JP2002340484A - 蒸発器 - Google Patents

蒸発器

Info

Publication number
JP2002340484A
JP2002340484A JP2001144729A JP2001144729A JP2002340484A JP 2002340484 A JP2002340484 A JP 2002340484A JP 2001144729 A JP2001144729 A JP 2001144729A JP 2001144729 A JP2001144729 A JP 2001144729A JP 2002340484 A JP2002340484 A JP 2002340484A
Authority
JP
Japan
Prior art keywords
temperature
gas
heat exchange
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001144729A
Other languages
English (en)
Other versions
JP4621379B2 (ja
Inventor
Tadashi Sato
忠史 佐藤
Atsushi Kobayashi
篤 小林
Nobuyuki Takahashi
伸之 高橋
Naoyoshi Ishikawa
直良 石川
Toshiyuki Takahashi
利行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Nissin Kogyo Co Ltd
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Nissin Kogyo Co Ltd
Priority to JP2001144729A priority Critical patent/JP4621379B2/ja
Publication of JP2002340484A publication Critical patent/JP2002340484A/ja
Application granted granted Critical
Publication of JP4621379B2 publication Critical patent/JP4621379B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 スチームを利用した熱交換器の熱交換効率の
高さを利用しながら、安定した温度でガスを供給するこ
とができ、さらに、温水を利用した熱交換器における気
化ガスの温度安定性を組合わせることにより、小型高性
能で、より温度安定性に優れた蒸発器を提供する。 【解決手段】 第1の構成は、気化ガス温度の異なる主
熱交換槽と温調用熱交換槽とを設置し、両熱交換槽で気
化したガスを合流混合させることによって温度調整を行
うようにしている。第2の構成は、温水層内の第一熱交
換器と、スチーム層内の第二熱交換器と、温水層内の第
三熱交換器とを設置し、この順番にガスを流すように形
成し、スチームによる熱交換効率の高さと、温水による
温度安定性の良さとを利用した蒸発器とする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、低温液化ガスを気
化させる蒸発器に関し、詳しくは、気化ガスの温度を安
定した状態にすることができる蒸発器に関する。
【0002】
【従来の技術】一般に、比較的大量のガス、例えば窒
素、酸素、アルゴン等のガスを使用する設備では、低温
液化ガス貯槽内に充填した液体窒素、液体酸素、液体ア
ルゴン等の低温液化ガスを蒸発器で気化させて使用する
ようにしている。低温液化ガスを気化させる蒸発器とし
ては、大気を熱媒体とした空温式蒸発器や、温水を熱媒
体とした温水式蒸発器、高温・高圧のスチームを熱媒体
としたスチーム式蒸発器が用いられている。
【0003】汎用的な蒸発器である空温式蒸発器は、熱
交換器の材質として熱伝導率が高いアルミニウムを用い
ており、周囲にフィンを有するアルミニウム製配管を、
必要な熱交換能力に応じて複数本組合わせた構造となっ
ている。配管内を流れる低温液化ガスは、フィンを介し
て大気と熱交換を行うことにより気化するので、空温式
蒸発器の熱交換能力は、熱交換するフィンの面積、すな
わち、配管のトータル的な長さにより調節される。
【0004】この空温式蒸発器は、低温液化ガスを大気
との熱交換によって気化させるため、熱源が不要であ
り、汎用的に使用されている。しかし、設置場所の大気
温度が低い場合には熱交換能力が小さくなり、大気温度
によって能力が左右されるという問題があった。また、
熱交換能力を大きくするために配管数を増やしたり、長
くしたりすることは、蒸発器自体の大型化を招くため、
他の形式の蒸発器に比べて設置スペースを要するという
問題がある。
【0005】スチーム式蒸発器は、スチームが導入され
る密閉容器内に熱交換用の配管を気密に配置し、この配
管内に低温液化ガスを流すとともに容器内にスチームを
導入し、スチームとの熱交換によって低温液化ガスを気
化させるようにしている。スチームとしては、一般に、
0.3MPa、120℃のスチームが用いられている。
このスチーム式蒸発器は、熱交換効率が高く、スチーム
が供給できれば、設置場所は環境に限定されることがな
く、しかも、装置はコンパクトになるという特徴を有し
ている。しかし、熱交換前後のスチームの温度差が大き
く、気化したガスの温度制御幅が広くなるという問題が
ある。
【0006】また、温水式蒸発器は、所定温度の温水を
入れた容器内に熱交換用の配管を気密に配置し、この配
管内に低温液化ガスを流して熱交換させるものであっ
て、熱交換によって温水から奪われる熱の補充は、一般
にヒーターによって行うようにしている。この温水式蒸
発器は、気化したガスの温度制御幅を狭くでき、しかも
安定するという特徴を有している。しかし、スチーム式
蒸発器に比べて容器自体が大きくなり、運転重量が嵩む
ために設置場所に注意を要するという問題がある。
【0007】
【発明が解決しようとする課題】上述のように、従来の
蒸発器では、安定した温度でガスを供給できる小型の蒸
発器で適当なものがなく、略一定温度のガスを大量に供
給する場合は、大型の温水式蒸発器を使用せざるを得な
かった。このため、例えば、供給するガスの用途がガス
タンク等の気密テストのように、スポット的なガス使用
で、しかも大量のガスを必要とし、さらに、大気温度に
近いガスの供給が望まれる場合は、供給ガス温度が比較
的高く、ガス温度の制御も困難なスチーム式蒸発器を使
用することはほとんどなく、大型の空温式蒸発器や温水
式蒸発器を現地に搬送し、蒸発器の組立てや配管の接続
を現地で行ってからガスの供給を開始するようにしてい
る。
【0008】したがって、現地において蒸発器を設置す
るためのスペースを必要とするだけでなく、機器の搬入
からガス供給の開始までに相当の時間を必要とし、機器
の運搬や組立て等に要するコストも多大なものとなって
いた。
【0009】そこで本発明は、スチームを利用した熱交
換器の熱交換効率の高さを利用しながら、安定した温度
でガスを供給することができ、さらに、温水を利用した
熱交換器における気化ガスの温度安定性を組合わせるこ
とにより、小型高性能で、より温度安定性に優れた蒸発
器を提供することを目的としている。
【0010】
【課題を解決するための手段】上記目的を達成するた
め、本発明の蒸発器は、第1の構成として、低温液化ガ
スを熱媒体と熱交換させることにより加温して気化させ
る蒸発器において、熱媒体が導入される容器内に前記低
温液化ガスが導入される熱交換器を収納した主熱交換槽
と、熱媒体が導入される容器内に低温液化ガスの一部が
導入される熱交換器を収納した温調用熱交換槽と、前記
主熱交換槽の熱交換器に低温液化ガスを導入する低温液
化ガス導入経路と、該低温液化ガス導入経路から分岐
し、流量調節弁を介して前記温調用熱交換槽の熱交換器
に低温液化ガスを導入する温調用低温液化ガス導入経路
と、前記主熱交換槽の熱交換器で気化したガスを導出す
る気化ガス導出経路と、前記温調用熱交換槽の熱交換器
で気化したガスを導出する温調用気化ガス導出経路と、
前記気化ガス導出経路のガスと前記温調用気化ガス導出
経路のガスとを合流混合させてガス使用先に供給するガ
ス供給経路と、該ガス供給経路を流れる供給ガスの温度
を測定する温度測定手段と、該温度測定手段の測定温度
に基づいて前記温調用低温液化ガス導入経路の流量調節
弁を開閉制御する制御手段とを備えていることを特徴と
し、さらに、前記温調用熱交換槽の熱交換能力を、前記
主熱交換槽の熱交換能力と異なった能力に設定したこと
を特徴としている。
【0011】また、本発明の蒸発器における第2の構成
は、低温液化ガスを熱媒体と熱交換させることにより加
温して気化させる蒸発器において、前記蒸発器は、熱媒
体としてスチーム層及び温水層を有する少なくとも一つ
の熱交換槽内に、前記温水層内に配置されて前記低温液
化ガスが導入される第一熱交換器と、前記スチーム層内
に配置されて該第一熱交換器で熱交換後のガスが導入さ
れる第二熱交換器と、前記温水層内に配置されて前記第
二熱交換器で熱交換後のガスが導入される第三熱交換器
とを収納したことを特徴としている。
【0012】さらに、上記構成において、前記第二熱交
換器で熱交換後のガスの温度が、該蒸発器から導出され
るガスの設定温度よりも高く設定され、前記第三熱交換
器で熱交換後のガスの温度が、第二熱交換器で熱交換後
のガスの温度より低く設定されていることを特徴として
いる。また、前記蒸発器から導出したガスの温度を測定
する温度測定手段と、前記熱交換槽内にスチームを供給
するボイラーと、前記温度測定手段で測定したガスの温
度に基づいて前記熱交換槽内に供給するスチーム量を調
節するスチーム供給量調節手段とを備えていることを特
徴としている。
【0013】
【発明の実施の形態】図1は、本発明の蒸発器の第1形
態例を示す系統図である。この蒸発器は、主熱交換槽1
0と温調用熱交換槽20とを並列に設置したものであっ
て、主熱交換槽10で気化したガスと温調用熱交換槽2
0で気化したガスとを適当に混合することによって所定
温度のガスを供給するように形成されている。
【0014】両熱交換槽10,20は、断熱構造を有す
る金属製密閉容器11,21内に、低温液化ガスが導入
される熱交換器12,22をそれぞれ収納したものであ
って、各容器11,21には、ボイラーBで発生させた
スチームを熱媒体として容器内に導入するスチーム導入
管13,23と、熱交換によりスチームが凝縮して生じ
た水を容器内から抜取り、ボイラーに戻すドレン14,
24とがそれぞれ設けられている。
【0015】また、前記主熱交換槽10に設けられた熱
交換器12の下部入口部には、低温液化ガス貯槽C等か
ら供給される低温液化ガスを導入する低温液化ガス導入
経路15が接続され、上部出口部には、熱交換器12内
で気化したガスを導出する気化ガス導出経路16が接続
されている。一方、温調用熱交換槽20に設けられた熱
交換器22の下部入口部には、前記低温液化ガス導入経
路15から分岐した温調用低温液化ガス導入経路25が
流量調節弁27を介して接続され、上部出口部には、熱
交換器22内で気化したガスを導出する温調用気化ガス
導出経路26が接続されている。
【0016】前記気化ガス導出経路16と温調用気化ガ
ス導出経路26とは合流してガス供給経路17となり、
このガス供給経路17を通してユーザーのガス使用設備
にガスが供給される。また、ガス供給経路17には、供
給するガスの温度を測定する手段である温度指示調節計
(TIC)31が設けられている。この温度指示調節計
31は、その指示値、測定値に基づいて前記流量調節弁
27の開閉を制御し、温調用低温液化ガス導入経路25
を流れて温調用熱交換槽20の熱交換器22に導入する
低温液化ガス量を調節するように形成されている。
【0017】なお、前記各熱交換槽10,20における
容器11,21の容積や熱交換器12,22の形状、ス
チーム導入量等の各種条件は、蒸発器に求められる供給
ガス量(蒸発量)や供給ガスの温度範囲等に応じて設計
されるが、主熱交換槽10の熱交換能力と温調用熱交換
槽20の熱交換能力とが異なるようにしておくことによ
り、供給ガスの温度調整をより容易に行うことができ
る。各熱交換槽における熱交換能力は、例えば、熱交換
器の熱交換面積を大きくしたり、熱交換器内を流れるガ
スの流速を遅くしたり、スチームの導入量を多くしたり
することにより、熱交換能力を高めることができる。
【0018】また、前記スチーム導入管13,23に
は、スチーム導入量を調節する調節弁13V、23Vが
それぞれ設けられているが、通常は所定の開度で常時開
となっており、所定量のスチームが各容器11,21内
に連続導入されている。
【0019】このように形成した蒸発器を使用して所定
温度のガスを所定流量で供給するには、まず、各容器1
1,21内に所定温度及び圧力のスチームをそれぞれ所
定量ずつ導入する。このときの各容器11,21へのス
チーム導入量は、低温液化ガスの蒸発量及び供給ガスの
温度に応じて設定すればよいが、通常は、主熱交換槽1
0から導出されるガスの温度が供給ガスの設定温度より
高くなるようにし、温調用熱交換槽20から導出される
ガスの温度が供給ガスの設定温度より低くなるようにし
ておく。
【0020】この状態で低温液化ガス貯槽C等からの低
温液化ガスの供給を開始する。主熱交換槽10及び温調
用熱交換槽20への各低温液化ガスの供給割合は、温度
指示調節計31により制御される。すなわち、主熱交換
槽10から導出した設定温度より高い温度のガス(高温
ガス)と、温調用熱交換槽20から導出した設定温度よ
り低い温度のガスとの混合割合を調節することにより、
供給ガスの温度を所望の温度に調節することができる。
【0021】例えば、温度指示調節計31で測定した供
給ガスの温度が設定温度を超えたら流量調節弁27を開
方向に作動させる。これにより、温調用熱交換槽20へ
の低温液化ガス供給量が増加して主熱交換槽10への低
温液化ガス供給量が減少し、結果的に、主熱交換槽10
で気化した高温ガスの流量が減少するとともに温調用熱
交換槽20で気化した低温ガスの流量が増加するので、
両者が混合した供給ガスの温度が下がることになる。同
様に、供給ガスの測定温度が設定温度以下になったら、
流量調節弁27を閉方向に作動させることにより、供給
ガスの温度を上昇させることができる。
【0022】なお、同一構成の蒸発器であっても、各容
器11,21内へのスチーム導入量を調節することによ
り、主熱交換槽10から導出するガスの温度を供給ガス
の設定温度より低くし、温調用熱交換槽20から導出す
るガスの温度を供給ガスの設定温度より高くしておくこ
とができる。この場合は、供給ガスの測定温度が設定温
度を超えたら流量調節弁27を閉方向に作動させて温調
用熱交換槽20からの高温ガスの混合割合を少なくす
る。また、上記説明では、各容器11,21内に所定量
のスチームを連続導入するようにしたが、各熱交換槽1
0,20の適当な位置の温度や各導出ガスの温度を検出
し、これに基づいて調節弁13V、23Vを開閉し、ス
チームを間欠的に導入したり、スチームの導入量を調節
したりしてもよい。
【0023】このように、熱媒体としてスチームを使用
する場合であっても、主熱交換槽10から導出したガス
と温調用熱交換槽20から導出したガスとの混合割合を
調節することにより、供給ガスの温度を設定温度範囲に
制御することが可能となる。そして、スチームを使用す
ることにより、その熱交換率の高さを活かして蒸発器の
小型化を図ることができ、ボイラーを含めた蒸発器ユニ
ットとして形成することができ、現地への運搬や設置も
容易に行うことができ、ガス使用設備へのガス供給も短
時間で開始することができる。
【0024】また、本形態例では、低温液化ガスを気化
させて加温するための熱媒体としてスチームを使用した
が、各容器内でスチームと温水とが共存した状態になっ
ていてもよい。この場合、温水の加熱はスチームによっ
て行うことができるが、ヒーターによる加熱を併用して
もよい。さらに、蒸発器の大きさよりも供給ガス温度の
安定性が要求される場合は、熱媒体として温水を用いる
ことも可能である。
【0025】図2は、本発明の蒸発器の第2形態例を示
す系統図である。この蒸発器は、温水式蒸発器及びスチ
ーム式蒸発器の双方の利点を活かして、小型でありなが
ら温度安定性に優れた蒸発器を形成したものである。
【0026】本形態例に示す蒸発器は、スチーム及び温
水を熱媒体とする第一熱交換槽51と、スチームを熱媒
体とする第二熱交換槽52とを組合わせたものであっ
て、両熱交換槽51,52は、前記形態例と同様に、断
熱構造を有する金属製密閉容器51a,52a内に、低
温液化ガスが導入される第一乃至第三熱交換器53,5
4,55をそれぞれ収納するとともに、ボイラーBで発
生させたスチームを容器内に導入するスチーム導入管5
6,57と、熱交換によりスチームが凝縮して生じた水
を容器内から抜取り、ボイラーに戻すドレン58,59
とがそれぞれ設けられている。
【0027】前記各熱交換器は、ガスの流れ方向に対し
て、第一熱交換器53、第二熱交換器54、第三熱交換
器55の順で直列に設けられており、第一熱交換器53
及び第三熱交換器55は、下部が第一熱交換槽51の温
水層W内に、上部がスチーム層S内に、それぞれ位置し
ており、第二熱交換器54は、そのほとんどが第二熱交
換槽52のスチーム層S内に位置している。
【0028】低温液化ガス貯槽C等から供給される低温
液化ガスは、低温液化ガス導入経路61を通って第一熱
交換器53に下部から流入し、最初に温水、次いでスチ
ームと熱交換を行うことによって気化し、第一熱交換器
53の上部から低温ガス経路62に導出する。低温ガス
経路62のガスは、第一熱交換槽51を出て第二熱交換
槽52に向かい、第二熱交換槽52内の第二熱交換器5
4に下部から流入してスチームと熱交換を行い、所定温
度に加温されて高温ガス経路63に導出する。高温ガス
経路63のガスは、第二熱交換槽52から再び第一熱交
換槽51に入り、第一熱交換槽51内の第三熱交換器5
5に上部から流入する。この第三熱交換器55に流入し
たガスは、スチームと熱交換を行った後、温水と熱交換
を行うが、最後に熱容量の大きな温水と熱交換を行うこ
とにより温度調節され、安定した温度状態となって第三
熱交換器55からガス供給経路64に導出し、ユーザー
のガス使用設備に供給される。
【0029】また、供給ガスの温度制御を行うための手
段として、前記ガス供給経路64には、第一熱交換槽5
1にスチームを供給する第一スチーム導入管56の第一
流量調節弁56Vを制御する第一温度指示調節計(TI
C)65が設けられ、前記高温ガス経路63には、第二
熱交換槽52にスチームを供給する第二スチーム導入管
57の第二流量調節弁57Vを制御する第二温度指示調
節計66が設けられている。
【0030】第一温度指示調節計65は、供給ガスの温
度が設定温度より低下したら第一流量調節弁56Vを開
方向に作動させ、スチーム供給量を増加させて第一熱交
換槽51内のスチーム層S及び温水層Wの温度を上昇さ
せる。同様に、第二温度指示調節計66は、高温ガス経
路63を流れるガスの温度が設定温度より低下したら第
二流量調節弁57Vを開方向に作動させ、スチーム供給
量を増加させて第二熱交換槽52内のスチーム層Sの温
度を上昇させる。逆に各ガスの温度が上昇したら、スチ
ーム導入量を減少させることにより、各ガスの温度を所
定温度に維持することができる。
【0031】このように、温水層Wに下部が設置された
第一熱交換器53で熱容量の大きな温水と熱交換させて
低温液化ガスを気化させた後、スチーム層Sに設置され
た第一熱交換器53の上部及び第二熱交換器54で高温
のスチームと熱交換させてガスを加温するので、小型の
熱交換器で十分な加温性能を得ることができ、蒸発器全
体の小型を図れる。さらに、第二熱交換器54で供給ガ
スの設定温度以上にガスを加温した後、最後に温水層W
に下部が設置された第三熱交換器55で熱容量の大きな
温水と熱交換させて所定の供給ガス温度に調節するよう
にしているので、蒸発器から導出される供給ガス温度の
安定化が図れる。
【0032】また、第二熱交換器54でスチームと熱交
換後のガスの温度を供給ガスの設定温度よりも高く設定
し、第三熱交換器55で熱交換後のガスの温度を第二熱
交換器54で熱交換後のガスの温度より低く設定してお
くことにより、スチームと温水との熱容量の差及び温度
差を有効に利用して効率よく安定した温度調節を行うこ
とができる。
【0033】なお、本形態例では、第一熱交換槽51に
供給するスチームを第一スチーム導入管56からスチー
ム層Sに供給するようにしているが、該導入管を槽(容
器)下部まで延長して温水層W内にバブリングさせて供
給することもできる。
【0034】図3は、本発明の蒸発器の第3形態例を示
す系統図である。この蒸発器は、前記第2形態例と同様
に、温水式蒸発器及びスチーム式蒸発器の双方の利点を
活かして、小型でありながら温度安定性に優れた蒸発器
を形成したものであって、第2形態例よりもさらに小型
化及び装置構成の簡略化を図ったものである。
【0035】この蒸発器は、スチーム層S及び温水層W
の二層を有する気液共存状態の熱交換槽71内に、温水
層W部分に収納された第一熱交換器72と、スチーム層
S部分に収納された第二熱交換器73と、温水層W部分
に収納された第三熱交換器74とを設置したものであっ
て、第一熱交換器72、第二熱交換器73及び第三熱交
換器74は、ガスの流れ方向に対してこの順に直列に接
続されている。
【0036】熱交換槽71には、ボイラーBで発生した
スチームをスチーム層Sに供給する第一スチーム導入管
75と、温水層S内にスチームをバブリングして供給す
る第二スチーム導入管76とが設けられており、各スチ
ーム管75,76には、スチーム供給量を調節するため
手段として第一調節弁75V及び第二調節弁76Vがそ
れぞれ設けられている。また、槽底部には、ドレン水を
ボイラーBに戻すためのドレン77が設けられている。
【0037】また、蒸発器で気化したガスをガス使用設
備に供給するガス供給管78には、供給ガスの温度を測
定して前記第一調節弁75Vを開閉制御する供給ガス温
度指示調節計(TIC)81が設けられており、熱交換
槽71には、温水層Sの温度を測定して前記第二調節弁
76Vを開閉制御する温水温度指示調節計(TIC)8
2が設けられている。さらに、本形態例では、前記ガス
供給管78に供給ガスの流量を測定する流量指示調節計
(FIC)83を設け、この流量指示調節計83の指示
値と前記温度指示調節計81の指示値とを演算器84で
処理することにより、第一調節弁75Vの開閉制御を円
滑にかつ的確に行えるようにしている。
【0038】低温液化ガス貯槽C等から供給される低温
液化ガスは、低温液化ガス導入経路85を通って熱交換
槽71に入り、最初に、温水層W内に設置された第一熱
交換器72に導入される。この第一熱交換器72では、
温水層Wの温水と熱交換を行って所定温度まで加温さ
れ、低温液化ガスが気化する。第一熱交換器72で気化
したガスは、続いて第二熱交換器73に導入され、ここ
でスチーム層Sの高温のスチームと熱交換を行い、供給
ガス温度よりも高い温度に加温される。この高温のガス
は、第三熱交換器74に導入され、温水層Wの温水と熱
交換を行って冷却され、所定の供給ガス温度に調節され
る。
【0039】第三熱交換器74で温度調節されたガス
は、熱交換槽71からガス供給管78に導出され、所定
圧力、所定温度の供給ガスとなってユーザーのガス使用
設備に供給される。このとき、前記供給ガス温度指示調
節計81及び流量指示調節計83の測定値に基づいて第
一調節弁75Vが開閉制御され、スチーム層Sに供給す
るスチーム量が調節されるとともに、温水温度指示調節
計82の測定値に基づいて第二調節弁76Vが開閉制御
され、温水層Wに供給するスチーム量が調節される。こ
れにより、ガス供給管78から供給される供給ガスの温
度が所定温度に制御される。
【0040】また、本形態例に示す蒸発器においては、
温水層Wに設置した第一熱交換器72で熱容量の大きな
温水と熱交換させて低温液化ガスを気化させた後、スチ
ーム層Sに設置した第二熱交換器73で高温のスチーム
と熱交換させてガスを加温するので、小型の第二熱交換
器73で十分な加温性能を得ることができ、蒸発器全体
の小型を図れる。さらに、第二熱交換器73で供給ガス
の設定温度以上にガスを加温した後、最後に温水層Wに
設置した第三熱交換器74で熱容量の大きな温水と熱交
換させて所定の供給ガス温度に調節するようにしている
ので、蒸発器で気化させて供給するガス温度の安定化が
図れる。
【0041】さらに、本形態例では、一つの熱交換槽7
1内に第一乃至第三熱交換器72,73,74を収納し
ているので、前記第2形態例の蒸発器よりも全体的にさ
らなる小型化及び簡略化を図ることができる。したがっ
て、低温液化ガスを昇圧するためのポンプやスチーム供
給用のボイラーを含めて蒸発器全体を一つの設備ユニッ
トとして一体化しても、トラック等で運搬可能な大きさ
に納めることができるので、現地への搬送や据付けが容
易になり、ガス供給を迅速に開始することができ、スポ
ット的に使用する蒸発器として最適である。
【0042】また、第二熱交換器73でスチームと熱交
換後のガスの温度を供給ガスの設定温度よりも高く設定
し、第三熱交換器74で熱交換後のガスの温度を第二熱
交換器73で熱交換後のガスの温度より低く設定してお
くことにより、スチームと温水との熱容量の差及び温度
差を有効に利用して効率よく安定した温度調節を行うこ
とができる。
【0043】なお、低温液化ガス供給源は、低温液化ガ
ス貯槽だけでなくローリーでも同様であり、スチーム
は、ガス使用設備のボイラーから供給を受けてもよく、
蒸発器に付設した専用のボイラーから供給してもよい。
【0044】
【実施例】実施例1 図1に示す第1形態例の蒸発器を使用し、ローリーに搭
載した0.3MPa、−196℃の液体窒素を気化さ
せ、60℃に温度調節した窒素ガスを供給する実験を行
った。スチームは120℃、0.3MPaで供給し、該
スチームの供給量や熱交換器の形状等を調整することに
より、主熱交換槽10は、熱交換後のガス温度が80℃
になるように設定し、温調用熱交換槽20は、熱交換後
のガス温度が50℃になるように設定した。
【0045】温度指示調節計31で測定した供給ガスの
温度が60℃を超えたときに、流量調節弁27を開方向
に作動させて温調用熱交換槽20を流れる低温液化ガス
の流量を増加させ、低温ガスの混合割合を多くして供給
ガスの温度を下げ、供給ガスの温度が60℃を下回った
ときに流量調節弁27を閉方向に作動させて温調用熱交
換槽20を流れる低温液化ガスの流量を減少させ、低温
ガスの混合割合を少なくして供給ガスの温度を上げるよ
うにした。これにより、平均温度60℃で、温度変動幅
が±10℃の窒素ガスを約5000m/hで供給する
ことができた。また、PID制御を行うことによってよ
り高精度の温度調節を行うことができた。さらに、両熱
交換槽導出後のガス温度を種々変更して実験を行った
が、本形態例の蒸発器は、比較的高い温度、例えば40
〜60℃のガス供給に適していることがわかった。
【0046】実施例2 図2に示す第2形態例の蒸発器を使用し、低温液化ガス
貯槽内の0.3MPa、−193℃の液体窒素をポンプ
で1MPaに昇圧し、20℃に温度調節した窒素ガスを
供給する実験を行った。スチームは120℃、0.3M
Paで供給した。なお、第一熱交換槽51における温水
層W及びスチーム層Sの体積、第二熱交換槽52のスチ
ーム層Sの体積はそれぞれ約2mとした。第一温度指
示調節計65の指示温度は20℃、第二温度指示調節計
66の指示温度は35℃とし、各ガス温度がこの温度を
超えたときに各流量調節弁56V,57Vを開方向に作
動させ、各ガス温度が下回ったときに各流量調節弁を閉
方向に作動させた。
【0047】このように制御することにより、第一熱交
換器53で気化した窒素ガスの温度は約0℃、第二熱交
換器54で加温された窒素ガスの温度は約35℃、第三
熱交換器55で冷却された窒素ガスの温度は約20℃と
なり、平均温度20℃で、温度変動幅が±5℃の窒素ガ
スを5000m/hで供給することができた。
【0048】実施例3 図2に示す第2形態例の蒸発器を使用し、ローリーに搭
載した0.3MPa、−196℃の液体窒素をポンプで
1MPaに昇圧し、20℃に温度調節した窒素ガスを供
給する実験を行った。スチームは120℃、0.3MP
aで供給し、温水の温度は15℃に設定した。熱交換槽
71内の温水層Wの体積は約2m、スチーム層Sの体
積は約2.7mとした。第一温度指示調節計81及び
第二温度指示調節計82の指示温度は15℃とし、各ガ
ス温度がこの温度を超えたときに各流量調節弁75V,
76Vを閉方向に作動させ、各ガス温度が下回ったとき
に各流量調節弁を開方向に作動させた。
【0049】このように制御することにより、第一熱交
換器72で気化した窒素ガスの温度は約0℃、第二熱交
換器73で加温された窒素ガスの温度は約35℃、第三
熱交換器74で冷却された窒素ガスの温度は約20℃と
なり、平均温度20℃で、温度変動幅が±5℃の窒素ガ
スを5000m/hで供給することができた。
【0050】
【発明の効果】以上説明したように、本発明の蒸発器に
よれば、熱媒体としてスチームを使用したことにより、
蒸発器全体の小型化を図ることができる。さらに、熱媒
体としてスチームと温水とを併用することにより、供給
ガスの温度をより安定化させることができる。
【図面の簡単な説明】
【図1】 本発明の蒸発器の第1形態例を示す系統図で
ある。
【図2】 本発明の蒸発器の第2形態例を示す系統図で
ある。
【図3】 本発明の蒸発器の第3形態例を示す系統図で
ある。
【符号の説明】
10…主熱交換槽、11…金属製密閉容器、12…熱交
換器、13…スチーム導入管、14…ドレン、15…低
温液化ガス導入経路、16…気化ガス導出経路、17…
ガス供給経路、20…温調用熱交換槽、21…金属製密
閉容器、22…熱交換器、23…スチーム導入管、24
…ドレン、25…温調用低温液化ガス導入経路、26…
温調用気化ガス導出経路、27…流量調節弁、31…温
度指示調節計、51…第一熱交換槽、52…第二熱交換
槽、53…第一熱交換器、54…第二熱交換器、55…
第三熱交換器、56…第一スチーム導入管、57…第二
スチーム導入管、58,59…ドレン、61…低温液化
ガス導入経路、62…低温ガス経路、63…高温ガス経
路、64…ガス供給経路、65…第一温度指示調節計、
66…第二温度指示調節計、71…熱交換槽、72…第
一熱交換器、73…第二熱交換器、74…第三熱交換
器、75…第一スチーム導入管、76…第二スチーム導
入管、77…ドレン、78…ガス供給管、81…供給ガ
ス温度指示調節計、82…温水温度指示調節計、83…
流量指示調節計、84…演算器、85…低温液化ガス導
入経路
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 篤 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 高橋 伸之 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 石川 直良 神奈川県横浜市鶴見区矢向1−15−1 日 酸工業株式会社内 (72)発明者 高橋 利行 神奈川県横浜市鶴見区矢向1−15−1 日 酸工業株式会社内 Fターム(参考) 3L103 AA05 AA37 BB27 CC02 CC12 DD03 DD63

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 低温液化ガスを熱媒体と熱交換させるこ
    とにより加温して気化させる蒸発器において、熱媒体が
    導入される容器内に前記低温液化ガスが導入される熱交
    換器を収納した主熱交換槽と、熱媒体が導入される容器
    内に低温液化ガスの一部が導入される熱交換器を収納し
    た温調用熱交換槽と、前記主熱交換槽の熱交換器に低温
    液化ガスを導入する低温液化ガス導入経路と、該低温液
    化ガス導入経路から分岐し、流量調節弁を介して前記温
    調用熱交換槽の熱交換器に低温液化ガスを導入する温調
    用低温液化ガス導入経路と、前記主熱交換槽の熱交換器
    で気化したガスを導出する気化ガス導出経路と、前記温
    調用熱交換槽の熱交換器で気化したガスを導出する温調
    用気化ガス導出経路と、前記気化ガス導出経路のガスと
    前記温調用気化ガス導出経路のガスとを合流混合させて
    ガス使用先に供給するガス供給経路と、該ガス供給経路
    を流れる供給ガスの温度を測定する温度測定手段と、該
    温度測定手段の測定温度に基づいて前記温調用低温液化
    ガス導入経路の流量調節弁を開閉制御する制御手段とを
    備えていることを特徴とする蒸発器。
  2. 【請求項2】 前記温調用熱交換槽の熱交換能力は、前
    記主熱交換槽の熱交換能力と異なった能力に設定されて
    いることを特徴とする請求項1記載の蒸発器。
  3. 【請求項3】 低温液化ガスを熱媒体と熱交換させるこ
    とにより加温して気化させる蒸発器において、前記蒸発
    器は、熱媒体としてスチーム層及び温水層を有する少な
    くとも一つの熱交換槽内に、前記温水層内に配置されて
    前記低温液化ガスが導入される第一熱交換器と、前記ス
    チーム層内に配置されて該第一熱交換器で熱交換後のガ
    スが導入される第二熱交換器と、前記温水層内に配置さ
    れて前記第二熱交換器で熱交換後のガスが導入される第
    三熱交換器とを収納したことを特徴とする蒸発器。
  4. 【請求項4】 前記第二熱交換器で熱交換後のガスの温
    度が、該蒸発器から導出されるガスの設定温度よりも高
    く設定され、前記第三熱交換器で熱交換後のガスの温度
    が、第二熱交換器で熱交換後のガスの温度より低く設定
    されていることを特徴とする請求項3記載の高圧ガス供
    給設備。
  5. 【請求項5】 前記蒸発器から導出したガスの温度を測
    定する温度測定手段と、前記熱交換槽内にスチームを供
    給するボイラーと、前記温度測定手段で測定したガスの
    温度に基づいて前記熱交換槽内に供給するスチーム量を
    調節するスチーム供給量調節手段とを備えていることを
    特徴とする請求項3記載の高圧ガス供給設備。
JP2001144729A 2001-05-15 2001-05-15 蒸発器 Expired - Fee Related JP4621379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144729A JP4621379B2 (ja) 2001-05-15 2001-05-15 蒸発器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144729A JP4621379B2 (ja) 2001-05-15 2001-05-15 蒸発器

Publications (2)

Publication Number Publication Date
JP2002340484A true JP2002340484A (ja) 2002-11-27
JP4621379B2 JP4621379B2 (ja) 2011-01-26

Family

ID=18990635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144729A Expired - Fee Related JP4621379B2 (ja) 2001-05-15 2001-05-15 蒸発器

Country Status (1)

Country Link
JP (1) JP4621379B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340297A (ja) * 2001-05-18 2002-11-27 Nippon Sanso Corp 高圧ガス供給設備
JP2013515228A (ja) * 2009-10-27 2013-05-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 流体を冷却し液化するための装置および方法
JP2013533949A (ja) * 2010-06-08 2013-08-29 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド トリクロロシラン気化システム
JP2022063018A (ja) * 2020-10-09 2022-04-21 有限会社 両国設備 液化ガス気化システム及び液化ガス気化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211798A (ja) * 1985-07-09 1987-01-20 Tokyo Gas Co Ltd 液化天然ガスの増熱方法
JPS63163098A (ja) * 1986-12-26 1988-07-06 Chiyoda Chem Eng & Constr Co Ltd 液化軽質炭化水素の加熱・気化方法とその装置
JPS6469898A (en) * 1987-09-11 1989-03-15 Tokyo Gas Co Ltd Lng gasification apparatus
JPH029754U (ja) * 1988-06-29 1990-01-22
JPH0257800A (ja) * 1988-08-24 1990-02-27 Kawasaki Heavy Ind Ltd Lngの冷熱回収利用方法
JPH06185696A (ja) * 1992-12-21 1994-07-08 Tokyo Gas Co Ltd 低温液化ガスの気化装置
JPH1163474A (ja) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd 液化天然ガス加温装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211798A (ja) * 1985-07-09 1987-01-20 Tokyo Gas Co Ltd 液化天然ガスの増熱方法
JPS63163098A (ja) * 1986-12-26 1988-07-06 Chiyoda Chem Eng & Constr Co Ltd 液化軽質炭化水素の加熱・気化方法とその装置
JPS6469898A (en) * 1987-09-11 1989-03-15 Tokyo Gas Co Ltd Lng gasification apparatus
JPH029754U (ja) * 1988-06-29 1990-01-22
JPH0257800A (ja) * 1988-08-24 1990-02-27 Kawasaki Heavy Ind Ltd Lngの冷熱回収利用方法
JPH06185696A (ja) * 1992-12-21 1994-07-08 Tokyo Gas Co Ltd 低温液化ガスの気化装置
JPH1163474A (ja) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd 液化天然ガス加温装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340297A (ja) * 2001-05-18 2002-11-27 Nippon Sanso Corp 高圧ガス供給設備
JP4731042B2 (ja) * 2001-05-18 2011-07-20 大陽日酸株式会社 高圧ガス供給設備
JP2013515228A (ja) * 2009-10-27 2013-05-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 流体を冷却し液化するための装置および方法
US9046302B2 (en) 2009-10-27 2015-06-02 Shell Oil Company Apparatus and method for cooling and liquefying a fluid
JP2013533949A (ja) * 2010-06-08 2013-08-29 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド トリクロロシラン気化システム
JP2022063018A (ja) * 2020-10-09 2022-04-21 有限会社 両国設備 液化ガス気化システム及び液化ガス気化方法

Also Published As

Publication number Publication date
JP4621379B2 (ja) 2011-01-26

Similar Documents

Publication Publication Date Title
US10920933B2 (en) Device and process for refueling containers with pressurized gas
EP2000753B1 (en) System and method for separating components of a fluid coolant for cooling a structure
US11499765B2 (en) Device and process for refueling containers with pressurized gas
US7891197B2 (en) Method for non-intermittent provision of fluid supercool carbon dioxide at constant pressure above 40 bar as well as the system for implementation of the method
KR20080080157A (ko) 해양선박의 냉매 순환로에의 냉각 에너지 공급장치 및 방법
KR20100080551A (ko) 열적 제어 시스템 및 방법
US11287087B2 (en) Device and process for refueling containers with pressurized gas
US11506339B2 (en) Device and process for refueling containers with pressurized gas
US9134061B2 (en) Flow control of a cryogenic element to remove heat
EP0107880A1 (en) Method of operating a bimodal heat pump and a bimodal heat pump for operation by the method
JP2002340484A (ja) 蒸発器
HRP20010152A2 (en) Absorption refrigeration machine
EP0007904B1 (en) Fluid heating and cooling system with thermal storage
JP3839915B2 (ja) 冷媒冷却装置
JPH08291899A (ja) 液化天然ガスの気化装置及びその冷却待機保持方法
JP2004301186A (ja) 液化ガス気化システム
JPH11344276A (ja) 液化ガスの冷熱供給装置およびその運転制御方法
JP4731042B2 (ja) 高圧ガス供給設備
US3552135A (en) Fluid cooling arrangement employing liquified gas
EP3604892B1 (en) Device and process for refuelling containers with pressurized gas
JP2021021433A (ja) 液化ガス気化器
CN217424028U (zh) 一种调压测量水蒸发换热系数的装置
WO2022030103A1 (ja) 給湯システム
JP2004085008A (ja) 水和物スラリ製造システムおよびその運転方法
JPS588210A (ja) 液化天然ガスの流量変化に対するランキンサイクルの熱媒体流量制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees