JP2002343414A - Seal type lead-acid battery - Google Patents

Seal type lead-acid battery

Info

Publication number
JP2002343414A
JP2002343414A JP2001143201A JP2001143201A JP2002343414A JP 2002343414 A JP2002343414 A JP 2002343414A JP 2001143201 A JP2001143201 A JP 2001143201A JP 2001143201 A JP2001143201 A JP 2001143201A JP 2002343414 A JP2002343414 A JP 2002343414A
Authority
JP
Japan
Prior art keywords
battery
acid battery
grid
alloy
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001143201A
Other languages
Japanese (ja)
Inventor
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001143201A priority Critical patent/JP2002343414A/en
Publication of JP2002343414A publication Critical patent/JP2002343414A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seal type lead-acid battery having superior life time performance. SOLUTION: This seal type lead-acid battery comprises a group of electrodes, consisting of a flat positive and negative electrode plates and a separator having an electrolyte absorbed therein, and a battery jar for housing the group of electrodes; the positive and negative electrode plates and separator are parallel to a horizontal plane or form an angle within 20 deg. or less thereto. This seal type lead-acid battery may be of a retainer type or a gel-retainer hybrid type.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シール型鉛蓄電池
に属する。
The present invention relates to a sealed lead-acid battery.

【0002】[0002]

【従来の技術】シール型鉛蓄電池では、正極で発生する
酸素ガスが負極で吸収されるため、電解液があまり減少
せず、よって補水する必要がない。またシール型鉛蓄電
池はポジションフリーであり、横置きにすることもでき
る。そのためシール型電池は、近年、自動車用電池とし
て利用されている。
2. Description of the Related Art In a sealed lead-acid battery, oxygen gas generated at a positive electrode is absorbed by a negative electrode, so that the amount of electrolyte does not decrease so much, and thus it is not necessary to refill water. The sealed lead-acid battery is position-free and can be placed horizontally. For this reason, sealed batteries have recently been used as automotive batteries.

【0003】図1に示すように、従来より種々のタイプ
のシール型鉛蓄電池が知られている。図1(A)に示す
ゲル式電池では、正・負極板1、2がシリカゲル4とと
もに電槽3に収納されており、そのシリカゲル4に電解
液を含ませている。また、この電池よりも電解液の拡散
性能を向上させた電池として、リテーナ式電池(図1
(B))及び顆粒シリカ式電池(図1(C))がある。
リテーナ式電池では、ガラス繊維からなるセパレータ5
を介して正・負極板1、2を積層しており、これにより
極板群を形成している。そして、セパレータ5に電解液
を吸収させている。一方、顆粒シリカ式電池では、顆粒
シリカゲル6に電解液を保持させている。
As shown in FIG. 1, various types of sealed lead-acid batteries have been conventionally known. In the gel type battery shown in FIG. 1A, the positive and negative electrode plates 1 and 2 are housed in a battery case 3 together with a silica gel 4, and the silica gel 4 contains an electrolytic solution. Also, as a battery having an improved electrolyte diffusion performance than this battery, a retainer type battery (FIG. 1)
(B)) and a granular silica battery (FIG. 1 (C)).
In the case of a retainer type battery, a separator 5 made of glass fiber is used.
The positive / negative electrode plates 1 and 2 are laminated through the intermediary of the electrode plate, thereby forming an electrode plate group. Then, the electrolytic solution is absorbed by the separator 5. On the other hand, in the granular silica battery, the electrolytic solution is held in the granular silica gel 6.

【0004】さらに、リテーナ式電池に改良を加えた電
池として、図1(D)に示すゲル−リテーナハイブリッ
ド式電池がある。この電池では、電槽3の内面と極板群
との間に、電解液を含んだシリカゲル4を充填させるこ
とによって、電槽と電解液との接触面積を増やしてい
る。従って、ゲル−リテーナハイブリッド式電池による
と、電池の温度上昇が抑制される。
Further, as a battery obtained by improving the retainer type battery, there is a gel-retainer hybrid type battery shown in FIG. In this battery, the contact area between the battery case and the electrolytic solution is increased by filling the silica gel 4 containing the electrolytic solution between the inner surface of the battery case 3 and the electrode plate group. Therefore, according to the gel-retainer hybrid battery, the temperature rise of the battery is suppressed.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来のシール
型鉛蓄電池では、使用に伴う容量の低下が大きく、その
ため寿命が短いという問題がある。それ故、本発明の課
題は、寿命性能に優れたシール型鉛蓄電池を提供するこ
とにある。
However, the conventional sealed lead-acid battery has a problem in that the capacity is greatly reduced with use and the life is short. Therefore, an object of the present invention is to provide a sealed lead-acid battery having excellent life performance.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決すべく鋭意検討を重ねた結果、完成された。本発明の
シール型鉛蓄電池は、平板状の正・負極板及び電解液を
吸収させたセパレータからなる極板群と、極板群を収納
する電槽とを備えるシール型鉛蓄電池において、正・負
極板及びセパレータが、水平面に対して平行であるか又
は20度以内の角度をなすことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been completed as a result of intensive studies to solve the above-mentioned problems. The sealed lead-acid battery of the present invention is a sealed lead-acid battery including a plate-shaped positive / negative electrode plate and an electrode plate group including a separator absorbing an electrolytic solution, and a battery case accommodating the electrode plate group. The negative electrode plate and the separator are characterized by being parallel to a horizontal plane or forming an angle within 20 degrees.

【0007】本発明のシール型鉛蓄電池は、セパレータ
を備えるため、リテーナ式電池として使用することがで
きる。しかし、より好ましいのは、電槽の内面と極板群
との間に電解液を保持するゲルを充填させることによっ
て、ゲル−リテーナハイブリッド式電池として使用する
ことである。またリテーナ式として使用する場合には、
正極用の格子として、Pb−Ca系合金と、前記合金よ
りも高濃度のCaを含有するPb−Ca系合金とからな
る格子、若しくはPb−Ca系合金と、Pb−Sb系合
金、Pb−Sn系合金又はPb−Sb−Sn系合金とか
らなる格子を用いるのが望ましい。
[0007] The sealed lead-acid battery of the present invention has a separator and can be used as a retainer-type battery. However, it is more preferable to use a gel-retainer hybrid battery by filling a gel holding an electrolyte between the inner surface of the battery case and the electrode plate group. When using as a retainer type,
As a grid for the positive electrode, a grid consisting of a Pb-Ca-based alloy and a Pb-Ca-based alloy containing Ca at a higher concentration than the alloy, or a Pb-Ca-based alloy, a Pb-Sb-based alloy, and a Pb- It is desirable to use a lattice made of a Sn-based alloy or a Pb-Sb-Sn-based alloy.

【0008】[0008]

【実施例】−実施例1− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板を圧延ローラで厚さ1.0mm
にした後、ロータリー式のエキスパンド機を用いて網目
状の格子とした。次に、鉛粉95部及び鉛丹5部に、比
重1.10(20℃)の希硫酸を1kg当たり0.13
L添加し練り合わせることによって、ペースト状の正極
活物質を調製した。そして、上記の格子に正極活物質を
充填し、それを熟成・乾燥させることにより、正極板を
得た。
EXAMPLES-Example 1-A sealed lead-acid battery was manufactured as follows. First,
A 10 mm thick lead alloy plate made of Pb-0.07 wt% Ca-1.3 wt% Sn was rolled to a thickness of 1.0 mm with a rolling roller.
After that, a mesh grid was formed using a rotary expanding machine. Next, dilute sulfuric acid having a specific gravity of 1.10 (20 ° C.) was added to 95 parts of the lead powder and 5 parts of the red lead in 0.13 kg / kg.
A paste-like positive electrode active material was prepared by adding L and kneading. A positive electrode plate was obtained by filling the grid with a positive electrode active material, aging and drying.

【0009】続いて、鉛粉に微量のリグニンスルホン酸
及び硫酸バリウムを加え、さらにカーボン粒子としてア
セチレンブラックを加えた。さらに、これに比重1.1
0(20℃)の希硫酸を1kg当たり0.13L添加し
て練り合わせることによって、ペースト状の負極活物質
を調製した。そして、上記の格子に負極活物質を充填
し、それを熟成・乾燥させることによって、負極板を得
た。
Subsequently, trace amounts of ligninsulfonic acid and barium sulfate were added to the lead powder, and acetylene black was further added as carbon particles. Furthermore, specific gravity 1.1
A paste-like negative electrode active material was prepared by adding 0.13 L of diluted sulfuric acid of 0 (20 ° C.) per 1 kg and kneading. Then, the grid was filled with a negative electrode active material, which was aged and dried to obtain a negative electrode plate.

【0010】次いで、正極板5枚と負極板6枚とをガラ
ス繊維製のセパレータを介して交互に積層することによ
り、極板群を作製した。そして、正・負極板及びセパレ
ータが鉛直方向になるように、作製した極板群を電槽に
挿入した後、セパレータに電解液として希硫酸を注入し
て、化成した。電槽は上面に孔を有し、その孔から電池
端子を外部に露出させる。その後、希硫酸及びコロイダ
ルシリカからなるゾル溶液を極板群と電槽との間に注入
して、ゲル化させた。これにて、ゲル−リテーナハイブ
リッド式電池が製造された。電池の公称電圧は2Vで、
公称容量は30Ahである。
[0010] Then, five positive electrode plates and six negative electrode plates were alternately laminated with a glass fiber separator interposed therebetween to prepare an electrode plate group. Then, the prepared electrode plate group was inserted into a battery case so that the positive / negative electrode plate and the separator were in the vertical direction, and then dilute sulfuric acid was injected into the separator as an electrolyte to form a chemical. The battery case has a hole on the upper surface, and the battery terminal is exposed to the outside through the hole. After that, a sol solution composed of dilute sulfuric acid and colloidal silica was injected between the electrode group and the battery case to gel. Thus, a gel-retainer hybrid battery was manufactured. The nominal voltage of the battery is 2V,
Nominal capacity is 30 Ah.

【0011】この電池を6個用意し、各々を向きが異な
るように40℃の気槽中に設置した。各電池の向きは、
正・負極板及びセパレータが、鉛直方向、水平方向、2
0度アップ、20度ダウン、45度アップ、及び45度
ダウンとなるようにした。尚、20度、45度といった
角度は水平面を基準とした角度であり、アップ及びダウ
ンはそれぞれ電池端子が上方及び下方を向いた状態を示
す(以下、同様)。
[0011] Six of these batteries were prepared, and each was placed in a 40 ° C air tank so that the directions were different. The direction of each battery is
The positive / negative electrode plate and the separator are
0 degree up, 20 degree down, 45 degree up, and 45 degree down. Note that angles such as 20 degrees and 45 degrees are angles with respect to a horizontal plane, and up and down indicate a state in which the battery terminal faces upward and downward, respectively (hereinafter the same).

【0012】各々の向きの電池について、充放電を繰り
返しながら放電容量を適宜測定することによって、放電
容量が公称容量の80%以下に低下するまでの充放電サ
イクル数を調べた。ここで、放電は10A(1/3C
A)の定電流で2.4時間行い、充電は10Aの定電流
で放電量の90%行った後、さらに1.5Aの定電流で
放電量の20%行った。また放電容量の測定は、10A
(1/3CA)の定電流で2.4時間放電することによ
りなされた。さらに、リテーナ式電池についても同様に
試験した。リテーナ式電池は、極板群の周囲にゾル液を
注入しない以外は上記と同じ手順で製造された。結果を
表1に示す。
The number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined by appropriately measuring the discharge capacity of the batteries in each direction while repeating charge / discharge. Here, the discharge is 10A (1 / 3C
A) was carried out at a constant current of A) for 2.4 hours. Charging was carried out at a constant current of 10 A for 90% of the amount of discharge, and then at a constant current of 1.5 A for 20% of the amount of discharge. The discharge capacity was measured at 10A
This was achieved by discharging at a constant current of (1/3 CA) for 2.4 hours. Further, the same test was performed on the retainer type battery. The retainer type battery was manufactured in the same procedure as described above except that the sol solution was not injected around the electrode group. Table 1 shows the results.

【0013】[0013]

【表1】 [Table 1]

【0014】表1に示すように、ゲル−リテーナハイブ
リッド式電池では、水平方向、20度アップ及び20度
ダウンの場合に、寿命性能が著しく良かった。その理由
は、電池の向きを適正にすることによって、電解液が均
一に分布されるからであると思われる。ゲル−リテーナ
ハイブリッド式電池と比べるとリテーナ式電池の寿命性
能は劣るが、その理由は、電池内部の温度が上昇して電
解液が多く減少したことにあると考えられる。
As shown in Table 1, in the gel-retainer hybrid battery, the life performance was remarkably good in the horizontal direction, at 20 degrees up and 20 degrees down. The reason seems to be that the electrolyte is uniformly distributed by optimizing the orientation of the battery. The life performance of the retainer-type battery is inferior to that of the gel-retainer hybrid-type battery, which is considered to be due to the fact that the temperature inside the battery increases and the amount of the electrolyte decreases largely.

【0015】−実施例2− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板の片面に、Pb−3重量%Ca
−1重量%Snからなる厚さ0.3mmの鉛合金シート
を重ね合わせた。そして、これを圧延ローラで厚さ1.
0mmにした後、ロータリー式のエキスパンド機を用い
て網目状にした。その結果、厚さ30μmの鉛合金箔を
片面に有する格子が作製され、この格子を正極用格子と
した。次に、実施例1と同様にして正極活物質を調製
し、これを正極用格子に充填した後、熟成・乾燥させる
ことによって、正極板を得た。
Example 2 A sealed lead-acid battery was manufactured as follows. First,
One side of a 10 mm-thick lead alloy plate made of Pb-0.07% by weight Ca-1.3% by weight Sn
A 0.3 mm thick lead alloy sheet made of -1% by weight Sn was overlaid. Then, this is rolled to a thickness of 1.
After reducing the thickness to 0 mm, the mesh was formed using a rotary expanding machine. As a result, a grid having a 30 μm-thick lead alloy foil on one side was produced, and this grid was used as a grid for the positive electrode. Next, a positive electrode active material was prepared in the same manner as in Example 1, filled in a positive electrode grid, then aged and dried to obtain a positive electrode plate.

【0016】続いて、実施例1と同じようにして表面に
鉛合金箔が無い格子を作製し、これを負極用格子とし
た。さらに、実施例1と同様に、負極活物質を調整し、
これを負極用格子に充填した後、熟成・乾燥させること
によって、負極板を得た。次いで、実施例1と同じ手順
で、極板群の作製及び極板群の電槽への挿入を行った。
そして、セパレータに電解液として希硫酸を注入して、
化成した。これにて、リテーナ式電池が製造された。電
池の公称電圧は2Vで、公称容量は30Ahである。
Subsequently, a grid having no lead alloy foil on the surface was prepared in the same manner as in Example 1, and this was used as a grid for the negative electrode. Further, in the same manner as in Example 1, the negative electrode active material was adjusted,
This was filled in a grid for a negative electrode, and then aged and dried to obtain a negative electrode plate. Next, in the same procedure as in Example 1, production of the electrode group and insertion of the electrode group into the battery case were performed.
Then, dilute sulfuric acid is injected into the separator as an electrolyte,
Chemical formation. Thus, a retainer type battery was manufactured. The battery has a nominal voltage of 2V and a nominal capacity of 30Ah.

【0017】この電池を6個用意し、実施例1と同じよ
うに、その向きを変えて設置して放電容量が公称容量の
80%以下に低下するまでの充放電サイクル数を調べ
た。但し、各電池の向きは、正・負極板及びセパレータ
が、鉛直方向、水平方向、20度アップ、20度ダウ
ン、30度アップ、及び30度ダウンとなるようにし
た。また、比較のために上記の正極用格子の替わりに鉛
合金箔の無い格子を用いた電池を2個製造し、それらの
向きを鉛直方向及び水平方向として試験に供した。結果
を表2に示す。
Six batteries were prepared, and the orientation was changed in the same manner as in Example 1, and the number of charge / discharge cycles until the discharge capacity was reduced to 80% or less of the nominal capacity was examined. However, the direction of each battery was such that the positive / negative electrode plate and the separator were vertical, horizontal, up 20 degrees, down 20 degrees, up 30 degrees, and down 30 degrees. For comparison, two batteries using a grid without a lead alloy foil instead of the above-described grid for the positive electrode were manufactured, and the orientations of the batteries were set to a vertical direction and a horizontal direction, and subjected to a test. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、正極用格子として、C
aを含有する鉛合金板とこれよりも高濃度のCaを含有
する鉛合金箔とからなる格子を使用した電池では、水平
方向、20度アップ及び20度ダウンの場合に、寿命性
能が著しく良かった。その理由は、電池の向きを適正に
することで、正極用格子と正極活物質との密着性が向上
したからであると考えられる。
As shown in Table 2, as the grid for the positive electrode, C
In a battery using a grid composed of a lead alloy plate containing a and a lead alloy foil containing Ca at a higher concentration than this, the life performance is remarkably good in the horizontal direction, up 20 degrees and down 20 degrees. Was. It is considered that the reason is that by making the orientation of the battery proper, the adhesion between the grid for the positive electrode and the positive electrode active material was improved.

【0020】−実施例3− シール型鉛蓄電池を以下のようにして製造した。まず、
Pb−0.07重量%Ca−1.3重量%Snからなる
厚さ10mmの鉛合金板の片面に、Pb−5重量%Sb
−1重量%Snからなる厚さ0.3mmの鉛合金シート
を重ね合わせた。そして、これを圧延ローラで厚さ1.
0mmにした後、ロータリー式のエキスパンド機を用い
て網目状にした。その結果、厚さ30μmのSb及びS
nを含む鉛合金箔を片面に有する格子が作製され、この
格子を正極用格子とした。次に、実施例1、2と同様に
して正極活物質を調製し、これを正極用格子に充填した
後、熟成・乾燥させることによって、正極板を得た。
Example 3 A sealed lead-acid battery was manufactured as follows. First,
One side of a 10 mm thick lead alloy plate made of Pb-0.07% by weight Ca-1.3% by weight Sn was coated with Pb-5% by weight Sb.
A 0.3 mm thick lead alloy sheet made of -1% by weight Sn was overlaid. Then, this is rolled to a thickness of 1.
After reducing the thickness to 0 mm, the mesh was formed using a rotary expanding machine. As a result, 30 μm thick Sb and Sb
A grid having a lead alloy foil containing n on one side was produced, and this grid was used as a grid for the positive electrode. Next, a positive electrode active material was prepared in the same manner as in Examples 1 and 2, and after filling this in a positive electrode grid, aging and drying were performed to obtain a positive electrode plate.

【0021】続いて、実施例2と同じ手順で、負極板の
作製、極板群の作製、極板群の電槽への挿入及び電解液
の注入を行い、さらに電池の化成を行った。これにて、
リテーナ式電池が製造された。電池の公称電圧は2V
で、公称容量は30Ahである。この電池を6個用意
し、実施例2と同様にして放電容量が公称容量の80%
以下に低下するまでの充放電サイクル数を調べた。結果
を表3に示す。
Subsequently, in the same procedure as in Example 2, the production of the negative electrode plate, the production of the electrode plate group, the insertion of the electrode plate group into the battery case and the injection of the electrolytic solution were carried out, and the battery was further formed. With this,
Retained batteries were manufactured. Nominal voltage of battery is 2V
And the nominal capacity is 30 Ah. Six batteries were prepared, and the discharge capacity was 80% of the nominal capacity in the same manner as in Example 2.
The number of charge / discharge cycles until it decreased below was examined. Table 3 shows the results.

【0022】[0022]

【表3】 [Table 3]

【0023】表3に示すように、正極用格子として、C
aを含有する鉛合金板とSb及びSnを含有する鉛合金
箔とからなる格子を使用した電池では、水平方向、20
度アップ及び20度ダウンの場合に、寿命性能が著しく
良かった。その理由は、電池の向きを適正にすること
で、正極用格子と正極活物質との密着性が向上したから
であると考えられる。
As shown in Table 3, as the grid for the positive electrode, C
In a battery using a grid consisting of a lead alloy plate containing a and a lead alloy foil containing Sb and Sn,
When the temperature was raised and lowered by 20 degrees, the life performance was remarkably good. It is considered that the reason is that by making the orientation of the battery appropriate, the adhesion between the grid for the positive electrode and the positive electrode active material was improved.

【0024】[0024]

【発明の効果】本発明によると、寿命性能に優れたシー
ル型鉛蓄電池を得ることができる。
According to the present invention, it is possible to obtain a sealed lead-acid battery having excellent life performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シール型鉛蓄電池を示す断面図である。FIG. 1 is a sectional view showing a sealed lead-acid battery.

【符号の説明】[Explanation of symbols]

1正極板 2負極板 3電槽 4シリカゲル 5セパレータ 6顆粒シリカゲル 1 positive electrode plate 2 negative electrode plate 3 battery case 4 silica gel 5 separator 6 granular silica gel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平板状の正・負極板及び電解液を吸収させ
たセパレータからなる極板群と、極板群を収納する電槽
とを備えるシール型鉛蓄電池において、 正・負極板及びセパレータが、水平面に対して平行であ
るか又は20度以内の角度をなすことを特徴とするシー
ル型鉛蓄電池。
1. A sealed lead-acid battery comprising: an electrode group consisting of a plate-like positive / negative electrode plate and a separator absorbing an electrolytic solution; and a battery case accommodating the electrode plate group. Characterized in that it is parallel to a horizontal plane or forms an angle within 20 degrees.
【請求項2】電槽の内面と極板群との間に、電解液を保
持するゲルが充填されている請求項1に記載のシール型
鉛蓄電池。
2. The sealed lead-acid battery according to claim 1, wherein a gel for holding the electrolytic solution is filled between the inner surface of the battery case and the electrode plate group.
【請求項3】正極用の格子が、Pb−Ca系合金と、前
記合金よりも高濃度のCaを含有するPb−Ca系合金
とからなる請求項1又は2に記載のシール型鉛蓄電池。
3. The sealed lead-acid battery according to claim 1, wherein the grid for the positive electrode comprises a Pb—Ca alloy and a Pb—Ca alloy containing Ca at a higher concentration than the alloy.
【請求項4】正極用の格子が、Pb−Ca系合金と、P
b−Sb系合金、Pb−Sn系合金又はPb−Sb−S
n系合金とからなる請求項1又は2に記載のシール型鉛
蓄電池。
4. A grid for a positive electrode comprises a Pb-Ca alloy and a Pb-Ca alloy.
b-Sb alloy, Pb-Sn alloy or Pb-Sb-S
3. The sealed lead-acid battery according to claim 1, comprising an n-based alloy.
JP2001143201A 2001-05-14 2001-05-14 Seal type lead-acid battery Pending JP2002343414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143201A JP2002343414A (en) 2001-05-14 2001-05-14 Seal type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143201A JP2002343414A (en) 2001-05-14 2001-05-14 Seal type lead-acid battery

Publications (1)

Publication Number Publication Date
JP2002343414A true JP2002343414A (en) 2002-11-29

Family

ID=18989380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143201A Pending JP2002343414A (en) 2001-05-14 2001-05-14 Seal type lead-acid battery

Country Status (1)

Country Link
JP (1) JP2002343414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273403A (en) * 2006-03-31 2007-10-18 Gs Yuasa Corporation:Kk Control valve type lead-acid battery and its charging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273403A (en) * 2006-03-31 2007-10-18 Gs Yuasa Corporation:Kk Control valve type lead-acid battery and its charging method

Similar Documents

Publication Publication Date Title
EP0352115B1 (en) Lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP2002343414A (en) Seal type lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JPH06140043A (en) Lead-acid battery and manufacture thereof
JP2002343413A (en) Seal type lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2019079778A (en) Lead acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP4887590B2 (en) Sealed lead acid battery
JP4411860B2 (en) Storage battery
JP2022138753A (en) Lead-acid battery
JP2000149932A (en) Lead-acid battery and its manufacture
JP2022166455A (en) Electrode group and lea acid battery
JPH042053A (en) Manufacture of positive electrode plate of lead acid battery
JP4857481B2 (en) Method for manufacturing retainer-gel hybrid sealed lead-acid battery
JP2000323132A (en) Lead-acid battery forming method
JPH08329921A (en) Sealed lead-acid battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPS61198574A (en) Lead storage battery
JPH06275309A (en) Sealed battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213