JP2002348528A - Epoxy resin powder coating - Google Patents

Epoxy resin powder coating

Info

Publication number
JP2002348528A
JP2002348528A JP2001305435A JP2001305435A JP2002348528A JP 2002348528 A JP2002348528 A JP 2002348528A JP 2001305435 A JP2001305435 A JP 2001305435A JP 2001305435 A JP2001305435 A JP 2001305435A JP 2002348528 A JP2002348528 A JP 2002348528A
Authority
JP
Japan
Prior art keywords
epoxy resin
inorganic particles
powder coating
coating
resin powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001305435A
Other languages
Japanese (ja)
Inventor
Yoshinari Sumiyama
宜也 炭山
Tadataka Taniguchi
格崇 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001305435A priority Critical patent/JP2002348528A/en
Publication of JP2002348528A publication Critical patent/JP2002348528A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin powder coating having an improved edge- covering rate without loosing excellent properties of epoxy resin powder coatings. SOLUTION: The epoxy resin powder coating contains an epoxy resin (A), a curing agent (B) and an inorganic filler (C) as essential components. The coating is further compounded with a positively chargeable inorganic powder (D) and a negatively chargeable inorganic powder (E). The positively chargeable inorganic powder (D) is preferably alumina.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エポキシ樹脂粉体
塗料に関するものである。
[0001] The present invention relates to an epoxy resin powder coating.

【0002】[0002]

【従来の技術】エポキシ樹脂粉体塗料は、電気的特性、
機械的特性、熱的特性に優れており、従来の溶剤型塗料
と比較して、塗料中に溶剤を含有しないため、低公害で
作業環境性にも優れたものであること、塗装直後でも使
用できること、多層の重ね塗りが可能で塗膜厚みを厚く
できること、比較的安価であること、塗装時に余過剰分
の塗料が回収利用できることなどの利点から、電子部
品、OA機器、家電製品、建材、自動車部品等の絶縁保
護装飾用塗料として、近年需要が高い。
2. Description of the Related Art Epoxy resin powder coatings have electrical properties,
Excellent in mechanical and thermal properties.Compared with conventional solvent-based paints, it does not contain solvents in paints, so it has low pollution and excellent work environment. Because of the advantages of being able to do so, being able to apply multiple layers and increasing the thickness of the coating film, being relatively inexpensive, and being able to collect and use excess paint during coating, electronic components, OA equipment, home appliances, building materials, In recent years, demand has been high as a coating for insulation protection decoration of automobile parts and the like.

【0003】エポキシ樹脂粉体塗料の用途の一つである
OA機器用のマイクロモーターなどの場合、近年小型
化,高出力化のために銅線の巻き線回数を上げる必要が
あることから、絶縁皮膜をできるだけ薄くするために薄
膜化が可能な塗料に対する要求が強い。一般的に、絶縁
被膜を薄くするためには粉体塗料の粒度を細かくする方
法が用いられているが、複雑な形状を有する部品に皮膜
を形成させる場合,通常、平坦部に比べエッジ部の膜厚
は薄くなり、外装部分全体にわたって均一な塗膜形成を
することが困難である。このため、粉体塗料の粒度を細
かくし過ぎるとエッジ部に必要な厚さの絶縁被膜を形成
できなくなる。
[0003] In the case of micro motors for OA equipment, which is one of the uses of epoxy resin powder coating, in recent years it has been necessary to increase the number of turns of copper wires in order to reduce the size and increase the output. There is a strong demand for paints that can be made thinner in order to make the film as thin as possible. Generally, the method of reducing the particle size of the powder coating is used to make the insulating coating thinner. However, when forming a coating on a component having a complicated shape, usually, the edge portion is more thinner than the flat portion. The film thickness becomes thin, and it is difficult to form a uniform coating film over the entire exterior part. For this reason, if the particle size of the powder coating is made too fine, it becomes impossible to form an insulating film having a required thickness on the edge portion.

【0004】このようなエッジ部における塗膜厚さの不
足は、塗膜による保護性能の低下のみならず、各々の用
途において固有の問題を生ずる。例えば、マイクロモー
ターの塗装に用いた場合では、エッジ部での絶縁不良発
生につながる危険性がある。また、電子部品の一つであ
る積層フィルムコンデンサに用いた場合では、塗装済の
積層フィルムコンデンサ等を基板実装後に高温のハンダ
槽に浸漬する際、塗膜に吸湿した水分が瞬間的に水蒸気
となって吹き出すいわゆる水蒸気爆発を起こし、塗膜の
薄いエッジ部が破壊されることがある。この問題に対し
ては、樹脂の硬化度を上げることによる塗膜の強度向上
や、樹脂に可撓性を付与することにより応力を緩和する
ことなどが試みられてきたが、いまだ満足のいくものが
得られていない。
[0004] Such a shortage of the coating film at the edge causes not only a decrease in the protection performance by the coating film but also a problem peculiar to each application. For example, when used for painting a micromotor, there is a risk that insulation failure occurs at the edge. In addition, when used in a multilayer film capacitor, which is one of the electronic components, when the coated multilayer film capacitor is immersed in a high-temperature solder bath after mounting on the board, the moisture absorbed by the coating film instantaneously becomes water vapor. This causes a so-called steam explosion, which blows out, and the thin edge portion of the coating film may be destroyed. To solve this problem, attempts have been made to improve the strength of the coating film by increasing the degree of curing of the resin and to alleviate the stress by imparting flexibility to the resin, but these methods are still satisfactory. Is not obtained.

【0005】このため、被塗装部品のエッジ部において
は必要な膜厚が得られ、かつ平坦部においてはこれまで
よりも薄い絶縁被膜を形成できる粉体塗料が望まれてい
る。通常、被塗装部品の平坦部での膜厚に対するエッジ
部での膜厚の比率をエッジカバー率と呼び,このエッジ
カバー率の高い粉体塗料のニーズが高まっている。
[0005] Therefore, there is a demand for a powder coating material that can obtain a required film thickness at the edge portion of a part to be coated and can form a thinner insulating film at a flat portion than before. Usually, the ratio of the film thickness at the edge portion to the film thickness at the flat portion of the part to be coated is called an edge coverage, and there is an increasing need for a powder coating material having a high edge coverage.

【0006】[0006]

【発明が解決しようとする課題】本発明は、エポキシ樹
脂粉体塗料の優れた特性を損なうことなく、エッジカバ
ー率の向上したエポキシ樹脂粉体塗料を提供するもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an epoxy resin powder coating having an improved edge coverage without impairing the excellent properties of the epoxy resin powder coating.

【0007】[0007]

【課題を解決するための手段】このような目的は、下記
(1)〜(6)記載の本発明により達成される。 (1)エポキシ樹脂(A)、硬化剤(B)および無機充
填材(C)を必須成分とするエポキシ樹脂粉体塗料にお
いて、正帯電性の無機粒子(D)と負帯電性の無機粒子
(E)とを配合することを特徴とするエポキシ樹脂粉体
塗料。 (2)正帯電性の無機粒子(D)がアルミナである上記
(1)記載のエポキシ樹脂粉体塗料。 (3)負帯電性の無機粒子(E)がシリカである上記
(1)または(2)に記載のエポキシ樹脂粉体塗料。 (4)正帯電性の無機粒子(D)と負帯電性の無機粒子
(E)との重量配合比(E/D)が2〜8である上記
(1)ないし(3)のいずれかに記載のエポキシ樹脂粉
体塗料。 (5)正帯電性の無機粒子(D)と負帯電性の無機粒子
(E)が、ともに平均一次粒子径が0.001〜0.1
μmである上記(1)ないし(4)のいずれかに記載の
エポキシ樹脂粉体塗料。 (6)正帯電性の無機粒子(D)と負帯電性の無機粒子
(E)の合計配合量(D+E)が、粉体塗料全体に対し
て0.3〜2.0重量%である上記(1)ないし(5)
のいずれかに記載のエポキシ樹脂粉体塗料。
This and other objects are achieved by the present invention described in the following (1) to (6). (1) In an epoxy resin powder coating material containing an epoxy resin (A), a curing agent (B) and an inorganic filler (C) as essential components, positively chargeable inorganic particles (D) and negatively chargeable inorganic particles ( E) and an epoxy resin powder coating characterized by comprising: (2) The epoxy resin powder coating according to the above (1), wherein the positively chargeable inorganic particles (D) are alumina. (3) The epoxy resin powder coating according to the above (1) or (2), wherein the negatively chargeable inorganic particles (E) are silica. (4) Any of the above (1) to (3), wherein the weight ratio (E / D) of the positively chargeable inorganic particles (D) to the negatively chargeable inorganic particles (E) is 2 to 8. The epoxy resin powder coating according to the above. (5) Both the positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) have an average primary particle diameter of 0.001 to 0.1.
The epoxy resin powder coating according to any one of the above (1) to (4), which has a thickness of μm. (6) The total amount (D + E) of the positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) is 0.3 to 2.0% by weight based on the whole powder coating material. (1) to (5)
The epoxy resin powder coating according to any one of the above.

【0008】以下、本発明のエポキシ樹脂粉体塗料につ
いて詳細に説明する。本発明のエポキシ樹脂粉体塗料
は、エポキシ樹脂(A)、硬化剤(B)および無機充填
材(C)を必須成分として含有するエポキシ樹脂粉体塗
料に、正帯電性の無機粒子(D)と負帯電性の無機粒子
(E)とを配合することを特徴とするものである。
Hereinafter, the epoxy resin powder coating of the present invention will be described in detail. The epoxy resin powder coating composition of the present invention is obtained by adding positively chargeable inorganic particles (D) to an epoxy resin powder coating composition containing an epoxy resin (A), a curing agent (B) and an inorganic filler (C) as essential components. And negatively chargeable inorganic particles (E).

【0009】本発明のエポキシ樹脂粉体塗料(以下、
「粉体塗料」という)に配合されるエポキシ樹脂(A)
としては特に限定されない。例えば、ビスフェノールA
型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニ
ル型エポキシ樹脂などを用いることができ、これらを単
独または混合して用いてもよい。これらの中でも、ビス
フェノールA型エポキシ樹脂を用いた場合は、塗膜が機
械的特性、電気的特性に優れたものになり好ましい。ま
た、これらのエポキシ樹脂の分子量やエポキシ当量など
も特に限定されず、粉体塗料の配合や要求される性状に
合わせて適宜選択すればよい。一例を挙げると、ビスフ
ェノールA型エポキシ樹脂を用いた場合は、エポキシ当
量が450〜2000であるものを用いると、粉体塗料
の塗装性が優れたものになり好ましい。エポキシ樹脂
(A)の配合量についても特に限定されないが、後述す
る硬化剤(B)と合わせて、塗料全体に対して30〜6
0重量%であることが好ましく、さらに好ましくは40
〜55重量%である。エポキシ樹脂(A)をかかる範囲
の配合量とすることで、粉体塗料の塗装性を良好なもの
にできる。配合量が前記下限値よりも少ないと塗膜の平
滑性が低下することがあり、一方、前記上限値よりも多
いと塗装後の硬化工程である焼成時にタレやトガリとい
った外観不良を起こすことがある。
The epoxy resin powder coating of the present invention (hereinafter referred to as “the epoxy resin powder coating”)
Epoxy resin (A) blended in "powder coating")
Is not particularly limited. For example, bisphenol A
Type epoxy resin, novolak type epoxy resin, biphenyl type epoxy resin and the like can be used, and these may be used alone or in combination. Among these, the use of bisphenol A type epoxy resin is preferable because the coating film has excellent mechanical and electrical properties. The molecular weight and epoxy equivalent of these epoxy resins are not particularly limited, and may be appropriately selected according to the composition of the powder coating and the required properties. For example, when a bisphenol A type epoxy resin is used, it is preferable to use a resin having an epoxy equivalent of 450 to 2,000 because the coating properties of the powder coating are excellent. The amount of the epoxy resin (A) is not particularly limited, but is 30 to 6 with respect to the whole paint together with the curing agent (B) described later.
0% by weight, more preferably 40% by weight.
~ 55% by weight. By setting the amount of the epoxy resin (A) in such a range, the coatability of the powder coating can be improved. If the blending amount is less than the lower limit, the smoothness of the coating film may be reduced, while if it is greater than the upper limit, appearance defects such as sagging and rubbing may be caused during firing which is a curing step after coating. is there.

【0010】本発明の粉体塗料に配合される硬化剤
(B)としては特に限定されず、一般にエポキシ樹脂用
の硬化剤として用いられている公知のものが使用でき
る。例えば、ジシアンジアミド,アジピン酸,イミダゾ
ール化合物,アミン系硬化剤,芳香族系酸無水物などが
挙げられる。これらの中でも、ビスフェノールA型エポ
キシ樹脂を用いた場合は、ジシアンジアミドやイミダゾ
ール化合物、酸無水物を用いると、硬化性、密着性、耐
熱性等が優れ好ましい。なお、硬化剤(B)の配合量に
ついても特に限定されず、用いるエポキシ樹脂の種類、
硬化剤の種類などを考慮して適宜設定すればよい。
The curing agent (B) to be blended in the powder coating of the present invention is not particularly limited, and a known curing agent generally used as a curing agent for an epoxy resin can be used. For example, dicyandiamide, adipic acid, imidazole compounds, amine-based curing agents, aromatic acid anhydrides and the like can be mentioned. Among these, when a bisphenol A type epoxy resin is used, the use of dicyandiamide, an imidazole compound, or an acid anhydride is preferred because of excellent curability, adhesion, heat resistance and the like. The amount of the curing agent (B) is not particularly limited.
What is necessary is just to set suitably in consideration of the kind of hardener, etc.

【0011】本発明の粉体塗料に配合される無機充填材
(C)としては特に限定されないが、例えば、シリカ,
炭酸カルシウム,水酸化アルミニウム,酸化アルミニウ
ム,珪酸カルシウム,タルク等が挙げられ、これらを単
独または混合して用いることができる。無機充填材
(C)の配合量についても特に限定されないが、粉体塗
料全体に対して40〜70重量%であることが好まし
く、さらに好ましくは45〜60重量%である。無機充
填材(C)をかかる範囲の配合量とすることで、粉体塗
料の塗装性を良好なものにできる。配合量が前記下限値
よりも少ないと焼成時にタレやトガリといった外観上の
不具合を起こすことがあり、一方、前記上限値よりも多
いと塗膜の平滑性が低下することがある。また、無機充
填材(C)の粒径は特に限定されないが、通常、平均粒
径として10〜30μmのものが用いられる。かかる平
均粒径を有する無機充填材を用いることにより、粉体塗
料に良好な流動性と塗膜の強度を付与することができ
る。
The inorganic filler (C) blended in the powder coating of the present invention is not particularly limited.
Examples thereof include calcium carbonate, aluminum hydroxide, aluminum oxide, calcium silicate, and talc, which can be used alone or in combination. The amount of the inorganic filler (C) is not particularly limited, but is preferably from 40 to 70% by weight, more preferably from 45 to 60% by weight, based on the entire powder coating composition. By setting the amount of the inorganic filler (C) in such a range, the coatability of the powder coating can be improved. If the amount is less than the lower limit, appearance defects such as sagging and scumming may occur during firing, while if it is more than the upper limit, the smoothness of the coating film may be reduced. The particle size of the inorganic filler (C) is not particularly limited, but usually, the average particle size is 10 to 30 μm. By using an inorganic filler having such an average particle size, good fluidity and strength of the coating film can be imparted to the powder coating.

【0012】本発明の粉体塗料には、塗装時のエッジカ
バー率を向上させるために、正帯電性の無機粒子(D)
と負帯電性の無機粒子(E)とを配合することを特徴と
する。本発明の粉体塗料に配合される正帯電性の無機粒
子(D)としては特に限定されないが、例えば、アルミ
ナ、マグネシア、水酸化マグネシウム、水酸化アルミニ
ウム、酸化亜鉛、酸化チタン、炭酸カルシウム等が挙げ
られ、これらを単独または混合して用いることができ
る。これらの中でも、特にアルミナが強い正帯電性を有
し大きな効果が得られるため好ましい。また、負帯電性
の無機粒子(E)としても特に限定されないが、例え
ば、シリカ、ガラス、タルク、クレー等が挙げられ、こ
れらを単独または混合して用いることができる。これら
の中でも、特にシリカが強い負帯電性を有し、前記アル
ミナと併用した際に大きな増粘効果が得られるため好ま
しい。
The powder coating of the present invention contains positively chargeable inorganic particles (D) in order to improve the edge coverage at the time of coating.
And negatively chargeable inorganic particles (E). The positively chargeable inorganic particles (D) blended in the powder coating of the present invention are not particularly limited, and examples thereof include alumina, magnesia, magnesium hydroxide, aluminum hydroxide, zinc oxide, titanium oxide, and calcium carbonate. And these can be used alone or in combination. Among these, alumina is particularly preferable because it has strong positive chargeability and a large effect can be obtained. The negatively chargeable inorganic particles (E) are not particularly limited, but include, for example, silica, glass, talc, clay and the like, and these can be used alone or in combination. Among these, silica is particularly preferred because it has a strong negative chargeability and a large thickening effect can be obtained when used in combination with the alumina.

【0013】正帯電性の無機粒子(D)と負帯電性の無
機粒子(E)との配合量は特に限定されないが、両者の
合計配合量(D+E)が塗料全体に対して0.3〜2.
0重量%であることが好ましく、さらに好ましくは0.
9〜1.3重量%である。かかる範囲内で配合すること
により、塗膜の外観を損なうことなくエッジカバー性を
最適な水準にすることができる。配合量が前記下限値未
満では、エッジカバー性の向上効果が十分でないことが
あり、一方、前記上限値を越えると、塗料の配合によっ
ては溶融時のレベリング性が低下し、塗膜を形成する際
表面がきれいに仕上がらないことがある。
The amount of the positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) is not particularly limited. 2.
It is preferably 0% by weight, more preferably 0.1% by weight.
9 to 1.3% by weight. By blending in such a range, the edge coverage can be set to an optimum level without impairing the appearance of the coating film. If the amount is less than the lower limit, the effect of improving edge coverage may not be sufficient.On the other hand, if the amount exceeds the upper limit, the leveling property at the time of melting may be reduced depending on the composition of the coating, and a coating film may be formed. In some cases, the surface may not be finished cleanly.

【0014】また、正帯電性の無機粒子(D)と負帯電
性の無機粒子(E)の配合比率については特に限定され
ないが、重量配合比(E/D)が2〜8であることが好
ましく、さらに好ましくは3〜6である。かかる配合比
で用いることにより、溶融時に塗料を効果的に増粘させ
ることができ、エッジカバー性を向上できる。配合比が
前記上限値を越えたり、前記下限値未満であると、エッ
ジカバー性を向上する効果が十分でないことがある。
The mixing ratio of the positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) is not particularly limited, but the weight ratio (E / D) is preferably 2 to 8. Preferably, it is 3-6 more preferably. By using such a mixing ratio, the paint can be effectively thickened at the time of melting, and the edge cover property can be improved. If the compounding ratio exceeds the upper limit or is less than the lower limit, the effect of improving the edge cover property may not be sufficient.

【0015】さらに、正帯電性の無機粒子(D)および
負帯電性の無機粒子(E)の粒径についても特に限定さ
れないが、ともに平均一次粒子径で0.001〜0.1
μmであることが好ましく、さらに好ましくは0.01
0〜0.050μmである。粒径が前記上限値より大き
いと、無機粒子の比表面積が小さくなるため無機粒子の
帯電が効率的に起こりにくくなり、増粘効果が十分でな
いことがある。一方、前記下限値未満では溶融混合させ
る際の作業性が低下することがある。
The particle diameters of the positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) are not particularly limited either.
μm, more preferably 0.01 μm.
0 to 0.050 μm. When the particle size is larger than the upper limit, the specific surface area of the inorganic particles becomes small, so that it becomes difficult for the inorganic particles to be charged efficiently, and the thickening effect may not be sufficient. On the other hand, if it is less than the lower limit, the workability at the time of melting and mixing may decrease.

【0016】本発明の粉体塗料では、エッジカバー率を
向上させるために正帯電性の無機粒子と負帯電性の無機
粒子を配合することを特徴とする。特に、正帯電性の無
機粒子としてアルミナ、負帯電性の無機粒子としてシリ
カを組合せて使用することにより、その効果がより顕著
になる。これらの種類の無機粒子を配合することによ
り、塗料のエッジカバー率が向上するメカニズムは明確
ではないが、これらは粉体塗料中のエポキシ樹脂が溶融
した際にそれぞれ正および負に帯電し、溶融樹脂中で静
電気力により結びつくことで溶融塗料のチキソ性が向上
すると考えられる。このため鋭利なエッジ部を有する電
子部品への塗装に適用した場合では、溶融した塗料が部
品のエッジ部から平坦部へ移動してエッジ部の塗料が過
少になるのを抑え,エッジ部の塗膜の厚さを確保するこ
とができる。また、いずれも無機粒子であるため、エポ
キシ樹脂の硬化を阻害したり、硬化後の特性に影響を与
えることも少ないと考えられる。このため、使用する樹
脂の種類や粉体塗料の組成に特に制限を設けなくてもよ
いという利点もある。
The powder coating of the present invention is characterized in that positively chargeable inorganic particles and negatively chargeable inorganic particles are blended in order to improve the edge coverage. In particular, when alumina is used in combination with the positively chargeable inorganic particles and silica is used as the negatively chargeable inorganic particles, the effect becomes more remarkable. The mechanism by which these types of inorganic particles are mixed to improve the edge coverage of the paint is not clear, but they are positively and negatively charged when the epoxy resin in the powder paint is melted, respectively. It is considered that the thixotropy of the molten paint is improved by binding by electrostatic force in the resin. For this reason, when applied to the coating of electronic components having sharp edges, it is possible to prevent the melted paint from moving from the edge to the flat portion of the component and to reduce the amount of paint at the edge. The thickness of the film can be secured. In addition, since both are inorganic particles, it is considered that they hardly hinder the curing of the epoxy resin or affect the properties after the curing. For this reason, there is also an advantage that there is no particular limitation on the type of resin used and the composition of the powder coating.

【0017】なお、本発明の塗料には前記配合物のほか
にも、本発明の目的を損なわない範囲内で酸化チタン、
酸化鉄、カーボンブラック等の着色顔料、レベリング
剤、硬化促進剤等を配合してもよい。
The coating composition of the present invention may contain, in addition to the above-mentioned compounds, titanium oxide, as long as the object of the present invention is not impaired.
A coloring pigment such as iron oxide and carbon black, a leveling agent, a curing accelerator and the like may be added.

【0018】本発明において粉体塗料を製造する方法は
特に限定されるものではなく,一般的な方法を用いるこ
とができる。一例としては,所定の組成比に配合した原
料成分をヘンシェルミキサーによって十分に均一混合し
た後,エクストルーダーなどの混練装置で溶融混合し,
ついで粉砕機により適当な粒度に粉砕,分級して得られ
る。また、本発明の粉体塗料については、粉体の流動性
向上のため、シリカなどの微粉末で粉体塗料粒子の表面
を被覆することもできる。このような処理を行なう方法
としては,粉砕時に微粉末を添加しながら混合する粉砕
混合やヘンシェルミキサーなどによる乾式混合がある。
In the present invention, the method for producing the powder coating is not particularly limited, and a general method can be used. As an example, after the raw material components mixed in a predetermined composition ratio are sufficiently homogeneously mixed with a Henschel mixer, and then melt-mixed with a kneading device such as an extruder,
Then, it is pulverized to an appropriate particle size by a pulverizer and classified. Further, with respect to the powder coating of the present invention, the surface of the powder coating particles can be coated with a fine powder such as silica in order to improve the fluidity of the powder. As a method of performing such treatment, there are pulverization mixing in which fine powder is added during pulverization and mixing, or dry mixing using a Henschel mixer or the like.

【0019】[0019]

【実施例】以下、本発明を実施例、比較例を用いて具体
的に説明する。しかし、本発明はこれらの実施例によっ
て限定されるものではない。なお、表1および表3に記
載されている原材料の配合量は「重量部」を示す。
The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited by these examples. The amounts of the raw materials described in Tables 1 and 3 indicate "parts by weight".

【0020】1.モーター用粉体塗料 (1)粉体塗料の作製 原料成分を表1で示す配合比でヘンシェルミキサーによ
り20分間混合し、エクストルーダーを用いて混練後,
粉砕機にて粉砕して平均粒度40〜60μmのエポキシ
樹脂粉体塗料を得た。 (2)評価用試料の作製:鋼棒(12.5×12.5×
50mm)に絶縁被膜の厚さが平坦部で約250μmと
なるように静電塗装装置により塗装した後、これを30
0kHzの高周波により120秒で230℃まで加熱し
て硬化した。得られた試料の評価結果を表2に示す。
1. Powder coating for motor (1) Preparation of powder coating The raw material components were mixed at the mixing ratio shown in Table 1 with a Henschel mixer for 20 minutes, and kneaded using an extruder.
It was pulverized by a pulverizer to obtain an epoxy resin powder coating having an average particle size of 40 to 60 μm. (2) Preparation of sample for evaluation: steel rod (12.5 × 12.5 ×
50 mm) by using an electrostatic coating apparatus so that the thickness of the insulating film is about 250 μm in the flat part,
It was cured by heating to 230 ° C. in 120 seconds with a high frequency of 0 kHz. Table 2 shows the evaluation results of the obtained samples.

【0021】[0021]

【表1】 (3)使用原材料 エポキシ樹脂:ビスフェノールA型エポキシ樹脂(ジ
ャパンエポキシレジン株式会社製・エピコート105
5、エポキシ当量850) 硬化剤:ジシアンジアミド 硬化促進剤:2−フェニルイミダゾール 無機充填材:炭酸カルシウム(丸尾カルシウム株式会
社製・タンカルN−35、平均粒径22μm) 正帯電性の無機粒子:アルミナ微粉末(日本アエロジ
ル社製・酸化アルミナC、一次平均粒径15nm) 負帯電性の無機粒子:シリカ微粉末(株式会社トクヤ
マ製・レオロシール、一次平均粒径12nm)
[Table 1] (3) Raw materials used Epoxy resin: bisphenol A type epoxy resin (Epicoat 105 manufactured by Japan Epoxy Resin Co., Ltd.)
5, epoxy equivalent 850) Curing agent: dicyandiamide Curing accelerator: 2-phenylimidazole Inorganic filler: Calcium carbonate (manufactured by Maruo Calcium Co., Ltd., Tankal N-35, average particle size 22 μm) Positively charged inorganic particles: Alumina fine Powder (Nippon Aerosil Co., Ltd., alumina oxide C, primary average particle size: 15 nm) Negatively charged inorganic particles: silica fine powder (Tokuyama Co., Ltd., Reolosil, primary average particle size: 12 nm)

【0022】[0022]

【表2】 (4)試験方法 エッジカバー率:試料の断面をとり、平坦部の厚みと
して各辺の中央部4点、エッジ部の厚みとして各コーナ
ー部4点を測定し、各々の平均値を算出し、次式により
エッジカバー率を算出した。 エッジカバー率(%)=(エッジ部塗膜平均厚さ/平坦
部塗膜平均厚さ)×100 ゲル化時間:0.1gの試料を用い、200℃で針法
により測定した。 流れ性:0.5gの粉体塗料を金型に入れ室温で10
mmφの錠剤型に成形し、これを150℃の乾燥機中で
30分間加熱した。加熱後の錠剤径(mm)を測定し、
加熱前後の錠剤径の変化から次式により算出した。 流れ率(%)=(加熱後の錠剤径/10)×100 塗膜外観:塗装後の試料の塗膜表面を観察し、塗膜表
面の平滑性に優れているものを◎、平滑性はそれほど優
れていないが問題ないレベルのものを○とした。
[Table 2] (4) Test method Edge coverage: Take a cross section of the sample, measure 4 points at the center of each side as the thickness of the flat portion, and 4 points at each corner as the thickness of the edge, calculate the average value of each, The edge coverage was calculated by the following equation. Edge coverage (%) = (average thickness of edge part coating / average thickness of flat part coating) × 100 Gelation time: Measured by a needle method at 200 ° C. using a 0.1 g sample. Flowability: 0.5 g of powder coating is placed in a mold and placed at room temperature for 10
It was shaped into a tablet having a diameter of mmφ and heated in a dryer at 150 ° C. for 30 minutes. Measure the tablet diameter (mm) after heating,
It was calculated from the change in tablet diameter before and after heating according to the following equation. Flow rate (%) = (diameter of tablet after heating / 10) × 100 Appearance of coating film: Observing the surface of the coating film of the sample after coating. A sample that was not so good but had no problem was rated as “good”.

【0023】実施例1〜5の粉体塗料は、エポキシ樹
脂、硬化剤、無機充填材とともに、帯電性を有した2種
類の無機粒子を含有しているので、いずれも塗膜外観に
問題なく、エッジカバー性に優れたものを得ることがで
きた。特に、実施例1は、帯電性を有した2種類の無機
粒子の配合量、および両者の配合比率が最適であったの
で、最も特性バランスに優れたものとなった。一方、比
較例1は正帯電性の無機粒子を用いず、比較例2では帯
電性を有した2種類の無機粒子をともに使用しなかった
ので、いずれもエッジカバー率が低下した。
The powder coatings of Examples 1 to 5 contain two types of inorganic particles having a chargeability together with an epoxy resin, a curing agent, and an inorganic filler, so that any of them has no problem in the appearance of the coating film. Thus, a product excellent in edge cover property was obtained. In particular, in Example 1, the compounding amount of the two kinds of inorganic particles having chargeability and the compounding ratio of the two were optimal, so that the characteristic balance was most excellent. On the other hand, Comparative Example 1 did not use positively chargeable inorganic particles, and Comparative Example 2 did not use both types of chargeable inorganic particles.

【0024】2.積層フィルムコンデンサ用粉体塗料 (1)粉体塗料の作製 表3に示す配合で原材料をヘンシェルミキサーにより2
0分間混合後、エクストルーダーを用いて混練し、冷却
後粉砕したものを150メッシュで分級し、平均粒径5
0μmの粉体塗料を得た。 (2)評価用試料の作製:図1に示したような積層フィ
ルムコンデンサ素子1(断面部寸法縦3×横2mm)
に、塗膜2が厚み0.6mmとなるように流動浸漬塗装
機により塗装した後、120℃/1時間で硬化させた。
得られた試料の評価結果を表4に示す。
2. Powder coatings for laminated film capacitors (1) Preparation of powder coatings
After mixing for 0 minutes, the mixture was kneaded using an extruder, and after cooling, pulverized material was classified with a 150 mesh to obtain an average particle size of 5.
A powder coating of 0 μm was obtained. (2) Preparation of evaluation sample: multilayer film capacitor element 1 as shown in FIG. 1 (cross section 3 × 2 mm)
Then, the coating film 2 was coated with a fluid immersion coating machine so as to have a thickness of 0.6 mm, and then cured at 120 ° C. for 1 hour.
Table 4 shows the evaluation results of the obtained samples.

【0025】[0025]

【表3】 (3)使用原材料 エポキシ樹脂:エピコートEP1002(ジャパンエ
ポキシレジン株式会社製・ビスフェノールA型エポキシ
樹脂:エポキシ当量600〜700) 硬化剤:2−フェニルイミダゾール 無機充填材:水和酸化アルミニウム(アルコア化成株
式会社製・B−325) 正帯電性の無機粒子:アルミナ微粉末(日本アエロジ
ル社製・酸化アルミナC、一次平均粒径15nm) 負帯電性の無機粒子:シリカ微粉末(株式会社トクヤ
マ製・レオロシール、一次平均粒径12nm)
[Table 3] (3) Raw materials used Epoxy resin: Epicoat EP1002 (manufactured by Japan Epoxy Resin Co., Ltd., bisphenol A type epoxy resin: epoxy equivalent: 600 to 700) Curing agent: 2-phenylimidazole Inorganic filler: hydrated aluminum oxide (Alcoa Chemical Co., Ltd.) B-325) Positively chargeable inorganic particles: fine alumina powder (Alumina oxide C, manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 15 nm) Negatively chargeable inorganic particles: fine silica powder (manufactured by Tokuyama Corporation, Reolosil, (Primary average particle size 12nm)

【0026】[0026]

【表4】 (4)試験方法 エッジカバー性の評価:図2に示すように、素子断面
のエッジ部a、b、c、dの皮膜厚さを10個のサンプ
ルについて測定し、エッジ部塗膜厚みの平均値を算出し
た。a,bは浸漬塗装時に上側、c、dは下側である。 オイルディップ試験:試料を60℃/95%RH、7
2時間処理した後、170℃のオイルバスに2分間浸漬
し、塗膜のクラック発生の有無および塗膜からの気泡の
発生を観察した(n=40)。 塗装外観:塗装後の素子の塗膜表面を観察し、塗膜表
面の平滑性に優れているものを◎、平滑性はやや劣るが
実使用上問題がないものを○とした。
[Table 4] (4) Test method Evaluation of edge coverability: As shown in FIG. 2, the film thickness of the edge portions a, b, c, and d of the element cross section was measured for ten samples, and the average of the edge portion coating film thickness was measured. Values were calculated. “a” and “b” indicate the upper side during dip coating, and “c” and “d” indicate the lower side. Oil dip test: The sample was subjected to 60 ° C./95% RH, 7
After the treatment for 2 hours, the film was immersed in an oil bath at 170 ° C. for 2 minutes, and the occurrence of cracks in the coating film and the generation of bubbles from the coating film were observed (n = 40). Appearance of coating: The surface of the coating film of the element after coating was observed. ◎ indicates that the coating film surface was excellent in smoothness, and ○ indicates that the smoothness was slightly inferior but had no practical problem.

【0027】実施例6〜10の粉体塗料は、エポキシ樹
脂、硬化剤、無機充填材とともに、帯電性を有した2種
類の無機粒子を含有しているので、いずれも塗膜外観に
問題なく、また、エッジ部についても十分な塗膜厚みを
得ることができた。特に実施例1は、帯電性を有した2
種類の無機粒子の配合量、および両者の配合比率が最適
であったので、最も特性バランスに優れたものとなっ
た。一方、比較例4〜6は、帯電性の無機粒子の両方も
しくは片方を用いなかったものであり、いずれもエッジ
部の塗膜厚みが薄く、オイルディップ試験結果も実施例
と比較し劣るものとなった。
The powder coatings of Examples 6 to 10 contain two kinds of inorganic particles having a chargeability together with an epoxy resin, a curing agent and an inorganic filler, so that any of them has no problem in the appearance of the coating film. Also, a sufficient coating film thickness could be obtained for the edge portion. In particular, Example 1 has a chargeable property of 2
Since the blending amounts of the kinds of inorganic particles and the blending ratio of the two were optimal, the characteristic balance was most excellent. On the other hand, Comparative Examples 4 to 6 did not use both or one of the chargeable inorganic particles, all had a thin coating film at the edge portion, and the oil dip test results were inferior to those of the examples. became.

【0028】[0028]

【発明の効果】本発明は、エポキシ樹脂、硬化剤および
無機充填材を必須成分とし、正帯電性の無機粒子と負帯
電性の無機粒子とを所定の量と比率で含有することを特
徴とするエポキシ樹脂粉体塗料であり、本発明の粉体塗
料は塗装時のエッジカバー率が高く、複雑な形状を有す
る部品の塗装に用いてもエッジ部に十分な厚さの塗膜を
形成することができる。従って本発明の粉体塗料は、安
定した絶縁被膜を形成することができるエポキシ樹脂粉
体塗料として有用である。
According to the present invention, an epoxy resin, a curing agent and an inorganic filler are essential components, and positively chargeable inorganic particles and negatively chargeable inorganic particles are contained in predetermined amounts and ratios. The epoxy resin powder coating of the present invention, the powder coating of the present invention has a high edge coverage at the time of coating, and forms a sufficiently thick coating film on the edge even when used for coating a component having a complicated shape. be able to. Therefore, the powder coating of the present invention is useful as an epoxy resin powder coating capable of forming a stable insulating film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の塗料を積層フィルムコンデンサに塗
装した後の切断断面図
FIG. 1 is a cross-sectional view after the coating of the present invention is applied to a laminated film capacitor.

【図2】 積層フィルムコンデンサの塗膜厚みの測定位
Fig. 2 Measurement position of coating film thickness of multilayer film capacitor

【符号の説明】[Explanation of symbols]

1 積層フィルムコンデンサ 2 塗膜厚み 1 multilayer film capacitor 2 coating thickness

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂(A)、硬化剤(B)およ
び無機充填材(C)を必須成分とするエポキシ樹脂粉体
塗料において、正帯電性の無機粒子(D)と負帯電性の
無機粒子(E)とを配合することを特徴とするエポキシ
樹脂粉体塗料。
1. An epoxy resin powder coating material comprising an epoxy resin (A), a curing agent (B) and an inorganic filler (C) as essential components, comprising positively chargeable inorganic particles (D) and negatively chargeable inorganic particles. An epoxy resin powder coating characterized by being blended with particles (E).
【請求項2】 正帯電性の無機粒子(D)がアルミナで
ある請求項1記載のエポキシ樹脂粉体塗料。
2. The epoxy resin powder coating according to claim 1, wherein the positively chargeable inorganic particles (D) are alumina.
【請求項3】 負帯電性の無機粒子(E)がシリカであ
る請求項1または2に記載のエポキシ樹脂粉体塗料。
3. The epoxy resin powder coating according to claim 1, wherein the negatively chargeable inorganic particles (E) are silica.
【請求項4】 正帯電性の無機粒子(D)と負帯電性の
無機粒子(E)との重量配合比(E/D)が2〜8であ
る請求項1ないし3のいずれかに記載のエポキシ樹脂粉
体塗料。
4. The method according to claim 1, wherein the weight ratio (E / D) of the positively chargeable inorganic particles (D) to the negatively chargeable inorganic particles (E) is 2 to 8. Epoxy resin powder coating.
【請求項5】 正帯電性の無機粒子(D)と負帯電性の
無機粒子(E)が、ともに平均一次粒子径が0.001
〜0.1μmである請求項1ないし4のいずれかに記載
のエポキシ樹脂粉体塗料。
5. The positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) both have an average primary particle diameter of 0.001.
The epoxy resin powder coating according to any one of claims 1 to 4, wherein the thickness is from 0.1 to 0.1 µm.
【請求項6】 正帯電性の無機粒子(D)と負帯電性の
無機粒子(E)の合計配合量(D+E)が、粉体塗料全
体に対して0.3〜2.0重量%である請求項1ないし
5のいずれかに記載のエポキシ樹脂粉体塗料。
6. The total blending amount (D + E) of the positively chargeable inorganic particles (D) and the negatively chargeable inorganic particles (E) is 0.3 to 2.0% by weight based on the whole powder coating material. The epoxy resin powder coating according to any one of claims 1 to 5.
JP2001305435A 2001-03-22 2001-10-01 Epoxy resin powder coating Pending JP2002348528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305435A JP2002348528A (en) 2001-03-22 2001-10-01 Epoxy resin powder coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001082177 2001-03-22
JP2001-82177 2001-03-22
JP2001305435A JP2002348528A (en) 2001-03-22 2001-10-01 Epoxy resin powder coating

Publications (1)

Publication Number Publication Date
JP2002348528A true JP2002348528A (en) 2002-12-04

Family

ID=26611773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305435A Pending JP2002348528A (en) 2001-03-22 2001-10-01 Epoxy resin powder coating

Country Status (1)

Country Link
JP (1) JP2002348528A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220327A (en) * 2004-02-09 2005-08-18 Dainippon Toryo Co Ltd Thermosetting powder coating, coated ferrous material and manufacturing method of coated ferrous material
JP2007291356A (en) * 2006-03-29 2007-11-08 Sumitomo Bakelite Co Ltd Epoxy resin powder coating
JP2008544052A (en) * 2005-06-21 2008-12-04 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for modifying oxygen-containing inorganic particulate material, product obtained therefrom, and method of use thereof
CN104262906A (en) * 2014-09-26 2015-01-07 西安理工大学 Nanometer filler cooperatively filling epoxy resin composite coating as well as preparation method and application thereof
JP6888748B1 (en) * 2020-07-31 2021-06-16 住友ベークライト株式会社 Powder paint
WO2022024399A1 (en) * 2020-07-31 2022-02-03 住友ベークライト株式会社 Powder coating material
CN114456679A (en) * 2021-12-31 2022-05-10 江南载福粉末涂料(张家港)有限公司 High-corner-coverage-rate powder coating and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220327A (en) * 2004-02-09 2005-08-18 Dainippon Toryo Co Ltd Thermosetting powder coating, coated ferrous material and manufacturing method of coated ferrous material
JP2008544052A (en) * 2005-06-21 2008-12-04 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for modifying oxygen-containing inorganic particulate material, product obtained therefrom, and method of use thereof
JP2007291356A (en) * 2006-03-29 2007-11-08 Sumitomo Bakelite Co Ltd Epoxy resin powder coating
CN104262906A (en) * 2014-09-26 2015-01-07 西安理工大学 Nanometer filler cooperatively filling epoxy resin composite coating as well as preparation method and application thereof
JP6888748B1 (en) * 2020-07-31 2021-06-16 住友ベークライト株式会社 Powder paint
WO2022024399A1 (en) * 2020-07-31 2022-02-03 住友ベークライト株式会社 Powder coating material
CN114456679A (en) * 2021-12-31 2022-05-10 江南载福粉末涂料(张家港)有限公司 High-corner-coverage-rate powder coating and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0459614B1 (en) Method for preparing a liquid epoxy resin composition
JP2002348528A (en) Epoxy resin powder coating
JPH0459819A (en) Epoxy resin composition
US3817906A (en) Epoxy resin composition
JP5012124B2 (en) Epoxy resin powder coating
JP2008248101A (en) Epoxy resin powder coating material
JP2008081528A (en) Epoxy resin powder coating
JP2008056838A (en) Epoxy resin powder coating
JP2010132794A (en) Epoxy resin powder coating
JP2007246783A (en) Epoxy resin powder coating and method for producing the same
JP5151365B2 (en) Articles painted with epoxy resin powder paint
JP2003165947A (en) Epoxy resin powder coating material
JP2006335975A (en) Insulation coating, electronic part by using the same and method for producing the electronic part
KR950005345B1 (en) Epory resin powder coating composition
JP5434715B2 (en) Epoxy resin powder coating
JP2004002713A (en) Powder coating material of epoxy resin
JP2004292645A (en) Epoxy resin powder coating
JP2006096905A (en) Epoxy resin powder coating
JPS61151274A (en) Powder coating
JP2001026742A (en) Epoxy resin-based coating material composition
JP2015127390A (en) Epoxy resin powder coating
JPH07100778B2 (en) Epoxy resin powder coating
JPS6112763A (en) Epoxy resin powder coating
KR960000973B1 (en) Epoxy powder paint for electric insulation
JPH0349945B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527