JP2002344811A - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2002344811A
JP2002344811A JP2001143461A JP2001143461A JP2002344811A JP 2002344811 A JP2002344811 A JP 2002344811A JP 2001143461 A JP2001143461 A JP 2001143461A JP 2001143461 A JP2001143461 A JP 2001143461A JP 2002344811 A JP2002344811 A JP 2002344811A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
pixel
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001143461A
Other languages
Japanese (ja)
Inventor
Kazuaki Kojima
一哲 小島
Hiroshi Ishii
広 石井
Noriyuki Fujimori
紀幸 藤森
Tsutomu Nakamura
力 中村
Tsutomu Hirai
力 平井
Takemichi Honda
武道 本多
Hironobu Ichimura
博信 一村
Takahiko Mitani
貴彦 三谷
Jun Hiroya
純 広谷
Koichi Yoshimitsu
浩一 吉満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001143461A priority Critical patent/JP2002344811A/en
Publication of JP2002344811A publication Critical patent/JP2002344811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state imaging device excellent in observation property, by which an image adjusted to be light is displayed over a whole monitor area by adjusting the signal output of each surface element in response to the amount of light made incident to the solid-state imaging device. SOLUTION: In an electric charge amplifier 29, an amplification rate is changed to be concentric from the center of the effective pixel area. The amplification rate is set to be double in the case of a pixel with a half of the light when the light amount to the center pixel of the effective pixel area is made to be 1 and also when the amplification rate is adopted as the onefold rate, for example, that is, the rate is set to be nearly equal as the signal output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、対物レンズを通し
て結像される固体撮像素子において、特に一画素毎に信
号出力を調整する部分に特徴のある固体撮像素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device which forms an image through an objective lens, and more particularly to a solid-state image pickup device characterized in that a signal output is adjusted for each pixel.

【0002】[0002]

【従来の技術】固体撮像素子を使用した電子内視鏡で
は、被写体像を対物レンズによって固体撮像素子の撮像
面に結像させて得られる電気信号を、内視鏡外部に設置
した画像処理装置に信号ケープルを介して伝送し、画像
信号に変換してモニタに画像を表示して観察を行ってい
る。
2. Description of the Related Art In an electronic endoscope using a solid-state imaging device, an image processing apparatus in which an electric signal obtained by forming a subject image on an imaging surface of the solid-state imaging device by an objective lens is installed outside the endoscope. The image is transmitted via a signal cable, converted to an image signal, and an image is displayed on a monitor for observation.

【0003】内視鏡の挿入部先端は硬性化されており固
体撮像素子や対物レンズが埋め込まれている。この硬性
部は、患者の苦痛を和らげるためにできるだけ細径化、
短小化されることが望ましい。
[0003] The distal end of the insertion portion of the endoscope is hardened, and a solid-state image sensor and an objective lens are embedded therein. This rigid part is made as thin as possible to ease the pain of the patient,
It is desirable to be shortened.

【0004】硬性部の細径化、短小化を図るためには、
対物レンズの外径を細くし、短小化するためにレンズ枚
数を制約したりすることが必要不可欠である。
In order to reduce the diameter and length of the hard part,
It is indispensable to restrict the number of lenses in order to make the outer diameter of the objective lens thinner and shorter.

【0005】しかし、最近では、さらに深い被写界深度
・広視野角等の要求もあり、対物レンズから固体撮像素
子の撮像面に入射する光量は少なくなる一方である。ま
た、対物レンズを使用する結像系では、固体撮像素子の
撮像面に結像させようとすると、その撮像面に入射する
光量は、光軸中心に対し周辺にいくほど少なくなり、中
心と周辺の光量差が生じてしまう。
However, recently, there is a demand for a deeper depth of field, a wide viewing angle, and the like, and the amount of light incident on the imaging surface of the solid-state imaging device from the objective lens is decreasing. In an imaging system using an objective lens, when an image is formed on an imaging surface of a solid-state imaging device, the amount of light incident on the imaging surface becomes smaller toward the periphery with respect to the center of the optical axis. Will result in a light amount difference.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の電子内視鏡に用いられる固体撮像素子では、各画素
の感度がほぼ均一になるように設計されているため、モ
ニタに表示された画像は、中心に対して周辺にいくほど
暗くなってしまい、周辺の情報が損なわれていた。
However, in the solid-state imaging device used in the above-mentioned conventional electronic endoscope, since the sensitivity of each pixel is designed to be substantially uniform, the image displayed on the monitor cannot be obtained. However, as the distance from the center to the periphery became darker, information on the periphery was damaged.

【0007】本発明は、上記事情に鑑みてなされたもの
であり、固体撮像素子に入射する光量に応じて各画角の
信号出力を調整することにより、モニタ全域に渡り明る
く調整された画像を表示することができる観察性の優れ
た固体撮像素子を提供することを目的としている。
The present invention has been made in view of the above circumstances, and adjusts the signal output of each angle of view in accordance with the amount of light incident on a solid-state imaging device, so that a bright image can be adjusted over the entire monitor area. It is an object of the present invention to provide a solid-state imaging device capable of displaying images and having excellent observability.

【0008】[0008]

【課題を解決するための手段】本発明の固体撮像素子
は、1画素毎に駆動可能な固体撮像素子であって、前記
固体撮像素子の任意の画素を指定して信号出力を読み出
すことが可能な信号読み出し手段と、配光分布に応じて
1画素毎または複数の画素からなる画素エリア毎に前記
信号出力の調整が可能な出力調整手段とを備えて構成さ
れる。
The solid-state imaging device of the present invention is a solid-state imaging device that can be driven for each pixel, and can read out a signal output by designating an arbitrary pixel of the solid-state imaging device. Signal readout means and output adjustment means capable of adjusting the signal output for each pixel or for each pixel area composed of a plurality of pixels according to the light distribution.

【0009】[0009]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態について述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1ないし図3は本発明の第1の実施の形
態に係わり、図1は撮像装置としての電子内視鏡の構成
を示す構成図、図2は図1の電子内視鏡に用いられる固
体撮像素子のレイアウト図、図3は図2の固体撮像素子
内の回路構成を示すブロック図である。
FIGS. 1 to 3 relate to a first embodiment of the present invention. FIG. 1 is a block diagram showing a configuration of an electronic endoscope as an image pickup apparatus. FIG. FIG. 3 is a layout diagram of a solid-state imaging device used, and FIG. 3 is a block diagram showing a circuit configuration in the solid-state imaging device of FIG.

【0011】図1に示すように、本実施の形態の撮像装
置としての電子内視鏡1は、体腔内等に挿入可能な細長
い挿入部2を有しており、先端側から硬性の先端部3、
湾曲可能な湾曲部4、可撓性を有する可撓管部5が設け
られている。
As shown in FIG. 1, an electronic endoscope 1 as an imaging apparatus according to the present embodiment has an elongated insertion portion 2 that can be inserted into a body cavity or the like. 3,
A bending portion 4 that can be bent and a flexible tube portion 5 having flexibility are provided.

【0012】挿入部2の後端側には、把持部を兼ねた操
作部6が連設されており、操作部6の側方より信号ケー
ブル、ライトガイドファイバ等を内設したユニバーサル
コード7が延出している。ユニバーサルコード7は端部
に設けられたコネクタ8を介してカメラ・コントロール
・ユニット(以下、CCUと記す)9が接続されるよう
になっている。
At the rear end side of the insertion section 2, an operation section 6 also serving as a grip section is continuously provided, and a universal cord 7 internally provided with a signal cable, a light guide fiber and the like from the side of the operation section 6 is provided. Is extended. The universal cord 7 is connected to a camera control unit (hereinafter, referred to as CCU) 9 via a connector 8 provided at an end.

【0013】なお、CCU9は、図示はしないが、前記
電子内視鏡1に照明光を供給する光源装置を内蔵してお
り、この照明光は、ユニバーサルコード7及び挿入部2
内を挿通する図示しないライトガイドファイバ束により
先端部3に伝送され、被写体に照射されるようになって
いる。
Although not shown, the CCU 9 has a built-in light source device for supplying illumination light to the electronic endoscope 1, and the illumination light is supplied to the universal cord 7 and the insertion section 2.
The light is transmitted to the distal end portion 3 by a light guide fiber bundle (not shown) penetrating the inside, and is irradiated onto the subject.

【0014】そして、このCCU9は、信号ケーブル1
0を介してモニタ11に接続されており、先端部3内に
設けられた後述する固体撮像素子で撮像された被写体の
画像信号を信号処理し、被写体画像をモニタ11に表示
するようになっている。
The CCU 9 is connected to the signal cable 1
0, which is connected to a monitor 11 through which signal processing is performed on an image signal of a subject imaged by a solid-state imaging device described later provided in the distal end portion 3 so as to display a subject image on the monitor 11. I have.

【0015】図2に示すように、固体撮像素子20は、
一画素毎に信号を読み出せるXYアドレス方式の固体撮
像素子であり、CMOSプロセスを利用して集積化され
ている。
As shown in FIG. 2, the solid-state imaging device 20
This is an XY address type solid-state imaging device capable of reading out a signal for each pixel, and is integrated using a CMOS process.

【0016】なお、図2の有効画素領域上に表記されて
いる同心円は、電荷量増幅アンプ29が有効画素領域の
中心から周辺にいくほど増幅率が高くなっていくことを
模式的に表記したものである。
The concentric circles shown on the effective pixel area in FIG. 2 schematically indicate that the amplification factor increases as the charge amount amplifier 29 goes from the center to the periphery of the effective pixel area. Things.

【0017】図2及び図3に示すように、前記固体撮像
素子20の外形形状は四角形であり、固体撮像素子20
は、モニタヘの出画形状に合わせた八角形形状の有効画
素領域23と、前記有効画素領域外に設けたOptic
al Black部(以下、OB部)28と、前記有効
画素領域内に光の強度を電荷量に変換する光電変換部2
4と電荷量増幅アンプ29からなる複数の画素30と、
各列の画素30から垂直方向に水平転送回路26まで電
荷を転送する垂直転送回路25と、各垂直転送回路25
から転送された電荷を読み出しアンプまで水平方向に転
送する水平転送回路26と、水平転送回路26から転送
される電荷量に応じて電気信号を出力する信号出力アン
プ27とを備えるとともに、垂直転送回路25及び水平
転送回路26を駆動する駆動信号発生回路21および電
気信号を処理する信号処理回路22のうち一つ、または
これらの回路を任意に組合せ、集積化している。
As shown in FIGS. 2 and 3, the outer shape of the solid-state image pickup device 20 is square, and
Is an octagonal effective pixel area 23 conforming to the image output to the monitor, and an Optic area provided outside the effective pixel area.
al Black section (hereinafter referred to as OB section) 28 and the photoelectric conversion section 2 which converts light intensity into an electric charge amount in the effective pixel area.
4 and a plurality of pixels 30 including a charge amplification amplifier 29;
A vertical transfer circuit 25 for transferring charges from the pixels 30 in each column to the horizontal transfer circuit 26 in the vertical direction;
And a signal transfer amplifier 27 for outputting an electric signal in accordance with the amount of charges transferred from the horizontal transfer circuit 26, and a vertical transfer circuit. One of the drive signal generating circuit 21 for driving the horizontal transfer circuit 25 and the horizontal transfer circuit 26 and the signal processing circuit 22 for processing the electric signal, or these circuits are arbitrarily combined and integrated.

【0018】前記電荷量増幅アンプ29は、前記有効画
素領域の中心から同心円状に増幅率を変えてあり、その
増幅率は、例えば有効画素領域の中心画素への光量を
1、増幅率を1倍とすると、光量が1/2の画素の場合
は増幅率を2倍とし、信号出力として略同じになるよう
に設定してある。尚、本実施の形態では、一画素毎に設
定してある。
The charge amplification amplifier 29 changes the amplification rate concentrically from the center of the effective pixel area. The amplification rate is, for example, 1 for the amount of light to the central pixel of the effective pixel area and 1 for the amplification rate. In the case of a pixel having a light quantity of す る と, the amplification factor is set to be twice and the signal output is set to be substantially the same. In this embodiment, the setting is made for each pixel.

【0019】本実施の形態においては、各画素30に電
荷量を増幅する電荷量増幅アンプ29を設けることによ
り、有効画素領域全域にわたり均一の光量が得られた状
態と略同等の効果が得られる。
In this embodiment, by providing the charge amount amplifier 29 for amplifying the charge amount in each pixel 30, an effect substantially equivalent to a state where a uniform light amount is obtained over the entire effective pixel region can be obtained. .

【0020】また、固体撮像素子20は、ライン読み出
し方式の固体撮像素子と違いライン毎にOB部が存在し
なければならないといった制約がなく、任意の領域にO
B部を設けることができる。八角形の有効画素領域23
の場合、その領域外の四隅にOB部28を設けることが
でき、ライン読み出し方式の固体撮像素子にくらべて小
型化できる。さらに、駆動信号発生回路21や信号処理
回路22などの回路もその四隅に設けることにより固体
撮像素子の小型化できる。
Further, unlike the solid-state image pickup device of the line readout type, the solid-state image pickup device 20 does not have a restriction that an OB section must exist for each line, and the solid-state image pickup device 20 is provided in an arbitrary region.
A part B can be provided. Octagonal effective pixel area 23
In the case of (1), the OB portions 28 can be provided at the four corners outside the region, and the size can be reduced as compared with the solid-state imaging device of the line readout type. Furthermore, by providing circuits such as the drive signal generation circuit 21 and the signal processing circuit 22 at the four corners, the size of the solid-state imaging device can be reduced.

【0021】図4ないし図6は本発明の第2の実施の形
態に係わり、図4は電子内視鏡に用いられる固体撮像素
子のレイアウト図、図5は図4の固体撮像素子内の回路
構成を示すブロック図、図6は図4の固体撮像素子の信
号読み出し方法を示す図である。
4 to 6 relate to a second embodiment of the present invention. FIG. 4 is a layout diagram of a solid-state imaging device used for an electronic endoscope, and FIG. 5 is a circuit in the solid-state imaging device of FIG. FIG. 6 is a block diagram showing the configuration, and FIG. 6 is a diagram showing a signal reading method of the solid-state imaging device of FIG.

【0022】第2の実施の形態は、第1の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the second embodiment is almost the same as the first embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0023】図4及び図5に示すように、本実施の形態
の固体撮像素子20aは、第1の実施の形態と同様の一
画素毎に信号を読み出せるXYアドレス方式の固体撮像
素子であり、CMOSプロセスを利用して集積化されて
いる。
As shown in FIGS. 4 and 5, the solid-state image pickup device 20a of this embodiment is an XY address type solid-state image pickup device capable of reading out a signal for each pixel as in the first embodiment. , Using a CMOS process.

【0024】尚、図4の有効画素領域上に表記されてい
る例えば同心円は、複数の画素からなる画素エリアを示
しており、周辺にいくほど画素の受光エリアの面積が大
きくなっていることを模式的に示したものである。ま
た、前記画素エリアは、対物レンズより得られる光量に
よって決まり、例えば中心画素の光を1したとき0.9
の光量が得られる画素までのエリアとしている。もしく
は、同心円状の画素エリアをあらかじめ形成し、前記画
素エリアの平均光量に応じて受光エリアの面積を決めて
もよい。
Note that, for example, concentric circles shown on the effective pixel area in FIG. 4 indicate a pixel area composed of a plurality of pixels, and that the area of the light receiving area of the pixel becomes larger toward the periphery. This is schematically shown. The pixel area is determined by the amount of light obtained from the objective lens.
Area up to the pixel where the amount of light is obtained. Alternatively, a concentric pixel area may be formed in advance, and the area of the light receiving area may be determined according to the average light amount of the pixel area.

【0025】前記固体撮像素子20aの外形形状はモニ
タヘの出画形状に合わせた八角形形状であり、画素30
の受光エリア31の面積を変え、得られる受光量を変え
ることにより電気信号を調整している。
The outer shape of the solid-state imaging device 20a is an octagonal shape conforming to the shape of the image output to the monitor.
The electric signal is adjusted by changing the area of the light receiving area 31 of FIG.

【0026】前記受光エリア31の面積は、前記有効画
素領域中心を中心に同心円状に変えてあり、その面積
は、例えば中心の画素エリアの平均光量を1、そのエリ
ア内の画素から得られる平均受光量を1とすると、平均
光量が1/2の画素エリアの場合は平均受光量が2にな
るように受光エリア31の面積を変え、信号出力として
略同じになるように設定してある。尚、本実施の形態で
は、画素エリア毎に設定してある。
The area of the light receiving area 31 is changed concentrically around the center of the effective pixel area. For example, the average light amount of the central pixel area is 1, and the average light quantity obtained from the pixels in the area is 1. Assuming that the amount of received light is 1, the area of the light receiving area 31 is changed so that the average amount of received light is 2 in a pixel area where the average amount of light is 、, and the signal output is set to be substantially the same. In this embodiment, the setting is made for each pixel area.

【0027】本実施の形態においては、各画素30の受
光エリア31の面積を調整することにより、有効画素領
域全域にわたり均一の光量が得られた状態と略同等の効
果が得られる。
In the present embodiment, by adjusting the area of the light receiving area 31 of each pixel 30, an effect equivalent to a state in which a uniform amount of light is obtained over the entire effective pixel region can be obtained.

【0028】また、前記固体撮像素子20aの外形形状
を八角形にすることにより、内視鏡のような円筒状なも
のの中で使用する場合において空間を効率よく使用で
き、小型化に寄与する。
Further, by making the outer shape of the solid-state imaging device 20a octagonal, the space can be used efficiently when used in a cylindrical shape such as an endoscope, which contributes to downsizing.

【0029】尚、垂直転送回路25および水平転送回路
26は、2分割されてあり、それぞれ左右、上下に配置
され、各画素からの信号配線が交差しない構造になって
いる。また、OB部28及びパッド部32は、固体撮像
素子20aの外形寸法が大きくならないように配置して
ある。
Note that the vertical transfer circuit 25 and the horizontal transfer circuit 26 are divided into two parts, which are arranged on the left, right, up and down, respectively, so that signal wiring from each pixel does not cross. The OB section 28 and the pad section 32 are arranged so that the external dimensions of the solid-state imaging device 20a do not increase.

【0030】また、図6に示すように、固体撮像素子2
0aは、ライン読み出し方式の固体撮像素子と違い、ラ
イン毎に読み出さなければならないといった制約がな
く、そのため読み出しを有効画素領域23の中心画素か
ら同心円上に読み出すことが可能である。
Further, as shown in FIG.
Unlike the solid-state imaging device of the line readout type, 0a does not have the restriction that it must be read out line by line, so that it is possible to read out concentrically from the center pixel of the effective pixel area 23.

【0031】このような読み出し方法41により、有効
画素領域23より狭い画素領域を使用する場合において
も、使用画素領域40まで読み出せばよく、結果として
固体撮像素子20の消費電力の削減や、不要な画素を読
み出さないためその部分のダークノイズが低減される。
According to such a readout method 41, even when a pixel area smaller than the effective pixel area 23 is used, it is sufficient to read up to the use pixel area 40. As a result, the power consumption of the solid-state imaging device 20 can be reduced or unnecessary. Since dark pixels are not read out, dark noise in that portion is reduced.

【0032】図7及び図8は本発明の第3の実施の形態
に係わり、図7は電子内視鏡に用いられる固体撮像素子
のレイアウト図、図8は図7の固体撮像素子内の信号調
整回路の構成を示すブロック図である。
7 and 8 relate to a third embodiment of the present invention. FIG. 7 is a layout diagram of a solid-state imaging device used in an electronic endoscope, and FIG. 8 is a signal in the solid-state imaging device of FIG. FIG. 3 is a block diagram illustrating a configuration of an adjustment circuit.

【0033】第1の実施の形態と異なる点のみ説明し、
同一の構成には同じ符号をつけ説明は省略する。
Only the differences from the first embodiment will be described.
The same components have the same reference characters allotted, and description thereof will not be repeated.

【0034】図7に示すように、本実施の形態の固体撮
像素子20bは、第1実施形態と同様の一画素毎に信号
を読み出せるXYアドレス方式の固体撮像素子であり、
CMOSプロセスを利用して集積化されている。また、
前記固体撮像素子の有効画素領域は、複数の画素からな
る画素エリア毎に例えば5×5の25分割されており、
各画素毎に外部信号により増幅率の可変が可能な電荷量
増幅アンプが設けられている。
As shown in FIG. 7, the solid-state image pickup device 20b of the present embodiment is an XY address type solid-state image pickup device capable of reading out a signal for each pixel as in the first embodiment.
It is integrated using a CMOS process. Also,
The effective pixel region of the solid-state imaging device is divided into, for example, 25 × 5 × 5 for each pixel area including a plurality of pixels.
Each pixel is provided with a charge amplification amplifier whose amplification ratio can be varied by an external signal.

【0035】電子内視鏡装置では、光源の数や向き被写
体像の凹凸等により有効画素領域内で光量差が生じる。
この光量差を補うために各画素の増幅率を調整し、モニ
タ全域の明かるさを均一にし、観察しやすくする。
In the electronic endoscope apparatus, a light quantity difference occurs in the effective pixel area due to the number of light sources, the unevenness of the image of the subject, and the like.
In order to compensate for this difference in light amount, the amplification factor of each pixel is adjusted to make the brightness of the entire monitor uniform, thereby facilitating observation.

【0036】その方法は、図8に示すように、例えば信
号調整回路50で有効面素領域23の全画素と画素エリ
ア51の平均光量を求め、その平均光量の比から各面素
の増幅率を決定し、外部信号により各画素の増幅率を変
え、信号出力を行う。前記増幅率の調整は、一定時間毎
に調整が行われ、略リアルタイムに行われる。
In the method, as shown in FIG. 8, for example, the signal adjustment circuit 50 obtains the average light amount of all the pixels of the effective surface element region 23 and the pixel area 51, and calculates the amplification factor of each surface element from the ratio of the average light amount. Is determined, the amplification factor of each pixel is changed by an external signal, and a signal is output. The adjustment of the amplification factor is performed at regular intervals, and is performed substantially in real time.

【0037】尚、前記増幅率は有効画素領域の平均光量
と画素エリアの平均光量の比が1:Xの場合、1/Xと
なる。ここでは、画素エリア毎に調整を行ったが、画素
毎に行うこともある。また、ここでは、全画素の平均光
量に対して調整を行ったが、ある一定の光量を基準に調
整を行うこともある。
The amplification factor is 1 / X when the ratio of the average light amount in the effective pixel area to the average light amount in the pixel area is 1: X. Here, the adjustment is performed for each pixel area, but may be performed for each pixel. Here, the adjustment is performed on the average light amount of all pixels, but the adjustment may be performed based on a certain light amount.

【0038】本実施の形態においては、被写体への光源
のあたりかたによる光量差を画素毎に増幅率をかえるこ
とにより有効画素領域全域にわたり均一の光量が得られ
た状態と略同等の効果が得られる。
In this embodiment, by changing the light amount difference depending on how the light source hits the subject, the amplification factor is changed for each pixel, an effect substantially equivalent to a state in which a uniform light amount is obtained over the entire effective pixel area is obtained. can get.

【0039】以上、第1ないし3の実施の形態に示した
ように、一画素ごとに信号を読み出せる固体撮像素子を
用い、一画素毎または、画素エリア毎に信号出力を調整
することにより、対物レンズにより生じる光軸中心と周
辺の光量差を補うことが可能になり、観察性を向上させ
ることができる。また、第3の実施の形態に示す構成に
すると被写体への光源のあたりかたによる光量差を補う
ことができる。
As described above, as described in the first to third embodiments, by using a solid-state imaging device capable of reading a signal for each pixel and adjusting the signal output for each pixel or each pixel area, It is possible to make up for the difference in the amount of light between the center of the optical axis and the periphery caused by the objective lens, thereby improving the observability. Further, with the configuration shown in the third embodiment, it is possible to compensate for a difference in light amount depending on how the light source hits the subject.

【0040】以上説明したように、本発明の内視鏡用撮
像装置によれば、対物レンズを使用する結像系で生じる
画像周辺部の光量低下を固体撮像素子で電気信号の出力
調整を行うことにより、有効画素領域全域にわたり均一
の光量が得られた状態と略同等の効果が得られる。
As described above, according to the imaging apparatus for an endoscope of the present invention, the output of an electric signal is adjusted by the solid-state imaging device in order to reduce the decrease in the amount of light in the peripheral portion of the image caused by the imaging system using the objective lens. As a result, an effect substantially equivalent to a state in which a uniform light amount is obtained over the entire effective pixel region can be obtained.

【0041】また、一画素毎に信号出力を読み出せる固
体撮像素子を使うことにより、モニタヘの出画形状に合
わせた有効画素領域および固体撮像素子の外形形状が形
成でき、その形状に合わせてOB部や駆動信号発生回路
や信号処理回路などを設けることが可能になり、固体撮
像素子の小型化の効果が得られるとともに、信号読み出
し方法も有効画素領域の中心画素から同心円上に読み出
すことが可能になるため、有効画素領域より狭い画素領
域を使用する場合においても、使用画素領域のみを読み
出すことができ、消費電力の低減、不要な画素から生じ
るノイズの低減といった効果が得られる。
Further, by using a solid-state imaging device capable of reading out a signal output for each pixel, an effective pixel area and an external shape of the solid-state imaging device can be formed according to the image output shape on the monitor. Unit, drive signal generation circuit, signal processing circuit, etc. can be provided, the effect of miniaturization of the solid-state imaging device can be obtained, and the signal readout method can also be read out concentrically from the center pixel of the effective pixel area Therefore, even when a pixel area smaller than the effective pixel area is used, only the used pixel area can be read, and effects such as reduction in power consumption and noise generated from unnecessary pixels can be obtained.

【0042】[付記] (付記項1) 被写体像が対物レンズを通して結像され
る位置に固体撮像素子を備えた撮像装置において、一画
素毎に信号出力を読み出せる手段と、前記対物レンズか
ら前記固体撮像素子に得られる光量に応じて一画素毎ま
たは、複数の画素からなる画素エリア毎に信号出力を調
整する手段とを具備したことを特徴とする撮像装置。
[Appendix] (Appendix 1) In an image pickup apparatus provided with a solid-state image pickup device at a position where a subject image is formed through an objective lens, a means for reading out a signal output for each pixel, Means for adjusting a signal output for each pixel or for each pixel area including a plurality of pixels in accordance with the amount of light obtained by the solid-state imaging device.

【0043】(付記項2) 被写体像が対物レンズを通
して結像される位置に固体撮像素子を備えた撮像装置に
おいて、一画素毎に信号出力を読み出せる手段と、前記
対物レンズの光軸の中心から周辺に略同心円状または同
心円状に広がる多角形形状をなす複数の画素からなる画
素エリア毎に信号出力を調整する手段とを具備したこと
を特徴とする撮像装置。
(Additional Item 2) In an image pickup apparatus provided with a solid-state image pickup device at a position where an object image is formed through an objective lens, means for reading out a signal output for each pixel, and a center of an optical axis of the objective lens Means for adjusting a signal output for each pixel area composed of a plurality of pixels having a polygonal shape extending substantially concentrically or concentrically from the periphery.

【0044】(付記項3) 前記信号出力調整手段を、
受光量の大きな画素の信号出力を小さく、受光量の小さ
な画素の信号出力を大きくなるように設定したことを特
徴とする付記項1に記載の撮像装置。
(Additional Item 3) The signal output adjusting means may include:
2. The imaging apparatus according to claim 1, wherein the signal output of the pixel having the large light reception amount is set to be small, and the signal output of the pixel having the small light reception amount is set to be large.

【0045】(付記項4) 前記信号出力調整手段を、
受光量の大きな画素エリアの信号出力を小さく、受光量
の小さな画素エリアの信号出力を大きくなるように設定
したことを特徴とする付記項1または2に記載の撮像装
置。
(Additional Item 4) The signal output adjusting means is
3. The imaging apparatus according to claim 1, wherein a signal output of a pixel area having a large amount of received light is set to be small, and a signal output of a pixel area having a small amount of received light is set to be large.

【0046】(付記項5) 前記信号出力調整手段を、
一定受光量以下の画素の信号出力を大きくなるように設
定したことを特徴とする付記項1に記載の撮像装置。
(Additional Item 5) The signal output adjusting means may be
2. The imaging device according to claim 1, wherein a signal output of a pixel having a light receiving amount or less is set to be large.

【0047】(付記項6) 前記信号出力調整手段を、
一定受光量以下の画素エリアの信号出力を大きくなるよ
うに設定したことを特徴とする付記項1または2に記載
の撮像装置。
(Additional Item 6) The signal output adjusting means is
3. The imaging device according to claim 1, wherein a signal output of a pixel area having a light receiving amount or less is set to be large.

【0048】(付記項7) 前記信号出力調整手段を、
各画素に設けた増幅アンプの増幅率を変えて行うことを
特徴とする付記項1ないし6のいずれか1つに記載の撮
像装置。
(Additional Item 7) The signal output adjusting means is
7. The imaging device according to any one of additional items 1 to 6, wherein the imaging is performed by changing an amplification factor of an amplification amplifier provided in each pixel.

【0049】(付記項8) 前記信号出力調整手段を、
各画素の受光エリアを変えて行うことを特徴とする付記
項1ないし6のいずれか1つに記載の撮像装置。
(Additional Item 8) The signal output adjusting means is
7. The imaging device according to any one of additional items 1 to 6, wherein the imaging is performed by changing a light receiving area of each pixel.

【0050】(付記項9) 前記固体撮像素子を、CM
OSプロセスにより製造されたことを特徴とする付記項
1ないし8のいずれか1つに記載の撮像装置。
(Additional Item 9) The solid-state imaging device may be a CM
9. The imaging device according to any one of additional items 1 to 8, wherein the imaging device is manufactured by an OS process.

【0051】(付記項10) 前記撮像装置を電子内視
鏡に用いたことを特徴とする付記項1ないし9のいずれ
か1つに記載の撮像装置。
(Additional Item 10) The imaging device according to any one of additional items 1 to 9, wherein the imaging device is used for an electronic endoscope.

【0052】(付記項11) 外形形状と外形形状と異
なる出画形状とほぼ同一形状の有効画素領域を有する一
画素毎に信号を読み出せる固体撮像素子をもつことを特
徴とする撮像装置。
(Supplementary Item 11) An imaging apparatus having a solid-state imaging device capable of reading out a signal for each pixel having an effective pixel area having substantially the same shape as an external shape different from an external shape.

【0053】(付記項12) 前記有効画素領域の形状
が、円形状または一部に円弧をもつ形状、四角形以外の
多角形形状であることを特徴とする付記項11に記載の
撮像装置。
(Additional Item 12) The imaging device according to Additional Item 11, wherein the shape of the effective pixel region is a circular shape, a shape having an arc partially, or a polygonal shape other than a quadrangle.

【0054】(付記項13) 前記有効画素領域に外接
する四角形内の有効画素領域外にOB部を設けたことを
特徴とする付記項11に記載の撮像装置。
(Additional Item 13) The imaging apparatus according to Additional Item 11, wherein an OB portion is provided outside an effective pixel area in a rectangle circumscribing the effective pixel area.

【0055】(付記項14) 前記有効画素領域に外接
する四角形内の有効画素領域外に駆動信号発生回路およ
び信号処理回路などを設けたことを特徴とする付記項1
1に記載の撮像装置。
(Additional Item 14) An additional item 1 in which a drive signal generating circuit, a signal processing circuit, and the like are provided outside the effective pixel region in a rectangle circumscribing the effective pixel region.
2. The imaging device according to 1.

【0056】(付記項11〜14の背景)外形形状が四
角形である固体撮像素子において、円形またはハ角形の
有効画素領域を形成しようとすると、四隅に空領域が生
じてしまうため、前記空領域にOB部または駆動信号発
生回路および信号処理回路などを設けた。これによる固
体撮像装置の小型化を目的として付記項11〜14の構
成にした。
(Background of Supplementary Items 11 to 14) In a solid-state image pickup device having a quadrangular external shape, if an attempt is made to form a circular or octagonal effective pixel area, empty areas are formed at four corners. Provided with an OB section, a drive signal generation circuit, a signal processing circuit, and the like. In order to reduce the size of the solid-state imaging device, the configurations of the additional items 11 to 14 are adopted.

【0057】(付記項15) 固体撮像素子の外形形状
を、円形状または一部に円弧をもつ形状または四角形以
外の多角形形状を有する出画形状に合わせたことを特徴
とする撮像装置。
(Additional Item 15) An imaging apparatus characterized in that the outer shape of the solid-state imaging device is adjusted to a circular shape, a shape having an arc partially, or a polygonal shape other than a quadrangle.

【0058】(付記項16) 一画素毎に信号出力を読
み出しができる固体撮像素子において、前記撮像素子の
読み出し方法が、画素領域の中心より同心円上に読み出
しを行うことを特徴とする付記項11ないし15のいず
れか1つに記載の撮像装置。
(Additional Item 16) In a solid-state image pickup device capable of reading out a signal output for each pixel, the readout method of the image pickup device is such that reading is performed concentrically from the center of the pixel area. 16. The imaging device according to any one of items 15 to 15.

【0059】(付記項17) 前記固体撮像素子は、C
MOSプロセスにより製造されたことを特徴とする付記
項11ないし16のいずれか1つに記載の撮像装置。
(Additional Item 17) The solid-state imaging device may be
17. The imaging device according to any one of additional items 11 to 16, wherein the imaging device is manufactured by a MOS process.

【0060】(付記項18) 前記撮像装置を電子内視
鏡に用いたことを特徴とする付記項11ないし17のい
ずれか1つに記載の撮像装置。
(Additional Item 18) The imaging device according to any one of additional items 11 to 17, wherein the imaging device is used for an electronic endoscope.

【0061】[0061]

【発明の効果】以上説明したように本発明によれば、固
体撮像素子に入射する光量に応じて各面素の信号出力を
調整することにより、モニタ全域に渡り明るく調整され
た画像を表示することができる観察性の優れた固体撮像
素子を提供することができるという効果がある。
As described above, according to the present invention, a brightly adjusted image is displayed over the entire monitor by adjusting the signal output of each surface element according to the amount of light incident on the solid-state imaging device. There is an effect that it is possible to provide a solid-state imaging device having excellent observability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る撮像装置とし
ての電子内視鏡の構成を示す構成図
FIG. 1 is a configuration diagram showing a configuration of an electronic endoscope as an imaging device according to a first embodiment of the present invention;

【図2】図1の電子内視鏡に用いられる固体撮像素子の
レイアウト図
FIG. 2 is a layout diagram of a solid-state imaging device used in the electronic endoscope in FIG. 1;

【図3】固体撮像素子内の回路構成を示すブロック図FIG. 3 is a block diagram illustrating a circuit configuration in a solid-state imaging device.

【図4】本発明の第2の実施の形態に係る電子内視鏡に
用いられる固体撮像素子のレイアウト図
FIG. 4 is a layout diagram of a solid-state imaging device used in an electronic endoscope according to a second embodiment of the present invention.

【図5】図4の固体撮像素子内の回路構成を示すブロッ
ク図
FIG. 5 is a block diagram showing a circuit configuration in the solid-state imaging device of FIG. 4;

【図6】図4の固体撮像素子の信号読み出し方法を示す
FIG. 6 is a diagram showing a signal reading method of the solid-state imaging device in FIG. 4;

【図7】本発明の第3の実施の形態に係る電子内視鏡に
用いられる固体撮像素子のレイアウト図
FIG. 7 is a layout diagram of a solid-state imaging device used in an electronic endoscope according to a third embodiment of the present invention.

【図8】図7の固体撮像素子内の信号調整回路の構成を
示すブロック図
8 is a block diagram illustrating a configuration of a signal adjustment circuit in the solid-state imaging device in FIG. 7;

【符号の説明】[Explanation of symbols]

1…電子内視鏡 2…挿入部 3…先端部 4…湾曲部 5…可撓管部 6…操作部 7…ユニバーサルコード 8…コネクタ 9…CCU 10…信号ケーブル 11…モニタ 20…固体撮像素子 21…駆動信号発生回路 22…信号処理回路 23…有効画素領域 24…光電変換部 25…垂直転送回路 26…水平転送回路 27…信号出力アンプ 28…OB部 29…電荷量増幅アンプ 30…画素 31…受光エリア 32…パッド部 40…使用画素領域 41…読み出し方法 50…信号出力調整回路 51…画素エリア DESCRIPTION OF SYMBOLS 1 ... Electronic endoscope 2 ... Insertion part 3 ... Tip part 4 ... Bending part 5 ... Flexible tube part 6 ... Operation part 7 ... Universal code 8 ... Connector 9 ... CCU 10 ... Signal cable 11 ... Monitor 20 ... Solid-state image sensor DESCRIPTION OF SYMBOLS 21 ... Drive signal generation circuit 22 ... Signal processing circuit 23 ... Effective pixel area 24 ... Photoelectric conversion part 25 ... Vertical transfer circuit 26 ... Horizontal transfer circuit 27 ... Signal output amplifier 28 ... OB part 29 ... Charge amount amplification amplifier 30 ... Pixel 31 ... Light receiving area 32 ... Pad section 40 ... Pixel area 41 ... Reading method 50 ... Signal output adjustment circuit 51 ... Pixel area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 23/24 G02B 23/24 B H01L 27/146 H01L 27/14 A (72)発明者 藤森 紀幸 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 中村 力 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 平井 力 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 本多 武道 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 一村 博信 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 三谷 貴彦 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 広谷 純 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 吉満 浩一 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 2H040 BA13 CA04 CA11 DA03 DA14 DA15 GA01 GA02 GA06 GA11 4C061 AA00 BB02 CC06 DD00 FF40 LL02 NN01 PP11 SS05 SS10 TT01 4M118 AA06 AB01 BA14 CA17 DD01 FA06 FA50 GA04 GB09 GD02 HA22 HA23 HA30 5C024 BX02 CX41 GY39 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 23/24 G02B 23/24 B H01L 27/146 H01L 27/14 A (72) Inventor Noriyuki Fujimori Tokyo 2-43-2 Hatagaya, Shibuya-ku Olympus Optical Industrial Co., Ltd. (72) Inventor Tsutomu Nakamura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industrial Co., Ltd. (72) Inventor Riki Hirai Tokyo 2-43-2 Hatagaya, Shibuya-ku Olympus Optical Industrial Co., Ltd. (72) Inventor Honda Martial Arts 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Industrial Co., Ltd. (72) Inventor Hironobu Ichimura 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd. (72) Inventor Takahiko Mitani 2--4 Hatagaya, Shibuya-ku, Tokyo No. 3-2 Olympus Optical Kogyo Co., Ltd. (72) Inventor Jun Hiroya 2-43-2 Hatagaya, Shibuya-ku, Tokyo (72) Inside Olympus Optical Kogyo Co., Ltd. (72) Koichi Yoshimitsu 2-chome Hatagaya, Shibuya-ku, Tokyo 43-2 F-term in Olympus Optical Co., Ltd. (reference) 2H040 BA13 CA04 CA11 DA03 DA14 DA15 GA01 GA02 GA06 GA11 4C061 AA00 BB02 CC06 DD00 FF40 LL02 NN01 PP11 SS05 SS10 TT01 4M118 AA06 AB01 BA14 CA17 DD01 FA06 FA50 GA04 GB09 HA22 HA23 HA30 5C024 BX02 CX41 GY39

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1画素毎に駆動可能な固体撮像素子であ
って、 前記固体撮像素子の任意の画素を指定して信号出力を読
み出すことが可能な信号読み出し手段と、 配光分布に応じて、1画素毎または複数の画素からなる
画素エリア毎に前記信号出力の調整が可能な出力調整手
段とを備えたことを特徴とする固体撮像素子。
1. A solid-state imaging device that can be driven for each pixel, a signal reading unit that can read out a signal output by designating an arbitrary pixel of the solid-state imaging device, A solid-state imaging device comprising: an output adjustment unit capable of adjusting the signal output for each pixel or each pixel area including a plurality of pixels.
【請求項2】 前記配光分布は、前記固体撮像素子に像
を形成する対物光学系の特性による配光分布であり、 前記複数の画素からなる画素エリアは、前記対物光学系
の光軸中心から周辺に向かって略同心円または多角形状
に設定されていることを特徴とする請求項1に記載の固
体撮像素子。
2. A light distribution according to a characteristic of an objective optical system that forms an image on the solid-state imaging device, wherein a pixel area including the plurality of pixels is located at an optical axis center of the objective optical system. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is set in a substantially concentric circle or a polygonal shape from to a periphery.
JP2001143461A 2001-05-14 2001-05-14 Solid-state imaging device Pending JP2002344811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143461A JP2002344811A (en) 2001-05-14 2001-05-14 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143461A JP2002344811A (en) 2001-05-14 2001-05-14 Solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2002344811A true JP2002344811A (en) 2002-11-29

Family

ID=18989612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143461A Pending JP2002344811A (en) 2001-05-14 2001-05-14 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2002344811A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081616A (en) * 2004-09-14 2006-03-30 Olympus Corp Endoscope
JP2007122857A (en) * 2005-10-26 2007-05-17 Thomson Licensing Method for acquiring data by image sensor
JP2007282804A (en) * 2006-04-14 2007-11-01 Olympus Medical Systems Corp Imaging device
JP2010068993A (en) * 2008-09-18 2010-04-02 Fujifilm Corp Electronic endoscope system
JP2013255751A (en) * 2012-06-14 2013-12-26 Hoya Corp Endoscope apparatus
JP2013255746A (en) * 2012-06-14 2013-12-26 Hoya Corp Endoscope apparatus
KR20150067125A (en) * 2012-07-05 2015-06-17 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Cmos imaging device having optimized shape, and method for producing such a device by means of photocomposition
WO2019003866A1 (en) * 2017-06-27 2019-01-03 ソニーセミコンダクタソリューションズ株式会社 Image capture device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572170A (en) * 1980-06-05 1982-01-07 Nec Corp Peripheral light depreciation compensation circuit for solid state pickup element
JPH01117576A (en) * 1987-10-30 1989-05-10 Fuji Electric Co Ltd Solid-state image pickup element
JPH0456483A (en) * 1990-06-25 1992-02-24 Koji Eto Video camera equipped with mos type imaging device
JPH0575931A (en) * 1991-09-13 1993-03-26 Canon Inc Image pickup device
JPH07143411A (en) * 1993-11-16 1995-06-02 Sony Corp Solid-state image pickup element
JPH07255014A (en) * 1994-03-15 1995-10-03 Fujitsu Ltd Image pickup device and its control method
JPH08205034A (en) * 1995-01-20 1996-08-09 Nissan Motor Co Ltd Image sensor
JPH08289144A (en) * 1995-02-28 1996-11-01 Pioneer Electron Corp Video scanner device
JP2000013153A (en) * 1998-06-22 2000-01-14 Citizen Watch Co Ltd Semiconductor device
JP2001036059A (en) * 1999-07-22 2001-02-09 Minolta Co Ltd Solid-stage image pickup device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572170A (en) * 1980-06-05 1982-01-07 Nec Corp Peripheral light depreciation compensation circuit for solid state pickup element
JPH01117576A (en) * 1987-10-30 1989-05-10 Fuji Electric Co Ltd Solid-state image pickup element
JPH0456483A (en) * 1990-06-25 1992-02-24 Koji Eto Video camera equipped with mos type imaging device
JPH0575931A (en) * 1991-09-13 1993-03-26 Canon Inc Image pickup device
JPH07143411A (en) * 1993-11-16 1995-06-02 Sony Corp Solid-state image pickup element
JPH07255014A (en) * 1994-03-15 1995-10-03 Fujitsu Ltd Image pickup device and its control method
JPH08205034A (en) * 1995-01-20 1996-08-09 Nissan Motor Co Ltd Image sensor
JPH08289144A (en) * 1995-02-28 1996-11-01 Pioneer Electron Corp Video scanner device
JP2000013153A (en) * 1998-06-22 2000-01-14 Citizen Watch Co Ltd Semiconductor device
JP2001036059A (en) * 1999-07-22 2001-02-09 Minolta Co Ltd Solid-stage image pickup device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081616A (en) * 2004-09-14 2006-03-30 Olympus Corp Endoscope
JP2007122857A (en) * 2005-10-26 2007-05-17 Thomson Licensing Method for acquiring data by image sensor
US8089540B2 (en) 2005-10-26 2012-01-03 Thomson Licensing Method for acquiring data by means of an image sensor
JP2007282804A (en) * 2006-04-14 2007-11-01 Olympus Medical Systems Corp Imaging device
JP2010068993A (en) * 2008-09-18 2010-04-02 Fujifilm Corp Electronic endoscope system
JP2013255751A (en) * 2012-06-14 2013-12-26 Hoya Corp Endoscope apparatus
JP2013255746A (en) * 2012-06-14 2013-12-26 Hoya Corp Endoscope apparatus
KR20150067125A (en) * 2012-07-05 2015-06-17 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Cmos imaging device having optimized shape, and method for producing such a device by means of photocomposition
JP2015528206A (en) * 2012-07-05 2015-09-24 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ CMOS imaging device with optimal shape and method for producing such device by photographic typesetting
KR102145080B1 (en) * 2012-07-05 2020-08-14 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Cmos imaging device having optimized shape, and method for producing such a device by means of photocomposition
WO2019003866A1 (en) * 2017-06-27 2019-01-03 ソニーセミコンダクタソリューションズ株式会社 Image capture device
US11496680B2 (en) 2017-06-27 2022-11-08 Sony Semiconductor Solutions Corporation Imaging unit

Similar Documents

Publication Publication Date Title
CN107174188B (en) Double-lens capsule type endoscope with light guide device
US20100274082A1 (en) Endoscope system, endoscope, and driving method
EP1845835A4 (en) Endoscope with miniature imaging arrangement
JP2003260025A (en) Capsule endoscope
CN105338883A (en) Mechanical image rotation for rigidly coupled image sensor and endoscope
KR20070004898A (en) Endoscope and endoscope system
US11607111B2 (en) Medical signal processing apparatus and medical observation system
JP2002344811A (en) Solid-state imaging device
JP2018108174A (en) Endoscope apparatus
US20070167840A1 (en) Device and method for in-vivo illumination
US20070073161A1 (en) Device, system and method for determining spacial measurements of anatomical objects for in-vivo pathology detection
JP2008183049A (en) Imaging device, and capsule type endoscopic camera
JP2002136474A (en) Endoscope
JP5932191B1 (en) Transmission system and processing device
JP7224963B2 (en) Medical controller and medical observation system
JP2009028462A (en) Electronic endoscope system
JP6489671B1 (en) Imaging device
JP2010051372A (en) Processor of endoscope, and method of masking endoscopic image
JP2020054450A (en) Strabismus endoscope
JP2017205247A (en) Electronic scope
JP6407045B2 (en) Endoscope device
JP4105280B2 (en) Electronic endoscope apparatus and light source apparatus for electronic endoscope
JP2005195742A (en) Imaging device
KR102503652B1 (en) Oral imaging camera system
JP2003070735A (en) Electronic endoscope unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118