setting the lean angle on the pressure side (negative) on the hub side on the hub side in (C), the hub-side separation area seen on the conventional lean stationary blade (B) is greatly reduced. . Therefore, it can be seen that the reduction in the hub-side peeling area significantly reduces the total pressure loss as shown in Table 3 above, and also sufficiently achieves the noise reduction effect as shown in Table 2.

【0031】また、翼の入口と出口でのマッハ数及び出
口流れ角の半径方向分布を比較した結果(図示せず)か
ら、標準静翼の機能が本発明の低騒音ファン静翼でも良
好に再現されていることが確認された。更に、複数の半
径位置での等マッパ線図と流速ベクトルを解析した結果
(図示せず)から、本発明の低騒音ファン静翼の流れ場
に、大きな剥離及び逆流が存在しないことが確認され
た。また、構造解析のための有限要素モデルと固有振動
解析結果であるキャンベル線図から、設計回転速度及び
定格70〜80%回転近傍で共振点が存在しないことも
確認できた。
Further, from the result of comparing the Mach number at the inlet and the outlet of the blade and the radial distribution of the flow angle at the outlet (not shown), the function of the standard stationary blade is satisfactory even with the low-noise fan stationary blade of the present invention. It was confirmed that it was reproduced. Furthermore, from the results (not shown) of analyzing the equi-mapper diagram and the flow velocity vector at a plurality of radial positions, it was confirmed that there was no large separation and backflow in the flow field of the low-noise fan stationary blade of the present invention. Was. Also, from the finite element model for structural analysis and the Campbell diagram which is the result of natural vibration analysis, it was confirmed that there was no resonance point near the design rotation speed and the rated rotation of 70 to 80%.

【0032】なお本発明は以上に述べた実施形態に限ら
れるものではなく、発明の要旨を逸脱しない範囲で各種
の変更が可能である。
The present invention is not limited to the embodiment described above, and various changes can be made without departing from the gist of the invention.

【0033】[0033]

【発明の効果】上述したように、本発明の低騒音ファン
静翼は、ハブ側及びチップ側の両方の全圧損失を低減
し、かつハブ側及びチップ側の両方で騒音を低減するこ
とができ、これにより、空力性能を低下させることな
く、低騒音化が達成可能であり、かつ剥離や逆流がほと
んどなく、設計回転速度及び定格70〜80%回転近傍
で共振点が存在しない、等の優れた効果を有する。
As described above, the low-noise fan vane of the present invention can reduce the total pressure loss on both the hub side and the chip side, and can reduce the noise on both the hub side and the chip side. Therefore, noise reduction can be achieved without lowering aerodynamic performance, there is almost no separation or backflow, and there is no resonance point near the design rotation speed and the rated 70-80% rotation. Has excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による低騒音ファン静翼の模式図であ
る。
FIG. 1 is a schematic view of a low-noise fan stationary blade according to the present invention.

【図2】本発明の低騒音ファン静翼の翼形状図である。FIG. 2 is a blade shape diagram of the low-noise fan stationary blade of the present invention.

【図3】スイープ角及びリーン角と騒音低減量との関係
図である。
FIG. 3 is a relationship diagram between a sweep angle and a lean angle and a noise reduction amount.

【図4】低騒音ファン静翼の特性図である。FIG. 4 is a characteristic diagram of a low-noise fan stationary blade.

【図5】ファン静翼の出口流れ場の比較図である。FIG. 5 is a comparison diagram of an outlet flow field of a fan stationary blade.

【図6】従来のスイープ・リーン静翼の模式図である。FIG. 6 is a schematic view of a conventional sweep / lean stationary blade.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 大 東京都西多摩郡瑞穂町殿ケ谷229 石川島 播磨重工業株式会社瑞穂工場内 Fターム(参考) 3H034 AA02 AA16 BB03 BB08 BB19 CC03 DD07 EE06 EE18  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Dai Kato 229 Togaya, Mizuho-cho, Nishitama-gun, Tokyo Ishikawajima-Harima Heavy Industries, Ltd. Mizuho Plant F-term (reference) 3H034 AA02 AA16 BB03 BB08 BB19 CC03 DD07 EE06 EE18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ハブ近傍で回転方向逆向きの負のリーン
角θLを有し、それ以外のチップ側で回転方向の正のリ
ーン角θLを有する、ことを特徴とする低騒音ファン静
翼。
1. A has a negative lean angle theta L in the rotational direction opposite hub vicinity in the other chip-side has a positive lean angle theta L in the rotational direction, low noise fan static, characterized in that Wings.
【請求項2】 前記負のリーン角θLは、ハブ近傍の高
損失領域において、約−20°以上、0°未満であり、
前記正のリーン角θLは、チップ側において、約10°
以上、40°未満である、ことを特徴とする請求項1に
記載の低騒音ファン静翼。
2. The negative lean angle θ L is not less than about −20 ° and less than 0 ° in a high loss area near a hub;
The positive lean angle θ L is about 10 ° on the chip side.
The low-noise fan stationary blade according to claim 1, wherein the angle is less than 40 °.
【請求項3】 前記負のリーン角θLは、ハブ近傍の高
損失領域において、−10°±3°であり、前記正のリ
ーン角θLは、チップ側において、30°±3°であ
る、ことを特徴とする請求項1に記載の低騒音ファン静
翼。
3. The negative lean angle θ L is −10 ° ± 3 ° in a high loss region near the hub, and the positive lean angle θ L is 30 ° ± 3 ° on the chip side. The low-noise fan stationary blade according to claim 1, wherein:
【請求項4】 正のスイープ角θSを有する、ことを特
徴とする請求項1乃至3のいずれかに記載の低騒音ファ
ン静翼。
4. The low-noise fan vane according to claim 1, wherein the vane has a positive sweep angle θ S.
【請求項5】 前記正のスイープ角θSは、ハブ側にお
いて、約15°以上、40°未満であり、チップ側にお
いて、約0°以上、20°以下である、ことを特徴とす
る請求項4に記載の低騒音ファン静翼。
5. The positive sweep angle θ S is about 15 ° or more and less than 40 ° on the hub side, and about 0 ° or more and 20 ° or less on the chip side. Item 4. The low-noise fan stationary blade according to item 4.
【請求項6】 前記正のスイープ角θSは、ハブ側にお
いて、20°±3°であり、チップ側においても、20
°±3°である、ことを特徴とする請求項4に記載の低
騒音ファン静翼。
6. The positive sweep angle θ S is 20 ° ± 3 ° on the hub side and 20 ° ± 3 ° on the chip side.
5. The low-noise fan stationary blade according to claim 4, wherein the angle is ± 3 °.
JP2001154865A 2001-05-24 2001-05-24 Low noise fan stationary blade Pending JP2002349498A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001154865A JP2002349498A (en) 2001-05-24 2001-05-24 Low noise fan stationary blade
CA002407702A CA2407702C (en) 2001-05-24 2002-05-16 Reduced noise fan stationary blade
US10/220,061 US6726445B2 (en) 2001-05-24 2002-05-16 Reduced noise fan stationary blade
PCT/JP2002/004734 WO2002103206A1 (en) 2001-05-24 2002-05-16 Low noise fan stationary blade
EP02780779.1A EP1333181B1 (en) 2001-05-24 2002-05-16 Low noise fan stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001154865A JP2002349498A (en) 2001-05-24 2001-05-24 Low noise fan stationary blade

Publications (1)

Publication Number Publication Date
JP2002349498A true JP2002349498A (en) 2002-12-04

Family

ID=18999142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154865A Pending JP2002349498A (en) 2001-05-24 2001-05-24 Low noise fan stationary blade

Country Status (5)

Country Link
US (1) US6726445B2 (en)
EP (1) EP1333181B1 (en)
JP (1) JP2002349498A (en)
CA (1) CA2407702C (en)
WO (1) WO2002103206A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300934A (en) * 2003-03-28 2004-10-28 Ishikawajima Harima Heavy Ind Co Ltd Fan stationary blade, fan for aircraft engine, and aircraft engine
US7891943B2 (en) 2005-11-29 2011-02-22 Ishikawajima-Harima Heavy Industries, Co. Ltd. Stator cascade of turbo type fluid machine
JP2011094500A (en) * 2009-10-27 2011-05-12 Ihi Corp Compressor for jet engine and jet engine

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005222056A1 (en) * 2004-02-27 2005-09-22 Schering Corporation Novel compounds as inhibitors of hepatitis C virus NS3 serine protease
US7547186B2 (en) * 2004-09-28 2009-06-16 Honeywell International Inc. Nonlinearly stacked low noise turbofan stator
US7195456B2 (en) * 2004-12-21 2007-03-27 United Technologies Corporation Turbine engine guide vane and arrays thereof
GB0520850D0 (en) * 2005-10-14 2005-11-23 Rolls Royce Plc Fan static structure
JP4911344B2 (en) * 2006-07-04 2012-04-04 株式会社Ihi Turbofan engine
TWI405909B (en) * 2008-01-15 2013-08-21 Asia Vital Components Co Ltd Fan noise cancellation system
ITFO20080002A1 (en) * 2008-02-19 2008-05-20 Paolo Pietricola ROTORIC AND STATHIC POLES WITH SINUSOIDAL LEAN
US20110001017A1 (en) * 2008-12-08 2011-01-06 Honeywell International Inc. Uav ducted fan swept and lean stator design
US8075259B2 (en) * 2009-02-13 2011-12-13 United Technologies Corporation Turbine vane airfoil with turning flow and axial/circumferential trailing edge configuration
DE102010014556B4 (en) 2010-04-10 2013-01-03 Mtu Aero Engines Gmbh Guide vane of a compressor
FR2986040B1 (en) * 2012-01-20 2016-03-25 Turbomeca TURBOMACHINE BEARING SUPPORT
US9017036B2 (en) * 2012-02-29 2015-04-28 United Technologies Corporation High order shaped curve region for an airfoil
FR2989107B1 (en) 2012-04-04 2017-03-31 Snecma TURBOMACHINE ROTOR BLADE
US9581034B2 (en) 2013-03-14 2017-02-28 Elliott Company Turbomachinery stationary vane arrangement for disk and blade excitation reduction and phase cancellation
EP2871368B1 (en) * 2013-11-12 2018-09-12 MTU Aero Engines GmbH Gas turbine compressor
US9908170B2 (en) * 2014-02-03 2018-03-06 Indian Institute Of Technology, Bombay Blade for axial compressor rotor
US9938854B2 (en) 2014-05-22 2018-04-10 United Technologies Corporation Gas turbine engine airfoil curvature
FR3070448B1 (en) * 2017-08-28 2019-09-06 Safran Aircraft Engines TURBOMACHINE BLOWER RECTIFIER DRAWER, TURBOMACHINE ASSEMBLY COMPRISING SUCH A BLADE AND TURBOMACHINE EQUIPPED WITH SAID DAUTH OR DUDIT TOGETHER
USD860427S1 (en) 2017-09-18 2019-09-17 Horton, Inc. Ring fan
DE102018202888A1 (en) * 2018-02-26 2019-08-29 MTU Aero Engines AG Guide blade for the hot gas duct of a turbomachine
US11767761B2 (en) 2018-08-02 2023-09-26 Horton, Inc. Low solidity vehicle cooling fan
WO2020194901A1 (en) * 2019-03-26 2020-10-01 株式会社Ihi Stationary blade segment of axial turbine
DE102019213932B4 (en) * 2019-09-12 2022-05-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Airend with variable stator blade inclination
US11827344B2 (en) * 2020-12-09 2023-11-28 Textron Innovations Inc. Low noise ducted fan

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2154313A (en) * 1938-04-01 1939-04-11 Gen Electric Directing vane
GB712523A (en) * 1950-03-03 1954-07-28 Rolls Royce Improvements in or relating to guide vane assemblies in annular fluid ducts
US3536414A (en) * 1968-03-06 1970-10-27 Gen Electric Vanes for turning fluid flow in an annular duct
US4452564A (en) * 1981-11-09 1984-06-05 The Garrett Corporation Stator vane assembly and associated methods
DE3609212A1 (en) * 1986-03-19 1987-09-24 Standard Elektrik Lorenz Ag AXIAL FAN
SU1682605A1 (en) * 1989-06-19 1991-10-07 Ленинградский Кораблестроительный Институт Turbine guide apparatus
SU1687802A1 (en) * 1989-07-17 1991-10-30 Ленинградский Кораблестроительный Институт Turbine guide apparatus
JPH0692723B2 (en) * 1990-03-19 1994-11-16 株式会社日立製作所 Axial flow fluid machine
JPH05312003A (en) * 1992-05-12 1993-11-22 Hitachi Ltd Stationary blade of axial turbo machine
US5466120A (en) * 1993-03-30 1995-11-14 Nippondenso Co., Ltd. Blower with bent stays
JP2000204903A (en) * 1999-01-06 2000-07-25 Hitachi Ltd Axial turbine
US6195983B1 (en) * 1999-02-12 2001-03-06 General Electric Company Leaned and swept fan outlet guide vanes
US6450766B1 (en) * 1999-08-09 2002-09-17 United Technologies Corporation Stator vane blank and method of forming the vane blank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300934A (en) * 2003-03-28 2004-10-28 Ishikawajima Harima Heavy Ind Co Ltd Fan stationary blade, fan for aircraft engine, and aircraft engine
US7101145B2 (en) 2003-03-28 2006-09-05 Ishikawajima-Harima Heavy Industries Co., Ltd. Reduced noise aircraft stator vane
US7891943B2 (en) 2005-11-29 2011-02-22 Ishikawajima-Harima Heavy Industries, Co. Ltd. Stator cascade of turbo type fluid machine
JP2011094500A (en) * 2009-10-27 2011-05-12 Ihi Corp Compressor for jet engine and jet engine

Also Published As

Publication number Publication date
WO2002103206A1 (en) 2002-12-27
US6726445B2 (en) 2004-04-27
US20030215325A1 (en) 2003-11-20
EP1333181A4 (en) 2009-04-15
CA2407702C (en) 2009-08-11
EP1333181B1 (en) 2017-07-12
EP1333181A1 (en) 2003-08-06
CA2407702A1 (en) 2002-11-24

Similar Documents

Publication Publication Date Title
JP2002349498A (en) Low noise fan stationary blade
US9695695B2 (en) Turbojet fan blade
US6071077A (en) Swept fan blade
US8540490B2 (en) Noise reduction in a turbomachine, and a related method thereof
US6283705B1 (en) Variable vane with winglet
US4512718A (en) Tandem fan stage for gas turbine engines
JP2001355405A (en) Blade for turbo machine
JP2007120494A (en) Variable geometry inlet guide vane
JP5502695B2 (en) Axial flow compressor
JP4924984B2 (en) Cascade of axial compressor
JP3927886B2 (en) Axial flow compressor
CA2814090A1 (en) Twisted variable inlet guide vane
WO2014203372A1 (en) Radial-inflow type axial turbine and turbocharger
US6312221B1 (en) End wall flow path of a compressor
JP6295009B2 (en) Turbine blade and variable capacity turbine
CN109844263B (en) Turbine wheel, turbine and turbocharger
JP5813807B2 (en) Axial flow compressor
JP2001234893A (en) Axial blower
Erdmenger et al. Influence of tandem inducers on the performance of high pressure ratio centrifugal compressors
US20130149109A1 (en) Method of damping aerofoil structure vibrations
JP6620440B2 (en) Centrifugal compressor
EP2644830B1 (en) Noise reduction in a turbomachine, and a related method thereof
Baines et al. A novel non-radial turbocharger turbine created using numerical optimization
JPH1113692A (en) Axial flow compressor cascade
JPH0686802B2 (en) Axial Turbine Transonic Vane