JP2002336686A - Method and apparatus for manufacturing super fine particles - Google Patents

Method and apparatus for manufacturing super fine particles

Info

Publication number
JP2002336686A
JP2002336686A JP2001148272A JP2001148272A JP2002336686A JP 2002336686 A JP2002336686 A JP 2002336686A JP 2001148272 A JP2001148272 A JP 2001148272A JP 2001148272 A JP2001148272 A JP 2001148272A JP 2002336686 A JP2002336686 A JP 2002336686A
Authority
JP
Japan
Prior art keywords
crucible
gas
ultrafine particles
inert gas
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001148272A
Other languages
Japanese (ja)
Inventor
Keiko Katsumata
惠子 勝俣
Takayoshi Yamamoto
高義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2001148272A priority Critical patent/JP2002336686A/en
Publication of JP2002336686A publication Critical patent/JP2002336686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method in which an air curtain-like inert gas is used to surround the periphery of a crucible, and an apparatus employing the method. SOLUTION: In a super fine particle manufacturing apparatus, a nozzle is provided around the crucible, a suction port for waste gas is provided around a recovery means provided on the upper part of a vacuum vessel, the stream of the inert gas is formed in the interval from the nozzle to the suction port, a material evaporated and diffused in the traverse direction or obliquely upward is rebounded by the stream of the inert gas to move toward the recovery means provided on the upper part of the vacuum vessel and the rate of recovery in the recovery means is controlled to exceed 80%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は真空槽内のるつぼに
材料を置き、るつぼ全体を加熱して該材料を蒸発させ
て、該真空槽内の上部に冷却部を伴って設けた回収手段
に凝結させる超微粒子の製造方法及び装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recovery means provided with a cooling unit in the upper part of the vacuum tank, by placing a material in a crucible in a vacuum chamber, heating the entire crucible and evaporating the material. The present invention relates to a method and an apparatus for producing ultrafine particles to be coagulated.

【0002】[0002]

【従来技術】真空槽内に設けたるつぼを用いて固体物質
を加熱により液体状態を通り越し、更に加熱していわゆ
る昇華状態とし、該槽内のるつぼの上部に冷却装置と共
に設けられた回収手段上に固体を凝結する製造方法があ
る。
2. Description of the Related Art Using a crucible provided in a vacuum chamber, a solid substance is passed through a liquid state by heating, and further heated to a so-called sublimation state, on a collecting means provided together with a cooling device above the crucible in the chamber. There is a manufacturing method for coagulating solids.

【0003】このような製造方法により元の固体よりも
純度の高い固体を得たり、超微粒子を得たりしている。
この場合、得られた超微粒子は多数の不連続面が形成さ
れ界面が非常に多くなる。また、粒子が非常に小さくな
っているので結晶構造に多数の欠陥が形成され、化学的
に高い活性を示すようになる。
[0003] By such a production method, a solid having a higher purity than the original solid or an ultrafine particle is obtained.
In this case, the obtained ultrafine particles have a large number of discontinuous surfaces and an extremely large number of interfaces. In addition, since the particles are very small, a large number of defects are formed in the crystal structure, and the crystal has high activity.

【0004】この結果、超微粒子状物体は吸着、吸湿な
どの他にも触媒作用が強くなるなどの特性を持ってく
る。そのために化学工業、医薬品、農業、食品、精練、
窯業など粉体を取り扱う分野で注目されている。
As a result, the ultrafine particles have characteristics such as enhanced catalytic action in addition to adsorption and moisture absorption. The chemical industry, pharmaceuticals, agriculture, food, scouring,
It is attracting attention in the field of handling powder such as ceramics.

【0005】特に無機材料の分野においては、磁性材
料、粉末冶金材料、化学触媒、光波吸収材、電波吸収
材、半導体材料として優れた特性を示している。しか
し、無機材料に限定されず有機材料についても同様な方
法で超微粒子を製造することがある。そのための製造方
法にはいわゆるガス中蒸発法が用いられている
In particular, in the field of inorganic materials, it shows excellent properties as a magnetic material, a powder metallurgy material, a chemical catalyst, a light wave absorbing material, a radio wave absorbing material, and a semiconductor material. However, not only inorganic materials but also organic materials may be used to produce ultrafine particles in the same manner. The so-called gas evaporation method is used for the manufacturing method for that.

【0006】ガス中蒸発法の一例として図2に示すよう
な装置が用いられてきた。図2の91はこのような超微
粒子の製造装置の断面図である。92は真空槽であり、
93は槽内に設けられたるつぼ、95はるつぼを加熱す
る電源、94はるつぼ内に置かれた材料、96は槽の上
部に設けられた回収手段であり、この回収手段の近くに
は冷却装置97が設けられている。実際には真空槽内を
真空にするための排気用吸出口等が必要であるが本題か
ら外れるので図示を省略する。
As an example of the gas evaporation method, an apparatus as shown in FIG. 2 has been used. Reference numeral 91 in FIG. 2 is a sectional view of such an ultrafine particle manufacturing apparatus. 92 is a vacuum chamber,
93 is a crucible provided in the tank, 95 is a power supply for heating the crucible, 94 is a material placed in the crucible, 96 is a collecting means provided on the upper part of the tank, and cooling means is provided near the collecting means. A device 97 is provided. Actually, an exhaust suction port and the like for evacuating the inside of the vacuum chamber are required, but the illustration is omitted because it is out of the main subject.

【0007】るつぼ93内に材料94を置き、95の加
熱装置でるつぼ内の材料を加熱する。材料を加熱すると
最初は液体状になるが、更に加熱を続けると固体材料が
気体状になって真空槽内で拡散する。回収手段は冷却装
置の近くにあるので、気体状になった物質は回収手段に
向かい、その表面に凝結する。その凝結物98を回収し
て使用する。凝結物を回収するためには回収手段上の凝
結物をこそぎとるやり方が一般的である。
[0007] The material 94 is placed in the crucible 93, and the material in the crucible is heated by the heating device 95. When the material is heated, it is initially in a liquid state, but when heating is further continued, the solid material becomes gaseous and diffuses in the vacuum chamber. Since the collecting means is near the cooling device, the gasified substance goes to the collecting means and condenses on its surface. The condensate 98 is recovered and used. In order to collect the condensate, it is common to scrape off the condensate on the collecting means.

【0008】この場合、るつぼの温度と回収手段との温
度の差によって超微粒子が回収される効率が変わってく
る。もちろんその差が大きいほど回収効率が大きい。
In this case, the efficiency with which the ultrafine particles are collected changes depending on the difference between the temperature of the crucible and the temperature of the collecting means. Of course, the greater the difference, the greater the recovery efficiency.

【0009】また、真空槽内の真空度も影響してくる。
それは真空槽内に空気が存在すれば、蒸発した材料が空
気の粒子に衝突する機会が多くなり、回収手段に到達し
にくくなるからである。
[0009] The degree of vacuum in the vacuum chamber also has an effect.
This is because the presence of air in the vacuum chamber increases the chance of the evaporated material colliding with the air particles, making it difficult to reach the recovery means.

【0010】逆に真空槽内に不活性ガスを封入して、回
収手段に到達するまでの時間を余計かけることにより粒
子の改質を進めることもある。また、材料が回収手段に
到達するまでの途中にプラズマを噴出させて改質を進め
ることもある。
Conversely, in some cases, the inert gas is sealed in the vacuum chamber, and extra time is required until the gas reaches the recovery means, whereby the reforming of the particles may be advanced. In some cases, the plasma may be ejected on the way before the material reaches the recovery means to advance the reforming.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
方法では説明図から考えると蒸発した材料は全て回収手
段に到達するように思われるが、実際は真空槽内が真空
に近いため蒸発した材料が、蒸発と共に槽内に拡散して
しまい、回収手段に到達する材料は元の20%以下にな
ってしまう。残りは周囲の壁や天井の回収手段のない場
所に付着して凝結99する。
However, in the conventional method, it is considered from the illustration that all the evaporated material reaches the recovery means. However, since the inside of the vacuum chamber is close to vacuum, the evaporated material is The material is diffused into the tank together with the evaporation, and the amount of the material reaching the recovery means is less than 20% of the original amount. The remainder adheres to the surrounding walls and ceiling where there is no collection means, and condenses 99.

【0012】このことは投入した材料の回収できる割合
(歩留まり)が非常に悪いことを意味する。内壁に付着
し、凝結した超微粒子99は回収手段上に凝結した超微
粒子98とは特性が異なるものであって、このまま使用
することはできない。もちろん、削ぎ落として再利用す
ることができるが、いずれにせよ、歩留まりが悪いこと
は効率等で問題である。
This means that the ratio (yield) at which the input material can be recovered is very poor. The ultra-fine particles 99 adhered to the inner wall and condensed have different characteristics from the ultra-fine particles 98 condensed on the collecting means, and cannot be used as they are. Of course, it can be scrapped and reused, but in any case, the poor yield is a problem in efficiency and the like.

【0013】そのために蒸発した材料が拡散し過ぎない
ように内壁との間に金網を設け、所定の電位を持たせ
て、蒸発した材料との間の電位の反発により付着を防ぐ
ような工夫も考えられるが、るつぼに電位を与えたとし
ても、蒸発した材料がその電位を持ち続けることは難し
く、効果は少なかった。
For this purpose, a wire mesh is provided between the inner wall and the inner wall so that the evaporated material is not excessively diffused, a predetermined potential is provided, and adhesion is prevented by repulsion of the potential with the evaporated material. It is conceivable that even if a potential was applied to the crucible, it was difficult for the evaporated material to keep the potential, and the effect was small.

【0014】本発明は上記した従来の問題点を解決する
ためになされるもので、その目的とするところはるつぼ
の周囲を取り囲むように不活性ガスによるエアカーテン
状のものを設けるようにする方法と装置を提案するもの
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method of providing an air curtain having an inert gas so as to surround a crucible. And a device.

【0015】[0015]

【課題を解決するための手段】(1)真空槽内のるつぼ
に材料を置き、るつぼ全体を加熱して該材料を蒸発させ
て、該真空槽内の上部に冷却部を伴って設けた回収手段
に凝結させる超微粒子の製造方法において、該るつぼの
周囲に気体の噴出口を設け、該真空槽の該気体の噴出口
に対向する場所に該気体の吸出口を設け該気体を流しな
がら該材料を加熱することを特徴とする超微粒子の製造
方法により課題を解決した。
Means for Solving the Problems (1) A material is placed in a crucible in a vacuum chamber, the entire crucible is heated to evaporate the material, and a recovery provided with a cooling unit in the upper part of the vacuum chamber. In the method for producing ultrafine particles condensed by the means, a gas ejection port is provided around the crucible, and a suction port for the gas is provided at a position of the vacuum tank opposite to the gas ejection port, and the gas is supplied while flowing the gas. The problem has been solved by a method for producing ultrafine particles, characterized by heating a material.

【0016】(2)請求項1の超微粒子の製造方法にお
いて、使用する気体は不活性ガスであることを特徴とす
る超微粒子の製造方法により課題を解決した。
(2) In the method for producing ultrafine particles according to claim 1, the problem is solved by a method for producing ultrafine particles, wherein the gas used is an inert gas.

【0017】(3)請求項1の超微粒子の製造方法にお
いて、該気体の噴出口はノズル形状を有すること特徴と
する超微粒子の製造方法により課題を解決した。
(3) In the method for producing ultrafine particles according to claim 1, the problem is solved by a method for producing ultrafine particles, wherein the gas outlet has a nozzle shape.

【0018】(4)上記を具体化する装置として、真空
槽内のるつぼに材料を置き、るつぼ全体を加熱して該材
料を蒸発させて、該真空槽内の上部に冷却部を伴って設
けた回収手段に凝結させる超微粒子の製造装置におい
て、該るつぼの周囲に気体の噴出口を設け、該真空槽の
該気体の噴出口に対向する場所に該気体の吸出口を設け
該気体を流しながら該材料を加熱することを特徴とする
超微粒子の製造装置
(4) As an apparatus embodying the above, a material is placed in a crucible in a vacuum tank, the material is evaporated by heating the entire crucible, and a cooling unit is provided at the upper part in the vacuum tank. In the apparatus for producing ultrafine particles condensed by the collecting means, a gas outlet is provided around the crucible, and a gas suction port is provided at a position of the vacuum tank opposite to the gas outlet to flow the gas. Device for producing ultrafine particles, wherein the material is heated while heating

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の実
施例について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1の1は本発明の超微粒子の製造方法の
実施例を示す。2は真空槽の断面を示し、3はその槽内
の下部に設けられたるつぼ、4はるつぼ内に置かれた材
料、5はるつぼを加熱するヒーター、6は蒸発した材料
を回収する回収手段、7は回収手段を冷却する冷却装置
であり、ここまでは従来例と同じ構成である。真空槽内
を真空にするための排気用吸出口等が必要であるが本題
から外れるので図示を省略することも従来例と同じであ
る。
FIG. 1 shows an embodiment of the method for producing ultrafine particles of the present invention. Reference numeral 2 denotes a cross section of the vacuum tank, 3 denotes a crucible provided at a lower portion in the tank, 4 denotes a material placed in the crucible, 5 denotes a heater for heating the crucible, and 6 denotes a collecting means for collecting the evaporated material. , 7 are cooling devices for cooling the recovery means, which have the same configuration as that of the conventional example up to this point. It is necessary to provide an exhaust suction port and the like for evacuating the inside of the vacuum chamber, but this is outside the scope of the present invention, so that the illustration is omitted as in the conventional example.

【0021】このるつぼの外周に適宜な距離を保って不
活性ガスを噴出するノズル8が設けられている。このノ
ズルはるつぼの周囲を完全に取り囲むような構造が望ま
しいが、周囲に何点かを設けてもよい。9は槽内の天井
の回収手段の周囲に設けた排気用吸出口である。この吸
出口も回収手段の周囲を完全に取り囲むような構造が望
ましいが、周囲に何点かを設けてもよい
A nozzle 8 for ejecting an inert gas at an appropriate distance from the outer periphery of the crucible is provided. It is desirable that this nozzle completely surrounds the periphery of the crucible, but some points may be provided around the periphery. Reference numeral 9 denotes an exhaust suction port provided around the collection means on the ceiling in the tank. It is desirable that the suction port also completely surrounds the periphery of the collecting means, but some points may be provided on the periphery.

【0022】るつぼ3に材料4を置き、加熱用ヒーター
5をONさせると材料が加熱される。加熱を続けると材
料は固体状から液体状に変わり、更に加熱を続けると気
体状になってくる。そうするとるつぼを離れ真空槽内に
拡散を始める。上方に向かった材料は真空槽上部に設け
た回収手段6にぶつかり、回収手段に併設された冷却装
置7により冷却された回収手段上に凝結11する。
When the material 4 is placed on the crucible 3 and the heater 5 is turned on, the material is heated. When heating is continued, the material changes from a solid state to a liquid state, and when heating is further continued, the material becomes gaseous. Then, it leaves the crucible and begins to diffuse into the vacuum chamber. The upwardly directed material collides with the collecting means 6 provided in the upper part of the vacuum tank, and condenses 11 on the collecting means cooled by the cooling device 7 attached to the collecting means.

【0023】拡散により横方向や斜め上方に向かった材
料は高圧でノズルから噴出し、排気用吸出口に向かう不
活性ガスの流れ10にぶつかって跳ね返される。真空槽
内でのるつぼの位置が低いので、不活性ガスに跳ね返さ
れた材料は上方に向かうことになり、大部分は上方に設
けられた回収手段に凝結する。一部は跳ね返された後更
に不活性ガスの別の部分で跳ね返されて少しずつ上方に
向かい最後は回収手段に凝結する。
The material which is directed laterally or obliquely upward due to diffusion is ejected from the nozzle at a high pressure, and hits the inert gas flow 10 toward the exhaust air outlet and is repelled. Due to the low position of the crucible in the vacuum chamber, the material repelled by the inert gas will be directed upwards and will largely condense on the recovery means provided above. After a part is bounced, it is further bounced by another part of the inert gas and gradually goes upward, and finally condenses on the collecting means.

【0024】拡散した材料が不活性ガスにぶつかった
時、全てが跳ね返されるのではなく一部は不活性ガスの
流れに乗って排気用吸出口から真空槽の外に出てしまう
ものもあるが、ガスの流れが速ければ速いほど跳ね返さ
れる割合は大きくなる。また、不活性ガスの単位当たり
の重量が大きければ大きいほど跳ね返される割合が大き
くなる。
When the diffused material collides with the inert gas, not all of the material is bounced off, but a part of the material rides on the flow of the inert gas and exits the vacuum chamber through the exhaust port. However, the faster the gas flow, the greater the rate of rebound. Also, the greater the weight per unit of the inert gas, the greater the rebound rate.

【0025】るつぼは真空槽内の低いところに置かれる
ので、蒸発した材料が直接下方に向かい底面に凝結する
割合は極めて少量であり、特に問題になるほどのことで
はない。
Since the crucible is placed low in the vacuum chamber, the rate at which the evaporated material directly condenses downwards to the bottom surface is very small and not particularly problematic.

【0026】この原理は無機物質に限らず有機物質にも
応用できる。特に単位当たりの重量が大きい物質に応用
する場合には「不活性ガスの単位当たりの重量が大きけ
れば大きいほど跳ね返される割合が大きくなる」ことに
鑑み不活性ガスの選択に留意する必要がある。
This principle can be applied not only to inorganic substances but also to organic substances. In particular, when applied to a substance having a large weight per unit, it is necessary to pay attention to the selection of the inert gas in view of the fact that "the greater the weight per unit of the inert gas, the greater the rebound rate".

【0027】このようにエアカーテンに相当する不活性
ガスの流れを利用した装置で超微粒子を製造すると、周
囲の内壁や天井で回収手段のない部分に付着する材料が
なくなるので、回収率は80%を優に超えるものとな
る。
When ultra-fine particles are produced by an apparatus utilizing a flow of an inert gas corresponding to an air curtain as described above, no material adheres to the surrounding inner wall or ceiling where there is no collection means, and the collection rate is 80%. %.

【0028】ここで使用する不活性ガスはノズルから噴
出するが、真空槽の上部に設けられた排気用吸出口を通
じて回収するようにすれば、再度利用することができ、
無駄にはならない。または噴出用ノズルの元と排気用吸
出口の先とを接続し、途中に送風ポンプを設けて、不活
性ガスが循環するようにしておけばより効率的である。
The inert gas used here is ejected from a nozzle, but can be reused if it is recovered through an exhaust port provided at the top of the vacuum chamber.
It is not wasted. Alternatively, it is more efficient if the base of the ejection nozzle and the end of the exhaust suction port are connected, and a ventilation pump is provided on the way to circulate the inert gas.

【0029】[0029]

【発明の効果】以上のように、本発明によれば従来の拡
散した材料が内壁に付着することによって歩留まりが2
0%以下であったものが、不活性ガスの流れによって内
壁への付着を防いだことで優に80%を超えるものとな
り、無駄な時間、無駄な材料を減らすことができる。
As described above, according to the present invention, the conventional diffused material adheres to the inner wall to reduce the yield.
The content of 0% or less is more than 80% by preventing the adhesion to the inner wall by the flow of the inert gas, so that a useless time and a useless material can be reduced.

【0030】ここで使用する不活性ガスは真空槽の上部
に設けた排気用吸出口を用いて回収し、再利用すること
ができるので無駄になることもない。
The inert gas used here can be recovered and reused by using the exhaust suction port provided at the upper part of the vacuum chamber, so that it is not wasted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超微粒子製造装置の断面図FIG. 1 is a cross-sectional view of an apparatus for producing ultrafine particles of the present invention.

【図2】従来の超微粒子製造装置の断面図FIG. 2 is a cross-sectional view of a conventional ultrafine particle manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 超微粒子製造用装置 2 真空槽 3 るつぼ 4 材料 5 ヒーター 6 回収手段 7 冷却装置 8 ノズル 9 排気用吸出口 10 不活性ガスの流れ 11 凝結物 DESCRIPTION OF SYMBOLS 1 Ultrafine particle manufacturing apparatus 2 Vacuum tank 3 Crucible 4 Material 5 Heater 6 Recovery means 7 Cooling device 8 Nozzle 9 Exhaust air outlet 10 Flow of inert gas 11 Condensate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空槽内のるつぼに材料を置き、るつぼ全
体を加熱して該材料を蒸発させて、該真空槽内の上部に
冷却部を伴って設けた回収手段に凝結させる超微粒子の
製造方法において、該るつぼの周囲に気体の噴出口を設
け、該真空槽の該気体の噴出口に対向する場所に該気体
の吸出口を設け該気体を流しながら該材料を加熱するこ
とを特徴とする超微粒子の製造方法
1. A method in which a material is placed in a crucible in a vacuum chamber, and the entire crucible is heated to evaporate the material. In the manufacturing method, a gas ejection port is provided around the crucible, and a gas suction port is provided at a position of the vacuum tank opposite to the gas ejection port, and the material is heated while flowing the gas. For producing ultrafine particles
【請求項2】請求項1の超微粒子の製造方法において、
使用する気体は不活性ガスであることを特徴とする超微
粒子の製造方法
2. The method for producing ultrafine particles according to claim 1,
A method for producing ultrafine particles, wherein the gas used is an inert gas.
【請求項3】請求項1の超微粒子の製造方法において、
該気体の噴出口はノズル形状を有すること特徴とする超
微粒子の製造方法
3. The method for producing ultrafine particles according to claim 1,
The method for producing ultrafine particles, wherein the gas outlet has a nozzle shape.
【請求項4】真空槽内のるつぼに材料を置き、るつぼ全
体を加熱して該材料を蒸発させて、該真空槽内の上部に
冷却部を伴って設けた回収手段に凝結させる超微粒子の
製造装置において、該るつぼの周囲に気体の噴出口を設
け、該真空槽の該気体の噴出口に対向する場所に該気体
の吸出口を設け該気体を流しながら該材料を加熱するこ
とを特徴とする超微粒子の製造装置
4. A method of placing a material in a crucible in a vacuum chamber, heating the entire crucible to evaporate the material, and condensing ultra-fine particles to be condensed in a collection means provided with a cooling unit in an upper portion of the vacuum chamber. In the manufacturing apparatus, a gas ejection port is provided around the crucible, and a gas suction port is provided at a location of the vacuum tank opposite to the gas ejection port to heat the material while flowing the gas. Ultra fine particle manufacturing equipment
JP2001148272A 2001-05-17 2001-05-17 Method and apparatus for manufacturing super fine particles Pending JP2002336686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148272A JP2002336686A (en) 2001-05-17 2001-05-17 Method and apparatus for manufacturing super fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148272A JP2002336686A (en) 2001-05-17 2001-05-17 Method and apparatus for manufacturing super fine particles

Publications (1)

Publication Number Publication Date
JP2002336686A true JP2002336686A (en) 2002-11-26

Family

ID=18993626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148272A Pending JP2002336686A (en) 2001-05-17 2001-05-17 Method and apparatus for manufacturing super fine particles

Country Status (1)

Country Link
JP (1) JP2002336686A (en)

Similar Documents

Publication Publication Date Title
JP4263206B2 (en) Heat treatment method, heat treatment apparatus and vaporization apparatus
CN1154533C (en) Vapor generating method and apparatus using same
JP2007237140A (en) Desalination device
Hegner et al. Ultrafast bubble bursting by superamphiphobic coatings
CN100567139C (en) Nano particle generator
JP2009103398A (en) Vacuum spray dryer
RU2381056C2 (en) Unit to process powder materials
CN104906913A (en) Method for reducing suspension particles in air by using humidification water condensation, and apparatus thereof
CN208700619U (en) A kind of vaporising device of high-concentration salt-containing wastewater
JP2002336686A (en) Method and apparatus for manufacturing super fine particles
KR100846148B1 (en) Deposition method using powder material and device thereby
JP2004337694A (en) Dehumidification apparatus
JP2009239297A (en) Processing system
CN211753815U (en) Microwave-induced activated carbon adsorption steam desorption hydrogen sulfide removal device
JP2002045675A (en) Novel spray drying pelletizing device and manufacturing method of granular food product
JPH0331486B2 (en)
KR100529054B1 (en) Apparatus and method for removing moisture from fine powder carried by hot and humid carrier gas
KR101410971B1 (en) Continous nanoink producing apparatus
RU2436659C1 (en) Method to produce suspensions of nanoparticles
JPH1147533A (en) Gas treating apparatus
JP2005349265A (en) Mist collector
JP6348488B2 (en) Method for controlling substances present in a liquid and use thereof
JP2007084849A (en) Method and device for producing metal hyperfine particle
KR200233433Y1 (en) Catalitic Oxidation & Multi Chamber Type Mist Collector
CN108862976A (en) A kind of sludge drying device containing volatile organic compounds