JP2002348199A - Method for making group iii nitride thin membrane - Google Patents

Method for making group iii nitride thin membrane

Info

Publication number
JP2002348199A
JP2002348199A JP2001160139A JP2001160139A JP2002348199A JP 2002348199 A JP2002348199 A JP 2002348199A JP 2001160139 A JP2001160139 A JP 2001160139A JP 2001160139 A JP2001160139 A JP 2001160139A JP 2002348199 A JP2002348199 A JP 2002348199A
Authority
JP
Japan
Prior art keywords
group iii
gan
iii nitride
thin film
nitride thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001160139A
Other languages
Japanese (ja)
Other versions
JP4549573B2 (en
Inventor
Saki Sonoda
早紀 園田
Saburo Shimizu
三郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001160139A priority Critical patent/JP4549573B2/en
Publication of JP2002348199A publication Critical patent/JP2002348199A/en
Application granted granted Critical
Publication of JP4549573B2 publication Critical patent/JP4549573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the polarity of a GaN-based group III nitride thin membrane to (0001). SOLUTION: After irradiating the sapphire C surface 28 of a sapphire substrate 21 with nitrogen ion and forming an AlN layer, a GaN-based group III nitride thin membrane is formed on the surface of the AlN layer. The GaN- based group III nitride thin membrane (0001) is grown, if the surface of the AlN layer is clean.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系III族窒
化物薄膜の形成方法、特に分子線エピタキシー法(MB
E)によるGaN系III族窒化物薄膜(極性:(000
1))の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a GaN group III nitride thin film, and more particularly to a method of forming a molecular beam epitaxy (MB
E) GaN-based group III nitride thin film (polarity: (000
The present invention relates to the method 1)).

【0002】[0002]

【従来の技術】サファイアは、六方晶系の結晶であり、
6個の側面と2個の底面を有している。図4(a)は、サ
ファイア結晶の底面に垂直な中心軸線(c軸)を含む方向
の面方位を表した図面であり、同図(b)は、中心軸線を
含まない面方位を表した図面である。同図(b)には、サ
ファイアA面、C面、R面、M面が表されている。
2. Description of the Related Art Sapphire is a hexagonal crystal,
It has six side surfaces and two bottom surfaces. FIG. 4A is a drawing showing a plane orientation in a direction including a central axis (c-axis) perpendicular to the bottom surface of the sapphire crystal, and FIG. 4B is a drawing showing a plane orientation not including the central axis. It is a drawing. FIG. 4B shows the sapphire A plane, C plane, R plane, and M plane.

【0003】ここで、サファイアC面はサファイア結晶
の底面のことであり、このサファイアC面上にGaNを
成長させる場合には、通常、六方晶のウルツ鉱型GaN
がサファイア基板とc軸をそろえて成長する。
[0003] Here, the sapphire C plane is the bottom surface of the sapphire crystal. When GaN is grown on this sapphire C plane, the hexagonal wurtzite GaN is usually used.
Grows with the c-axis aligned with the sapphire substrate.

【0004】しかしウルツ鉱型GaNはc軸方向に極性
を持つため、通常は図1(a)および同図(b)に示す
ように2種類の極性、すなわち2種類の原子の配列状態
を持つ結晶の混在した膜となってしまう。
However, since wurtzite GaN has a polarity in the c-axis direction, it usually has two types of polarities, that is, two types of atoms arranged as shown in FIGS. 1 (a) and 1 (b). The resulting film is a mixture of crystals.

【0005】このサファイアC面基板1上に成長するG
aN膜において、図1(a)に示すようにGa原子の直
上にN原子が配列された場合をGaN(0001)(G
a−face)図1(b)に示すようにN原子の直上に
Ga原子が配列された場合をGaN(000−1)(N
−face)と呼んでいる。
The G grown on the sapphire C-plane substrate 1
In the aN film, as shown in FIG. 1A, the case where N atoms are arranged immediately above Ga atoms is referred to as GaN (0001) (G
a-face) As shown in FIG. 1 (b), a case where Ga atoms are arranged immediately above N atoms is referred to as GaN (000-1) (N
-Face).

【0006】これら2種類の極性と成長した膜の特性と
は密接に関係しており、GaN(0001)膜の方がG
aN(000−1)膜、あるいはGaN(0001)と
GaN(000−1)との混在した膜よりも、光学的、
電気的特性、さらに表面平坦性に優れているということ
が報告されている(Keller et.al.,Appl.Phys.lett.68
(1996)1525, Fuke et al.,J.Appl.Phys.83(1998)76
4)。
[0006] These two types of polarities are closely related to the characteristics of the grown film, and the GaN (0001) film has a higher G value.
aN (000-1) film or a film in which GaN (0001) and GaN (000-1) are mixed is more optically
It has been reported that it has excellent electrical properties and surface flatness (Keller et. Al., Appl. Phys. Lett. 68
(1996) 1525, Fuke et al., J. Appl. Phys. 83 (1998) 76
Four).

【0007】従って、いかに成長する膜の極性をGa−
faceに制御するかということが高品質III族窒化物
半導体素子を作成する上での重要なキーポイントとなっ
ている。
Accordingly, the polarity of the growing film is changed to Ga-
Face control is an important key point in producing a high-quality group III nitride semiconductor device.

【0008】有機金属気相成長(MOCVD)法におい
ては、有機金属ガスの供給時、核密度増大のためにサフ
ァイア基板上に成長させる低温バッファ層のアニール条
件などを制御することにより、成長する膜の特性をGa
−faceに制御することがすでに可能となっている。
これに対し、分子線エピタキシー(MBE)法において
は、これまでGaN(000-1)が支配的な膜しか得
られておらず、GaN(0001)膜を得ることは不可
能であった。
In the metal organic chemical vapor deposition (MOCVD) method, the film to be grown is controlled by controlling the annealing conditions of a low-temperature buffer layer grown on a sapphire substrate in order to increase the nucleus density when the metal organic gas is supplied. The characteristics of Ga
Control to -face is already possible.
On the other hand, in the molecular beam epitaxy (MBE) method, only a film in which GaN (000-1) is dominant has been obtained so far, and it has not been possible to obtain a GaN (0001) film.

【0009】[0009]

【発明が解決しようとする課題】本発明は、分子線エピ
タキシー(MBE)法によるGaN系III族窒化物薄膜
形成の際の問題点を解決するものであり、その目的は、
成長する膜の極性を(0001)に制御して、従来より
も光学的、電気的に優れたGaN系III族窒化物薄膜を
形成する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention is to solve the problems in forming a GaN-based group III nitride thin film by molecular beam epitaxy (MBE).
It is an object of the present invention to provide a method for forming a GaN-based group III nitride thin film that is optically and electrically superior to the related art by controlling the polarity of a film to be grown to (0001).

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、サファイア基板のサファイ
アC面に、Gaを主成分とする金属を用いた分子線エピ
タキシー法により、GaN系III族窒化物薄膜をエピタ
キシャル成長させる薄膜形成方法であって、前記サファ
イア基板の前記サファイアC面に窒素イオンを照射して
AIN層を形成した後、前記AlN層表面に前記GaN
系III族窒化物薄膜を形成する薄膜形成方法である。請
求項2記載の発明は、前記AlN膜を形成する際に、前
記サファイヤ基板を800℃以上1100℃以下に昇温
させる請求項1記載の薄膜形成方法である。請求項3記
載の発明は、前記AlN膜を形成する際に、前記窒素イ
オンを50eV以上1000eVに加速する請求項1又
は請求項2のいずれか1項記載の薄膜形成方法である。
請求項4記載の発明は、前記GaN系III族窒化物薄膜
は、窒素プラズマまたはアンモニアと、Gaを主成分と
する金属とを前記AlN層表面に照射して形成する請求
項1乃至請求項3のいずれか1項記載の薄膜形成方法で
ある。
In order to solve the above-mentioned problems, the present invention is directed to a sapphire substrate having a sapphire C-plane formed on a sapphire substrate by a molecular beam epitaxy method using a metal containing Ga as a main component. A thin film forming method for epitaxially growing a group III nitride thin film, wherein the sapphire C surface of the sapphire substrate is irradiated with nitrogen ions to form an AIN layer, and then the GaN layer is formed on the surface of the AlN layer.
This is a thin film forming method for forming a group III nitride thin film. The invention according to claim 2 is the thin film forming method according to claim 1, wherein the temperature of the sapphire substrate is raised to 800 ° C. or more and 1100 ° C. or less when the AlN film is formed. The invention according to claim 3 is the thin film forming method according to claim 1 or 2, wherein the nitrogen ions are accelerated to 50 eV to 1000 eV when the AlN film is formed.
According to a fourth aspect of the present invention, the GaN-based group III nitride thin film is formed by irradiating the surface of the AlN layer with nitrogen plasma or ammonia and a metal containing Ga as a main component. 5. The method for forming a thin film according to any one of the above items.

【0011】本発明は上記のように構成されており、サ
ファイア基板のサファイアC面を表面に露出させ、その
C面を清浄化処理した後に、該サファイア基板を800
℃以上1100℃以下に加熱した状態で、サファイアC
面に窒素イオンを照射し、AIN(0001)層を形成
している。
The present invention is configured as described above. After exposing the sapphire C surface of the sapphire substrate to the surface and cleaning the C surface, the sapphire substrate is removed by 800.
Sapphire C while heated to 1100 ° C or higher
The surface is irradiated with nitrogen ions to form an AIN (0001) layer.

【0012】窒素イオンは、窒素ガスをイオン源とし、
この窒素イオンを50eV以上1000eV以下に加速
し、サファイアC面に照射している。
[0012] Nitrogen ions use nitrogen gas as an ion source,
The nitrogen ions are accelerated to 50 eV or more and 1000 eV or less, and are irradiated on the sapphire C surface.

【0013】そして、形成したAIN(0001)層の
表面に、所望の方法により、GaN薄膜等を形成する
と、III族窒化物系の(0001)薄膜が形成される。
When a GaN thin film or the like is formed on the surface of the formed AIN (0001) layer by a desired method, a (0001) group III nitride-based thin film is formed.

【0014】ここでIII族窒化物薄膜は、GaN系の
他、III族金属元素としてIn、Al、を含んでもよい
し、またドーパントとして、Be、Mg、Si等を含ん
でもよい。
Here, the group III nitride thin film may contain In or Al as a group III metal element, or may contain Be, Mg, Si or the like as a dopant, in addition to a GaN-based thin film.

【0015】[0015]

【発明の実施の形態】以下この発明の実施例を図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図3の符号10は、本発明に用いることが
できる分子線エピタキシー装置を示している。
Reference numeral 10 in FIG. 3 indicates a molecular beam epitaxy apparatus that can be used in the present invention.

【0017】この分子線エピタキシー装置10は、真空
槽11を有しており、その底壁側には、イオンガン12
とプラズマガン13と金属ソース14とアンモニアガス
導入用ノズル15とが配置されている。真空槽10の天
井側には、ヒータ17が配置されている。
The molecular beam epitaxy apparatus 10 has a vacuum chamber 11 and an ion gun 12 on its bottom wall.
, A plasma gun 13, a metal source 14, and an ammonia gas introduction nozzle 15. On the ceiling side of the vacuum chamber 10, a heater 17 is arranged.

【0018】イオンガン12は、引き出し電極31と、
グリッド32、電子放出フィラメント33とを有してお
り、ガス導入管34から容器35内に窒素ガスを導入
し、電子放出フィラメント33からグリッド32に対し
て電子線を射出させ、窒素ガスに照射すると、窒素ガス
は電子衝撃によってイオン化し、窒素イオンが生成され
る。
The ion gun 12 includes an extraction electrode 31 and
It has a grid 32 and an electron emission filament 33, and introduces nitrogen gas into the container 35 from the gas introduction pipe 34, emits an electron beam from the electron emission filament 33 to the grid 32, and irradiates the nitrogen gas. The nitrogen gas is ionized by electron bombardment to generate nitrogen ions.

【0019】このときサファイア基板21に対するグリ
ッドの電位VAを+50〜+1000Vに保つと、生成
された窒素イオンは電場によって50〜1000eVに
加速され、容器35の開口から真空槽11内に放出され
るようになっている。このとき引き出し電極の電位VEX
を負電位に保つと、イオンガン12内で生成した窒素イ
オンがサファイア基板方向に効果的に引き出せる。
At this time, if the potential VA of the grid with respect to the sapphire substrate 21 is kept at +50 to +1000 V, the generated nitrogen ions are accelerated to 50 to 1000 eV by the electric field and discharged into the vacuum chamber 11 from the opening of the container 35. It has become. At this time, the potential V EX of the extraction electrode
Is maintained at a negative potential, nitrogen ions generated in the ion gun 12 can be effectively extracted toward the sapphire substrate.

【0020】プラズマガン13は、PBN管36を有し
ており、該PBN管36の周囲には、高周波コイル37
が巻回されている。ガス導入管38からPBN管内に、
窒素ガスやアンモニアガス等の含窒素原子ガスを導入
し、コイル37に高周波電圧を印加すると、PBN管3
6内の含窒素原子ガスがプラズマ化し、プラズマ中に含
まれる窒素ラジカルが真空槽11内に放出されるように
なっている。
The plasma gun 13 has a PBN tube 36, and a high frequency coil 37 is provided around the PBN tube 36.
Is wound. From the gas introduction pipe 38 into the PBN pipe,
When a nitrogen-containing atomic gas such as nitrogen gas or ammonia gas is introduced and a high-frequency voltage is applied to the coil 37, the PBN tube 3
The nitrogen-containing atom gas in 6 is turned into plasma, and nitrogen radicals contained in the plasma are released into the vacuum chamber 11.

【0021】また、金属ソース14内にはGaを主成分
とする金属材料39が配置されており、金属ソース14
を加熱すると、金属材料39から真空槽11内にGaを
主成分とする分子線が放出されるようになっている。
A metal material 39 containing Ga as a main component is disposed in the metal source 14.
Is heated, a molecular beam mainly containing Ga is emitted from the metal material 39 into the vacuum chamber 11.

【0022】[0022]

【実施例】図3の符号21は、成膜対象であるサファイ
ア基板を示している。このサファイア基板21は、その
表面に、サファイアC面28が露出されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference numeral 21 in FIG. 3 denotes a sapphire substrate on which a film is to be formed. The sapphire substrate 21 has a sapphire C surface 28 exposed on the surface.

【0023】先ず、成膜対象のサファイア基板21を、
そのサファイアC面28を真空槽11の底壁側に向けて
ヒータ17近傍に配置し、ヒータ17に通電して発熱さ
せ、サファイア基板21を950℃に加熱して清浄化処
理した後、900℃まで降温させ、サファイア基板21
をその温度に保持する。
First, a sapphire substrate 21 for forming a film is
The sapphire C surface 28 is arranged near the heater 17 with the sapphire C surface 28 facing the bottom wall of the vacuum chamber 11, and the heater 17 is energized to generate heat. The sapphire substrate 21
At that temperature.

【0024】次いで、イオンガン12から窒素イオンを
放出させると、窒素イオンの飛行先には、サファイア基
板21のサファイアC面28が位置しており、そのサフ
ァイアC面28に窒素イオンが照射されると、AIN層
が形成される。ここでは、窒素イオンの加速電圧は35
0eVであった。得られたAIN層の極性は(000
1)であった。
Next, when nitrogen ions are released from the ion gun 12, the sapphire C surface 28 of the sapphire substrate 21 is located at the destination of the nitrogen ions, and when the sapphire C surface 28 is irradiated with nitrogen ions. , AIN layer is formed. Here, the acceleration voltage of nitrogen ions is 35
It was 0 eV. The polarity of the obtained AIN layer is (000
1).

【0025】窒素イオンを30分照射し、所定膜厚にA
lN層を形成した後、サファイア基板21の温度を60
0℃まで降温させる。
Irradiate with nitrogen ions for 30 minutes to obtain a film having a predetermined thickness.
After forming the 1N layer, the temperature of the sapphire substrate 21 is raised to 60
Cool down to 0 ° C.

【0026】次いで、プラズマガン13から窒素プラズ
マを放出させると共に、金属ソース14からGaを主成
分とする金属を放出させ、AlN表面に照射すると、G
aNを主成分とするGaN系III族窒化物薄膜が成長す
る。得られた薄膜の極性は(0001)であった。
Next, nitrogen plasma is emitted from the plasma gun 13, and metal containing Ga as the main component is emitted from the metal source 14.
A GaN-based group III nitride thin film mainly composed of aN grows. The polarity of the obtained thin film was (0001).

【0027】図2(a)の符号22は、形成されたAlN
層を示しており、符号23は、GaN系III族窒化物薄
膜を示している。窒素イオンの照射時間は10分〜2時
間の範囲で同じような結果が得られた。
Reference numeral 22 in FIG. 2A indicates the formed AlN
Reference numeral 23 denotes a GaN-based group III nitride thin film. Similar results were obtained when the irradiation time of nitrogen ions was in the range of 10 minutes to 2 hours.

【0028】[0028]

【実施例】次に、別のサファイア基板を分子線エピタキ
シー装置10に装着し、950℃に加熱して清浄化処理
した後、900℃に降温させ、その温度を保持し、イオ
ンガン12から350eVに加速した窒素イオンをサフ
ァイアC面に照射し、AIN層を形成した。照射時間は
30分であり、得られたAIN層の極性は(0001)
であった。
Next, another sapphire substrate was mounted on the molecular beam epitaxy apparatus 10 and heated at 950 ° C. to perform a cleaning treatment. Thereafter, the temperature was lowered to 900 ° C., and the temperature was maintained. The sapphire C plane was irradiated with accelerated nitrogen ions to form an AIN layer. The irradiation time was 30 minutes and the polarity of the obtained AIN layer was (0001)
Met.

【0029】次いで、サファイア基板の温度を800℃
に降温させ、その温度を保持し、アンモニアガス導入用
ノズル15内にアンモニアを導入するとともに、金属ソ
ース14から、Gaを主成分とする金属を放出させ、A
lN層の表面にGaN系III族窒化物薄膜を成長させ
た。
Next, the temperature of the sapphire substrate is set to 800 ° C.
The temperature is maintained, the temperature is maintained, ammonia is introduced into the ammonia gas introduction nozzle 15, and a metal containing Ga as a main component is released from the metal source 14.
A GaN-based group III nitride thin film was grown on the surface of the 1N layer.

【0030】図2(b)の符号24は、この実施例に用い
たサファイア基板を示しており、符号25はAlN層を
示しており、符号26は、アンモニアを用いて形成した
GaN系III族窒化物薄膜を示している。
Reference numeral 24 in FIG. 2B indicates a sapphire substrate used in this embodiment, reference numeral 25 indicates an AlN layer, and reference numeral 26 indicates a GaN-based group III formed using ammonia. 3 shows a nitride thin film.

【0031】得られたGaN系III族窒化物薄膜の極性
は(0001)であった。窒素イオンの照射時間は10
分〜2時間であればどの程度でも同じような結果が得ら
れた。
The polarity of the obtained GaN-based group III nitride thin film was (0001). Nitrogen ion irradiation time is 10
Similar results were obtained at any time from minutes to 2 hours.

【0032】以上は同じ真空槽11内で、AlN層2
2、25とGaN系III族窒化物薄膜23、26を形成
したが、真空槽11内で形成されたAIN(0001)
層22、25の表面が搬送中も清浄に保たれるならば、
III族窒化物薄膜23、26を別の装置内に搬入し、A
lN層22、25を形成した真空槽11とは異なる真空
槽内で形成してもよい。
In the above, the AlN layer 2 is placed in the same vacuum chamber 11.
2 and 25 and the GaN-based group III nitride thin films 23 and 26 were formed, and AIN (0001) formed in the vacuum chamber 11 was formed.
If the surfaces of layers 22, 25 are kept clean during transport,
The group III nitride thin films 23 and 26 are carried into another apparatus, and A
It may be formed in a vacuum chamber different from the vacuum chamber 11 in which the 1N layers 22 and 25 are formed.

【0033】またイオンガン12によるサファイアC面
への窒素イオンの照射時間は、AIN(0001)がサ
ファイア基板上に形成される程度の時間であればよい。
The irradiation time of nitrogen ions on the sapphire C surface by the ion gun 12 may be a time enough to form AIN (0001) on the sapphire substrate.

【0034】また、AIN(0001)層上に成長させ
るGaN系(0001)薄膜は、MBE、スパッタ、C
VD、レーザーデポジッションなどの成長法を用いるこ
ともできる。
The GaN (0001) thin film grown on the AIN (0001) layer is formed by MBE, sputtering, C
Growth methods such as VD and laser deposition can also be used.

【0035】以上のようにして、この発明で形成された
GaN系薄膜は、所望のタイプの電子デバイスあるいは
光電子デバイスなどに組み込まれて利用出来る。
As described above, the GaN-based thin film formed according to the present invention can be used by being incorporated into a desired type of electronic device or optoelectronic device.

【0036】[0036]

【発明の効果】本発明によれば、従来のMBE法におい
ては不可能であったGaN系のIII族窒化物薄膜の極性
を光学的、電気的特性、表面平坦性に優れた(000
1)に制御することが可能となるため、高品質なIII族
窒化物半導体素子を製造することができる。
According to the present invention, the polarity of a GaN-based group III nitride thin film, which was impossible with the conventional MBE method, is excellent in optical, electrical characteristics and surface flatness (000).
Since the control can be performed in 1), a high-quality group III nitride semiconductor device can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a):GaN(0001)(Ga−face)
薄膜の原子配列を説明するための図 (b):GaN(000−1)(N−face)薄膜の原
子配列を説明するための図
FIG. 1 (a): GaN (0001) (Ga-face)
Diagram for explaining the atomic arrangement of the thin film (b): Diagram for explaining the atomic arrangement of the GaN (000-1) (N-face) thin film

【図2】(a)、(b):本発明方法によって形成されたG
aN系III族窒化物薄膜(0001)を説明するための
FIG. 2 (a), (b): G formed by the method of the present invention
Diagram for explaining aN-based group III nitride thin film (0001)

【図3】本発明に用いることができる分子線エピタキシ
ャル装置の一例
FIG. 3 shows an example of a molecular beam epitaxial apparatus that can be used in the present invention.

【図4】(a)、(b):サファイア結晶の面方位を説明す
るための図
FIGS. 4A and 4B are diagrams for explaining the plane orientation of a sapphire crystal.

【符号の説明】[Explanation of symbols]

21、24……サファイア基板 22、25……AlN層 23、26……III族窒化物薄膜 28……サファイアC面 21, 24: sapphire substrate 22, 25: AlN layer 23, 26: group III nitride thin film 28: sapphire C plane

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 BE15 DA05 ED06 EE08 HA02 SC02 5F041 CA34 CA40 CA66 5F073 CA02 CB05 DA06 5F103 AA04 BB05 BB09 DD01 HH04 HH08 NN00 NN01 RR10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA03 BE15 DA05 ED06 EE08 HA02 SC02 5F041 CA34 CA40 CA66 5F073 CA02 CB05 DA06 5F103 AA04 BB05 BB09 DD01 HH04 HH08 NN00 NN01 RR10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】サファイア基板のサファイアC面に、Ga
を主成分とする金属を用いた分子線エピタキシー法によ
り、GaN系III族窒化物薄膜をエピタキシャル成長さ
せる薄膜形成方法であって、 前記サファイア基板の前記サファイアC面に窒素イオン
を照射してAIN層を形成した後、前記AlN層表面に
前記GaN系III族窒化物薄膜を形成する薄膜形成方
法。
1. A sapphire substrate having a sapphire C-plane with Ga
A method of forming a GaN-based group III nitride thin film epitaxially by a molecular beam epitaxy method using a metal mainly comprising Forming a GaN-based group III nitride thin film on the surface of the AlN layer;
【請求項2】前記AlN膜を形成する際に、前記サファ
イヤ基板を800℃以上1100℃以下に昇温させる請
求項1記載の薄膜形成方法。
2. The method according to claim 1, wherein the sapphire substrate is heated to a temperature of 800 ° C. or more and 1100 ° C. or less when forming the AlN film.
【請求項3】前記AlN膜を形成する際に、前記窒素イ
オンを50eV以上1000eVに加速する請求項1又
は請求項2のいずれか1項記載の薄膜形成方法。
3. The thin film forming method according to claim 1, wherein the nitrogen ions are accelerated to 50 eV or more and 1000 eV when forming the AlN film.
【請求項4】前記GaN系III族窒化物薄膜は、窒素プ
ラズマまたはアンモニアと、Gaを主成分とする金属と
を前記AlN層表面に照射して形成する請求項1乃至請
求項3のいずれか1項記載の薄膜形成方法。
4. The GaN group III nitride thin film according to claim 1, wherein the surface of the AlN layer is irradiated with nitrogen plasma or ammonia and a metal containing Ga as a main component. 2. The method for forming a thin film according to claim 1.
JP2001160139A 2001-05-29 2001-05-29 Method for forming group III nitride thin film Expired - Lifetime JP4549573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160139A JP4549573B2 (en) 2001-05-29 2001-05-29 Method for forming group III nitride thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160139A JP4549573B2 (en) 2001-05-29 2001-05-29 Method for forming group III nitride thin film

Publications (2)

Publication Number Publication Date
JP2002348199A true JP2002348199A (en) 2002-12-04
JP4549573B2 JP4549573B2 (en) 2010-09-22

Family

ID=19003602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160139A Expired - Lifetime JP4549573B2 (en) 2001-05-29 2001-05-29 Method for forming group III nitride thin film

Country Status (1)

Country Link
JP (1) JP4549573B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088666A1 (en) * 2004-03-12 2005-09-22 Hamamatsu Photonics K.K. Process for producing layered member and layered member
JP2009260341A (en) * 2008-04-14 2009-11-05 Sharp Corp Method of growing active region in semiconductor device using molecular beam epitaxy
JP2010018516A (en) * 2009-07-14 2010-01-28 Sumitomo Electric Ind Ltd GaN SUBSTRATE
US8476086B2 (en) 2006-11-30 2013-07-02 Sumitomo Electric Industries, Ltd. Semiconductor device and method of its manufacture
JP2015062255A (en) * 2014-12-15 2015-04-02 国立大学法人名古屋大学 Molecular beam epitaxy device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264439A (en) * 1995-03-27 1996-10-11 Hamamatsu Photonics Kk Heteroepitaxial growth method for nitride semiconductor
JP2002029896A (en) * 2000-07-05 2002-01-29 National Institute Of Advanced Industrial & Technology Crystal growth method for nitride semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264439A (en) * 1995-03-27 1996-10-11 Hamamatsu Photonics Kk Heteroepitaxial growth method for nitride semiconductor
JP2002029896A (en) * 2000-07-05 2002-01-29 National Institute Of Advanced Industrial & Technology Crystal growth method for nitride semiconductor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN4003007145, F. Widmann et al., "Low temperature sapphire nitridation: A clue to optimize GaN layers grown by molecular beam epitaxy", J. Appl. Phys., 19990201, Vol. 85, No. 3, pp. 1550−1555, US, American Institute of Physics *
JPN6009067122, X.−Q. Shen et al., "Essential change in crystal qualities of GaN films by controlling lattice polarity in molecular beam", Jpn. J. Appl. Phys., 20000115, Vol. 39, Pt. 2, No. 1A/B, pp. L16−L18, JP, Publication Board, Japanese Journal of Applied Phy *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088666A1 (en) * 2004-03-12 2005-09-22 Hamamatsu Photonics K.K. Process for producing layered member and layered member
JP4762891B2 (en) * 2004-03-12 2011-08-31 浜松ホトニクス株式会社 Method for producing layered member and layered member
US8888914B2 (en) 2004-03-12 2014-11-18 Hamamatsu Photonics K.K. Process for producing layered member and layered member
US9431570B2 (en) 2004-03-12 2016-08-30 Hamamatsu Photonics K.K. Process for producing layered member and layered member
US8476086B2 (en) 2006-11-30 2013-07-02 Sumitomo Electric Industries, Ltd. Semiconductor device and method of its manufacture
JP2009260341A (en) * 2008-04-14 2009-11-05 Sharp Corp Method of growing active region in semiconductor device using molecular beam epitaxy
JP2010018516A (en) * 2009-07-14 2010-01-28 Sumitomo Electric Ind Ltd GaN SUBSTRATE
JP2015062255A (en) * 2014-12-15 2015-04-02 国立大学法人名古屋大学 Molecular beam epitaxy device

Also Published As

Publication number Publication date
JP4549573B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP4613373B2 (en) Method for forming group III nitride compound semiconductor thin film and method for manufacturing semiconductor element
US9466479B2 (en) System and process for high-density, low-energy plasma enhanced vapor phase epitaxy
JP6947232B2 (en) Gallium nitride based film and its manufacturing method
KR20150007350A (en) Method for depositing a Group III nitride semiconductor film
JPH10265297A (en) Production of gallium nitride bulk single crystal
JP4897244B2 (en) Silicon carbide layer manufacturing method, gallium nitride based semiconductor device, and silicon substrate
JP4565062B2 (en) Thin film single crystal growth method
JP4408509B2 (en) Method for forming group III nitride thin film
JP4549573B2 (en) Method for forming group III nitride thin film
JPWO2006088261A1 (en) InGaN layer generation method and semiconductor device
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH08264899A (en) Manufacture of gallium nitride semiconductor
JP3577974B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3898575B2 (en) Method for forming GaInN layer
US20050239271A1 (en) Heteroepitaxial growth method for gallium nitride
JP2010021439A (en) Group iii nitride semiconductor laminate structure, and manufacturing method thereof
JP2016082079A (en) Nitride semiconductor crystal growth method
JP5023267B2 (en) Method for forming group III nitride thin film
WO2006104064A1 (en) Substrate for growing gallium nitride and method for producing same
AU2012202511B2 (en) System and Process for High-Density, Low-Energy Plasma Enhanced Vapor Phase Epitaxy
CN117043400A (en) Laminated film structure and method for producing same
JP5176054B2 (en) Thin film forming apparatus and thin film forming method
JP2005347702A (en) MANUFACTURING METHOD OF P-TYPE GaN-BASED BASE MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100707

R150 Certificate of patent or registration of utility model

Ref document number: 4549573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term