JP2002345155A - Photovoltaic power generating inverter - Google Patents

Photovoltaic power generating inverter

Info

Publication number
JP2002345155A
JP2002345155A JP2001142784A JP2001142784A JP2002345155A JP 2002345155 A JP2002345155 A JP 2002345155A JP 2001142784 A JP2001142784 A JP 2001142784A JP 2001142784 A JP2001142784 A JP 2001142784A JP 2002345155 A JP2002345155 A JP 2002345155A
Authority
JP
Japan
Prior art keywords
voltage
solar cell
power supply
switch
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001142784A
Other languages
Japanese (ja)
Inventor
Taketoshi Sato
武年 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001142784A priority Critical patent/JP2002345155A/en
Publication of JP2002345155A publication Critical patent/JP2002345155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generating inverter capable of eliminating the need for a booster circuit. SOLUTION: This photovoltaic power generating inverter is provided with a solar cell voltage detecting means 3, which detects voltage of a solar cell 1 and a system voltage detecting means 10 which detects voltage of a system power supply 11, and is constituted of a switch for flowing current from the solar cell 1 through the system via an inductance 9 and a control means for controlling the switch, for flowing the current through the system power supply via the inductance 9, only when the voltage of the solar cell is larger than that of the detected system power supply. The switch is thereby controlled to make the current flow through the system power supply via the inductance, only when the voltage of the solar cell 1 is larger than that of the system power supply 11, thus attaining feeding of power into the system without the need for a boosting means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池の発電電
力を系統に流し込む太陽光発電インバータに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generation inverter which supplies power generated by a solar cell to a power system.

【0002】[0002]

【従来の技術】図13に従来のインバータを示す。図1
3において、25は太陽電池、26は昇圧手段、27は
コンデンサ、28は波形成形手段、29はインダクタ、
30は系統電源である。この構成において、太陽電池2
5の電圧を系統電源26の電圧より大きくなるようにコ
ンデンサ27の電圧を昇圧手段26により昇圧させ、波
形生手段4により、インダクタンス5を介して系統の電
源に電力を注入する。
2. Description of the Related Art FIG. 13 shows a conventional inverter. FIG.
In 3, 25 is a solar cell, 26 is a step-up unit, 27 is a capacitor, 28 is a waveform shaping unit, 29 is an inductor,
Reference numeral 30 denotes a system power supply. In this configuration, the solar cell 2
The voltage of the capacitor 27 is boosted by the booster 26 so that the voltage of the power supply 5 becomes higher than the voltage of the system power supply 26, and the power is injected into the power supply of the system via the inductance 5 by the waveform generator 4.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の構成では、太陽電池の電圧を昇圧し、系統の電圧よ
り高くしていたので、昇圧手段の部品点数が多く、コス
トも高いという課題を有していた。本発明は、前記従来
の課題を解決するもので、昇圧手段を無くし、部品点数
が少なく、低コストで小型の太陽光発電インバータを提
供することを目的とする。
However, in the above-mentioned conventional configuration, the voltage of the solar cell is boosted to be higher than the voltage of the system, so that there is a problem that the number of components of the boosting means is large and the cost is high. Was. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a low-cost and small-sized photovoltaic power inverter which eliminates the step-up means, has a small number of parts, and has a small number of parts.

【0004】[0004]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の太陽光発電インバータは、太陽電池
の電圧を検知する太陽電池電圧検知手段と、系統電源の
電圧を検知する系統電圧検知手段を設け、太陽電池から
の電流をインダクタンスを介して系統に流すスイッチ
と、太陽電池電圧が系統電源検知より大きい時のみ、イ
ンダクタンスを介して系統電源に流す様にスイッチを制
御する制御手段の構成としたものである。
In order to solve the above-mentioned conventional problems, a photovoltaic power generation inverter according to the present invention comprises a photovoltaic cell voltage detecting means for detecting a voltage of a photovoltaic cell, and a system for detecting a voltage of a system power supply. A switch provided with voltage detection means for flowing a current from the solar cell to the system via the inductance, and a control means for controlling the switch to flow to the system power supply via the inductance only when the solar cell voltage is higher than the detection of the system power supply The configuration is as follows.

【0005】これによって、太陽電池電圧が系統電源よ
り大きい時のみ、制御手段によりインダクタンスを介し
て系統電源に電流を流す様にスイッチを制御し、昇圧手
段が無くても系統へ電力の注入が可能となる。
[0005] Thus, only when the solar cell voltage is higher than the system power supply, the control means controls the switch so that current flows to the system power supply via the inductance, and power can be injected into the system without the booster means. Becomes

【0006】[0006]

【発明の実施の形態】請求項1に記載の発明は、太陽電
池と、太陽電池の電圧を検知する太陽電池電圧検知手段
と、系統電源の電圧を検知する系統電圧検知手段を設
け、太陽電池からの電流をインダクタンスを介して系統
に流すスイッチと、太陽電池電圧が系統電源検知より大
きい時のみ、インダクタンスを介して系統電源に流す様
にスイッチを制御する制御手段を備えることにより、
太陽電池電圧が系統電源より大きい時のみ、制御手段に
よりインダクタンスを介して系統電源に電流を流す様に
スイッチを制御する事ができ、昇圧手段が無くても系統
電源へ電力の注入がすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is provided with a solar cell, a solar cell voltage detecting means for detecting a voltage of the solar cell, and a system voltage detecting means for detecting a voltage of a system power supply. And a control means for controlling the switch to flow to the system power supply through the inductance only when the solar cell voltage is higher than the system power supply detection,
Only when the solar cell voltage is higher than the system power supply, the switch can be controlled by the control means so that current flows to the system power supply via the inductance, and power can be injected into the system power supply without the boosting means. it can.

【0007】請求項2に記載の発明は、系統電源電圧の
単相3線の各相間に接続することにより、太陽電池から
系統電源への電力供給が、系統電源周期の全期間可能と
することができる。
According to a second aspect of the present invention, the power supply from the solar cells to the system power supply can be performed during the entire system power supply cycle by connecting the system power supply voltage between the single-phase three-wire lines. Can be.

【0008】請求項3に記載の発明は、スイッチ手段の
開閉時間を制御することにより、系統電源に流し込む電
流量を調整することができる。
According to the third aspect of the present invention, the amount of current flowing into the system power supply can be adjusted by controlling the switching time of the switch means.

【0009】請求項4に記載の発明は、請求項3の太陽
光発電インバータに、系統電源電圧の位相を検知する電
源電圧位相検知手段を、設けるていることである。この
電源電圧位相検知手段により、系統電源電圧の位相を検
知し、その位相に応じて、スイッチ時間制御手段により
スイッチの開閉時間を調整して、系統電源へ流す電流波
形を制御することにより、系統電源の電圧に同期した電
流を系統電源に流すことが出来る。
According to a fourth aspect of the present invention, the photovoltaic power generation inverter of the third aspect is provided with a power supply voltage phase detecting means for detecting a phase of a system power supply voltage. By detecting the phase of the system power supply voltage by the power supply voltage phase detecting means and adjusting the switching time of the switch by the switch time control means in accordance with the phase to control the current waveform flowing to the system power supply, A current synchronized with the voltage of the power supply can be supplied to the system power supply.

【0010】請求項5に記載の発明は、請求項3の太陽
光発電インバータに、太陽電池電圧検知手段とスイッチ
手段と電流検知手段と制御手段の構成により、太陽電池
の電圧と太陽電池の電流を常に検知し、最大の電力を取
り出せるように、制御手段でスイッチ手段の開閉時間を
制御し、系統電源へ流し込む電流を制御する事により、
太陽電池の最大点の電力を引き出すことができる。
According to a fifth aspect of the present invention, there is provided a photovoltaic power generation inverter according to the third aspect, wherein the solar cell voltage detection means, the switch means, the current detection means, and the control means are constituted by a solar cell voltage and a solar cell current. By controlling the opening and closing time of the switch means by the control means and controlling the current flowing into the system power supply, so that the maximum power can be taken out by always detecting
The maximum power of the solar cell can be extracted.

【0011】請求項6に記載の発明は、請求項4の太陽
光発電インバータに、停電検知手段とスイッチ手段とス
イッチ時間制御手段と制御手段の構成により、系統電源
が停電したことを検知することができる。
According to a sixth aspect of the present invention, there is provided the photovoltaic power generation inverter according to the fourth aspect of the present invention, wherein a power failure of the system power supply is detected by the configuration of the power failure detection means, the switch means, the switch time control means and the control means. Can be.

【0012】請求項7に記載の発明は、請求項3の太陽
光発電インバータに、太陽電池の電圧が急激に変化した
ことを検知する電圧急変検知手段と、蓄電手段と電力急
変スイッチ手段を有しており、太陽を雲等が遮り、日射
の急変による太陽電池の出力電力の急激な低下を太陽電
池の電圧急変検知手段が検知すると、電力急変スイッチ
手段をオフにする。太陽電池からの電力の供給は切れる
が、蓄電手段に蓄えられた電力により系統電源への電流
の注入は継続して行われ、に日射量の急な変化があって
も系統へ継続して電力供給ができる。
According to a seventh aspect of the present invention, the photovoltaic power generation inverter according to the third aspect has a voltage sudden change detecting means for detecting a sudden change in the voltage of the solar cell, a power storage means and a power sudden change switch means. When the cloud or the like blocks the sun and the sudden change in the output power of the solar cell due to the sudden change in the solar radiation is detected by the sudden change detecting means of the solar cell, the sudden change power switch is turned off. Although the power supply from the solar cell is cut off, the current stored in the power storage means continues to inject the current into the system power supply, and the power continues to be supplied to the system even if there is a sudden change in the amount of solar radiation. Can supply.

【0013】[0013]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)図1は、本発明の第1の実施
例における太陽光発電インバータの構成図を示すもので
ある。図1において、1は太陽電池で、2は太陽電池の
電圧を充電するコンデンサ、3は太陽電池の電圧を検知
する太陽電池電圧検知手段、10は系統電源の電圧を検
知する系統電圧検知手段、8は制御手段で、その入力は
太陽電池電圧検知手段3と系統電圧検知手段10に接続
され、制御手段8の出力は、4のスイッチA、5のスイ
ッチB、6のスイッチC、7のスイッチDの入力に接続
され、スイッチAとスイッチCの一端は太陽電池1の正
に、スイッチ4他端は、9のインダクタの一端に接続さ
れ、インダクタス9の他端は11の系統電源の一端に接
続され、スイッチAとスイッチD及びスイッチCとスイ
ッチBは、それぞれ直列接続されスイッチBとスイッチ
Dの一端は太陽電池1の負側に接続され、スイッチBの
他端は系統電源の一端とスイッチCの一端に接続されて
いる。
(Embodiment 1) FIG. 1 shows a configuration diagram of a photovoltaic power generation inverter according to a first embodiment of the present invention. In FIG. 1, 1 is a solar cell, 2 is a capacitor for charging the voltage of the solar cell, 3 is a solar cell voltage detecting means for detecting the voltage of the solar cell, 10 is a system voltage detecting means for detecting the voltage of the system power supply, Reference numeral 8 denotes a control unit, whose input is connected to the solar cell voltage detection unit 3 and the system voltage detection unit 10, and the output of the control unit 8 is a switch A of 4, a switch B of 5, a switch C of 6, and a switch of 7 One end of switch A and switch C is connected to the positive terminal of solar cell 1, the other end of switch 4 is connected to one end of inductor 9, and the other end of inductor 9 is connected to one end of system power supply 11 And switches A and D and switches C and B are connected in series, respectively, and one end of the switch B and the switch D is connected to the negative side of the solar cell 1, and the other end of the switch B is connected to one end of the system power supply. It is connected to one end of the switch C.

【0015】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。まず、
制御手段8が、系統電源の電圧の正負を認識する。系統
電圧が正の場合はスイッチAとスイッチBを、負電圧の
場合はスイッチCとスイッチDを制御できる様にする。
ついで、太陽電池電圧検知手段3が太陽電池1の電圧
と、系統電圧検知手段10が系統電源11の電圧を検知
する。その制御手段8がその電圧の大小関係を比較す
る。例えば、図2に示す系統電源が正の場合を考える。
制御回路により4のスイッチAと5のスイッチBはON
に、スイッチCとスイッチDはOFFにする。期間t1
とt2のように、太陽電池電圧が系統電圧より大きい場
合、太陽電池の正側からの電流はスイッチA4からイン
ダクタンス9から系統電源11を経由してスイッチBを
経て、太陽電池の負側に帰還され電力が注入される。次
に、図2に示す系統電源が負の場合を考える。制御回路
により4のスイッチAと5のスイッチBはOFFに、ス
イッチCとスイッチDはONにする。期間t3とt4の
ように、太陽電池電圧が系統電圧より大きい場合、太陽
電池の正側からの電流はスイッチCから系統電源11を
経由してインダクタンス9からスイッチDを経て、太陽
電池の負側に帰還され電力が注入される。
The operation and operation of the photovoltaic power inverter configured as described above will be described below. First,
The control means 8 recognizes whether the voltage of the system power supply is positive or negative. When the system voltage is positive, the switches A and B can be controlled, and when the system voltage is negative, the switches C and D can be controlled.
Next, the solar cell voltage detecting means 3 detects the voltage of the solar cell 1 and the system voltage detecting means 10 detects the voltage of the system power supply 11. The control means 8 compares the magnitudes of the voltages. For example, consider the case where the system power supply shown in FIG. 2 is positive.
Switch A of 4 and switch B of 5 are turned on by the control circuit
Then, the switches C and D are turned off. Period t1
When the solar cell voltage is higher than the system voltage, as in the case of t2, the current from the positive side of the solar cell returns from the switch A4 to the negative side of the solar cell via the switch B from the inductance 9 via the system power supply 11 to the switch B. Power is injected. Next, consider the case where the system power supply shown in FIG. 2 is negative. The control circuit turns off the switch A of 4 and the switch B of 5 and turns on the switch C and the switch D. When the solar cell voltage is higher than the system voltage, as in periods t3 and t4, the current from the positive side of the solar cell passes from the switch C via the system power supply 11, the inductance 9 via the switch D, and the negative side of the solar cell. And the power is injected.

【0016】以上のように、本実施例においては、太陽
電池1と、太陽電池の電圧を検知する太陽電池電圧検知
手段3と、系統電源の電圧を検知する系統電圧検知手段
10を設け、太陽電池1からの電流をインダクタンス9
を介して系統電源11に流すスイッチA,B,C,D
と、太陽電池電圧が系統電源検知より大きい時のみ、イ
ンダクタンスを介して系統電源に流す様にスイッチを制
御する制御手段8を備えることにより、太陽電池1の電
圧を昇圧することなく系統電源11に電力を注入するこ
とができる。
As described above, in this embodiment, the solar cell 1, the solar cell voltage detecting means 3 for detecting the voltage of the solar cell, and the system voltage detecting means 10 for detecting the voltage of the system power supply are provided. The current from battery 1 has an inductance of 9
Switches A, B, C, and D flowing to the system power supply 11 through
And a control means 8 for controlling a switch to flow to the system power supply via an inductance only when the solar cell voltage is higher than the system power supply detection, so that the system power supply 11 can be supplied without increasing the voltage of the solar cell 1. Power can be injected.

【0017】(実施例2)図3は、本発明の第2の実施
例の太陽光発電インバータの構成図である。
(Embodiment 2) FIG. 3 is a configuration diagram of a photovoltaic power inverter according to a second embodiment of the present invention.

【0018】図3において、実施例1と同じ番号を付与
した構成部品は同じなので説明を省略する。実施例1の
構成と異なるところは13,14,15,16,17を
設けた点である。系統電源は18である。13はスイッ
チ2で一端は太陽電池の正側に接続され、他端は15の
インダクタンス2の一端に接続され、インダクタンス2
の他端は、17の系統電源の一端に接続されている。1
6は17の系統電源2の電源電圧を検知する系統電圧検
知手段2であり、14はスイッチ2を制御する制御手段
2である。図3において、1は太陽電池で、2は太陽電
池の電圧を充電するコンデンサ、3は太陽電池の電圧を
検知する太陽電池電圧検知手段、16は系統電源2の電
圧を検知する系統電圧検知手段2、14は制御手段2
で、その入力は太陽電池電圧検知手段3と系統電圧検知
手段16に接続され、制御手段14の出力は、スイッチ
2の入力に接続されている。
In FIG. 3, the same reference numerals as in the first embodiment denote the same parts, and a description thereof will be omitted. The difference from the configuration of the first embodiment is that 13, 14, 15, 16, and 17 are provided. The system power supply is 18. A switch 2 has one end connected to the positive side of the solar cell, the other end connected to one end of the inductance 2, and an inductance 2.
Is connected to one end of 17 system power supplies. 1
Reference numeral 6 denotes a system voltage detecting means 2 for detecting the power supply voltage of the 17 system power supply 2, and 14 denotes a control means 2 for controlling the switch 2. In FIG. 3, 1 is a solar cell, 2 is a capacitor for charging the voltage of the solar cell, 3 is a solar cell voltage detecting means for detecting the voltage of the solar cell, and 16 is a system voltage detecting means for detecting the voltage of the system power supply 2. 2 and 14 are control means 2
The input is connected to the solar cell voltage detecting means 3 and the system voltage detecting means 16, and the output of the control means 14 is connected to the input of the switch 2.

【0019】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。まず、
制御手段16が、系統電源の電圧の正負を認識する。系
統電圧が正負の場合に応じて、実施例1で述べたと同様
に、太陽電池の正側からの電流は13のスイッチ2から
15のインダクタンス15から17の系統電源2を経由
して、太陽電池の負側に帰還され電力が注入される。系
統電源11と18が異なるだけで、他は実施例1と同じ
なので省略する。
The operation and operation of the photovoltaic power inverter constructed as described above will be described below. First,
The control means 16 recognizes whether the voltage of the system power supply is positive or negative. According to the case where the system voltage is positive or negative, as described in the first embodiment, the current from the positive side of the solar cell passes through the system power supply 2 of the inductances 15 to 17 of the 13 switches 2 to 15 and the solar cell. Is fed back to the negative side of and power is injected. Only the system power supplies 11 and 18 are different, and the other parts are the same as those in the first embodiment, and a description thereof is omitted.

【0020】さて、実施例1と異なるのは、17の系統
電源と18の系統電源2は、単相3線の2つの交流10
0Vの電源であり、実施例1の系統電圧11は単相3線
の交流200V間の電源である点である。
The difference from the first embodiment is that the 17 system power supply and the 18 system power supply 2 are two single-phase three-wire ACs.
This is a power supply of 0 V, and the system voltage 11 of the first embodiment is a power supply between a single-phase three-wire AC of 200 V.

【0021】実施例1では、単相3線の交流200Vで
ある系統電圧11の最大値は282Vである。
In the first embodiment, the maximum value of the system voltage 11, which is a single-phase three-wire AC 200V, is 282V.

【0022】実施例2の単相3線の交流100Vである
系統電圧17と18の最大値は141Vである。ところ
で、太陽電池の電圧は、通常210Vの電圧である。
The maximum value of the system voltages 17 and 18 of the second embodiment, which is a single-phase three-wire AC of 100 V, is 141 V. Incidentally, the voltage of the solar cell is usually 210 V.

【0023】つまり、実施例2の状況では、交流100
Vである系統電圧17と18の最大値は141Vなの
で、図4に示すように系統電源電圧ロは常に太陽電池電
圧イより低い事になる。
That is, in the situation of the second embodiment, the AC 100
Since the maximum value of the system voltages 17 and 18 of 141 V is 141 V, the system power supply voltage B is always lower than the solar cell voltage A as shown in FIG.

【0024】実施例1の様に系統電源周期に応じてスイ
ッチ12やスイッチ13をON、OFFさせる必要がな
く、太陽電池の電力を系統電源の全周期の間供給でき
る。
As in the first embodiment, there is no need to turn on and off the switches 12 and 13 in accordance with the system power supply cycle, and the power of the solar cell can be supplied during the entire system power supply cycle.

【0025】以上のように、本実施例においては、系統
電源電圧の単相3線の各相間に、請求項1に記載の太陽
光発電インバータを接続することにより、系統電源の電
圧が低下するので、系統電源の周期に応じてスイッチを
ON、OFFする必要が無く、太陽電池の電力を系統電
源の全周期の間供給できる。
As described above, in the present embodiment, the voltage of the system power supply is reduced by connecting the photovoltaic power generation inverter according to claim 1 between the single-phase three-wire phases of the system power supply voltage. Therefore, there is no need to turn the switches ON and OFF according to the cycle of the system power supply, and the power of the solar cell can be supplied during the entire cycle of the system power supply.

【0026】(実施例3)図5において、実施例2と同
じ番号を付与した構成部品は同じなので説明を省略す
る。実施例2の構成と異なるところは18のスイッチ時
間制御手段を設けた点である。18のスイッチ時間制御
手段は制御手段8の中にあり、スイッチ12の開閉時間
を制御する。
(Embodiment 3) In FIG. 5, the same reference numerals as those in Embodiment 2 denote the same components, and a description thereof will be omitted. The difference from the configuration of the second embodiment is that 18 switch time control means are provided. The switch time control means 18 is included in the control means 8 and controls the open / close time of the switch 12.

【0027】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。まず、
図6に示すように制御回路8の中のスイッチ時間制御手
段18により、12のスイッチがONすると、図4に示
すように太陽電池電圧イが系統電源電圧ロより大きいの
で、インダクタス9を太陽電池から系統電源に電流が流
れ込む。この点を更に、詳しく図6と図7をもとに説明
する。図6の様に期間t1とt2の間、スイッチ12を
ONにする。すると図7に示すように電流I1からI2に変
化する。その次に、図6の様にスッチ12をオフにす
る。電流はI2から減少し、t3の時点でI3まで減少する。
つまり、スイッチ時間制御手段18によりスイッチをオ
ンさせることによりインダクタンスの電流を増加させ、
スイッチをオフさせると電流を減少させることができ、
さらに、この時間を制御することにより電流量を制御す
ることができる。
The operation and operation of the photovoltaic power inverter configured as described above will be described below. First,
When the switch 12 is turned on by the switch time control means 18 in the control circuit 8 as shown in FIG. 6, the solar cell voltage A is higher than the system power supply voltage B as shown in FIG. Current flows from the battery to the system power supply. This point will be further described in detail with reference to FIGS. As shown in FIG. 6, the switch 12 is turned on between the periods t1 and t2. Then, as shown in FIG. 7, the current changes from I1 to I2. Then, the switch 12 is turned off as shown in FIG. The current decreases from I2 and decreases to I3 at time t3.
That is, by turning on the switch by the switch time control means 18, the current of the inductance is increased,
Turning off the switch can reduce the current,
Further, the amount of current can be controlled by controlling this time.

【0028】(実施例4)図8は、本発明の第4の実施
例の太陽光発電インバータの構成図である。
(Embodiment 4) FIG. 8 is a configuration diagram of a photovoltaic power inverter according to a fourth embodiment of the present invention.

【0029】図8において、実施例3と同じ番号を付与
した構成部品は同じなので説明を省略する。実施例3の
構成と異なるところは19の系統電源位相検知手段を設
けた点である。図8において、19の系統電源位相検知
手段は系統電源間に接続され、その出力は8制御手段に
入力されている。
In FIG. 8, the same reference numerals as in the third embodiment denote the same parts, and a description thereof will be omitted. The difference from the configuration of the third embodiment is that 19 system power phase detection units are provided. In FIG. 8, 19 system power supply phase detecting means are connected between the system power supplies, and the output is input to 8 control means.

【0030】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。まず、
図8の19の系統電源位相検知手段が、11の系統電源の電
圧位相を検知する。その出力は8の制御手段に伝えら
れ、制御手段8は、系統電源の位相に同期して、18のス
イッチ時間制御手段で 12のスイッチのオンオフの時間
を制御する。12のスイッチのオンオフ時間を制御するこ
とにより、9のインダクタンスに流し込む電流の量を制
御することができる。
The operation and operation of the photovoltaic power inverter constructed as described above will be described below. First,
The system power supply phase detecting means 19 in FIG. 8 detects the voltage phase of the 11 system power supplies. The output is transmitted to the control means 8, and the control means 8 controls the on / off time of the switches 12 by the switch time control means 18 in synchronization with the phase of the system power supply. By controlling the on / off time of the twelve switches, the amount of current flowing into the inductance of nine can be controlled.

【0031】つまり、系統電源の位相に応じて、スイッ
チの開閉時間を制御することにより系統に流し込む電流
量を自由に制御できる。
That is, the amount of current flowing into the system can be freely controlled by controlling the opening and closing time of the switch according to the phase of the system power supply.

【0032】たとえば、スイッチ時間制御手段18によ
り、系統に流し込む電流を、系統電源電圧と同じ位相の
正弦波にすることもできる。
For example, the switch time control means 18 allows the current flowing into the system to be a sine wave having the same phase as the system power supply voltage.

【0033】(実施例5)図9は、本発明の第5の実施
例の太陽光発電インバータの構成図である。
(Embodiment 5) FIG. 9 is a configuration diagram of a photovoltaic power inverter according to a fifth embodiment of the present invention.

【0034】図9において、実施例4の図8と同じ番号
を付与した構成部品は同じなので説明を省略する。実施
例4の構成と異なるところは20の電流検知手段を設け
た点である。電流検知手段20の一端は、1は太陽電池
の正側に接続され、他端は12のスイッチ手段の一端に
接続されている。電流検知手段20の出力は8の制御手
段に入力されている。
In FIG. 9, the same reference numerals as in FIG. 8 of the fourth embodiment denote the same components, and a description thereof will be omitted. The difference from the configuration of the fourth embodiment is that 20 current detection units are provided. One end of the current detecting means 20 is connected to the positive side of the solar cell, and the other end is connected to one end of 12 switch means. The output of the current detection means 20 is input to the control means 8.

【0035】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。まず、
制御手段8が、スイッチ手段12をオフにする。太陽電
池電圧検知手段3で太陽電池1の電圧を測定し、制御手
段内に記憶する。制御手段8はスイッチ手段12を短時
間オンし電流を流す。その時の太陽電池の電圧を太陽電
池電圧検知手段で検知し記憶する。前回記憶した電圧と
比較し、電圧が低下していれば、オフのままにする。太
陽電池電圧が低下しないか、大きくなっていれば制御手
段8はスイッチ手段12をさらに長時間オンし電流を流
す。そしてまた、太陽電池電圧検知手段3で太陽電池1
の電圧を測定し、上記動作を繰り返す。
The operation and operation of the photovoltaic power inverter configured as described above will be described below. First,
The control means 8 turns off the switch means 12. The voltage of the solar cell 1 is measured by the solar cell voltage detecting means 3 and stored in the control means. The control means 8 turns on the switch means 12 for a short time to flow a current. The voltage of the solar cell at that time is detected and stored by the solar cell voltage detecting means. If the voltage is lower than the previously stored voltage, it is kept off. If the solar cell voltage does not decrease or increases, the control means 8 turns on the switch means 12 for a longer period of time to flow a current. Further, the solar cell 1 is detected by the solar cell voltage detecting means 3.
Is measured, and the above operation is repeated.

【0036】このように電圧が変化しなければ、電流を
大きくしていくので、太陽電池から徐々に大きな電力を
引き出していることになり、最大電力に到達すると、そ
れ以上の電流を流すのを停止し、常に最大電力を引き出
すようにしている。
If the voltage does not change in this manner, the current is increased, so that a large amount of electric power is gradually drawn from the solar cell. When the maximum electric power is reached, the flow of more electric current is prevented. It stops and always draws the maximum power.

【0037】以上のように、本実施例においては、太陽
電池の電圧と電流を常に計測し、最大の電力を引き出す
ことが出来る。
As described above, in this embodiment, the maximum power can be extracted by constantly measuring the voltage and the current of the solar cell.

【0038】(実施例6)図10は、本発明の第6の実
施例の太陽光発電インバータの構成図である。
(Embodiment 6) FIG. 10 is a configuration diagram of a photovoltaic power inverter according to a sixth embodiment of the present invention.

【0039】図10において、実施例4の図5と同じ番
号を付与した構成部品は同じなので説明を省略する。実
施例4の構成と異なるところは21の停電検知手段を設
けた点である。停電検知手段21の入力は、系統電源電
圧検知手段10に接続され、停電検知手段21の出力は
スイッチ時間制御手段18に接続されている。
In FIG. 10, the same reference numerals as in FIG. 5 of the fourth embodiment denote the same components, and a description thereof will be omitted. The difference from the configuration of the fourth embodiment is that 21 power failure detection means are provided. The input of the power failure detection means 21 is connected to the system power supply voltage detection means 10, and the output of the power failure detection means 21 is connected to the switch time control means 18.

【0040】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。まず、
実施例4では、系統電源の電圧の位相に同期した電流を
系統に注入している。その電流を停電検知手段21によ
り、スイッチ時間制御手段18によりスイッチ手段12
を制御して、図11に示すように系統電源電圧の位相の
特定の期間t5から電流波形を変える。つまり系統へは図
11の電流波形で系統電源に注入されている。
The operation and operation of the photovoltaic power inverter configured as described above will be described below. First,
In the fourth embodiment, a current synchronized with the phase of the voltage of the system power supply is injected into the system. The current is detected by the power failure detection means 21 and the switch time control means 18 by the switch means 12.
To change the current waveform from a specific period t5 of the phase of the system power supply voltage as shown in FIG. That is, the current is injected into the system with the current waveform shown in FIG.

【0041】この状態で系統電源11が停電すると、系
統電源電圧がなくなる。しかし、太陽光発電システムか
ら図11の電流が流れこむ。系統電源11に抵抗負荷が
接続されていると、この電流波形と同じ電圧が系統に発
生する。すると、停電検知手段21は、太陽光発電シス
テムから系統に注入した電流波形と同じ電圧波形が発生
したことを検知し停電したと判断して、スイッチ手段1
2をオフさせる。
In this state, if the system power supply 11 fails, the system power supply voltage is lost. However, the current of FIG. 11 flows from the solar power generation system. If a resistive load is connected to the system power supply 11, the same voltage as the current waveform is generated in the system. Then, the power failure detection means 21 detects that the same voltage waveform as the current waveform injected from the photovoltaic power generation system into the power system has been generated, and determines that the power failure has occurred.
Turn 2 off.

【0042】以上のように、本実施例においては、停電
検知手段21により、系統電源11が停電したことを検
知し、発電を停止することができる。
As described above, in the present embodiment, the power failure detecting means 21 can detect that the system power supply 11 has lost power and stop power generation.

【0043】(実施例7)図12は、本発明の第7の実
施例の太陽光発電インバータの構成図である。
(Embodiment 7) FIG. 12 is a configuration diagram of a photovoltaic power inverter according to a seventh embodiment of the present invention.

【0044】図12において、実施例3の図5と同じ番
号を付与した構成部品は同じなので説明を省略する。実
施例3の構成と異なるところは、22の蓄電手段である
コンデンサと、23の電圧急変検知手段と、24の電力
急変スイッチ手段を設けた点である。電圧急変検知手段
23は太陽電池の両端に接続され、電力急変スイッチ手
段24の一端は太陽電池の正側に、他端はスイッチ手段
12の一端に接続されている。中間コンデンサ22はス
イッチ手段12の一端に、中間コンデンサ22の他端は
太陽電池の負側に接続されている。太陽電池電圧検知手
段3は中間コンデンサ22の両端に接続されている。
In FIG. 12, the same reference numerals as in FIG. 5 of the third embodiment denote the same parts, and a description thereof will be omitted. The difference from the configuration of the third embodiment is that a capacitor 22 serving as a power storage unit, a sudden change detection unit 23 is provided, and a sudden change switch unit 24 is provided. The sudden voltage change detecting means 23 is connected to both ends of the solar cell. One end of the sudden power change switch means 24 is connected to the positive side of the solar cell, and the other end is connected to one end of the switch means 12. The intermediate capacitor 22 is connected to one end of the switch means 12, and the other end of the intermediate capacitor 22 is connected to the negative side of the solar cell. The solar cell voltage detecting means 3 is connected to both ends of the intermediate capacitor 22.

【0045】以上のように構成された太陽光発電インバ
ータについて、以下その動作、作用を説明する。太陽を
雲等が遮り、日射の急変による太陽電池2の出力電圧の
急激な低下を太陽電池の電圧急変検知手段23が検知す
ると、電力急変スイッチ手段24をオフにする。太陽電
池2からの電力の供給は切れるが、蓄電手段22のコン
デンサに蓄えられた電力により系統電源11への電流の
注入は継続して行われ、日射量の急な変化があっても系
統へ継続して電力供給ができる。 以上のように、本実
施例においては、電圧急変検知手段23により、太陽電
池1の電圧が急激に変化したことを検知し、電力急変ス
イッチ手段24により電力供給を停止し、代わりに蓄電
手段22で系統への電力供給を継続する。
The operation and operation of the photovoltaic power inverter constructed as described above will be described below. When a cloud or the like interrupts the sun and the sudden change in the output voltage of the solar cell 2 due to a sudden change in the solar radiation is detected by the sudden change detecting means 23 of the solar cell, the sudden change power switch 24 is turned off. Although the supply of power from the solar cell 2 is cut off, current is continuously injected into the system power supply 11 by the power stored in the capacitor of the power storage means 22, and even if there is a sudden change in the amount of solar radiation, the system can be supplied to the system. Power can be supplied continuously. As described above, in the present embodiment, the sudden change in the voltage of the solar cell 1 is detected by the sudden change detecting unit 23, the power supply is stopped by the sudden change switch unit 24, and the electric storage unit 22 is replaced. To continue power supply to the grid.

【0046】また、太陽の日射量が増え太陽電池1の電
圧が所定の値に復帰すれば、電圧急変検知手段23は電
力急変スイッチ手段24をオンして、実施例3の動作に
て系統に電流を注入する。
Further, when the amount of solar radiation increases and the voltage of the solar cell 1 returns to a predetermined value, the sudden voltage change detecting means 23 turns on the sudden electric power change switch means 24, and the voltage of the solar cell 1 is changed to the system by the operation of the third embodiment. Inject current.

【0047】[0047]

【発明の効果】以上のように、請求項1に記載の発明に
よれば、太陽電池1の電圧を昇圧することなく系統電源
11に電力を注入することができる。
As described above, according to the first aspect of the present invention, power can be injected into the system power supply 11 without increasing the voltage of the solar cell 1.

【0048】また、請求項2に記載の発明によれば、太
陽電池の電力を系統電源の全周期の間供給できる。
According to the second aspect of the present invention, the power of the solar cell can be supplied during the entire period of the system power supply.

【0049】また、請求項3に記載の発明によれば、太
陽電池の発電電力から、系統電源に電流を調整して流し
込める。
According to the third aspect of the present invention, the electric power can be adjusted and supplied from the power generated by the solar cell to the system power supply.

【0050】また、請求項4に記載の発明によれば、ス
イッチ時間制御手段により、系統に流し込む電流を、系
統電源電圧と同じ位相の正弦波にすることもできる。
According to the fourth aspect of the present invention, the current flowing into the system can be a sine wave having the same phase as the system power supply voltage by the switch time control means.

【0051】また、請求項5に記載の発明によれば、太
陽電池の電圧と電流を常に計測し、最大の電力を引き出
すことが出来る。
According to the fifth aspect of the present invention, it is possible to always measure the voltage and the current of the solar cell and to extract the maximum power.

【0052】また、請求項6に記載の発明によれば、停
電検知手段により、系統電源が停電したことを検知し、
発電を停止することができる。
In addition, according to the invention as set forth in claim 6, the power failure detecting means detects that the system power supply has failed,
Power generation can be stopped.

【0053】また、請求項7に記載の発明によれば、太
陽を雲等が遮り、日射の急変による太陽電池の出力電圧
の急激な低下を太陽電池の電圧急変検知手段が検知し、
電力急変スイッチ手段により太陽電池からの電力供給の
代わりに蓄電手段により電力供給を行い、日射の急変に
よっても安定した系統へ電力を供給できる。
According to the seventh aspect of the present invention, a sudden drop in the output voltage of the solar cell caused by a sudden change in solar radiation is detected by a sudden change in the voltage of the solar cell.
Power supply is performed by the power storage means instead of the power supply from the solar cell by the power sudden change switch means, and power can be supplied to a stable system even by sudden change of solar radiation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における太陽光発電インバー
タの構成図
FIG. 1 is a configuration diagram of a photovoltaic power generation inverter according to a first embodiment of the present invention.

【図2】同、太陽光発電インバータの動作波形図FIG. 2 is an operation waveform diagram of the photovoltaic power generation inverter.

【図3】本発明の実施例2における太陽光発電インバー
タの構成図
FIG. 3 is a configuration diagram of a photovoltaic power generation inverter according to a second embodiment of the present invention.

【図4】同、太陽光発電インバータの動作波形図FIG. 4 is an operation waveform diagram of the photovoltaic power inverter.

【図5】本発明の実施例3における太陽光発電インバー
タの構成図
FIG. 5 is a configuration diagram of a photovoltaic power generation inverter according to a third embodiment of the present invention.

【図6】同、太陽光発電インバータの制御波形図FIG. 6 is a control waveform diagram of the photovoltaic power generation inverter.

【図7】同、太陽光発電インバータのコイル電流の状態
波形図
FIG. 7 is a state waveform diagram of the coil current of the photovoltaic power inverter.

【図8】本発明の実施例4における太陽光発電インバー
タの構成図
FIG. 8 is a configuration diagram of a photovoltaic power generation inverter according to a fourth embodiment of the present invention.

【図9】本発明の実施例5における太陽光発電インバー
タの構成図
FIG. 9 is a configuration diagram of a photovoltaic power inverter according to a fifth embodiment of the present invention.

【図10】本発明の実施例6における太陽光発電インバ
ータの構成図
FIG. 10 is a configuration diagram of a photovoltaic power generation inverter according to a sixth embodiment of the present invention.

【図11】同、太陽光発電インバータの動作波形図FIG. 11 is an operation waveform diagram of the photovoltaic power inverter.

【図12】本発明の実施例7における太陽光発電インバ
ータの構成図
FIG. 12 is a configuration diagram of a photovoltaic power inverter according to a seventh embodiment of the present invention.

【図13】従来のインバータの構成図FIG. 13 is a configuration diagram of a conventional inverter.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 コンデンサ 3 太陽電池電圧検知手段 4 スイッチA 5 スイッチB 6 スイッチC 7 スイッチD 8 制御手段 9 インダクタンス 10 系統電圧検知手段 11 系統電源 12 スイッチ手段 DESCRIPTION OF SYMBOLS 1 Solar cell 2 Capacitor 3 Solar cell voltage detection means 4 Switch A 5 Switch B 6 Switch C 7 Switch D 8 Control means 9 Inductance 10 System voltage detection means 11 System power supply 12 Switch means

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池と、太陽電池の電圧を検知する
太陽電池電圧検知手段と、太陽電池から系統連系電源に
電流を流し込むインダクタンスと、系統電源の電圧を検
知する系統電圧検知手段と、太陽電池からの電流をイン
ダクタンスを介して系統に流すスイッチと、太陽電池電
圧が系統電源検知より大きい時のみ、インダクタンスを
介して系統電源に流す様にスイッチを制御する制御手段
を備えてなる太陽光発電インバータ。
1. A solar cell, a solar cell voltage detecting means for detecting a voltage of the solar cell, an inductance for flowing a current from the solar cell to a system interconnection power supply, and a system voltage detecting means for detecting a voltage of the system power supply. A solar light comprising a switch for flowing a current from a solar cell to a system via an inductance and a control means for controlling the switch to flow to a system power via the inductance only when the solar cell voltage is higher than the system power supply detection. Power generation inverter.
【請求項2】 系統電源電圧の単相3線の1つの相間
と、他の相間に接続してなる請求項1記載の太陽光発電
インバータ。
2. The photovoltaic power generation inverter according to claim 1, wherein the photovoltaic power generation inverter is connected between one phase of the single-phase three-wire system voltage and another phase.
【請求項3】 スイッチ手段に、開閉時間を制御するス
イッチ開閉時間制御手段を設けて、系統電源に流し込む
電流量を調整してなる請求項1記載の太陽光発電インバ
ータ。
3. The photovoltaic power generation inverter according to claim 1, wherein the switch means is provided with a switch opening / closing time control means for controlling the opening / closing time to adjust the amount of current flowing into the system power supply.
【請求項4】 系統電源電圧の位相を検知する電源電圧
位相検知手段を設けてなる請求項3記載の太陽光発電イ
ンバータ。
4. The photovoltaic power generation inverter according to claim 3, further comprising a power supply voltage phase detecting means for detecting a phase of a system power supply voltage.
【請求項5】 電流検知手段を設けてなる請求項3記載
の太陽光発電インバータ。
5. The photovoltaic power generation inverter according to claim 3, further comprising current detection means.
【請求項6】 電源の停電を検知する停電検知手段を有
してなる請求項4記載の太陽光発電インバータ。
6. The photovoltaic power generation inverter according to claim 4, further comprising a power failure detection means for detecting a power failure of the power supply.
【請求項7】 太陽電池の電圧が急激に変化したことを
検知する電圧急変検知手段と、蓄電手段を有してなる請
求項3記載の太陽光発電インバータ。
7. The photovoltaic power generation inverter according to claim 3, further comprising a sudden voltage change detecting means for detecting a sudden change in the voltage of the solar cell, and a power storage means.
JP2001142784A 2001-05-14 2001-05-14 Photovoltaic power generating inverter Pending JP2002345155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142784A JP2002345155A (en) 2001-05-14 2001-05-14 Photovoltaic power generating inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142784A JP2002345155A (en) 2001-05-14 2001-05-14 Photovoltaic power generating inverter

Publications (1)

Publication Number Publication Date
JP2002345155A true JP2002345155A (en) 2002-11-29

Family

ID=18989021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142784A Pending JP2002345155A (en) 2001-05-14 2001-05-14 Photovoltaic power generating inverter

Country Status (1)

Country Link
JP (1) JP2002345155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128217A1 (en) * 2008-04-15 2009-10-22 パナソニック株式会社 Switching power supply apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194514A (en) * 1985-02-25 1986-08-28 Toshiba Corp Control method for sunbeam power generator
JPH06245388A (en) * 1993-02-12 1994-09-02 Toshiba F Ee Syst Eng Kk Reverse charge protecting device for system linkage inverter
JPH08308104A (en) * 1995-05-11 1996-11-22 Hitachi Ltd Decentralized power supply system and its controlling method
JPH0954623A (en) * 1995-08-11 1997-02-25 Sharp Corp Linkage type power converting device
JPH10229679A (en) * 1997-02-18 1998-08-25 Mitsubishi Electric Corp Inverter device linked to system
JPH1189097A (en) * 1997-09-02 1999-03-30 Matsushita Electric Ind Co Ltd Inverter device
JP2000324852A (en) * 1999-05-14 2000-11-24 Sanyo Electric Co Ltd Current type inverter for photovoltaic power generation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194514A (en) * 1985-02-25 1986-08-28 Toshiba Corp Control method for sunbeam power generator
JPH06245388A (en) * 1993-02-12 1994-09-02 Toshiba F Ee Syst Eng Kk Reverse charge protecting device for system linkage inverter
JPH08308104A (en) * 1995-05-11 1996-11-22 Hitachi Ltd Decentralized power supply system and its controlling method
JPH0954623A (en) * 1995-08-11 1997-02-25 Sharp Corp Linkage type power converting device
JPH10229679A (en) * 1997-02-18 1998-08-25 Mitsubishi Electric Corp Inverter device linked to system
JPH1189097A (en) * 1997-09-02 1999-03-30 Matsushita Electric Ind Co Ltd Inverter device
JP2000324852A (en) * 1999-05-14 2000-11-24 Sanyo Electric Co Ltd Current type inverter for photovoltaic power generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128217A1 (en) * 2008-04-15 2009-10-22 パナソニック株式会社 Switching power supply apparatus
JP2009261073A (en) * 2008-04-15 2009-11-05 Panasonic Corp Switching power supply apparatus
US8456879B2 (en) 2008-04-15 2013-06-04 Panasonic Corporation Switching power supply apparatus

Similar Documents

Publication Publication Date Title
US9362781B2 (en) Uninterruptible power supply system with fast transfer for undervoltage source line failures
Gules et al. A maximum power point tracking system with parallel connection for PV stand-alone applications
US8106535B2 (en) Power conditioner
JP6190059B2 (en) Uninterruptible power system
US9350265B2 (en) AC tied inverter, system and method
EP2664053B1 (en) Method and apparatus for providing uninterruptible power
AU2020227736B2 (en) Power converters and methods of controlling same
WO2015198448A1 (en) Uninterruptible power supply
JP2009142013A (en) Power supply system
CN116565980B (en) Inverter system with reactive support and control method thereof
Chandran et al. Solar PV based retrofit solution for cell phone towers powered by diesel generators
JP5895143B2 (en) Power storage device
US10418819B2 (en) Control method for power control system, power control system, and power control apparatus
JP3480322B2 (en) Distributed power supply
JP2002345155A (en) Photovoltaic power generating inverter
JP5813028B2 (en) Distributed power supply
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
WO2014169089A1 (en) Method and apparatus for improving pv module fill factor using a voltage clamping circuit
JP2015108932A (en) Solar battery power distribution circuit
Chandrasekhar et al. Identification of the Optimal Converter Topology for Solar Water Pumping Application
US11916511B1 (en) Solar-battery integrated DC system
JP7303721B2 (en) Power storage device and power storage system
JPH1141817A (en) System linkage inverter
US20230009022A1 (en) Energy storage device and method thereof for supplying power
JPH11215738A (en) Uninterruptible power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608